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Abstract 

 

This paper explores the use of data-driven approximation algorithms, often called surrogate modelling, in the early-

stage design of structures. The use of surrogate models to rapidly evaluate design performance can lead to a more in-

depth exploration of a design space reduce computational time of optimization algorithms. While this approach has 

been widely developed and used in related disciplines such as aerospace engineering, there are few examples of its 

application in civil engineering.  This paper focuses on the general use of surrogate modelling in the design of civil 

structures, and examines six model types that span a wide range of characteristics.  Original contributions include 

novel metrics and visualization techniques for understanding model error, and a new robustness framework that 

accounts for variability in model comparison.  These concepts are applied to a multi-objective case study of an 

airport terminal design that considers both structural material volume and operational energy consumption.  
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1. Introduction 

 

The engineering design process for civil structures often requires computationally expensive analysis and 

simulation runs within a limited timeframe.  When the assessment of a design’s performance takes hours or days, the 

potential for exploring many solutions and significantly improving design quality is limited.  This paper addresses 

this issue by investigating the application of surrogate modelling, a data-driven approximation technique, to civil 

engineering, to empower designers to achieve more efficient and innovative solutions through rapid performance 

evaluation. 

 

1.1 Design optimization for civil structures 

 

An established method for high-performance engineering design is optimization.  However, unlike in other 

engineering disciplines, the optimization objectives and constraints in civil and architectural structures, such as 

buildings and bridges, are not always easily quantified and expressed in equations, but rather require human 

intuition and initiative to materialize. For this reason, design optimization in civil engineering has yet to reach its 

full potential. There are a few examples where it has been successfully applied to buildings, such as in braced frame 

systems for tall buildings by Skidmore, Owings & Merrill (SOM) [1], but these cases remain exceptional. To 

illustrate the breadth of designs for braced frame systems such those in [1], a somewhat irregular design by Neil M. 

Denari Architects (High Line 23, New York City [2]) could be considered. While this design is not structurally 

optimized, its architectural success is closely linked to its structural system and geometry. Thus, in design 

optimization for buildings, there needs to be a balance between quantitative and qualitative objectives. 
Both quantitative and qualitative goals pose challenges for the use of optimization in terms of computational 

speed.  First, simulations such as structural analysis and predictions of building energy consumption often require 

significant computational power, increasing with the complexity and size of the project. Thus, optimization 

algorithms can usually require substantial execution time, slowing down or impeding the design process. On the 

other hand, because of the qualitative nature of civil engineering design with the hard-to-quantify considerations as 

described above, many iterations are required and the result is never likely to come up from a single optimization 

run. In practice, the combination of slow simulation and problem formulation challenges means that optimization is 
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rarely used in the design of architectural and civil structures. In fact, even quantitatively comparing several design 

alternatives can be too time-consuming, resulting in poor exploration of the design space and likely a poorly 

performing design. 

 

1.2 Need for computational speed 

 

The exploration of the design problem and various optimal solutions should ideally happen in real time, so that 

the designer is more productive. Research has shown that rapid response time can result in significant productivity 

and economic gains [3].  The upper threshold for computer response time for optimal productivity has been 

estimated at 400ms and is commonly referred to as the Doherty threshold [3]. This threshold was originally 

developed in the 1980s for system response of routine tasks, like typing. Today, however, software users expect 

similarly rapid response for any interactions with the computer, even those that require expensive calculations like 

performance simulation. Immediate response from the computer can benefit not just rote productivity, but also 

creative thinking. The concept of flow is used in cognitive science to describe “completely focused motivation,” 

when a person becomes fully immersed in a task, at their most productive and mentally engaged. Among the key 

requirements for achieving creative flow, as, characterized by Csikszentmihalyi [4], is “immediate feedback”. 

The first way to implement the “immediate feedback” effect in computer response is by increasing the available 

computational power. This can be achieved by either increasing the processing power of a computer or by 

harnessing parallel and distributed computing capabilities. The second way is to use different or improved 

algorithms. This paper focuses on the second approach, investigating algorithms that improve computational speed 

for design-oriented simulation through approximation. 
 

1.3 Surrogate modelling 

 

Among possible approximation algorithms, this paper considers surrogate modelling algorithms, a class of 

machine learning algorithms, and their use in making computation faster and allowing for more productive 

exploration and optimization in the design of buildings. Machine learning typically deals with creating models about 

the physical world based only on available data. The data are either gathered though physical experiments and 

processes, or by computer-generated samples. Those samples are then fit to an approximation mathematical model, 

which can then be used directly as the generating means of new representative data samples. In surrogate modelling 

specifically, the data is collected from simulations run on the computer. 

Similar techniques are being used successfully in many other engineering disciplines, but have not been studied 

and applied extensively to the civil and architectural engineering fields. This research investigates these techniques 

and evaluates them on various related case studies. Focus is given in the development of a holistic framework that is 

generalizable.  Figure 1 displays a core concept in surrogate modelling. The circles represent the available data, with 

many different models being able to fit them. The art in surrogate modelling is to choose the one that will also fit 

new data well. 

 

1.4 Big data approach 

 

The surge of available information is reshaping the existing methodologies in several scientific and engineering 

fields. It has been argued that the methodologies should take a shift towards data-driven approaches. As described 

by Denning [5], engineers can build algorithms that can “recognize or predict patterns in data without understanding 

the meaning of the patterns”. Furthermore, Mayer-Schönberger and Cukier [6] analyze this shift from causality to 

correlation in the methodologies in the “Big Data” era.  Therefore, the term big data extends beyond the generation 

and accumulation of large amounts of data, to describe a new methodological paradigm based purely on data. Along 

these lines, this paper presents a data-driven approach for the design exploration of architectural and civil structures. 

 

1.5 Organization of paper 

 

First, a literature review of the existing research in surrogate modelling, its application in structural engineering 

problems, model types, and error assessment methods is outlined in Section 2. Section 3 is an overview of the main 

features of the methodology framework used, including assumptions and the models used. Sampling and 

normalization techniques are also discussed. Section 4 is dedicated to explaining the new error assessment and 

visualization methods used throughout the rest of the paper. Section 5 introduces the proposed method for robust 

model comparison, whose use is then illustrated through the case study in Section 6. Specifically, Section 6 
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introduces the case study problem, the parameters examined and the analysis assumptions, while also presenting all 

the numerical results obtained from the approximation. The original contributions, findings and future 

considerations are summarized in Section 7. 

