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Abstract

The endothelium lines the internal surfaces of blood and lymphatic vessels and has a critical role 

in maintaining homeostasis. Endothelial dysfunction is involved in the pathology of many diseases 

and conditions, including disorders such as diabetes, cardiovascular diseases, and cancer. Given 

this common etiology in a range of diseases, medicines targeting an impaired endothelium can 

strengthen the arsenal of therapeutics. Nanomedicine – the application of nanotechnology to 

healthcare – presents novel opportunities and potential for the treatment of diseases associated 

with an impaired endothelium. This review discusses therapies currently available for the 
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treatment of these disorders and highlights the application of nanomedicine for the therapy of 

these major disease complications.
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Endothelial function and dysfunction

The endothelium is a semi-selective barrier that lines vessels, controls their degree of 

permeability towards biologically active molecules via membrane-bound receptors, and 

regulates blood clotting (thrombosis and fibrinolysis), inflammation, blood pressure 

(vasoconstriction and vasodilation), and leukocyte trafficking [1]. The endothelium is 

anchored to the extracellular matrix through focal adhesions that are controlled by 

transmembrane integrins (e.g. αvβ3, α2β1, α5β1) [2] and to cytoskeleton-linking proteins 

(e.g. cadherin, claudin, occludin) [3] that act jointly with intercellular connections, such as 

adherens and tight junctions. This intertwined structure maintains the integrity of the 

endothelial barrier and low basal permeability (Figure 1a). The permeability of a vascular 

endothelial layer is regulated through cytoskeletal connections [4] and by signaling cascades 

[3] including myosin light chain kinase (MLCK) [5], PKC isoforms (PKC-β, -δ, and -θ) [6, 

7], Rhokinase [8], focal adhesion kinase (FAK) [9], src kinase [10], small GTPases [11], and 

soluble mediators, such as anaphylatoxin [12] and bradykinin [13].

Endothelial disorder (EnD) arises from disruptions in the regulation of the endothelial 

barrier function due to hemodynamic alteration, cytotoxicity, physical injury, and immune-

mediated responses (Figure 1b). When an injury, such as a hemorrhage, occurs at a location 

within the vascular system, leukocytes are released as part of the immune system response. 

They produce gelatinase, a matrix metalloproteinase that causes the degradation of tight 

junction proteins; this destroys the endothelial barrier [14]. This results from the degradation 

of type IV collagen in the extracellular matrix [15] and leads to the leaking of blood through 

the degraded tight junction, which can lead to further complications. For example, it can 

cause the rupture of plaques in an atherosclerotic artery. The disruption of the plaque results 

in the release of coagulants from platelets, causing thrombi to form in the blood stream and 

leading to more serious problems such as stroke and ischemia. This can occur not only with 

atherosclerotic tissues but with any disturbance that causes excess and/or unwanted 

coagulation of blood proteins [16].

EnD is a crucial hallmark of many diseases, including diabetes mellitus [17], tumorigenesis 

[18], hypertension [19], hypercholesterolemia [20], ischemia/reperfusion injury [21], 
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respiratory disorders [22], chronic renal failure [23], and autoimmune diseases such as 

rheumatoid arthritis, systemic lupus erythematous, and Wegener’s granolumatosis [24, 25]. 

EnD therapy could therefore serve as a potential target for the prevention and treatment of 

these disorders, including cardiovascular diseases (CVDs) [26].

Current treatments for EnD-associated diseases often involve the improvement of nitric 

oxide (NO) bioavailability through mediators (e.g. NO synthase) and their pathways (e.g. 

PI3K-AKT) [27], restoring endothelial function with reduced oxidative stresses. At present, 

available treatments mostly target CVD and related complications. For example, 3-

hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (known as statins) 

have anti-inflammatory and anti-hypertensive effects as well as cholesterol-lowering roles, 

but have been linked to increased diabetes risk [28]. Renin angiotensin system inhibitors 

(e.g. angiotensin-converting enzyme inhibitors (ACEI) or angiotensin II receptor blockers 

(ARB)) are used for the treatments of chronic kidney failure, diabetic nephropathy, and 

hypertension [29, 30], which could also induce hyperkalemia (a condition characterized by 

high blood levels of potassium). Endothelin receptor antagonists (ERA) [31] and oral 

hypoglycemic drugs [32] are used to treat hypertension and kidney disease in diabetic 

patients, but these drugs also have adverse effects, including fluid retention and edema [33]. 

With the ability to deliver a wide range of therapeutics specifically to disease locations and 

in a sustained manner, nanomedicines are emerging as new treatments with the potential to 

minimize the adverse effects of current EnD therapies.

In this review, we highlight the key features of EnD-associated diseases and current 

representative nanomedicine platforms for their treatment and diagnosis. Focusing on 

diabetes mellitus, atherosclerosis, and cancer, we discuss their main characteristics, 

limitations of current therapies, and how nanomedicines can improve the outlook of these 

endothelial complications. Lastly, we draw attention to steps required in order to transform 

current nanomedicines into enabling technologies to treat EnD-associated diseases.

Nanomedicine for endothelial disorder-associated diseases

Nanomedicine – the application of nanotechnology to medical diagnostics and therapies – 

encompasses the rapidly expanding field of drug delivery using nanoparticles (NPs) [34]. A 

variety of materials have been used to formulate nanomedicines for drug delivery and 

imaging applications to date. These range from lipids (micelles [35] and liposomes [36]) to 

polymers [37, 38] and lipid-polymer hybrids [39, 40], as well as organic precursors 

(dendrimers) [41], carbon (carbon nanotubes and pipes) [42], metal oxides (metal organic 

frameworks) [43], and inorganic molecules (gold [44], iron oxide [45], quantum dots [46]), 

and biological components (proteins) [47]. Liposomes and polymeric NPs comprise the 

majority of NPs in clinical trials (Figure 2). The approval and commercial success of Doxil, 

a PEGylated NP platform for the treatment of cancer, in 1995 paved the way for the 

development and FDA-approval of current NPs in clinical development.

