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The cross section for prompt antiproton production in collisions of protons with an energy of 6.5 TeV
incident on helium nuclei at rest is measured with the LHCb experiment from a data set corresponding to an
integrated luminosity of 0.5 nb−1. The target is provided by injecting helium gas into the LHC beam line at
the LHCb interaction point. The reported results, covering antiproton momenta between 12 and
110 GeV=c, represent the first direct determination of the antiproton production cross section in p-He
collisions, and impact the interpretation of recent results on antiproton cosmic rays from space-borne
experiments.
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The antiproton fraction in cosmic rays has been long
recognized as a sensitive indirect probe for exotic astro-
physical sources of antimatter, such as dark matter
annihilation [1–5]. A substantial improvement in exper-
imental accuracy for the measurement of the antiproton, p̄,
over proton, p, flux ratio has recently been achieved by
the space-borne PAMELA [6] and AMS-02 [7] experi-
ments. Antiproton production in spallation of cosmic rays
in the interstellar medium, which is mainly composed of
hydrogen and helium, is expected to produce a p̄=p flux
ratio of Oð10−4Þ. The observed excess of p̄ yields over
current predictions for the known production sources
[8–11] can still be accommodated within the current
uncertainties. In the 10–100 GeV p̄ energy range, these
uncertainties are dominated by the limited knowledge of
the p̄ production cross section in the relevant processes.
To date, no direct measurements of p̄ production in p-He
collisions have been made, and no data are available
at a nucleon-nucleon center-of-mass (c.m.) energy of
ffiffiffiffiffiffiffiffi

sNN
p ∼ 100 GeV, relevant for the production of cosmic
antiprotons above 10 GeV [12].
This Letter reports the first measurement of prompt p̄

production in p-He collisions carried out with the LHCb
experiment at CERN using a proton beam with an energy
of 6.5 TeV impinging on a helium gas target. The forward
geometry and particle identification (PID) capabilities of
the LHCb detector are exploited to reconstruct antiprotons
with momentum, p, ranging from 12 to 110 GeV=c and
transverse momentum, pT , between 0.4 and 4.0 GeV=c.

The integrated luminosity is determined from the yield of
elastically scattered atomic electrons.
The LHCb detector is a single-arm forward spectrom-

eter covering the pseudorapidity range 2 < η < 5,
described in detail in Refs. [13,14], conceived for
heavy-flavor physics in pp collisions at the CERN
LHC. The momentum of charged particles is measured
to better than 1.0% for p < 110 GeV=c. The silicon-strip
vertex locator (VELO), which surrounds the nominal
pp interaction region, allows the measurement of the
minimum distance of a track to a primary vertex (PV),
the impact parameter (IP), with a resolution of
ð15þ 29=pTÞ μm, where pT is in GeV=c. Different types
of charged hadrons are distinguished using two ring-
imaging Cherenkov detectors (RICH) [15], whose accep-
tance and performance define the p̄ kinematic range
accessible to this study. The first RICH detector has an
inner acceptance limited to η < 4.4 and is used to identify
antiprotons with momenta between 12 and 60 GeV=c.
The second detector covers the range 3 < η < 5

and can actively identify antiprotons with momenta
between 30 and 110 GeV=c. The scintillating-pad (SPD)
detector and the electromagnetic calorimeter (ECAL)
included in the calorimeter system are also used in
this study.
The SMOG (system for measuring overlap with gas)

device [16,17] enables the injection of noble gases with
pressure of Oð10−7Þ mbar in the beam pipe section
crossing the VELO, allowing LHCb to operate as a
fixed-target experiment. This analysis is performed on
data specifically acquired for this measurement in May
2016. Helium gas was injected when the two beams
circulating in the LHC accelerator [18] consisted of a
small number, between 52 and 56, of proton bunches.
The proton-beam energy of 6.5 TeV corresponds to
ffiffiffiffiffiffiffiffi

sNN
p ¼ 110.5 GeV. In the proton-nucleon c.m. frame,
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the LHCb acceptance corresponds to central and back-
ward rapidities −2.8 < y� < 0.2, and p̄ production can be
studied for values of x-Feynman, the ratio of the p̄
longitudinal momentum to its maximal value, comprised
between −0.24 and 0.
To avoid background from pp collisions, the events used

