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Abstract

The growing frequency and scale of cyber security attacks is daunting. Notable ar-
eas of concern are the Internet of Things (IoT) and Operational Technology (OT)
systems; the IoT is becoming intimately integrated into our lives, and the physical
repercussions of attacks on OT systems can be devastating. Risk analysis tools can
prove to be very helpful towards defining counter measures that can either prevent
or dampen the effect of these seemingly inevitable cyber security attacks. One such
tool, attack trees, provide a formal way of describing the varying attacks that could
be mounted against a system. Though they are limited because their development
is time intensive, work has been done on automating this process with attack tree
generators. In this thesis, we provide suggested design modifications to be made on
existing attack tree generators to work on IoT and OT systems.
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Chapter 1

Introduction

1.1 Problem Description

Cyber security attacks1 are becoming the rule rather than the exception. In

fact, the daily number of such attacks on US companies more than tripled from 50

to 160 between 2010 and 2015 [26], and every second, 12 people become a victim of

cybercrime [56]. To make matters worse, the severity of these attacks has also been

on the rise: it is estimated that global annual cybercrime costs will grow from $3

trillion in 2015 to $6 trillion by 2021 [38]. Clearly, our defenses have to be sharpened

to counter this slew of attacks.

All cyber security defense methodologies fall under one of three distinct phases:

preventing a cyber attack before it can happen (prevention); detecting that a cyber

attack occurred, or is occurring (detection); or responding to a cyber attack after it

occurred, or while it’s occurring (response) [30]. A popular technique to use towards

the prevention phase is risk analysis – identifying and assessing all factors that may

jeapordize something’s success. This technique helps define preventative measures to

reduce the probability of these factors occurring, and identifies useful countermeasures

to deal with those factors in the case that they do develop [43].

One tool that is very useful towards risk analysis is an attack tree; it provides a

1We generalize the term “attack” to include any and all types of incidents, breaches, crimes, or
other related activities that are carried out by means of computers or the Internet.
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formal, systematic way of describing the varying attacks that could be dealt towards

a system [50]. Attack trees can be used to itemize all of a system’s attack vectors

— the means by which an adversary can compromise a system — to give anyone,

not just security experts, a glance at a system’s weak points. One of their major

drawbacks, however, is that developing attack trees manually is a time consuming

process, since someone with deep knowledge of the system in question has to spend

a potentially large number of hours thinking through every possible way an attacker

can compromise their system.

Because of the substantial benefit they can provide for the cyber security commu-

nity, though, there has been work done on mitigating this limitation by automating

the development process via attack tree generators. An example of such a system

was built by Dr. Howard Shrobe at the MIT Computer Science and Artificial Intel-

ligence Laboratory (CSAIL) and worked on the lab computing environment at the

time (2001) [53]; this is what we will focus on in this thesis.

1.2 Motivation

The aforementioned growth in cyber security attacks becomes even more ominous

when one considers the so-called “Internet of Things” (IoT) and how prevalent these

technologies have become: IoT devices numbered 3.9 billion in 2013 and are expected

to grow to nearly 21 billion by the year 2020 [12]. This rather astonishing number

of projected IoT devices will only add to the number of cyber security attacks that

occur, and may also contribute to their severity.

Another critical domain that’s been getting more attention recently are Opera-

tional Technology (OT) systems, the control systems that are typically used in in-

dustries such as electrical, water, oil, gas, and nuclear. Attacks to these types of

systems could have destructive physical repurcussions — think, for example, what

could happen if a nuclear power plant malfunctioned due to an attack — that could

be difficult, if not impossible to fully recover from. What’s more, the number of cyber

attacks against OT systems in 2016 increased over 110% relative to the numbers in
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2015, with nearly 90% occuring in the United States [34]; this should be cause for

alarm.

1.3 Contribution and Outline

Because we believe that protecting IoT and OT systems from cyber attacks is of

paramount importance, and because of the complexity of these technologies, we see

these as strong use cases for an automated attack tree generator. To that end, in this

thesis, we offer modifications to be made to Dr. Shrobe’s attack tree generator to

work with IoT and OT systems. Moreoever, because IT systems have changed since

the original development of the attack tree generator (2001), modifications to reflect

these new systems should also be made; these changes will be discussed at length.