Specific to drug delivery applications, NPs can provide the following advantages [48–50]: 1) 

the ability to encapsulate and deliver poorly water-soluble drugs, 2) the enhanced circulation 

of NPs due to PEGylation, resulting in prolonged drug circulation times [51], 3) the 
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reduction of systemic toxicities observed with the use of free drugs, 4) the incorporation of 

targeting elements that allow highly localized release of drugs [52, 53], 5) the co-delivery of 

two or more types of drugs to sites of action for combination therapies [54], 6) the 

simultaneous visualization of drug delivery and therapeutic response [55, 56], and 7) the 

intracellular delivery of plasma sensitive nucleic acids, such as siRNA [57, 58]. These 

advantages could be used to provide better therapeutic solutions to disorders arising from 

EnD, particularly by targeting the specific endothelial tissues and malfunctions that lead to 

the observed symptoms and diseases. Nevertheless, the overall number of FDA-approved 

NPs is small. Since the early 2000s, FDA approval of NP systems has slowed notably 

despite the large number of NPs currently in clinical trials. This may be in part due to the 

rising cost of clinical trials, as well as the rise in the understanding of the complex 

pathologies of disease progression. In the next section, we highlight disease pathologies and 

the complex role that the endothelium plays in their progression, as well as examples of 

nanomedicines currently being explored for these diseases.

Endothelial disorder in major pathologies and the nanomedicine research

A malfunctioning endothelium has critical implications; it is closely involved with the 

pathogenesis of many diseases and conditions. We highlight the features of EnD-associated 

diseases, along with selected samples of corresponding nanomedicine therapies being 

studied (Table 1). Many EnD-associated diseases including diabetes, atherosclerosis, and 

cancer have common inducers (Figure 3a). These diseases have common endothelial 

pathologies, such as disordered cell junctions within endothelial cell layers. Nevertheless, 

there exist different ligands and proteins that are better targets for each condition.

Diabetes

Diabetes mellitus is characterized by increasing and sustained blood glucose concentration, 

which can be subdivided into type 1 (due to insulin deficiency arising from dysfunction or 

loss of insulin-secreting β cells in the pancreas) and type 2 (due to defects in insulin action 

within tissues or insulin resistance) diabetes. Conventional therapeutics, including insulin 

sensitizers, secretagogues, and analogs, can improve hyperglycemia and endothelial function 

in patients with diabetes [89]. The general recommended medication for type 2 diabetes, for 

example, is metformin; metformin is a biguanide compound insulin sensitizer that decreases 

hepatic glucose levels and improves endothelial function [90]. Insulin secretagogues, or 

incretin hormones (e.g. glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide 

(GIP)), are used to trigger insulin release by inhibiting the KATP channel of the pancreatic 

beta cells and by restricting activity of enzyme dipeptidyl peptidase-4 (DDP-4) [91]. Insulin 

analogs, also referred to as insulin receptor ligands, can act like human insulin in terms of 

glycemic control (e.g., insulin detemir, a long-acting peptide that binds to circulating 

albumin). Despite their therapeutic effects, these drugs have been shown to cause adverse 

effects such as increased incidence of lactic acidosis in metformin-treated patients. These 

adverse effects can be mitigated by targeted drug delivery to the site of action. Metformin 

has been successfully incorporated into O-carboxymethyl chitosan NPs and shown to 

preferentially target pancreatic cells [92]. GLP-1 conjugate NPs have been synthesized for 

gene therapy, increasing the bioavailability of GLP-1 [93] and allowing not only more 
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effective gene therapy but also decreasing the possibility of off-target effects. Furthermore, 

there has been increased interest in the delivery of insulin orally. Insulin NPs for oral 

delivery have been developed by using chitosan to encapsulate insulin. These NPs reach 

circulation through intestinal absorption by disrupting endothelial tight junctions, and they 

have been shown to decrease glycemia in diabetic rats [94]. Researchers continue to develop 

NP platforms that are able to not only target specific endothelial functions (such as tight 

junctions formed by gastrointestinal endothelial cells in the case of orally delivered NPs) but 

also to mitigate adverse toxic effects that might arise.

In type 2 diabetes, EnD is illustrated through activation of PKC, formation of advanced 

glycation end-products (AGEs), impaired vasodilation and vasoconstriction (due to 

decreased NO), and inflammatory signaling (Figure 3b) [17, 96]. Chronic imbalance of 

oxygen-related chemical reaction (ox/redox) in ECs, caused by increased ROS and 

decreased antioxidant capacity, promotes EnD and insulin resistance. For example, insulin-

mediated NO production decreases due to insulin resistance with impaired phosphoinositide 

3-kinase (PI3K) effects. Increased superoxide anion production induced by hyperglycemia 

causes increased activity of alternative pathways, including PKC and AGE pathways [97]. 

Overexpression of PKC isoforms can directly induce insulin resistance. Current therapies 

being studied for EnD and vascular complications in type 2 diabetes center on increasing 

NO bioavailability, reducing oxidative stress, and inhibiting PKC and AGE activity. As an 

example, ruboxistaurin [98] inhibits PKC-β mediation of the insulin receptor 

phosphorylation and PI3K-AKT signaling [99], and Benfotiamine (a highly bioavailable 

thiamine derivative) reduces AGE levels and markers of EnD in patients with type 2 

diabetes [100].

Islet cell regeneration and encapsulation provide additional options with therapeutic 

potential for achieving insulin independence in human trials without the use of 

immunosuppressant drugs [101]. For instance, polymeric nanoparticles containing couramin 

and composed of poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) polymer 

with the CHBLWSTRC (Pep I) peptide have been synthesized. These NPs have been shown 

to target pancreatic islet microvessels and were recently reported to target pancreatic islet 

endothelial cells (ECs) for immunodulatory therapy of autoimmune type 1 diabetes. These 

Pep I NPs showed up to a 3-fold increase in islet capillary EC binding compared to controls, 

which contained peptides of the same amino length but without binding preferences [102]. 

Genetic approaches for correcting malfunctioning islet ECs is promising, and the delivery of 

plasma-sensitive nucleic acids in NPs is advantageous. However, the levels of insulin 

secretion achieved from these methods still need to be regulated due to the limited numbers 

of vectors delivered. As an example, polyethylenimine dendrimers incorporating the 

exendin-4 expression vector (PEI25k/pbeta-SP-Ex-4 complex) were developed to protect 

isolated β cells from apoptosis during islet transplantation [103]. Exendin-4 shows similar 

effects to those of GLP-1, in that it inhibits pancreatic islet cell death; however, exendin-4 

has a longer half-life in serum. This amplifies the survival rate and extent of cells, which in 

turn would ultimately produce insulin after transplantation for the treatment of type 1 

diabetes. Although further investigation is needed, approaches to diabetes using genetic 

methods as well as islet cell generation and encapsulation therapies are at early stages of 
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preclinical development and offer alternatives to existing therapies for controlling glucose 

levels. Nevertheless, their safety and efficacy profiles remain to be elucidated.