 

2. Literature review 

 

To avoid a computationally expensive simulation, one approach is to construct a physical model that is simpler 

and includes more assumptions than the original. This process is very difficult to automate and generalize and 

requires a high level of expertise and experience in the respective field. A more general approach is to substitute the 

analytical simulation with an approximate model (surrogate) that is constructed based purely on data. This approach 

is referred to as data-driven or black-box simulation. The reason is that the constructed approximation model is 

invariant to the inner details of the actual simulation and analysis. The model has only “seen” data samples that have 

resulted from an “unknown” process, thus the name black-box. This paper addresses data-driven surrogate 

modelling. 

The two main areas in which surrogate modelling can be applied are for optimization and design space 

exploration. Specifically, an approximation (surrogate) model can be constructed as the main evaluation function for 

an optimization routine or just in order to explore a certain design space in its entirety, better understand variable 

trade-offs and performance sensitivity. For optimization, it is often used when there are more than one optimization 

objectives, thus called multi-objective optimization (MOO), and the computational cost of computing them is 

significant. 

 

2.1 Surrogate modelling for structural designs 

 

In previous decades, when computational power was significantly less than that of today, scientists started to 

explore the possibility of adapting approximation model techniques in intensive engineering problems. One of the 

first attempts of this kind in the field of structural engineering by Schmit and Miura [7] in a NASA report in 1976. A 

review of the application of approximation methods in structural engineering was published by Barthelemy and 

Haftka in 1993 [8]. The methods explored in this review paper are response surface methodology (RSM) as well as 

neural networks (NN). It was mentioned that more methods will emerge and the practice is going to expand. In fact, 

today, although the computational power has increased exponentially from twenty years ago, the engineering 

problems that designers face have also increased dramatically in scale and therefore surrogate modelling has been 

studied and applied extensively. 

In 1992, Hajela and Berke [9] contributed an overview of the use of neural networks in structural engineering 

problems. They noted that this approximation technique could be useful in the more rapid evaluation of simulations 

such as nonlinear structural analysis. Neural networks and approximation models more broadly still have great 

potential in this field today, when nonlinear structural analysis is very frequently performed. Researchers have been 

using approximation algorithms in the structural engineering field for various problems such as for the dynamic 

properties and response evaluation and optimization of structures [10], for seismic risk assessment [11] and for 

energy MOO simulations [12]. Energy simulations are extensively examined in this paper, since they are usually 

extremely expensive computationally, and at the same time their use and importance in building and infrastructure 

design is increasing today. 

The use of approximation algorithms in conceptual structural and architectural design was examined by Swift 

and Batill in 1991 [13]. Specifically, for truss problems, with the variables being the positions of some nodes of the 

truss and the objective the structural weight, a design space was sampled and later approximated using neural 

networks. 
A similar approach was followed by Mueller [14], with a seven-bar truss problem examined being shown in 

Figure 3a. The variables were again the positions of the nodes and specifically the vertical nodal positions as shown 

along with their ranges in Figure 3a. The design space (with the structural weight as the objective score) computed 

analytically, without approximation is shown in Figure 3b. The approximated design space for different models is 

shown in Figure 3. Details on the approximation models used later are presented in Section 2.2. 
It is also noteworthy that surrogate modelling is used extensively in the aerospace industry. The basic principles 

remain the same across disciplines since the methodology relies solely on data. Queipo et al. [15] have made a 

thorough overview of the common practices of surrogate modelling. They also applied those techniques in an MOO 

problem from the aerospace industry. Another comprehensive survey of black-box approximation method for use in 

high-dimensional design problems is included in [16]. 
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There exist attempts of integrating performance evaluation into parametric design in architectural and civil 

structures. Mueller and Ochsendorf [17] considered an evolutionary design space exploration, Shi and Wang [18] 

examined performance-driven design from an architect’s perspective, while Granadeiro et al. [19] studied the 

integration of energy simulations into early-stage building design. All of these interesting approaches could benefit 

by the use of surrogate modelling, which is the main contribution of this paper. 

 

 

2.2 Model types 

 

Several methods have been developed over the years to approximate data and have been used in surrogate 

modelling applications. Very common ones include polynomial regression (PRG) and response surface methodology 

(RSM) [20], in which a polynomial function is fitted to a dataset using least squares regression. This method has 

been used in many engineering problems [15]. 

One of the most widely used surrogate modelling method in engineering problems is Kriging (KRIG). Since it 

was formally established in the form it is used today [21], it has been applied extensively ([11], [15], [22]). Gano et 

al. [23] compared Kriging with 2nd order polynomial regression. Chung and Alonso [22] also compared 2nd order 

RSM and Kriging for an aerospace case study and concluded that both models performed well and are pose indeed a 

realistic methodology for engineering design. 
Another very popular model type are artificial neural networks (referred as NN in this paper). Extensive 

research has been performed on this type of model ( [9], [15] ). Neural networks are greatly customizable and their 

parameters and architecture are very problem specific. 

A special type of neural network is called radial basis function network (RBFN) and was introduced by 

Broomhead and Lowe [24] in 1988. In this network, the activation function of each neuron is replaced by a gaussian 

bell curve function. A special type of RBFN imposes the Gaussian radial basis function weights such that the 

networks fits the given data with zero error. This is referred to as radial basis function network exact (RBFNE) and 

its main drawback is the high possibility that the network will not generalize well on new data. Those two types of 

models, RBFN and RBFNE, are explained in more detail in Section 3 as they are studied more extensively in this 

paper. 

Radial basis functions can also be used to fit high dimensional surfaces from given data. This model type is 

called RBF [25] and is different from the RBFN model. RBF models can also be referred to as gaussian radial basis 

function models [15]. Kriging is similar to RBF, but it allows more flexibility in the parameters. 

Multivariate adaptive regression splines (MARS) is another type of model. This performs a piecewise linear or 

cubic multidimensional fit to a certain dataset [26]. It can be more flexible and capture more complex datasets, but 

requires more time to construct. 

Jin et al. [27] performed a model comparison for polynomial regression, Kriging, MARS and RBF models. 