Our methodology involves conducting a gap analysis by identifying the main system

components of the mentioned spaces that aren’t addressed by the current generator.

The rest of this paper will be organized as follows. Chapter 2 covers the relevant

background: namely, it will provide context for IoT and OT systems, and attack trees.

Chapter 3 details the original attack tree generator, and provides the suggested design

modifications for IoT and OT systems, as well as updates for IT systems. Chapter

4 describes a sample IoT system to test our design modifications against. Chapter

5 proposes future work to be done towards the attack tree generator, and Chapter 6

concludes.

15
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Chapter 2

Background

2.1 Internet of Things

2.1.1 Intro

The Internet of Things (IoT) is a device networking paradigm that can generally

be defined as “a global infrastructure for the information society, enabling advanced

services by interconnecting (physical and virtual) things based on existing and evolv-

ing interoperable information and communication technologies” [51]. In an Internet

of Things, the devices are able to perceive their context, communicate with each

other, access Internet services, and interact with people — providing truly ubiquitous

computing [33]. These IoT devices, many of which have donned the prefix “smart”

(e.g., smart phones, smart TVs, smart cars), have undoubtedly made their presence

known in our world; the number of IoT devices in 2016 reached 6.4 billion [12].

This should not come as a surprise considering the benefits they can provide in

domains like transportation and logistics (e.g., assisted driving for increased safety),

healthcare (e.g., smart sensors on patients for improved diagnoses), smart environ-

ments (e.g., smart thermostats for better home comfort), and personal and social

(e.g., personal assistants like Amazon’s Alexa or Apple’s Siri) [3]. Moreover, the eco-

nomic benefits IoT devices bring companies is manifold — the IoT market is expected

to rise from $130 billion in 2015 to $884 billion by 2022 [28] — so it’s no surprise that
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the IoT is here to stay (and grow).

The IoT is not a single novel technology, but rather the result of synergy between

several complementary technical developments that provide capabilities which taken

together help bridge the gap between the virtual and physical world [33]. These

capabilities include: communication infrastructure and protocols, the ability to be

uniquely identifiable, the ability to collect information about their surroundings, and

embedded information processing. A brief overview of the various enabling technolo-

gies in the IoT is given in Table A.1

2.1.2 History

The term “Internet of Things” was coined in 1999 by Kevin Ashton of Procter

& Gamble [2], and was popularized by the work of the MIT’s Auto-ID Center, which

in that same year started to design and propagate a cross-company Radio Frequency

Identification (RFID) infrastructure [33]. By 2003, IoT was mentioned in main-stream

publications like The Guardian, Scientific American, and the Boston Globe [44]. Not

too long after that, the term “Internet of Things” spread rapidly; starting in 2004,

it started to blow up as a Google search trend; in 2005 it could already be found in

some book titles, and in 2008 the first scientific conference was held in this research

area [33, 24].

According to the Cisco Internet Business Solutions Group (IBSG), though, the

Internet of Things wasn’t born per se until sometime between 2008 and 2009 – at the

point in time when more “things” were connected to the Internet than people [44].

Moreoever, in that same year (2008), the US National Intelligence Council included

IoT in the list of six “Disruptive Civil Technologies” with potential impacts on US

national power out to 2025 [24]. Since then, IoT was added to the annual Gartner

Hype Cycle — a graphic that tracks technology life-cycles from “technology trigger”

to “plateau of productivity” — in 2011, and has hit the Hype Cycle’s “Peak of Inflated

Expectations” in 2014 [44]. Currently, we are still seeing the effects of the huge hype

behind IoT, as our smart devices keep getting smarter.
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2.1.3 The IoT Model

Because of the large scope that’s covered by the IoT, work was needed to be done

towards providing a standardized model for understanding and compartmentalizing

IoT sytems. In an IoT system, data is generated by various types of devices, processed

in many ways, transmitted to all sorts of locations, and acted upon by a myriad

of applications. So, there was need for a unifying model that can capture all this

complexity. In 2014 Cisco proposed the “IoT Reference Model” [8], which can be seen

in Figure B-1.

The reference model starts at its first layer with the physical endpoints, the

“things” in the IoT, that send and recieve information. This list includes all the

“smart” devices that range in size and complexity from smart phones and smart cars.