Atherosclerosis

Atherosclerosis refers to the buildup of plaques within arteries. Increased endothelial 

permeability, both at the luminal and adventitial sides, is a hallmark of the atherosclerotic 

process, with plaque progression enhancing inflammatory responses in blood vessels and 

thus leading to further EnD [104]. The activated and inflamed endothelium plays a major 

role in atherosclerotic disease from initial lesion formation to disease progression and final 

thrombotic complications (Figure 3c) [105], as well as in aggravating atherosclerotic 

plaques due to myocardial infarction [106]. Besides surgical interventions, including the use 

of stents to physically widen the arterial lumen in advanced plaques, the current standard of 

care for at-risk patients includes lowering plasma lipid levels through lifestyle changes, by 

dieting and exercising, and in particular the prescription of statins [107]. Statins are orally 

administered drugs that help lower blood cholesterol levels by competitively inhibiting 

cholesterol synthesis in the liver [108]. Nevertheless, significant residual risk remains for 

patients treated with these conventional preventative and therapeutic options. For example, 

more than half of patients hospitalized after myocardial infarctions (MIs) with high 

recurrence rates show normal or low LDL levels [109]. This indicates that current 

treatments, primarily aimed at lowering blood cholesterol levels, do not effectively treat 

atherosclerosis.

Research has highlighted the critical role that many immune cells play in the development 

and later complications of atherosclerosis; EnD plays a critical role in atherosclerotic 

pathology, given that the normal function of the endothelium in blood vessels are disturbed 

and disrupted as atherosclerosis progresses. As shown in Figure 3c, lipids and lipid 

byproducts can activate the endothelium. This triggers the recruitment of leukocytes into 

plaques, subsequently activating the inflammatory cascade [86]. Given the major role that 

immune cells play in atherosclerosis, their direct treatment with anti-inflammatory agents 

can lead to significant reduction in plaque accumulation in animal models [110]. To this 

end, nanomedicine provides an enhanced way of treating atherosclerosis. Encapsulating the 

therapeutic agents in NPs enhances their bioavailability and aids their delivery to immune 

cells in plaques, ensuring more effective treatments.

Early nanomedicine studies in atherosclerosis primarily focused on diagnosis, some of 

which used noninvasive magnetic resonance imaging (MRI) of atherosclerotic plaques and 

their macrophages using ultrasmall superparamagnetic iron oxide particles (USPIOs) [111, 

112]. USPIO-enhanced MRI has been shown to enable the quantification of atherosclerotic 

plaque macrophage burden and the effects of atorvastatin lipid-lowering therapy in patients 

[113]. Similarly, target-specific imaging of adhesion molecules (e.g. VCAM-1) has been 

used to monitor the efficacy of statin therapy in mice using cross-linked iron oxide (CLIO) 

[114]. VCAM-1-expressing cells have successfully been used as targets for nanoparticles to 

detect inflammation within plaques [115]. Atherosclerosis causes the release of cytokines 

that activate endothelial cells, which in turn leads to the expression of VCAM-1 on 

endothelial cells [116]. Radiolabeled NPs have also been used to quantify macrophage 
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inflammation noninvasively in experimental atherosclerosis models through PET/computed 

tomography (CT) and PET/MRI [117, 118].

During atherosclerosis development, microvessels sprout from the vasa vasorum and into 

the plaques. Due to their inflammatory state, the new microvessels have enhanced 

permeability. This allows NPs to gather within plaques via non-specific accumulation [119], 

through a mechanism of action believed to be similar to the enhanced permeability and 

retention (EPR) effect observed in tumor tissues. Using fluorine MRI and magnetic 

resonance spectroscopy (MRS) of NPs, researchers have quantified the progressive 

deterioration of vascular endothelial barriers in later-stage plaques, implicating the disrupted 

endothelium is a potential contributor to plaque rupture susceptibility [120]. Theranostic 

liposomes, containing both imaging labels and the anti-inflammatory prednisolone 

phosphate (PLP), were developed to treat atherosclerotic inflammation. The NPs 

accumulated in plaques due to the increased permeability of vessels through a passive 

mechanism. Unlike animals treated with free PLP, significant reduction in macrophage 

burden was observed in rabbit models treated with the NPs [56].

Besides exploiting the vascular permeability associated with EnD, the activated endothelium 

in atherosclerotic plaques can be directly targeted with surface-functionalized NPs. For 

example, Chan et al. developed lipid-polymer NPs functionalized with collagen IV-targeting 

peptides and loaded with paclitaxel. These NPs were successfully used to target injured 

vasculature and suppress stenosis [121]. Similarly, functionalization of NPs with VCAM-1-

targeted peptides has enabled quantification of NP accumulation in targeted tissues of mice 

[122]. Researchers have also used αVβ3 integrin-targeted perfluorocarbon NPs loaded with 

both fumagillin (antiangiogenic drug) and Gd-DTPA (MRI signal enhancer) for imaging 

guided drug delivery in atherosclerotic rabbits [123]. In this study, a reduction in 

angiogenesis was observed through the resultant MRI enhancement data, which showed a 

decrease in angiogenesis when the drug was present as compared to the control.

Failure to resolve the maladaptive inflammatory response to excessive subendothelial 

lipoproteins leads to enhanced inflammatory cell recruitment, macrophage death, and 

defective clearance of apoptotic cells [124]. The imbalance between the pro- and anti-

inflammatory responses within blood vessels, with the former dominating the later, is a 

hallmark of atherosclerosis. Significant attention has therefore focused on not only using 

nanomedicine to prevent inflammation but also to enhance natural endothelial anti-

inflammatory mechanisms [125]. Researchers recently developed collagen IV-targeted NPs 

containing the anti-inflammatory peptide Ac2–26, with the goal of enhancing inflammation 

resolution by effectively limiting recruitment of neutrophils and decreasing IR injury-

induced tissue damage in chronic inflammatory disease models [126]. By encapsulating 

Ac2–26, researchers were able to enhance the peptide’s bioavailability once injected. In 

murine models, the NPs significantly decreased polymononuclear neutrophils recruitment 

(56% vs. 30% for peptide-only) and improved the prevention of I/R-induced tissue damage.