They used 13 mathematical problems and 1 engineering problem to perform the comparisons. Many other references 

for papers that performed comparisons between those and other models are also included in [27]. An important 

contribution of this paper was a list of five major aspects to compare the models: accuracy, robustness (ability to 

make predictions for problems of different sizes and type), efficiency (computational time to construct model), 

transparency (ability of the model to provide information about variable contribution and interaction) and conceptual 

simplicity. Those issues are examined in following sections in the present paper. 

Finally, the existing MATLAB-based framework called SUMO [28], implements support vector machines 

(SVM) [29] (a model type frequently used for classification), Kriging and neural network models, along with the 

sampling and has been used in many applications such as RF circuit modelling and aerodynamic modelling [28]. 

A framework with NN, Random Forests (RF) (which have not extensively been applied in structural 

engineering problems), RBFN, RBFNE, MARS and KRIG models is developed and tested in case study problems in 

this paper to extend the existing research and available methodologies for structural design.  There is a lack of 

extensive model comparison and their application on problems for structural engineering and building design 

specifically; this paper addresses this need to move beyond existing work. 

 

 

2.3 Error in surrogate models 

 

The most important error required to assess an approximation model is called its generalization error. This is 

more thoroughly examined in Section 2.4. In the current section, ways to quantify a model’s performance on a given 

set of data are discussed. When the actual performance calculated from the analytical simulation is known for a set 
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of data, and the respective performance from an approximation model is calculated, then the error of the predicted 

versus the actual performance can be calculated by many different measures. All the following error measures are 

computed between the actual (represented by y) – and predicted (represented by h) values. 

One of the most common ones is R2, which refers to the correlation coefficient of the actual with the predicted 

values. A value closer to 1 indicates better fit. This is extensively discussed in this paper in Section 4. Other 

common measures are the Mean Squared Error (MSE) and its root, the Root Mean Squared Error (RMSE). The Root 

Mean Square Normalized Error would be another alternative. It is more intuitive and more details are included in 

Section 4.2. The Average Absolute Error (AAE) and the Maximum Absolute Error (MAE) are other options, along 

with Relative Average Absolute Error (RAAE) and the Relative Maximum Absolute Error (RMAE). MAE is 

generally not correlated with R2 or AAE and it can indicate whether the model does not perform well only in a 

certain region. The same holds true for RMAE, which is not necessarily correlated with R2 or RAAE. However, R2, 

RAAE and MSE are usually highly correlated [27], which makes the use of more than one of them somewhat 

redundant. Gano et al. [23] used R2, AAE and MAE for the model comparisons they studied, while Jin et al. [27] 

used R2, RAAE and RMAE. The above mentioned error metrics are summarized along with their formulas on Table 

1. 

 

 

 Error metric Formula 

1 MSE 
∑ (𝑦𝑖 − ℎ𝑖)

2𝑛
𝑖=1

𝑛
 

2 RMSE √
∑ (𝑦𝑖 − ℎ𝑖)

2𝑛
𝑖=1

𝑛
 

3 RMSNE √∑ (
𝑦𝑖 − ℎ𝑖
𝑦𝑖

)
2

𝑛
𝑖=1

𝑛
 

4 R2 1 −
∑ (𝑦𝑖 − ℎ𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 

5 AAE 
∑ |𝑦𝑖 − ℎ𝑖|
𝑛
𝑖=1

𝑛
 

6 RAAE 
∑ |𝑦𝑖 − ℎ𝑖|
𝑛
𝑖=1

𝑛 ∙ 𝑆𝑇𝐷(𝑦)
 

7 MAE max(|𝑦1 − ℎ1|, |𝑦2 − ℎ2|, … , |𝑦𝑖 − ℎ𝑖|) 

8 RMAE 
max(|𝑦1 − ℎ1|, |𝑦2 − ℎ2|, … , |𝑦𝑖 − ℎ𝑖|)

STD(y)
 

Table 1: Common surrogate modelling error metrics (y: actual, h: predicted value) 

 
Error measures which provide a more direct and comprehensive quantitative model performance metric are lacking, 

and some alternative approaches to address this are presented in this paper. Error measures based on a model’s 

performance on the rank of the samples [14] are also studied. Special focus is also given to the visualization of the 

results and it is argued that normalization and visualization can have a significant impact in understanding error and 

are problem specific. 
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2.4 Robustness in surrogate modelling 

 

As mentioned above, it is crucial for a surrogate modelling application to have an acceptable generalization 

error. This refers to an error estimate of the model on new data. In this context, new data means data samples that 

have not been used at any point in the construction of the model. One can realize that this is indeed the most 

important error required since the rapid generation of accurate new data performance is the main objective of the 

construction of the surrogate model in the first place.  

To estimate the generalization error, several techniques exist. Those are explained in detail in Queipo et al. [15] 

and Viana et al. [30]. The simplest one is to split a given dataset into train and test data, construct the model with the 

train data and then compute the error in the test data and take this as an estimate of the generalization error. Another 

technique is called cross-validation (CV), in which the original dataset is split into k parts and the model is trained 

with all the parts except one, which is used as the test set of the previous case. The procedure is then repeated until 

each one of the k sets has served as the test set. By taking the mean of the test set errors, a more robust 

generalization error estimate is produced. Another advantage is that a measure of this error’s variability can be 

obtained by taking, for example, the standard deviation of the computed k test set errors. If this procedure is repeated 

the same number of times as the number of samples in the original dataset, which means that only a single sample is 

used every time as the test set, then this measure is called PRESS and the method leave-one-out cross validation 

[30]. The last method to obtain a robust generalization error measurement is through bootstrapping. According to the 

known definition of the bootstrap (sample with replacement), a certain number of bootstrap samples (datasets) are 

created as training and test sets. Then the error estimate and its variability calculation procedure is similar to the CV 

method. For the bootstrapping method to produce accurate results, a large number of subsamples is usually needed 

[30].  

This paper attempts a combination of the aforementioned techniques frequently used in the surrogate modelling 

context with the common practice of machine learning applications (train/validation/test set partition) to obtain a 

measure of robustness as well as accuracy. 

Another way to interpret robustness is to consider it as the capability of the approximation model to provide 

accurate fits for different problems. This again can be measured by the variance of accuracy and error metrics. 

However, the scope of this paper is to examine the deployment of approximation models for case study design 

problems and not to comment on a model’s more general predictive ability regarding its mathematical properties. 

Finally, to increase robustness, one could use ensembles of surrogate models in prediction [15]. This means that 

several models are trained and their results are averaged with a certain scheme to obtain a prediction. Models of this 

type are Random Forests (RF), which are studied in this paper and explained in more detail in the next section. 