Other devices like sensors, actuators, and microcontrollers and microprocessors are

also part of this layer.

The second layer, the connectivity layer, includes the crucial communication tech-

nologies for the IoT that allow for the wireless (or, less impressively, wired) communi-

cation amongst devices and between different networks across short-to-long distances.

The two most extensively used of these technologies are the familiar Bluetooth — this

includes its conservative counterpart, Bluetooth Low Energy (BLE) — and ZigBee

communication protocols [36]. BLE is a low-power, short-range networking protocol

that’s suitable for small data chunk transfers, and has a communication range of up

to 150m; it is widely used in smart phones and other mobile devices [9]. ZigBee also

offers low-power and has a short range (up to 100m), but also offers high security,

robustness and high scalability; it is gaining much traction in machine-to-machine

(M2M) applications [9].

The edge, or fog, computing layer addresses the need to convert the large volumes

of data traffic into a suitable format for storage or processing at higher levels of the

stack. So, this layer focuses on high-volume data analysis and transformation, since

a tenet of the IoT Reference Model is that intelligent systems initiate information

processing as early and as close to the edge of the network as possible [8]. Examples
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of processes that occur at this layer are: data filtering, packet content inspection,

thresholding, and event generation.

The remaining layers can, for our purposes, be consolidated into a single applica-

tion layer. This is where there will be intersections between the IoT system and the

supporting applications, services, and protocols. In devices connecting to the cloud,

for example, one would expect to see REST APIs and/or WebSockets, and device

management and interfaces can be handled through services, such as Telnet and SSH.

Other common application protocols used in IoT are Message Queueing Telemetry

Transport (MQTT), a pub/sub messaging protocol designed for M2M communica-

tions used in measuring and monitoring applications, and Constrained Application

Protocol (CoAP), a web transfer protocol designed as a compressed replica of HTTP.

2.1.4 Security

Context

The hype IoT has garnered over the past years has caused production for IoT

devices to have surged in order to catch up with the huge customer demand. Because

of this production rush, and since there is little to no manufacturer regulation, IoT

device security has greatly suffered because manufacturers will produce insecure de-

vices to save on costs [28]. This proliferation of (vulnerable) IoT devices has caused

it to be a target for adversaries to invest their time and resources into developing

exploits for IoT devices; a single exploit could yield a horde of IoT devices, a botnet,

under their control [28]. These botnets can be used, among other things, to effec-

tively mount a Distributed Denial-of-Service (DDoS) attack against most any target:

Mirai, an infamous botnet strain, took over enough IoT devices to generate 620 Gbps

of traffic, taking down KrebsOnSecurity.com [29]; not long after, a botnet of an esti-

mated 100,000 devices DDoS’d Dyn, a company that controls much of the Internet’s

DNS infrastructure, with a reported 1.2 Tbps of traffic [58]

The amount of data generated by IoT devices is massive: it’s estimated that 200

exabytes were produced in 2014 and that number will reach 1.6 zetabytes in 2020 [48].
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This should be very worrisome since it means that an alarming volume of sensitive

data could be (and likely is) vulnerable to attacks like theft or manipulation. It isn’t

just the IoT devices in technological applications that are vulnerable – things like

medical devices and even (smart) cars are at risk.

In fact, earlier this year the FDA confirmed that St. Jude Medical’s implantable

cardiac devices, like pacemakers and defibrillators, are vulnerable to hacker access,

which could allow them to deplete the battery or administer incorrect pacing or shocks

[31]. As for the vulnerabilities facing cars, a group of white hat hackers found a zero-

day vulnerability in a Jeep Cherokee that, once exploited, allowed them to indirectly

send commands over the Internet to its dashboard functions, steering, brakes, and

transmission [23].

Vulnerabilities

In 2014, the Open Web Application Security Project (OWASP), an online com-

munity “dedicated to enabling organizations to conceive, develop, acquire, operate,

and maintain applications that can be trusted” [45] published a list of it’s top 10

IoT vulnerabilities [46]. This list can be seen in Figure B-2. As evidenced by the

OWASP list, there are security vulnerabilities present throughout the different layers

of the IoT stack. For brevity, we will not discuss all the listed vulnerabilities and

instead only concern ourselves with those vulnerabilities associated with specific IoT

technologies (i.e., the IoT devices and their communication protocols).