High-density lipoprotein (HDL) is a natural compound that transports cholesterol from 

atherosclerotic plaques to the liver, exhibiting athero-protective properties [127–130]. HDL 

also can restore endothelial function [131, 132] and reduce risk of coronary artery disease 
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[133]. Direct infusions of HDL NPs have been shown to control fatty acid metabolism in 

patients with type 2 diabetes [134], to promote cholesterol efflux in humans [135], and to 

reduce human atherosclerotic plaques [136]. HDL’s inherent interaction with plaque 

macrophages renders it an attractive NP platform for targeted delivery of diagnostic and/or 

therapeutic agents. HDL-derived nanomaterials have been reconstituted to encapsulate 

inorganic nanocrystals for medical imaging [137, 138] as well as to deliver therapeutic 

molecules and silencing RNAs [139, 140]. Traditional methods of synthesizing these HDL 

NPs involve lengthy procedures, often difficult to scale up. By contrast, a recent method for 

the reconstitution of HDL-based nanomaterials uses microfluidics technology and has 

shown potential for the scale-up production and effective optimization of these 

multifunctional HDL NPs [141]. This platform allows the synthesis of reproducible and 

homogeneous HDL NPs in a single-step process, significantly decreasing the complexity 

and time needed for NP formulation. Furthermore, this technology has been used to 

successfully encapsulate hydrophobic molecules, as well as imaging agents such as gold, 

iron oxide, quantum dot nanocrystals, and fluorophores for CT, MRI, and fluorescence 

microscopy, respectively.

Although significant progress has been made in using nanomedicine for atherosclerosis in a 

preclinical context, clinical studies have primarily been concentrated on the diagnosis of 

inflammation, with a focus on the use of iron oxide NPs [142, 143]. Two clinical trials with 

nanomedicine therapies for atherosclerosis are being conducted for the investigation of NP 

plaque targeting and silencing inflammatory activity [144, 145]. The trial uses PEGylated 

liposomal NPs loaded with prednisolone sodium phosphate, an anti-inflammatory drug; 

investigators hope to intravenously deliver the NPs to plaques. Their aim is to minimize the 

effects of immunosuppression by targeting macrophages located within plaques directly. 

Furthermore, the investigators hope that the NPs will prolong the efficacy of the drug, 

thereby enhancing its anti-inflammatory benefits.

Ultimately, the success of atherosclerotic treatments will depend not only on the 

development of novel anti-inflammatory nanomedicines but also on the appropriate 

identification of patients and corresponding clinical endpoints. Despite a deeper 

understanding of the critical role that EnD and subsequent inflammation plays, as well as 

advances in the treatment of atherosclerotic plaques through anti-inflammatory 

nanomedicine, current standards of diagnosis and care for atherosclerotic patients focus on 

blood lipid and cholesterol levels. Some investigators have suggested other biomarkers to 

diagnose atherosclerosis, such as high-sensitivity C-reactive protein [146] and plasma 

osteoprotegerin [147]; both of these markers have been correlated with traditional risk 

factors of atherosclerosis. Until this issue is appropriately addressed, it will be difficult to 

not only correctly identify and diagnose patients at risk of atherosclerotic events but to treat 

patients to an appropriate clinical endpoint.

Cancer

Tumors larger than 1mm3 in volume require blood vessels to grow via angiogenesis. While 

EC monolayers in normal blood vessels form tight junctions between each other with no 

overlap, tumor ECs grow and branch excessively and uncontrollably. This results in chaotic 
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structures of enlarged inter-endothelial gaps, with associated break-down of tight junctions 

between ECs and disrupted basement membranes [150]. EnD is also observed in the 

pathogenesis of metastasis, wherein tumor cells invade the endothelium, enter the 

circulatory system, migrate to new niche locations, and subsequently colonize distant sites 

[151].

One of vascular endothelial growth factor (VEGF)’s main functions is to support EC 

proliferation and migration (Figure 4a), stimulating angiogenesis and vasculogenesis. 

However, chronic stimulation or overexpression of VEGF in tumors causes abnormal fluid 

leakage across the EC monolayer and leads to the deposition of signaling molecules in the 

interstitium. For example, VEGF receptors and their complexes with NRP-1,-2 enhance 

endothelial proliferation and survival [152, 153], but cells expressing VEGF receptor 1 

(VEGFR1) establish cluster formation to upregulate fibronectin for metastasized cancer cell 

adhesion [154]. Tumor angiogenesis is therefore facilitated in tumors (Figure 4b) [155]. 

Solid tumors often produce large concentrations of vascular permeability factors as a result 

of rapidly growing tumor cells, which require an increased supply of nutrients and oxygen. 

As a result, the definitive vascular biology features of tumors arise, including an imbalance 

between angiogenic inhibitors (e.g. thrompospondin-1) and angiogenic stimulators (e.g., 

VEGF) [156] and overexpression and activation of various integrins [157].

The investigation of anti-VEGF therapies for the regression of tumor growth has been 

studied for over three decades, beginning with the pioneering work of Folkman in the early 

1970 [158]. For instance, VEGF inhibitors (e.g. bevacizumab (Avastin®)) bind VEGFA to 

inhibit cell proliferation and block signaling through VEGFR1 and VEGFR2 (Figure 4c) 

[159]. However, abrupt VEGF inhibition can disrupt vascular homeostasis, resulting in 

vascular contraction, hypertension, regression of blood vessels, increased vascular tone, and 

proteinuria [160]. Through nanomedicine, the sustained release of bevacizumab can be 

facilitated; its rate of release can be tuned using varying compositions and ratios of 

polymeric PLGA and PLA-PEG NPs [161]. Furthermore, single agent VEGF inhibitory 

therapy is minimally effective [162], whereas combination therapy of low-dose 

antiangiogenic drugs with chemotherapy drugs has higher efficacy than either drug alone 

[163]. Bevacizumab with paclitaxel, for example, is dramatically better at fighting tumors in 

in vivo studies than either of the two alone [164]. Chemotherapy with simultaneous 

administration of anti-angiogenic therapy has been shown to have synergistic effects [165, 

166]. Anti-angiogenic polymeric nanoparticles loaded with paclitaxel, which exhibits anti-

angiogenic effects at low doses and bear RGDfK integrin-targeting ligands, were shown to 

inhibit the growth of proliferating αvβ3-expressing ECs in several cancers [167]. Targeted 

nanoparticle-mediated nucleic acid and drug delivery can be effectively used for tumor anti-

angiogenic therapies [168–172]. Recently nano-graphene was developed as a vascular 

marker for tumor angiogenesis - whereby 27nm PEGylated nano-graphene oxide NPs were 

successfully directed to tumor neovasculature in vivo by targeting CD105 (endoglin) [173]. 