 

 

3. Methodology and framework 

 

This section outlines in detail the basic components used throughout this research, the proposed methodology 

and the case studies, all explained in the following sections. In general, the framework developed is based on first 

sampling a design space, and then constructing and assessing the surrogate models. For the sampling part, the Rhino 

software [31] and the Grasshopper plugin [32] were used. They are parametric design tools very broadly used in 

architectural design. As for the surrogate modelling part, the framework and all of the analysis was performed in 

MATLAB. References to the specific functions and special capabilities of MATLAB are placed in context in the 

text. 

 

3.1 Surrogate modelling procedure 

 

The basic surrogate modelling procedure consists of three phases; training, validation, and testing. A separate 

set of data is needed for each of those phases. During the training phase, a model is fit into a specific set of data, the 

training set. The fitting process refers to the construction of the mathematical model; the determination of various 

weighting factors and coefficients. In the next phase, the trained model is used on a different set of data, the 

validation set, and its prediction error on this set is computed. The first two steps of training and validation are 

repeated several times with different model parameters. The model that produced the minimum error on the 

validation set, is then chosen for the final phase of testing. During testing, another dataset, the test set, is used to 

assess the performance of the model chosen from the first two steps (minimum validation set error). 
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The steps are shown schematically in Figure 4. Each model type can have multiple parameters which define it. 

These are referred to as nuisance parameters, since they must be selected by trial and error in the validation step, or 

simply parameters in the following sections. Different nuisance parameters can result in different levels of model fit 

and accuracy. Choosing the best nuisance parameters for a given model type is the goal of the validation phase as 

described in the previous paragraph. The test phase is for verification of the model’s performance on a new set of 

data, never previously used in the process (training or validation). More details can be found in [29]. 
  
3.2 Model types 

 

A surrogate model is essentially a procedure that acts on input data and outputs a prediction of a physical 

quantity. Previously computed or measured values of the physical quantity at hand, along with the corresponding 

input variables, are used to create/train the model, which can afterwards be used to make rapid predictions on new 

data. There are numerous different surrogate modelling algorithms and architectures. In the following section, the 

models examined in the present paper are introduced. Lists of the considered parameters affecting each model are 

also included. All the model parameters considered and MATLAB functions used are summarized in Table 2. 

 

  NN RF 

1 Number of neurons 6:6:30 Number of trees 10:10:300 

2 Number of layers 1:2 Number of variables to sample 6 

3 Training function trainlm Bootstrap sample size ratio 0.8 

4 Maximum validation checks 10 Sample with replacement true 

5 Internal ratio of Training data 0.8 Minimum leaf observations 5 

6 Internal ratio of Validation data 0.2 
 

  

7 Internal ratio of Test data 0 
 

  

MATLAB feedforwardnet [33] TreeBagger [34] 

     
  RBFN RBFNE 

1 Mean squared error goal 0.005 Spread of radial basis functions  0.5:0.5:4 

2 Spread of radial basis functions  0.5:0.5:4 
 

  

3 Maximum number of neurons 600 
 

  

MATLAB newrb [35] newrbe [36] 

     
  MARS KRIG 

1 Piecewise function type  
{cubic, 

linear} 

Degree of polynomial regression 

function 
{0,1,2} 

2 Maximum number of functions 10:10:40 Correlation function 

{exponential, 

gaussian, 

linear, 

spherical, 

spline} 

MATLAB ARES Lab [37] DACE Toolbox [38] 

Table 2: Summary of models, nuisance parameters and MATLAB functions considered 

 

 

 

3.3 Sampling/Normalization 
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The first step of any surrogate modelling framework is sampling. It refers to the gathering of a finite number of 

samples of design space parameters (explanatory variables) with the corresponding objective value (performance 

measure) for each of those samples. Those samples will be separated into training, validation, and test sets for the 

model development phase. 

For the case study in the present paper, the Rhinoceros software [31] was used along with the Grasshopper 

plugin [32] to generate the parametric design models as well as the objectives. For this reason, a sampling tool was 

developed for Rhino/Grasshopper since the existing ones were not deemed satisfactory. 

All datasets used to train and assess the models have been normalized. The normalization scheme used is to 

make each variable have mean 0 and standard deviation 1. In more detail, once a dataset has been created through 

simulation, before the partition into train/validation/test set, each input variable column and the output vector was 

reduced by its mean and then divided by its standard deviation. Normalization is important to bring all the variables 

in the same range and prevent assigning unrealistic importance and bias towards some variables.  

To finally assess the performance of the models, the completely separated test set was used. In order to better 

comprehend the results and the effect of a model, it was decided to normalize the performance score values (the 

output for the models) in a manner that the best performing design in the sampled data receives a score of 1 and the 

rest scale accordingly. For example, a score of 2 performs two times worse than the best design in the test set. 

 

3.4 Design example 

 

A design example of a parametric seven bar truss is introduced here and is used in the following sections to 

illustrate the methodology concepts presented. The “initial” geometry of the problem is shown in Figure 5. 
The variables of the problem are x1, x2, and x3 as shown (along with their bounds in Figure 5 [14]). This case 

study is for research purposes and the methodology is intended for more complicated problems where the structural 

and energy analysis has significant computational needs. 

The variables examined were the horizontal – x1 – and vertical – x2 – position of one node of the truss as shown 

in Figure 5 and also the vertical – x3 – position of the node that lies in the axis of symmetry of truss. It should be 

noted that the structure is constrained to be symmetric. The design space was sampled based on the three (3) nodal 

position variables and each design was analyzed for gravity loads (accounting for steel buckling as well, which 

enhances the nonlinear nature of the problem) and a performance score of the form ΣAiLi (where A is the required 

cross sectional area and L the length of member i) was determined as the objective. 
Using the developed Grasshopper sampling tool described above, data were collected to later fit approximation 

models from. In Figure 5b, 15 designs produced are shown. Each design has a performance score associated with it, 

which is used to train an approximation model. 
 

 

4. Error and visualization 

 

In this section, the crucial issues of visualizing a model’s performance and measuring its error are discussed. 

Several visualization techniques are described and are used in the case studies. 