One of the largest factors contributing to the security vulnerabilities faced by IoT

devices (even today) is actually rather surpising: many of these devices still have their

default credentials in place. In fact, three of the largest botnets that have recently

been released into the wild — Mirai, Hajime, and BrickerBot — all leveraged this

blunder to achieve their large sizes [47, 20, 27]. To make matters worse, it’s actually

extremely easy to generate a list of default passwords for many of today’s IoT devices:

a quick Google search would suffice.

In addition, IoT devices will inevitably have software bugs that someone will find

and eventually exploit. In devices like computers or even smart phones, a software bug
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can easily be fixed with a developer patch that can be released to all affected devices.

Most IoT devices, however, “will never receive a single update from the manufacturer

as time goes on, so patches aren’t an option to help address emerging threats” [28].

Whatever the reason is for this manufacturer behavior, this is obviously a strong

security concern since undisclosed vulnerabilities may likely remain exploitable for a

device’s lifetime.

As potentially unsurprising as it sounds, the common communication protocols

used by IoT devices are also speckled with vulnerabilities. BLE, for example, has been

shown to be susceptible to packet sniffing, man-in-the-middle attacks, and battery-

draining denial-of-service attacks [41]. As for ZigBee, there exists KillerBee, a Python

tool developed by Joshua Wright, that conveniently — depending on whether or not

or you’re a hacker — allows one to “eavesdrop on ZigBee networks, replay traffic,

attack cryptosystems and much more” [28].

Similarly, the common application protocols seen in IoT systems are also vulner-

able in one way or another. MQTT, for example, leaves itself open to DoS attacks

against open ports and buffer overflows attacks, and also sends message usernames

and passwords in plaintext [19]. CoAP, on the other hand, is typically implemented

atop Datagram Transport Layer Security (DTLS), which provides general security at

the cost of high overhead. Without DTLS, however (which may happen under tight

energy constraints), CoAP is subject to various man-in-the-middle attacks [49].

22



2.2 Operational Technology Systems

2.2.1 Intro

Operational Technology (OT) Systems are systems in which computers or other

processing devices are used to monitor or alter the physical state of a system. This

is a term that has been established to provide a distinction between traditional IT

systems and Industrial Control Systems (ICS), computer systems that are specialized

in maintaining the various control systems that are often found in the industrial

sectors and critical infrastructure (assets deemed essential for the functioning of a

society and economy). The types of control systems that fall under the ICS umbrella

include Supervisory Control and Data Acquisitions (SCADA) systems, Distributed

Control Systems (DCS), and Programmable Logic Controllers (PLC) [55].

SCADA systems are highly distributed (usually over several thousand square kilo-

meters) that are used to control geographically dispersed assets in which centralized

data acquisition is as important as control [55]. They are used in distributed systems,

such as water distribution, oil and natural gas pipelines, and electrical power grids.

As shown in Figure B-3, these system are comprised of various subsystems like PLCS,

Remote Telemetry Units (RTUs), Human Machine Interfaces (HMIs), data histori-

ans, control servers, and various network components (e.g., routers, modems, access

points).

SCADA systems are often networked together alongside it’s sister system — DCS,

similarly architectured systems that are used in more localized and process-based sys-

tems — due to their complementary roles in controlling and maintaining industrial

systems, as in the case with electric power control centers (SCADA) and generation

facilities (DCS), for example. Consequently, not only are these control systems vital

to the operation of the world’s critical infrastructures, they are also often well inter-

connected and tend to be mutually dependent, such that a failure or incident in one

infrastructure could directly (or indirectly) affect another infrastructure.

PLCs are small industrial computers originally designed to perform the logic func-

tions executed by electrical hardware (relays, switches, and mechanical timer/counters
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[55]. They are used to continuously monitor the state of input devices and then con-

trol the state of the associated output devices based on a custom program it has been

given. These controllers are widely used in SCADA and DCS systems as part of their

control components to provide local management of electromechanical processes [32].