The efficacy of this system was investigated in vitro, in vivo and ex vivo by PET.

One area of intense research in drug delivery concerns the development of NPs that can 

penetrate further within tumors and remain within the tumor or bound to cancer cells. The 

large gaps between tumor ECs facilitate the extravasation of particulate material from the 
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surrounding vessels into tumors [174], and they are a major contributor to the EPR effect 

[175]. Recently, there has been a growing awareness in understanding the prevalence and 

degree of EPR in humans, given that the various processes involved in the EPR effect are 

heterogeneous across patient populations [176]. It may be beneficial to be able to predict the 

degree of vessel permeability in tumors via imaging using theranostics or companion 

diagnostics, and nanomedicine can play a major role here [176–181]. In addition to 

abnormal architecture, tumor blood vessels also have impaired receptors for angiotensin II, 

which controls vessel constriction [182].

There are a number of vascular mediators which facilitate the EPR effect and these include 

bradykinin, nitric oxide (NO), peroxynitrite (ONOO), prostaglandins, angiotensin-

converting enzyme (ACE) inhibitors, VEGF, and numerous other cytokines [183]. Methods 

of elevating blood pressure or introducing NO-secreting compounds have been investigated 

by means of administering adjuvants in addition to NP injections [183, 184]. For example, 

VEGF was shown to increase vascular permeability and enhance the extravasation of NPs 

across tumor vasculature when co-administered with liposome NPs [185]. In addition to 

bradykinin, NO and prostaglandins are factors involved in the regulation of vascular 

permeability, and the administration of a number of kinase inhibitors has led to an enhanced 

EPR effect [186]. The co-administration of a transforming growth factor beta (TGFβ) 

receptor inhibitor led to an enhancement of EPR-mediated accumulation of both liposomal 

and micelle NPs, a direct result of reduced pericyte coverage on tumor neovasculature [186]. 

Enhancing vascular permeability and lowering the pressure difference can increase the 

overall “leakiness” of tumor vessels and therefore ‘passive’ accumulation of NPs. 

Nanomedicines, such as Doxil and Abraxane, have shown improvements in drug toxicity 

and response rates in cancer therapy [50]. On the other hand, ‘active’ targeting is a term 

used to describe the mode of action of NPs with surfaces bearing affinity ligands that 

specifically target cell populations [50]. The majority of FDA-approved nanomedicines are 

non-targeted, whilst targeted NPs in clinical trials are mostly limited to a few receptors such 

as transferrin that is overexpressed on the surface of various proliferating cancer cells [50]. 

Nonetheless, the successful clinical translation of these nanomedicines has led to the 

investigation of more advanced NP formulations, including targeted nanomedicines such as 

BIND-014 [187, 188]. BIND-014 is a prostate specific membrane antigen (PSMA)-targeted 

docetaxel (Dtxl)-encapsulated polymeric NP, and it is currently undergoing clinical 

development22. PSMA is a transmembrane protein overexpressed on the surface of prostate 

cancer cells and tumor-associated neovasculature of virtually all solid tumors, making 

PSMA an ideal cancer target [189, 190]. Other examples of nanomedicines relevant to EnD 

include doxorubicin- and MRI contrast agent-loaded polymeric micelles with a cRGD ligand 

that can target α v β 3 integrins on tumor ECs [191] and cisplatin-loaded poly(acrylamide) 

NPs with a F3 peptide targeting moiety that can treat ovarian tumor ECin vivo [192].

Concepts in the field of anti-angiogenesis research are rapidly changing as tumor 

endothelium, and thus vessels, are highly complex and heterogeneous. Inhibiting VEGF is 

not without complications (i.e., upregulation of compensatory angiogenic pathways, 

heterogeneity in tumor types, etc.) [193], and in many cases, sustained release of potent anti-

angiogenic agents is required. Therefore, novel nanomedicines that can improve bioactivity 
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and prolong the bioavailability of drugs targeting the vascular and neovasculature of tumors 

may offer new and more effective treatment modalities. For a more detailed cancer-focused 

review, including the latest advances in tumor nanotherapy, please refer to the article by Xu 

and colleagues [194].

Concluding remarks and future perspectives

Understanding EnD is critical for the advancement of translational nanomedicine in the 

treatment of many EnD-associated diseases. Targeting the dysfunctional endothelium, 

specifically the common pathogenic factors that cause its dysfunction, may provide a 

method for treating multiple disorders simultaneously. Notably, NPs may be used to aid the 

treatment of EnD that involves life-threatening conditions such as stroke, ALI, and ischemia. 

For instance, successful targeting of the VEGF pathway for controlled EC activation and 

proliferation (i.e. regulatory microvascular permeability) could provide a common therapy 

to treat EnD associated diseases including diabetes, ARDS/ALI, I/R injury, cancer, and 

CVDs.

Conventional drug delivery, without the use of nanocarriers, leads to the distribution of 

drugs and therapeutic agents throughout the body. Nanomedicine using surface engineering 

approaches for active targeting bestows high specificity to the NPs and therefore facilitates 

their selective accumulation at the site of disease, in addition to increasing the effectiveness 

of treatments. For example, peptide-coated NPs have enabled more effective ligand-specific 

gene delivery to human ECs with enhanced efficacy, specificity, biodegradability, and low 

cytotoxicity [195]. Another study using liposome-DNA complexes coated with human 

serum albumin showed that these NPs enhanced transfection of lymphocytes and 

macrophages compared to non-coated NPs [196].

Commercially available nanomedicine therapies today are mostly administered 

intravenously. Due to the invasive and often painful nature, patient compliance is an issue. 