for this measurement were recorded when a bunch in the
beam pointing toward LHCb crosses the nominal inter-
action region without a corresponding colliding bunch in
the other beam. The online event selection consists of a
hardware stage, which requires activity in the SPD detector,
and a software stage requiring at least one reconstructed
track in the VELO. An unbiased control sample of
randomly selected events is acquired independently of this
online selection.
Simulated data samples are generated for p-He collisions

withEPOS-LHC [19], and forpe− normalization eventswith
ESEPP [20]. The interaction of the generated particles with
the detector, and its response, are implemented using the
GEANT4 toolkit [21] as described in Ref. [22]. Simulated
collisions are uniformly distributed along the nominal
beam direction z in the range −1000 < z < þ300 mm,
where z ¼ 0 mm is the nominal collision point.
Events with antiproton candidates must have a recon-

structed primary vertex within the fiducial region −700 <
zPV < þ100 mm, where high reconstruction efficiencies
are achieved for both p-He and pe− collisions. The PV
position must be compatible with the beam profile and
events must have fewer than 5 tracks reconstructed in
the VELO with negative pseudorapidity. This selection is
ð99.8� 0.2Þ% efficient for simulated reconstructed p-He
vertices, while suppressing vertices from interactions with
material, decays, and particle showers produced in beam-
gas collisions occurring upstream of the VELO. The
overlap of these backgrounds with a p-He collision, an
effect not accounted for by the simulation, causes an
additional inefficiency of ð2.3� 0.2Þ%, measured using
the unbiased control sample. The PV reconstruction
efficiency for the signal events is estimated from simu-
lation and varies with zPV from 66% in the most upstream
region to 97% around zPV ¼ 0 mm. This efficiency is
sensitive to the PV track multiplicity, the angular dis-
tribution of primary tracks, and the average position and
profile of the beam. Imperfections in these simulated
distributions are accounted for by weighting simulated
events to improve the agreement with the distributions
observed in data. From the resulting variations of the PV
reconstruction efficiency, a relative systematic uncertainty
is assigned, ranging from 1.6% to 3.3%, depending on the
p̄ kinematics.
Antiproton candidates are selected from negatively

charged tracks within the acceptance of at least one of
the RICH detectors. Additionally, p̄ candidates are
required to originate from the primary vertex by requiring
χ2IP < 12, where χ2IP is defined as the difference in the

vertex-fit χ2 of the PV reconstructed with and without the
track under consideration. The reconstruction efficiency
for prompt antiprotons, ϵrec, including the detector accep-
tance and the tracking efficiency, is determined from
simulation in three-dimensional bins of p, pT , and zPV.
The width of the momentum bins increases as a power law
of p to have approximately an equal number of candidates
in each of 18 bins. Ten pT bins are chosen with the same
criterion, while 12 uniform bins are used in zPV. Bins in
which ϵrec is below 25% are not used in order to reduce
systematic uncertainties, effectively shortening the zPV
fiducial region for kinematic bins at the edges of the
detector acceptance. The average value of ϵrec in the
remaining bins is 61%. The tracking efficiency obtained
from the simulation is corrected by a factor determined from
calibration samples in pp-collision data. This correction
factor is consistent with unity in all kinematic bins within its
systematic uncertainty of 0.8% [23]. The zPV dependence of
the tracking efficiency is checked using K0

S → πþπ− decays
in the p-He sample where one of the tracks is reconstructed
without using VELO information. No significant differences
between data and simulation are observed. A systematic
uncertainty, varying between 1.0% and 4.0% depending on
η, accounts for p̄ hadronic interactions in the detector
material, whose rate is known with 10% accuracy [23].
The efficiency of the χ2IP requirement is parametrized as a
function of pT and p, averaging to 96.1%, with a 1.0%
uncertainty from the parametrization accuracy. The online
selection efficiency is unity, within 10−5, as determined from
the unbiased control sample.
Based on studies of simulated p-He collisions, the

sample of negatively charged tracks is dominated by π−,
K−, and p̄ hadrons. In a small fraction of cases, 1.7% in the
simulation, tracks do not correspond to the trajectories of
real charged particles and are labeled as fake tracks. Particle
identification is based on the response of the RICH
detectors, from which two quantities are determined: the
difference between the log likelihood of the proton and
pion hypotheses, DLLpπ , and that between the proton and
kaon hypotheses, DLLpK [15]. Three sets of templates for
each particle species are determined from simulation, from
p-He data, and from pp data collected in 2016. The p-He
calibration samples consist of selected K0