A brief overview of the various components found in ICS is given in Table A.2

2.2.2 IIoT

OT systems strongly overlap with an emerging sub-domain of the IoT known as

the “Industrial Internet of Things” (IIoT), which can be defined as “the embedded

systems, controls, sensors, and monitors on industrial equipment and the software

systems powering them” [6]. It is essentially the use of some technologies found in the

IoT — including machine learning, big data, sensors, M2M computing — in industrial

systems. Because of its large overlap with OT systems, IIoT and OT systems can be

thought of as one and the same for our purposes.

This union of IoT and OT systems providessubstantial benefits for the industrial

realm. The first of these is the notion of a smart enterprise control: the IIoT will allow

for closer integration of the various enterprise silos, such as production, supply chain

management, and even customer relationship management systems. This optimized

manufacturing enterprise enables a greater degree of business control, and will yield

high efficiency and profitability gains across the board. Examples of smart enterprise

control include reducing the size of product recalls, detection of defective products

earlier in the manufacturing process and modification of product design to eliminate

root causes, and modification of production planning based on weather forecasts. [11]

Another crucial benefit of IIoT is that of asset performance management. The

deployment of the various sensors and actuators found in IoT allows for data to be

easily gathered from the field and converted into actionable information in real time.

This in turn means that applications such as energy management and predictive

maintenance become much more easily implemented in these types of systems. These

applications will help enterprises potentially save abundantly by avoiding pitfalls like

maintaining equipment that doesn’t require maintenance, or neglecting equipment
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that fails and causes unanticipated production downtime. [11]

This “industrial internet,” as it is often called, is still at an early stage, but its

adoption is accelerating. In fact, two notable government initiatives, Germany’s In-

dustrie 4.0 (2011) and China’s “Made in China 2025” (2014), are aiming to bring

together the private and public sectors, and academia to form a vision and action

plan for the widespread application of these technologies to their respective indus-

trial sectors in the years to come. Another indicator of the IIoT momentum is the

impressive growth of the Industrial Internet Consortium (IIC). The IIC was founded

in March 2014 by AT&T, Cisco, General Electric, IBM, and Intel with the mission of

“deliver[ing] a trustworthy IIoT in which the world’s systems and devices are securely

connected and controlled to deliver transformational outcomes;” it has now grown to

a membership size of 258 companies. [40]

2.2.3 Difference from IT Systems

Unlike typical IT systems, processes carried out by OT systems tend to have

direct impact on the physical world, which means that most, if not all, attacks on

these systems can have devastating physical effects. The Aurora Generator Test,

for example, conducted by the Idaho National Laboratory in 2007 — a controlled

cyber attack on a component of an electric generator — resulted in the destruction

of power generation equipment [35]. Stuxnet, a now infamous computer worm that

was allegedly jointly built by the American and Israeli government, carried out a

mutli-staged attack that caused substanstial damage to Iran’s nuclear program[21].

More recently, in 2015, a group of hackers hijacked three power distribution company

systems in Ukraine and cut the power to more than 230,000 people, and sabotaged

operator workstations to make it difficult to restore the electricity [59]. A year later,

Ukraine was again targeted – this time, however, by a fully automated malware

dubbed “Crash Override” that struck an electric transmission station, blacking out

a portion of the Ukrainian capital that was equivalent to a fifth of its total power

capacity [22].

OT systems are hard real-time systems — the operations on these types of systems
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have low latency and high communication integrity requirements because many of the

processes involve feedback loops [61]. This is in stark contrast to IT systems, which

can more easily tolerate latency and errors. Without these real-time constraints in

place, buggy behavior in various OT system components could propagate, resulting

in potentially destructive behavior.

Another difference lies in the type of operating systems used: OT systems typi-

cally use Real-time Operating Systems (RTOS) — Wind River Systems’ VxWorks,

for example, was the most popular embedded operating system1 in 2005 and claimed

300 million devices in 2006 [61] — whereas IT systems use general purpose operat-

ing systems, such as Unix. RTOS contribute to the low latency requirements of OT

systems, as well as the prevalence of buffer overflow vulnerabilities observed therein

because many field level devices are embedded systems that run years without re-

booting, accumulating fragmentation [61].

The communication protocols used in OT systems are also different compared to

those in IT systems. In IT systems, general purpose communication protocols are

used, such as TCP and UDP; these protocols were developed in the face of expected

packet losses and variable latencies. Those network assumptions, however, do not (or

rather, cannot) hold true in OT systems. As such, special and proprietary network

protocols have been developed for use in OT environments.