Consequently, the drive for the development of orally administered nanomedicine has 

gained traction, with emphasis on the treatment of diabetes, since diabetes tends to require 

constant monitoring and systemic administration of treatment. Standard care for diabetes 

using open-loop insulin administration requires periodic and invasive insulin injections and 

tends to lead to poor glucose control [197]. A major advantage of diabetes nanomedicine 

geared towards oral delivery is the enhanced bioavailability of these drugs, whereas direct 

delivery of free peptides and protein drugs through the gastrointestinal track is accompanied 

by low bioavailability due to the gastro-intestinal barriers [198–201]. For example, the use 

of polymeric materials has also shown potential for improved oral insulin delivery, 

particularly owing to their excellent biocompatibility (e.g. polycaprolatone [202])) and 

mucoadhesion (e.g. chitosan [203, 204]), which can enhance epithelial permeability in the 

gut (e.g. by disrupting TJs [205]). Polymeric NPs loaded with CoQ10 were shown to reduce 

blood pressure to normal levels when orally administered to hypertensive rats [206]. The 

process was as effective as the commercial formation of CoQ10 that is currently 

administered, highlighting the effectiveness of noninvasive drug administration through the 

use of a NP platform. To effectively translate to the clinic, these NP platforms need to 

demonstrate long-term stability, efficacy, and superiority over existing common injectable 
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insulin treatments, including prolonged regulation of glucose levels in patients at least on 

par with those shown in animal models [207].

In order to develop effective nanotherapies, the following outstanding questions for effective 

clinical translation of nanomedicine for EnD should be considered: 1) How do nanocarriers 

interact with and pass through vascular endothelial barriers that are dynamically regulated 

for homeostasis?; 2) How does the dysfunctional endothelium influence NP behavior 

compared to a regularly function endothelium?; 2) Is passive transport of nanocarriers via 

the EPR effect a promising mechanism for targeted delivery of therapeutic agents into the 

endothelium?; and 4) Does the NP penetrate the endothelium by changing the endothelium’s 

chemical and biological properties or by direct mechanical effects? To answer these 

questions, the biophysicochemical properties of NPs need to be investigated with 

consideration of how these particles will interact with biological systems [208]. The 

following challenges first need to be taken into consideration for optimal nanomedicine 

design: 1) the building blocks of NPs need to be non-toxic, biodegradable, and 

bioeliminable; 2) the synthetic components and formulation procedures should be simple, 

scalable, and cost-effective with high productivity and reproducibility; 3) the NPs need to be 

stable with a suitable shelf-life period; and 4) a clear therapeutic advantage over the free 

form of the drug (and possibly existing therapies) should be demonstrated.

In addition to these intrinsic challenges associated with designing and developing NPs, there 

exist broader challenges. In particular, the challenges related to NP regulation and 

manufacturing need to be kept in mind. Any new NP therapy must not only comply with 

existing regulatory guidelines but also pass the Food and Drug Administration’s three-phase 

human clinical trials. Furthermore, the challenges associated with scaling up the production 

of NPs may impede their penetration and assimilation as standard therapeutic agents.

Fortunately, novel microfluidic approaches, not only related to the development of NPs 

[141, 210–213] but also as diagnostic techniques [214–217], have gained huge traction over 

the last years [218–221]. Indeed, the evolution of microfluidics has seen the incorporation of 

in vitro cellular approaches and integration on chips [222], which will provide a better 

understanding of EC function and dysfunction [223, 224]. Our recent study demonstrated 

that an endothelialized microfluidic model can serve as a complementary in vitro platform to 

examine NP delivery to dysfunctional ECs and/or mural cells for the screening of NPs in 

pathophysiological conditions, including in vivo validation of NP translocation across the 

atherosclerotic endothelium (Figure 5) [209]. This integrative approach can be applied to 

optimize nanoparticles and study their potentials in a range of other diseases, including 

cancer, diabetes, and inflammation. In the future, the ability to create physiologically 

realistic microsystems that can mimic in vitro microvessels [225, 226], and manipulate in 

vivo small organisms [227] or ex vivo embryonic tissue excised from live embryos [228–

231], will allow the identification and prediction of the potential of nanomedicines and pave 

the path for their rapid clinical translation.
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Highlights

• We review the key features of a functioning and a malfunctioning endothelium.

• We highlight endothelial pathologies in asthma, burns, heart failure, and more.

• We discuss overlapping pathologies between diabetes, atherosclerosis, and 

cancer.

• The VEGF pathway is a possible target for treating multiple endothelial 

disorders.

• Nanotechnology can provide safer treatments and better in vivo study 

validations.
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Figure 1. Mechanism and mediators of endothelial function and permeability
(a) Endothelial cells maintain the tight cell-cell connections and the underlying matrix for 

increased barrier integrity. Sphingosine-1-phosphate (S1P) binds to its EDG-1 receptor, 

which ultimately strengthens EC barrier function through lamellipodia formation and 

subsequent AJ assembly. In dysfunctional barriers, thrombin binds to the PAR-1 receptor, 

which induces inositol trisphosphate (IP3) production and a subsequent increase in 

intracellular Ca2+. Increased Ca2+ activates the myosin light chain kinase (MLCK) to 

phosphorylate MLCs, leading to increased actomyosin contractility. Furthermore, thrombin 

inhibits MLC phosphatase activity through Rho/Rho kinase (RhoK), which increases MLC 

phosphorylation. The resulting actomyosin contraction contributes to increased permeability 

of the EC layer. (b) In normal ECs, activated eNOS promotes nitric oxide (NO) production, 

inhibiting platelet aggregation, leukocyte adhesion, and smooth muscle cell proliferation. 

Reduced availability of NO leads to endothelial disorder and compromised production of 

NO by oxidative stress. This inhibits eNOS-derived NO production and results in platelet 

aggregation and leukocyte adhesion as well as increased contractions of smooth muscle 

cells.
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Figure 2. Timeline of selected clinical stage nanomedicines (FDA-approved and in clinical 
development)
PEG = polyethylene glycol; siRNA = small interfering RNA; GAH TNF = tumor necrosis 

factor; Bik = Bcl-2 interacting killer; PEG–PGlu = polyethylene glycol-poly(glutamate); and 

PEG–PLA = polyethylene glycol-polylactic acid. Phase trial is as of June 2015, in the 

United States. Source: www.clinicaltrials.gov.
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Figure 3. Endothelial disorder in metabolic and cardiovascular diseases
(a) Key EnD inducers and EnD-associated diseases. (b) A key EnD mechanism in diabetes. 