S → πþπ− decays
for pions, Λ → pπ−ðΛ̄ → p̄πþÞ for (anti)protons, and
ϕ → KþK− for kaons. Calibration samples in pp data

also include D�� → D0
ð−Þ

ðK∓π�Þπ� decays. Simulation is
used for the template of fake tracks.
Two methods are used to determine the p̄ fraction

in each kinematic bin: a two-dimensional binned
extended-maximum-likelihood fit, illustrated in Fig. 1,
and a cut-and-count method [24], which uses exclusive
high-purity samples selected with tight requirements for
each particle species. The probability Pij that a candidate
of species i is classified as species j is obtained from
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the templates. The 4 × 4 Pij matrix is then inverted to
derive the yield of each particle species. For each
kinematic bin, the central value for the p̄ fraction is
obtained from the average of the two methods using the
templates from simulation, while half the difference is
used to estimate the systematic uncertainty. Bias from the
imperfections of the simulated RICH response, which are
visible in Fig. 1, is estimated from the average differences
among the results using the three available template sets,
which are used to assign an additional uncertainty, correlated
among bins. The total uncertainty is typically a few percent,
although larger uncertainties affect the bins at the edges of
the detector acceptance.
In the simulation, the nonprompt antiprotons surviving

the χ2IP requirement constitute a fraction of the selected p̄
sample varying between 1% and 3% depending on pT .
These are due to hyperon decays, in 90% of cases, or
secondary interactions. This fraction is corrected by a factor
1.5� 0.3, to account for differences between simulation
and data as determined in the region of the χ2IP distribution
dominated by hyperon decays. The resulting correction to
the p̄ yield averages to −2.4%.
Collisions on the residual gas in the LHC beam

vacuum, with a pressure of Oð10−9Þ mbar and unknown

composition, can contribute to the p̄ yield. Residual-gas
analysis, performed in the absence of beam, indicates that
the contamination isOð1Þ% and is dominated by hydrogen.
To evaluate this background source, including a possible
beam-induced component, a control sample of beam-gas
collisions was acquired before injection of the helium gas.
Data collected with and without helium gas have the
same vacuum pumping configuration and thus identical
residual gas composition and pressure. The yield of
selected events in data without helium gas, scaled accord-
ing to the corresponding number of protons on target, is
subtracted from the result leading to an average correction
of ð−0.6� 0.1Þ%, where the uncertainty accounts for the
background variation over time. The average PV track
multiplicity is found to be smaller in collisions without
injected gas, confirming that the residual gas is dominated
by hydrogen.
Since the injected gas pressure is not precisely known,

the integrated luminosity of the data sample is determined
from the yield of electrons from elastic scattering of the
proton beam. Scattered electrons are simulated in the polar
angle range 3 < θ < 27 mrad, outside of which they
cannot be reconstructed in LHCb. The corresponding cross
section is calculated to be 184.8� 1.8 μb [20], where the
uncertainty is due to the proton form factors and radiative
corrections. Scattered electrons are selected from events
with a single reconstructed track. The electron candidate is
required to have p < 15 GeV=c, pT < 0.12 GeV=c, a
polar angle in the range 11 < θ < 21 mrad, and to origi-
nate from the fiducial region. The longitudinal position of
the scattering vertex zpe− is determined from the position
of minimum approach to the beam line, with a resolution of
9 cm. The track reconstruction efficiency in the selected
zpe− and θ ranges is determined from simulation to be
16.3%. A loose requirement is placed on the energy
deposited in the ECAL to identify the track as an electron.
Background events that could mimic this signature are
expected to be mostly soft nuclear collisions where the
initial nucleons do not dissociate, and the detected particle
is produced by a colorless exchange of gluons or photons.
Since the products of this process must be charge-sym-
metric, the background yield is determined from events
with a single positron candidate.
Background is further suppressed by two multivariate