One such example is MODBUS (and related variants), which was created in the

late 1970’s by the now Schneider Electric company to allow communications to its

line of PLCs. The protocol’s simplicity, which follows a simple request-reply scheme,

and efficiency have caused it to become widely adopted throughout OT systems as

a defacto industrial standard [4]. Another OT system communication protocol is

Distributed Network Protocol v3.0 (DNP3), and it is used between master control

stations and outstations for the electric utility industry and water companies; it’s

implemented by several manufacturers — primarily only in the US — due to its small

memory consumption [61].

These mentioned differences between OT and IT systems, as well as others, are

1The terms “embedded operating systems” and “RTOS” are oftentimes used synonymously.
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summarized in Table A.3.

2.2.4 Security

Context

Historically, most of the OT systems used today were deployed decades ago,

before cyber security was thought to be a prevalent issue. At that time the design of

the systems were predominantly focused on performance and communication integrity

(via error correction and detection capabilities), and security for them meant not much

more than physically securing them, as well as ensuring their complete separation from

the Internet — this is called air gapping the system. The security associated with this

network air gap was eventually overcome, though, in successful attacks like Stuxnet.

OT systems have also changed since then, and are now integrating the OT network

with corporate networks and the Internet.

This change has brought with it several factors that contribute to the growth of

security vulnerabilities for OT systems, which include: (1) vulnerabilities that arise

from the new network interconnectivity, (2) lack of security in the access links used

for remote diagnostics and maintenance, (3) vulnerabilities found in the standardized

technologies that are now being used (e.g., Microsoft Windows), and (4) the growing

availability of technical information regarding the design of these control systems

that can prove dangerous in the hands of adversaries [42]. This growth in OT system

vulnerabilities is well captured in Dell’s annual Security Threat Report: in it, Dell

reported that the number of their observed attacks on OT systems more than doubled

from 163,000 in 2013 to 675,000 in 2014, and, unsurprisingly, 25% of those attacks

were because of buffer overflow vulnerabilities [17].

Vulnerabilities

The factors contributing to the new security vulnerabilities faced by OT sys-

tems are a result of their connectedness with corporate networks and the Internet.

However, OT systems by themselves are still fraught with vulnerabilities that stem
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predominantly from their real-time constraints.

Notwithstanding the pervasiveness of buffer overflow vulnerabilities that has al-

ready been mentioned, there are other crucial software vulnerabilities that need to

considered. The major embedded operating system VxWorks, for example, is essen-

tially a monolithic kernel with applications implemented as kernel tasks; this means

that there is little privilege separation since all tasks run with the highest privileges

[61]. Another blatant security hole is the lack of sophisticated encryption algorithms

that can be used for authentication (to prevent man-in-the-middle attacks), or data

encryption. Because of this, the prominent communication protocols, MODBUS and

DNP3, are easily exploited since their messages contain function codes that specify

an action to be taken by the recipient — all of this is done without any authentication

[4, 61]. This drawback is largely due to the fact that many field and control devices

have reduced computing capabilities and/or limited energy availability to perform

such a task [5].

Another consequence of the characteristics shared by OT systems is that the

security practices followed are fairly limited. Hard/software security patching and

upgrading — a very routine activity in IT systems to help in coping with new vul-

nerabilities as they are discovered — usually requires that part of the OT system be

set temporarily offline [5]. This action, though, can often take weeks or months of

planning, which leaves the system vulnerable in the meantime. Moreover, any OT

system downtime can have unfavorable real-world consequences, such as an electric

grid going off line.

The real-time constraints of most OT systems also makes asynchronous and/or

sporadic actions difficult to be carried out. Firewalls, intrusion detection systems

(IDS), and other complex filters commonly used in IT systems can introduce unpre-

dictable or unacceptable delays in OT systems [5]. Finally, this constraint means that

OT systems are highly vulnerable to DoS attacks.
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2.3 Attack Trees

2.3.1 Intro

In analyzing the security of systems, there is a great benefit in being able to

systematically itemize the different ways in which a system can be attacked (i.e., all

a system’s attack vectors). One such tool, named “attack trees”, was introduced by

Bruce Schneier in 1999 [50], and has proved to be an intuitive aid in risk analysis.