NO is formed from L-arginine by eNOS. In diabetes characterized by insulin resistance and 

hyperglycemia, EnD results from reduced production of NO. This arises through decreased 

activation of eNOS due to insulin resistance and increased breakdown of NO by ROS, 

promoted by hyperglycemia. (c) Initiation and progression of atherosclerosis with an 

activated endothelium (adapted from [95]). Atherogenic lipoproteins enter the intima and 

aggregate within the extracellular intimal space (i). Unregulated uptake of these atherogenic 

lipoproteins by macrophages leads to the generation of foam cells (ii). In addition to 

monocytes, other types of leukocyte, particularly T cells, are recruited to atherosclerotic 

lesions and cause chronic inflammation. The growth of plaque induces tissue remodeling 

(iii). The foam cells release cellular debris and crystalline cholesterol. Smooth muscle cells 

form a fibrous cap beneath the endothelium, contributing to the formation of a necrotic core 

within the plaque. The resulting non-obstructive plaque may rupture, resulting in the 

formation of a thrombus in the lumen (iv), which can lead to tissue infarction. Ultimately, if 

the plaque does not rupture and the lesion continues to grow, the lesion can encroach on the 

lumen and result in clinically obstructive disease (v). Potential NP therapies in 

atherosclerosis could benefit from the increased microvessel permeability, which is caused 

by hypoxia-induced neovascularization of the vasa vasorum and would allow the delivery of 

NPs to plaques within vascular vessel walls.
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Figure 4. The role of VEGF in tumor growth and inhibition of VEGF as a cancer therapy
(a) Angiopoietin 1 (ANGPT1) and VEGF play important roles through the actions of 

circulating VEGF and intracrine actions of endothelial-derived VEGF. (b) Tumors express 

several pro-angiogenic factors (e.g. VEGF, bFGF, PDGF). Interstitial fibroblasts and 

dissociated microvascular pericytes, stimulated by PDGF from tumors, release VEGF and 

contribute to EC proliferation and migration, thereby exerting paracrine EC protective 

effects during angiogenesis [148]. Blockage of these mechanisms is expected to improve the 

efficacy of cancer therapy as well as inhibition of pro-angiogenic factors. (c) Strategies to 
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inhibit VEGF signaling include monoclonal antibodies targeting VEGFA, such as 

Bevacizumab, and VEGF receptors such as IMC-18F1 and Ramucirumab. Also, soluble 

VEGF receptors, such as VEGF-Trap or VEGLIN, have been used to inhibit VEGF 

signaling. In ECs, many small-molecule VEGF RTK inhibitors have been tested to prevent 

ligand-dependent receptor phosphorylation of VEGFR1 and VEGFR2, which would 

otherwise trigger various signaling pathways, eventually activating angiogenesis [149].
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Figure 5. Probing nanoparticle translocation across the permeable endothelium using an in vitro 
microfluidic model with in vivo validation
(a) Fluorescence microscopy images of typical cross-sections of the healthy wall (L, lumen) 

and the atherosclerotic vessel with plaque (P). (b) Cross-section schematics of continuous 

normal and permeable capillaries that penetrate into the atherosclerotic plaque from the vasa 

vasorum. (c) TEM of the endothelial lining of a normal/healthy vessel wall (left) compared 

to a permeable endothelial layer with a large gap (right). (Scale bar, 2µm). (d) High 

resolution TEM showing ECs with a gap between them and a macrophage (MΦ) behind it. 

At a higher magnification, multiple individual nanoparticles (arrowheads) can be found. 

(Scale bar, 2µm.) The neovessel (N) within the plaque is bordered with a lipid-loaded MΦ, 
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which itself has taken up nanoparticles as well. (Scale bar, 1µm.) (e) Diagram of an 

endothelialized microfluidic device enabling TEER measurement across the EC layer. (f) 

Permeable EC layer with disrupted adherens junctions between ECs, as evidenced by patchy 

expression of VE-cadherin (green) in the image on the right compared to the left. Nuclei 

(DAPI). (Scale bar, 20µm). (g) ECs in different culture media show different permeability 

(shown by TEER and FITC-albumin translocation). (h) Nanoparticle translocation and 

TEER from these experiments are inversely correlated (r2 = 0.54, P < 0.0001). Reprinted 

with permission from PNAS [209].
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Table 1

Selected complications of endothelial disorders and related nanomedicine research

Disease
pathology Endothelial Disorder Relation Nanomedicine therapy

Acute lung
injury (ALI)

ALI results from disrupted capillary-
endothelial interfaces. P38 mitogen-
activated protein kinase, which can be
activated by inflammatory cytokines
(e.g. TNF-α) and lipopolysaccharides,
has been implicated in the disruption of
normal endothelial permeability in ALI
[59].

Human glucagon-like peptide 1 (GLP-1) is
an immunomodulatory,
anti-inflammatory, and anti-apoptotic
peptide. Researchers encapsulated GLP-1
with PEGylated phospholipid micelles,
allowing them to mitigate side effects,
including immunogenicity, pancreatitis,
and renal failure. S.c. delivery of NPs
suppressed neutrophil accumulation and
lung activation was observed, offering
effective protection against the
inflammatory effects of LPS-induced ALI
in murine models [60]. An inhalable
liposomal formulation of amikacin, or
Arikace, has been undergoing phase 2
clinical trials for bronchiectasis, cystic
fibrosis, and bacterial lung infections [61].

Alzheimer
disease (AD)

Normal interactions of endothelial,
neuronal, and glial cells are disrupted in
AD. Amyloid-β (Aβ), deposited in
cerebrovascular walls in AD patients, is
cytotoxic to ECs and affects NO
production, mitochondrial function, and
induction of apoptosis [62].

Research has shown that NPs conjugated
with transition metal chelators (polystyrene
and the iron chelator MAEHP) can protect
human corticol neurons against Aβ-related
cytotoxicity by preventing Aβ aggregation
[63]. The conjugated NPs, which showed a
higher efficacy for crossing the blood-brain
barrier, were used to reverse Aβ deposition
These NPs may provide an alternate
method for the treatment of
neurodegenerative diseases associated with
excess transition metals.

Asthma

Airways in asthma patients are
distinguished by elevated endothelial
permeability, partly due to sensory
neuropeptides that can create
intercellular gaps and cause interstitial
edema [64].