 

4.1 Understanding error and visualization 

 

 When an approximation model is developed, the goal is to make the model “learn” a specific physical process 

or numerical simulation and be able to make predictions. Therefore, the main evaluation metric of a model is how 

well it performs at making predictions on new data, or in other words, how well it generalizes. The test set has the 

role of “new” data in a way that it comprises pristine data that were not used at any point in the model’s 

development process (training/validation). The use of a completely separate test set as described before is a very 

sound way to assess a models performance. In most cases, a test set can be kept when there is an abundance of data 

at the beginning of the model development process. In case only a relatively small dataset is available (in practice 

10-100) then there are techniques such as cross-validation and bootstrap validation to compute a model’s 

generalization error without a separate test set. For the present case studies, the size of the dataset was sufficient and 

it was decided to use a test set to assess a model’s performance. 

One of the most frequent ways to visualize a model’s performance is to scatter plot the actual values versus the 

predicted ones from the model (for either the training, validation or test set). In the perfect scenario where the model 

can perfectly predict the correct values, the points on this plot lie in a straight line with slope of 1 and the correlation 
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between actual and predicted values is 1. This type of plot is used the current paper on the test set data. The more 

closely the points lie in the slope-1 line, the better the predictive ability of the model. 

For the example case study of the seven bar truss as described in Figure 5 if we do a sampling in the range 

shown in Table 3 from the “initial” geometry, compute a structural score for each sample, partition in 

train/validation/test sets in 150/50/90 samples respectively and train models, we can assess them using the described 

scatter plot as seen in Figure 6 for an RBFN model with a spread of 2.5 (best validation set MSE). 
 

Variable Min Max 

 [m] [m] 

x1 -1 1 

x2 -4 1 

x3 -4 1 

Table 3: Seven-bar truss sampling ranges  

 
A way to quantify the proximity of the points to the slope 1 line, the correlation of those two variables (Actual 

and Predicted performance) can be computed and the closer this value is to 1, the better the performance. This 

correlation metric is often referred to as the R-value in statistics. This scatter plot for the seven-bar truss problem for 

an RBFN model with spread 2.5 is shown in Figure 6. The two dashed lines represent the ±10% error ranges (this 

has been used in [11]). 

As an extension to the scatter plot described previously, it is proposed to use scatter plots of each explanatory 

variable versus the score for both Actual and Predicted score to assess model performance. This plot is for the same 

RBFN model used previously as in Figure 6. 
 

 

4.2 “Flat” model benchmark 

 

 
Often it is difficult to comprehend a model’s performance in terms of MSE. This is because MSE is a single and 

somewhat abstract numerical value (possibly with a range). We can compare this value for different model types and 

across different nuisance parameters for the same model type, but there is lack of a physical intuition on what that 

number stands for on its own. Specifically, how can it be interpreted qualitatively in terms of the model making 

good predictions. One wonders how big or small this number is compared to the values of the scores, how does the 

normalization scheme affects it, if at all and other similar issues. 

To address this, another scalar value for the error is needed to compare to, which is somehow internal to the 

data themselves without any model effect. One approach to obtain such a number would be to make a random model 

and calculate its error on the validation set. Specifically, make random predictions and calculate the error. It would 

be necessary to repeat this process a number of times to obtain an interval to which a t-test could be performed to 

determine whether a trained model has an effect on the predictions or it can be considered random. 

A more simple approach that is proposed here and assists in a more rapid and qualitative evaluation of a 

model’s error is the “flat” model approach. This approach, instead of random predictions, considers a model that 

predicts a single value for each data point in a set. The proposed value is the arithmetic mean of the dataset. So, the 

model used to compute the error is a “flat” model that always outputs the same value as shown in Figure 8. It serves 

as a good benchmark (like the random prediction) since it does not reflect in any way the structure of the data and a 

surrogate model must surely have a considerably lower error than the “flat” model’s in order to be considered 

adequate. 

For the seven bar truss example studied in the current section, the model comparison on the test set is shown in 

Figure 11a where the “flat” model error is the black dashed line at the top of the plot. The y-axis scale is logarithmic 

and we can observe that some models performed substantially better than the “flat” model, which is the desired 

effect. To further explain the “flat” model, the scatter plot produced for the test set is included in Figure 8. The 

predicted value is always the same (mean of Actual values); the “flat” model error is the MSE of the model 

represented in this scatter plot. 

Finally, a different way to obtain an intuitive prediction error value would be to take the root of the mean square 

normalized error, with the formula shown as RMSNE in Table 1. This would be an error estimate of the percentage 

of the error on each sample entry. 
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5. Robustness 

 

A robust model comparison methodology has been developed and is described in detail in this section. It was 

applied in several case study problems, with the results showcased in the next section. The motivation for this 

methodology is to have a way to quantitatively compare the performance of different families of models in 

approximating the same dataset. An important goal of the methodology is the extraction of an interval of a model’s 

error in addition to the average error value. The way to obtain this interval is not to make a single run of training 

models on a given train/validation set configuration, but use many configurations and make several runs. At first the 

structure of a single run is described. Then the process of generating more runs and aggregating them to compare the 

models is explained. This section introduces the main framework that has generated the results of the case studies. 

 

5.1 Single run 

 

In the first place, we assume that there is a single training set and a separate single validation set. A framework 

was developed in MATLAB to train all the six different types of models discussed here for different nuisance 

parameters for within each model type as well. The nuisance parameters considered for each model have been 

summarized in Table 2. The training set (the same for all the models) is first used to train the models. Then the mean 

squared error of those models is computed on the validation set (again the same for all models) and the nuisance 

parameters with the lowest error is chosen for each model type. This procedure is shown schematically on Figure 9, 

with the best nuisance parameter model chosen for each model type. One could then use the test set data, apply them 

to the best models and assess their performance through the visualization techniques described in the previous 

section. 

 

5.2 Multiple runs 

 

When a single run is carried out, a scalar is produced as the error of each model. However, the error resulting 

from the test depends in part on the specific data sets used for training and validation. The method proposed here 

seeks to characterize the effects of variability due to the data set so that the model’s general robustness can be 

understood. One method to obtain a variability measure for the error is cross-validation, which was described briefly 

in Section 3. In that section, it was also argued that when an abundance of data is available, it is preferred to choose 

a completely separate validation set and avoid cross validation. With those two facts considered; 1) abundance of 

data 2) a need for an error variability measure, a methodology of training the models for several different separated 

training and validation sets is proposed. 