classifiers, implemented using a boosted decision tree
algorithm [25]. The first exploits the geometric and kin-
ematic properties of the candidate electron. The second uses
multiplicity variables to veto any extra activity in the event.
In both cases the classifiers are trained using pe− simulated
events for the signal and single-positron events from data for
the background. Loose requirements are placed on the
response of the boosted decision tree discriminants, with
a combined efficiency of 96% for simulated pe− events.
The overlap of a pe− event with another beam-gas inter-
action causes an additional inefficiency, measured to be
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FIG. 1. Two-dimensional template fit to the PID distribution of
negatively charged tracks for a particular bin (21.4 < p <
24.4 GeV=c, 1.2 < pT < 1.5 GeV=c). The (DLLpK, DLLpπ)
distribution, shown in the top plot, is fitted to determine the
relative contribution of π−, K−, and p̄ particles, using simulation
to determine the template distributions and the fraction of
fake tracks (which are barely visible). In the bottom plot, the
result of the fit is projected into the variable arg ðDLLpKþ
iDLLpπÞ.
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ð9.4� 0.7Þ% in the unbiased control sample. A possible
charge asymmetry of the background, estimated from the
EPOS simulation, leads to a systematic uncertainty of 1.9%.
As is done for the p̄ candidates, the unbiased control events
are used to measure the online selection efficiency,
ð98.3� 0.3Þ%, and the data without helium gas are used
to determine the contribution from scattering on residual
gas, ð1.0� 0.3Þ%.
The momentum distributions of the selected candidates

are shown in Fig. 2, where a good agreement with the
simulated pe− signal is observed after background subtrac-
tion. The low reconstruction efficiency, due to the fact that the
observed electrons are predominantly produced at the edges
of the LHCb acceptance and are subject to relevant energy
losses by bremsstrahlung when crossing the detector
material, is the major source of systematic uncertainty on
the luminosity. The stability of the result is checked against
additional requirements on the most critical variables,
notably the number of reconstructed VELO hits and the
azimuthal angle, whose distribution is strongly affected by
the spectrometer magnetic field. The largest variation of the
result, a relative 5.0%, is assigned as systematic uncertainty
on the electron reconstruction efficiency. Taking also into
account an uncertainty of 2.3% from the beam and VELO
simulated geometry, the total systematic uncertainty on the
luminosity is 6.0%.
The integrated p-He luminosity is determined from

the efficiency-corrected yield, divided by the product of
the pe− cross section and the helium atomic number.

Gas ionization effects are found to be negligible. Avoiding
any assumption on the z dependence of the gas density,
the integrated luminosity is calculated with 12 zpe− bins
across the fiducial region, resulting in 484� 7� 29 μb−1,
where the first uncertainty is statistical and the second
is systematic. From the knowledge of the number of
delivered protons, the target gas pressure is found to be
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FIG. 2. Distributions of (left) momentum and (right) transverse momentum for (top) single electron and single positron candidates,
and (bottom) background-subtracted electron candidates, compared with the distributions in simulation, which are normalized to the
data yield.

TABLE I. Relative uncertainties on the p̄ production cross
section. The ranges refer to the variation among kinematic bins.

Statistical
p̄ yields 0.5%–11% (<2% for most bins)
Luminosity 1.5%–2.3%

Correlated systematic
Luminosity 6.0%
Event and PV selection 0.3%
PV reconstruction 0.4%–2.9%
Tracking 1.3%–4.1%
Nonprompt background 0.3%–0.5%
Target purity 0.1%
PID 3.0%–6.0%

Uncorrelated systematic
Tracking 1.0%
IP cut efficiency 1.0%
PV reconstruction 1.6%
PID 0%–36% (<5% for most bins)
Simulated sample size 0.4%–11% (<2% for most bins)