Silver is a known antimicrobial agent.
Researchers used nebulized silver NPs to
attenuate inflammatory responses in
murine models of inflamed airways. By
inhibiting ROS and NF-κB expression, the
NPs suppressed the expression and
activation of pro-inflammatory cytokines
(e.g. IL-4, IL-5, TNF-α), chemokines, and
adhesion molecules. The exact location and
mechanism of action of the silver NPs at
the cellular level, however, remains unclear
[65].

Burn injury

Oxidants damage endothelial
membranes through peroxidation of cell
lipids, disruption of interstitial matrix
components (e.g. collagen degradation),
and inflammation (e.g. recruitment of
lymphocytes and macrophages) [66].
These lead to increased vascular
permeability and edema formation.

Topical application of antimicrobial
nanoemulsions (NB-201), composed of
water, surfactants, alcohol, and vegetable
oil, reduced burn wound infection and
dermal inflammatory responses [67]. In rat
models, NB-201 treatment decreased
bacterial and pro-inflammatory IL-1β and
CINC-3 levels, while mitigating capillary
leakage and edema; this was associated
with reduced dermal inflammation. In this
way, topical nanoemulsions may provide a
method for protecting thermally injured
skin from inflammatory and
immunosuppressive effects.

Glaucoma

EnD in glaucoma patients arises from
altered production and function of NO
and endothelin-1 (ET-1), a
vasoconstrictive peptide. Decreased NO
and increased ET-1 levels lead to
vasospasms and decreased blood flow
and vasodilator responses, leading to
ocular hypertension and ischemia [68].

Egg-phosphaticylcholine (EggPC)
liposomes were loaded with latanoprost, a
prostaglandin analogue used to increase
ocular outflow of fluids. Encapsulation of
latanoprost allowed slow and sustained
release of the drug. Compared to daily
topical applications of free latanoprost, the
liposomes were more effective at reducing
intraocular pressure in rabbit eyes for up to
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Disease
pathology Endothelial Disorder Relation Nanomedicine therapy

90 days after a single subconjunctival
injection [69].

Heart failure

Congestive heart failure (CHF) can lead
to pulmonary hypertension and eventual
ventricular failure [70]. Impaired
homeostasis and signaling of endothelial
Ca2+ in CHF is related to increased
formation of β-actin and F-actin,
resulting in the cytoskeletal remodeling
of pulmonary vessels and disrupted
endothelial functions.

Nanofibers, composed of self-assembling
peptides, were injected into mice. These
fibers self-assembled into
microenvironments in the myocardium for
ECs [71]. Previously, it was shown that
ECs survive well within RAD16-II peptide
microenvironments in vitro. Working as
scaffold, the injectable version of the
peptides also promoted vascular cell
recruitment and aided endothelial
regeneration, as observed by the presence
of endothelial markers. This presents an
injectable tissue regeneration strategy.

Hepatitis

Constant liver inflammation in Hepatitis
C patients leads to elevated levels of
soluble intercellular adhesion molecule-
1 (sICAM-1) and soluble vascular
adhesion molecule-1 (sVCAM-1), which
indicate endothelial damage [72].

PEGylated IFN-α-2a nanostructures have
been used in clinical trials to enhance
antiviral activity, pharmacokinetic
properties, and tolerability of drugs in
hepatitis C patients [73]. Pegylation
extends a drug’s half-life and activity,
lessening immunogenicity and enhancing
plasma residence times and concentrations
compared to standard IFN-α-2a.

Hypertension

EnD has been shown to be an early
marker of cardiovascular diseases such
as hypertension [74]. In patients with
hypertension, a dysfunctional
endothelium with oxidative stresses and
thus reduced NO availability may
contribute to increased peripheral
resistance, vascular and organ damage,
and cardiovascular disorders [75, 76].

Many liposomes and polymeric NPs,
loaded with peptides, genes, and small
molecules, have been studied to treat
pulmonary hypertension [77] and
normalize mean arterial pressure [78].
These NPs are popular due to their
enhanced drug protective abilities, as well
as modifiable surface moieties and
sustained-release capabilities.
Combinations of drugs, such as verapamil
and trandolapril, have also shown potential
to stabilize hypertension-associated
vascular endothelial dysfunction and
damage [79].

Inflammatory
bowel disease
(IBD)

Altered expression of inducible NO
synthase and eNOS in ECs decrease
NO- and acetylcholine-mediated dilation
of vessels, resulting in compromised
vasodilatory responses to ischemia. This
accounts for the decreased blood flow
observed in patients with IBD [80].

Orally administered TNF-α
siRNA/polyethyleneimine nanocomplexes
decreased TNF-α levels in mice colons
[81]. The nanocomplex is able to protect
the siRNA from enzymatic degradation.
Furthermore, compared to free siRNA, the
nanocomplexes contain more siRNA, have
decreased cytocoxicity, and are more
efficiently taken up by macrophages. Drug-
loaded nanocarriers have also been
explored, including tacrolimus-loaded
PLGA NPs for the treatment of colitis in
murine models [82]. See a recent review
[83].

Ischemia-
Reperfusion
(I/R) injury

Reperfusion injury arises due to the
return of blood flow to previously
ischemic tissues, and the re-established
oxygen causes free radical formation,
with NADPH oxidase being the source
of ROS during I/R injury [84].

ATP-loaded liposomes have shown
positive results in both in vitro and in vivo
treatment of myocardial ischemia [85]. In
rabbit models, for example, ATP-
liposomes had significantly lower levels of
ventricular damage compared to free ATP.
In its free form, ATP has a very short half-
life in blood and cannot freely enter cells.
By using liposomes, researchers were able
to not only protect ATP and its crease its
half-life but also to protect human ECs
from energy failure.

Myocardial
infarction (MI)

In acute MI, inflammatory cytokines
(i.e. IL-1β, IL-6, TNF-α) are activated,
and these act in conjunction with ROS,
also generated during MI. They disrupt

NPs loaded with drugs and siRNA were
shown to mitigate MI symptoms [87].
Polyketal NPs loaded with p38 inhibitor
SB239063 decreased in apoptotic events
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Ca2+ intracellular homeostasis,
increasing cell permeability, eventually
leading to cell necrosis and EnD [86].

and infarct sizes in murine models of MI
[88]. Furthermore, by coating the NPs with
sugar N-acetylglucosamine, researchers
were able to significantly enhance uptake
of the NPs by cardiomyocytes compared to
plain particles.
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