In detail, the aforementioned procedure for the single run is repeated for many different random partitions of the 

training and validation data pool. This means that the training and validation data are pooled and a certain number of 

random partitions of these data in training and validation sets with a constant number of samples in each set are 

generated. The validation set error (MSE) is stored for each different nuisance parameter and every model type. 

Afterwards, the mean of the MSE for each parameter across all partitions is calculated. Then the nuisance parameter 

with the minimum arithmetic mean MSE is chosen and the errors for this specific parameter for each partition are 

studied as the desired measure of the variability. The standard deviation is a metric that can be extracted from this 

information or just the range and the scatter can be examined. This process is applied for each model and the output 

is an error measure with the accompanying variability for each of the six models. For one model, the process is 

schematically shown in Figure 10. In this figure, there were five nuisance parameters considered and five different 

partition runs were carried out for each parameter. The errors are accumulated, with the thick dashed line showing 

the arithmetic mean of the runs for each parameter. The lowest-mean-error parameter was chosen; thick black box in 

the figure. 

The results obtained after this process are summarized in a bar chart to compare the models, which was the 

original motivation. A bar chart for the seven-bar truss is included in Figure 11. The same chart is included in 

Section 7 where it is put in context. Each bar represents the mean of the error for each model type. The error of each 

run is also plotted in small black scatter dots to show the variability of the error. The number of the mean is also 

written inside each bar for easier reading of the whole graph.  

A “Flat” model error measure was taken for the validation set for each partition and the mean is also plotted as a 

dashed straight line in the comparison bar chart, with the actual number also printed at the far right hand side of the 

line. The y-axis scale is in logarithmic scale to capture large differences in the results. 
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NN RF RBFN RBFNE MARS KRIG 

Mean [%] 0.2 16.7 1.2 17.9 0.5 0.3 

Max [%] 0.4 25.7 3.4 36.6 0.9 0.8 

Min [%] 0.1 10.4 0.5 6.2 0.3 0.2 

Table 4: Seven-bar truss model performance as per-cent of “flat” model error 

 
From Figure 11, it can be observed that some models (NN, RBFN, MARS, and KRIG) performed very well, 

with RF and RBFNE performing the worst. The performance becomes more evident when someone looks at Table 4 

which lists each models mean, maximum and minimum error as a percentage of the “flat” model error. The 

variability of each model’s performance can be visually inspected from the figure by looking at the black scattered 

dots representing the respective model’s error for each run. As another way to quantify the variability one can look 

at Table 5 which includes the percentage values of the maximum and minimum error with the respect to the mean 

one for each model, as well as the standard deviation of the runs’ errors.  

  

NN RF RBFN RBFNE MARS KRIG 

Max 

[% of 

mean] 276 153 271 204 166 231 

Min 

[% of 

mean] 33 62 41 34 56 55 

St. Dev - 0.001 0.048 0.008 0.095 0.002 0.002 

Table 5: Seven-bar truss model error variability metrics 

It is notable that NN has the lowest standard deviation, but has the largest Max value. This is observed from 

Figure 11, where there seems to be an outlier in the errors. This illustrates the reason that more partition runs are 

needed to increase the robustness of an error measure and make a better decision when choosing a model. 

Particularly, if only a single run was performed and it happened to be on this outlier set, then the eventual model 

selection could be different. These overlaps of the error metrics for different runs indicate that the model comparison 

picture could be different if the multiple runs and aggregation was not performed. This is very important, since it has 

a direct impact to the final model selection for the approximation in the project at hand. 
 

  
Figure 11b shows a model construction time comparison bar chart. More specifically, it shows the average time 

needed to construct a model of each model type for a single run. It should be pointed out that this time includes the 

validation over several parameters and the eventual selection of the best parameters within each run; the procedure 

described in the first section of the current section for the “Single run”. It is notable that the best performing model 

in terms of error (NN) required the second longest time to build, while the worst performing (RBFNE) required the 

least time. And as mentioned before, this is mainly due to the fact that the NN iterates over more parameters and the 

best-performing network on the validation set is picked, while the RBFNE model only includes a single parameter 

(spread of the radial basis functions). The fact that the user can choose the number of parameter a model iterates 

over makes the picture even more complex. Overall, the trade-off between accuracy and time is evident from the 

above figures. 

 

6. Case study 

 

In this section, a case study of using the above-described surrogate modelling framework and new 

developments is presented. The problem description, the parameters considered, the performance scores and the 

finally the approximation fit and results are included in this section. 
 

6.1 Problem description and parameters 

 

The airport terminal design shown in Figure 13 is the focus of this case study. This design was inspired by an 

existing bus terminal shown in Figure 12. The terminal’s design was parametrized by 6 variables and included 
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various design objectives. The objectives were (1) the structural weight as described in the seven-bar truss design 

example (2) the total energy requirements including production and distribution losses (3) the cooling load of the 

structure as a building in an annual basis (4) the heating load (5) the lighting load and (6) the energy requirements as 

the sum of the cooling, heating and lighting loads. 

The motivation for this case study is that both structural and energy simulations needed to assess design 

performance require substantial computational power; therefore, one cannot explore the design space in real time. 

This prevents the designer from fully comprehending the whole design space, realizing its full potential, or even 

rapidly run optimization routines over the selected variables. The use of surrogate modelling could replace the 

expensive simulation and allow for more deep exploration and optimization over the parameters. 
The variables for this case study problem for which the structure was parametrized over are: x1, the horizontal 

and x2, the vertical position of the cantilever, x3 the vertical position of the central node, with its horizontal position 

always fixed in the middle of the two ground hinge supports.  x4 and x5 represent the angles of the left and right side 

respectively of the two truss members joining at the supports and x6 is the glazing ratio of the windows. The window 

glazing ratio is important and can affect the energy related scores, since the energy simulation considers sunlight 

gains for both heating and lighting. Variable summary in Table 6. 

 

Variable Description 

x1 Horizontal position of overhang tip 

x2 Vertical position of overhang tip 

x3 Vertical position of node on axis of symmetry 

x4 Truss inclination 1 

x5 Truss inclination 2 

x6 Glazing ratio 

Table 6: Airport terminal variables 

 

6.2 Performance outputs 

 

The simulation to measure the performance of each design sample was carried out in Rhino and Grasshopper 

plugins. For the structural performance, the objective was the structural weight and the simulation was performed 

using the Karamba plugin [40]. For all the energy simulations, the plugin ARCHSIM was used [41]. This plugin 

connects the parametric model from Rhino, to EnergyPlus [42], an energy analysis program available by the U.S. 