PHYSICAL REVIEW LETTERS 121, 222001 (2018)

222001-4



2.6 × 10−7 mbar, which is compatible with the expected
helium pressure.
Table I presents the list of uncertainties on the p̄ cross-

section measurement, categorized into correlated and
uncorrelated sources among kinematic bins. The corre-
lated systematic uncertainty is dominated by the uncer-
tainty on the luminosity determination. The net effect of
migration between kinematic bins due to resolution
effects is found to be negligible. A major difference
between the fixed-target configuration and the standard
pp-collision data taking in LHCb is the extension
of the luminous region. As a consequence, the result is
checked to be independent of zPV within the quoted
uncertainty in all kinematic bins. Furthermore, the results
do not show any significant dependence on the time of
data taking.
The p̄ production cross section is determined in each

kinematic bin from a sample of 33.7 × 106 reconstructed
p-He collisions, yielding 1.5 × 106 antiprotons as deter-
mined from the PID analysis. In Fig. 3, the results,
integrated in different kinematic regions, are compared

with the prediction of several models: EPOS-LHC [19], the
pre-LHC EPOS version 1.99 [26], HIJING 1.38 [27], the
QGSJET model II-04 [28] and its low-energy extension
QGSJETII-04m, motivated by p̄ production in cosmic rays
[29]. The results are also compared with the PYTHIA6.4
[30] prediction for 2 × ½σðpp → p̄XÞ þ σðpn → p̄XÞ�, not
including nuclear effects. The shapes are well reproduced
except at low rapidity, and the absolute p̄ yields deviate by
up to a factor of 2. Numerical values for the double-
differential cross section d2σ=dpdpT in each kinematic bin
are available in the Supplemental Material [31].
The total yield of p-He inelastic collisions which are

visible inLHCb is determined from theyield of reconstructed
primary vertices and is found to be compatible with EPOS-
LHC: σLHCbvis =σEPOS−LHCvis ¼ 1.08� 0.07� 0.03, where the
first uncertainty is due to the luminosity and the second to
the PV reconstruction efficiency. The result indicates that
the significant excess of p̄ production over the EPOS-
LHC prediction, visible in Fig. 3, is mostly due to the p̄
multiplicity.
In summary, using a p-He collision data sample,

corresponding to an integrated luminosity of 0.5 nb−1,
the LHCb Collaboration has performed the first measure-
ment of antiproton production in p-He collisions. The
precision is limited by systematic effects and is better than a
relative 10% for most kinematic bins, well below the spread
among models describing p̄ production in nuclear colli-
sions. The energy scale,

ffiffiffiffiffiffiffiffi

sNN
p ¼ 110 GeV, and the mea-

sured range of the antiproton kinematic spectrum are
crucial for interpreting the precise p̄ cosmic ray measure-
ments from the PAMELA and AMS-02 experiments by
improving the precision of the secondary p̄ cosmic ray flux
prediction [11,32].
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68Institut für Physik, Universität Rostock, Rostock, Germany (associated with Institution Physikalisches Institut,

Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)
69Van Swinderen Institute, University of Groningen, Groningen, Netherlands (associated with Institution Nikhef National Institute for

Subatomic Physics, Amsterdam, Netherlands)
70National Research Centre Kurchatov Institute, Moscow, Russia [associated with Institution Institute of Theoretical

and Experimental Physics (ITEP), Moscow, Russia]
71National University of Science and Technology “MISIS”, Moscow, Russia [associated with Institution Institute of Theoretical

and Experimental Physics (ITEP), Moscow, Russia]
72National Research Tomsk Polytechnic University, Tomsk, Russia [associated with Institution Institute of Theoretical

and Experimental Physics (ITEP), Moscow, Russia]
73Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain (associated with Institution ICCUB,

Universitat de Barcelona, Barcelona, Spain)
74University of Michigan, Ann Arbor, USA (associated with Institution Syracuse University, Syracuse, New York, USA)

75Los Alamos National Laboratory (LANL),
Los Alamos, USA (associated with Institution Syracuse University, Syracuse, New York, USA)

aAlso at Laboratoire Leprince-Ringuet, Palaiseau, France.
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