Department of Energy. More information about this problem, the setup and all the assumptions used in the 

simulations can be found on [39]. Each design evaluation required approximately 0.2 sec for the structure and 25 sec 

for the energy, making surrogate modelling an ideal solution. 

Because this case study involved energy simulations, a lot of data were collected from simulating the same 

structure in different climates and orientations. The case study for NS orientation (longitudinal axis of Figure 13) is 

examined here. 
 

Set # samples 

Training 600 

Validation 200 

Test 200 
Table 7: Airport terminal case study dataset sizes 

 

6.3 Approximation results and discussion 

 

 The approximation framework presented was applied to the case study design problem for several different 

climates. The model comparison bar charts are shown in Figure 14 for the energy simulations in Abu Dhabi 

(cooling-dominated), Sydney (mostly cooling) and Boston (heating, cooling, and lighting loads are significant). For 

all these climates, the surrogate models performed at an order of magnitude better than the “flat” model benchmark. 

The NN model performed the best, followed by the KRIG. For the structure score (Figure 14d), the approximation 

performance was significantly better. NN, RBFN and KRIG all showed excellent performances. The scatter plots for 

the same datasets compared in Figure 14 are shown in Figure 16 for NN, RBFNE and KRIG models. From the 
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scatter plots, it is very interesting to observe that the energy overall score for Sydney was not actually approximated 

very accurately, compared to Abu Dhabi and Boston. The error values in the bar chart comparisons could have been 

misleading and this outlines the importance of using both visualization means to evaluate model performance. 

 The other very interesting characteristic observed from the results shown in the scatter plots of Figure 16 is that 

the predictions were almost entirely within the ±10% error margins. This is a very encouraging fact, showcasing that 

the method could be used in analogous design space approximation applications producing an accuracy that is 

satisfactory in many early-stage conceptual design problems. 

 Finally, Figure 15 shows the multi-objective design scatter plots of the Structural score vs. the Energy Overall 

score for the Boston case study. Both the actual-value scatter plot and the predicted-value one for the best 

performing model (NN) are included. Some indicative designs close to the Pareto front that could be interesting in 

exploring are marked both on the actual and the predicted scatter plots. The prediction is quite well since the two 

scatter plots are quite similar with an eye inspection.  One can also notice the fact that the Structure score was more 

accurately approximated than the Energy Overall, which was evident from both Figure 14 and Figure 16. 

 

6.4 Case study summary 

 

A summary table with the results of the most important runs from all the case studies examined is included in 

this section. It includes the Min/Mean/Max validation error for each models as a percentage of the flat model error 

and the time required for the model construction. Overall NN and KRIG models performed the best, with RF and 

RBFNE performing the worst. On the other hand, NN and KRIG required substantial time to construct, while 

RBFNE is constructed almost instantly. When a first rapid approximation is needed then RBFNE could do the job, 

but a more accurate approach would probably be obtained by NN or KRIG. The takeaway is that all those models 

and parameters within them are trained and the best one is picked, without any previous intuitive model screening. 
In Figure 17, the results shown in Table 8 are visualized. The results are grouped according to the case study. 

The model construction time lies in the horizontal axis, with different limits for each case study, because each 

involved different numbers of samples. The error of the validation set as a percentage of the corresponding “flat” 

model error is plotted on the vertical axis. The Min, Mean and Max error are all plotted together on the figure, with 

no distinction to shown the variability of the error. The model construction time was considered the same for each 

performance metric within each case study, so the Min, Mean and Max errors for the same objective score dataset lie 

in the same vertical lie, which helps visually distinguish the sets.  

It can again be observed that the RBFNE models required the least time to build. Also, RBFNE has very good 

performance for some of the datasets. There are some datasets for which RBFNE did not perform well at all. In 

general, it can also be observed that KRIG models have comparable performance errors with the NN, but 

consistently required more time to build. It could be concluded that NN is a better choice compared to KRIG for 

because of the significant time gains. MARS performs well, but for some datasets it does not, and required 

significantly more time than the NN, but not too much less than KRIG. RBFN showed good performance and time 

alike, except some datasets for which it showed poor error performance and required substantial training time. In 

those cases, probably the network could not converge to the training data to the specified accuracy and ended up 

with high bias, thus the big error. As for RF, it can be seen from the figure that its performance is consistent for all 

the datasets, unlike any other model. It displays high error variability, but seem to be indifferent of the dataset 

(within each case study). Also, the time they required is not forbidding. It should be noted here, that this time could 

be substantially reduced for the RF construction, because it was observed that for the increasing number of trees 

from 10 to 300 with a 10-tree step which was examined, the performance did not improve much. The required time 

to iterate over all those parameters is measured, but since this observation was made, one could reduce the different 

number of trees examined, subsequently reducing the build time significantly. 

Therefore, overall the RBFNE and RF are a choice for a very quick approximation with a higher possibility of 

poor performance, with NN requiring more time but more possibly giving better performance. The KRIG models 

show excellent performance error but require substantially more time to construct. 

 

7. Conclusion 

 

7.1 Summary of contributions 

 

This paper explored surrogate modelling techniques with an emphasis on applications to the design of civil and 

architectural structures. Within this field, this research contributed two new methodologies. The first includes a 

robust surrogate modelling framework to rapidly build multiple models with different parameters and choose the 
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most suitable for each specific case study application. The machine learning workflow of training/validation/test set 

partition was used and expanded to include error variability.  The developed framework takes a step in simplifying 

the huge world of different approximation algorithms by allowing easy definition of the parameter exploration by 

the user. The accuracy vs. construction-speed tradeoff is also acknowledged and examined. The second new 

methodology, is concerned with assessing the performance of an approximation model by introducing the concept of 

the “flat” model. The methodology to apply this concept directly to the model’s prediction error was explained and 

tested in multiple case studies. The second methodology is part of a wider theme in this paper; approximation model 

error quantification, visualization and comparison. The visualization of the error was found to be of utmost 

importance and several techniques have been explored and proposed in order to extract the most crucial information 

from the visualization. 

Another key contribution of this paper is the application of the proposed techniques in a case study from the 

field of architectural/structural engineering design. A wide range of surrogate models was examined. In terms of 

model performance, the Neural Network (NN) and Kriging (KRIG) models have been found to perform the best in 

most of the case study datasets, while the Random Forests (RF) and Radial Basis Function Networks Exact 

(RBFNE) mostly did not perform well. In terms of the construction time, RBFNE was steadily the best, with KRIG 

and NN requiring substantial time due to the many different parameter combinations that they involve. It was 

observed that the approximation for the examined datasets was for the most part lying satisfyingly in the ±10% 

prediction error range when a specific normalization scheme was applied. This finding is encouraging that the 

methodologies used could be deployed in accurate large scale design space exploration projects. 

 

7.2 Future work 

 

The next step of this research is to embed the proposed approaches and methodologies into a practical software 

that will be used by designers from the early-stage of conceptual design. This tool will enable them to more rapidly 

and efficiently explore the potentials of a certain design concept, its constraints and trade-offs. It would ideally be 

based on a software that is already used in conceptual design, such as Rhino and Grasshopper, in order to enhance 

the workflow in a “natural” manner. 

 

7.3 Concluding remarks 

 

With the design and construction industry increasingly moving towards design solutions that integrate multiple 

objectives such as structural performance and aesthetics [17], energy efficiency [12], [39] and constructability [43], 

this paper presents frameworks and methodologies that could assist in the rapid and wide exploration of design 

spaces involving all of those considerations.  

The proposed methods could prove powerful in the implementation of this evolving MOO design philosophy in 

large scale problems and help lead to more functional, better performing and sustainable structures. The results of 

this paper are promising in that these methodologies could be viable and realistic to achieve this goal. 

The tremendous increase in computational capabilities that occurred in recent decades has enabled solutions to 

previously unmeetable challenges. However, the increase in capacity brought an increase in problem complexity and 

demands as well. This paper is based on this principle; given that capabilities and demand commonly rise with an 

equal ratio, how designers achieve faster results that are still sufficiently accurate? The methods and approaches of 

this research allow designers to iterate over solutions faster, thus considering more alternatives and understanding 

the design parameters in depth, potentially leading to considerable financial and quality-of-life gains. 
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Figures 

Note: The images below are low-resolution previews only.  Use separate image files for publication. 

 

 

 

Figure 1: “Many surrogates may be consistent with the data” (Figure inspired from [15]) 

 

 

 

 

Figure 2: Seven-bar truss (a) variables and (b) analytically computed design space (Image from [14]) 

(a) (b) 
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Figure 3: Seven-bar truss approximated design space for different parameters (Image from [14]) 

 

 

 

 

Figure 4: Surrogate modelling procedure 

 

 

 

Figure 5:  (a) Seven bar truss topology and design variables (Image from [14]) (b) sampled designs with score 

 

 

Model 
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Figure 6: Seven-bar truss, RBFN, structural score scatter plot– test set 

 
 

 

 
Figure 7: Seven-bar truss, RBFN, variable vs. performance scatter plots– test set 
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Figure 8: Seven bar truss “flat” model scatter plot – Test set 

 

 

 
Figure 9: Single run workflow 

 

 

 

Figure 10: Robust model comparison framework sketch for a single model 
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Figure 11: Seven-bar truss (a) MSE and (b) build time comparison bar chart 
 

 

 

E  

Figure 12: Inspiration for the design case study (Image from [39]) 

Qingdaobei Station 
Qingdao, Shandong, China 
AREP (architect) 
MaP3 (structural engineer)  
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Figure 13: Airport terminal structure topology/geometry and variables x1-x6 

 

 
  

  

 
 

  

Figure 14: Model comparison charts 
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Figure 15: Structural score vs. Energy Overall score for Boston (a) actual and (b) predicted NN 
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Figure 16: (a) Abu Dhabi, (b) Sydney, (c) Boston - Energy Overall, (d) Structure 

 

 

 

 

 

Figure 17: Results summary table visualization 

 



 

  

Model Type 

  

NN RF RBFN RBFNE MARS KRIG 

  

Error Time Error Time Error Time Error Time Error Time Error Time 

  

[% of flat] [sec] [% of flat] [sec] [% of flat] [sec] [% of flat] [sec] [% of flat] [sec] [% of flat] [sec] 

Location Score Min Mean Max - Min Mean Max - Min Mean Max - Min Mean Max - Min Mean Max - Min Mean Max - 

Abu Dhabi 
E 12 15 21 8.6 23 29 38 21.1 35 46 53 90.0 35 46 55 0.9 20 31 46 35.3 14 20 27 77.0 

S 1 2 3 11.7 20 28 32 23.3 1 2 3 23.9 3 6 17 0.9 2 3 3 65.3 1 2 2 81.3 

Abu Dhabi 
Rotated 

E 14 16 17 8.6 24 30 41 23.0 38 48 57 80.7 38 49 68 0.9 21 30 39 30.1 13 20 23 67.8 

S 1 2 2 10.9 20 28 33 21.9 1 2 3 21.2 3 6 17 0.8 2 2 3 54.8 1 2 2 72.8 

Boston 
E 10 15 22 11.1 22 27 31 24.4 29 40 46 87.0 33 43 53 1.2 20 23 25 41.9 10 16 20 75.8 

S 1 2 2 11.3 20 28 33 25.3 1 2 3 23.1 3 6 17 1.0 2 2 3 59.2 1 2 2 78.6 

Boston 
Rotated 

E 11 15 20 9.2 21 28 32 24.9 28 41 46 91.6 30 41 52 0.9 17 23 27 41.9 11 16 20 83.8 

S 1 1 2 11.5 20 28 33 24.3 1 2 3 22.6 3 6 17 0.9 2 2 3 62.9 1 2 2 90.3 

Sydney 
E 1 1 2 11.5 20 28 33 24.3 1 2 3 22.6 3 6 17 0.9 2 2 3 62.9 1 2 2 90.3 

S 1 2 2 14.1 20 27 33 24.7 1 2 3 22.9 3 6 17 1.1 2 2 3 59.1 1 2 2 89.9 

Sydney 

Rotated 

E 9 13 16 9.6 19 24 35 23.3 29 41 47 74.0 34 57 69 0.8 19 24 30 32.3 9 15 18 65.8 

S 1 2 2 10.2 20 27 33 21.6 1 2 3 20.4 3 6 17 0.9 2 2 3 53.2 1 2 2 70.8 

 

 

Table 8: Results summary table (E: Energy Overall score, S: Structural score) 

 