The concept for these attack trees was derived from a reliability analysis technique

introduced by Bell Phone Laboratories in 1962; it was called “fault tree analysis”, and

was similarly used to itemize all the different ways a fault intolerant system (in this

case, the launch of an intercontinental ballistic missile) could fail [18].

Attack trees represent potential attacks on a system using a tree diagram. The

root of the tree represents the ultimate goal of the attack, typically an event that

could significantly harm the system in question. The different ways that an attacker

can cause this compromise are represented as lower level nodes of the tree; these are

sub goals that have to be met in order the achieve the root goal. The dependencies

between different nodes on the same level of the tree are modeled as either “AND”

compositions (all must be achieved for the upper level goal to succeed), or “OR”

compositions (any can be achieved for the the upper level goal to succeed). The

overall attack is completed (or, rather, can be completed) if there is some path, an

attack vector, from the root node to a leaf node that can be satisfied. As these trees

each only represent a single compromise, a complex system can have a forest of attack

trees that are relevant to its operations [37].

An example attack tree for a simple attack is shown in Figure B-4. In it, the

ultimate goal for an attacker is “Open Safe,” and the root’s children nodes are all

“OR” nodes, so satisfying any one of those nodes will satisfy the root node. As can

be seen, different sub goals can have varying levels of accompanying complexity; the

“Learn Combo” goal, for example has three levels of goals underneath it; the other

goals on the same level as it — “Pick Lock”, “Cut Open Safe”, and “Install Improperly”

— have none.
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2.3.2 Benefits

The benefits that attack trees provide, other than attack vector itemization, are

strong. They allow the refinement of attacks to be at a layer of abstraction chosen

by the developer [37]. This ability to work at different levels of abstraction means

that researchers can work with as much or as little detail of a system as neededeither

when developing the attack tree, or when analyzing it. A more technical analyst can

develop an attack tree using whatever level of abstraction he or she needs, and then

present a higher-level abstraction (i.e., easier to understand) of the attack tree to

someone in a managerial role.

Attack trees also allow common attacks to be referenced as reusable modules that

apply to multiple network scenarios [4]; this re-usability adds to their scalability.

With this feature, common attack trees (or sub trees) can be used as “plug-and-play”

modules in more complex system attack scenarios.

Lastly, attack trees can be augmented with numerical values (at each node) to

allow for a quantitative analysis of potential attack scenarios [50, 4]. For example,

assigning exploitation probabilities or values representing the resource consumption

to an attacker (e.g., monetary cost, time spent) to each node can help someone de-

termine the overall feasibilities or cost of different attacks vectors. This can prove

invaluable when thinking about a system’s security: if certain attack vectors are

highly improbable, or would prove to be too costly for an attacker to execute, then

resources might not have to be deplyed to prevent the exploitation of that vulnera-

bility. Alternatively, if an attack seems to be very probable, a system administrator

would know what security aspects of the system he or she should focus on enhancing.

2.3.3 Limitations

Attack trees are certainly useful for risk analysis, but they are not without their

set of challenges. One of the most obvious limitations to attack trees is how time-

intensive it is to develop one. In fact, the original development method proposed

stated that it should be an iterative process that potentially spans several months
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[50]. Of course, this is a very unattractive method, especially when cyber systems

can (and most likely will) change, maybe even many times, over the course of several

months.

Another hurdle stems from the enormous complexity and connectedness of cyber

systems. As opposed to physical systems, which only have a finite number of failure

points (e.g., there are only so many ways to break into a safe), cyber systems have

an essentially endless number of attack vectors due to their scale and integration

with other potentially insecure systems. The breadth that has to be covered by a

set of attack trees for most cyber systems can potentially grow exponentially as new

additions are made to the system.

The process of developing an attack tree requires extensive knowledge of the sys-

tem at hand, but it’s nearly impossible for even a system designer or developer to be

able to consider every possible attack vector. What’s more, in cyber systems there

can be several unknown unknowns – zero-day vulnerabilities that not even system de-

signers or developers know about. Considering the fact that zero-day vulnerabilities

are on the rise — the number of such vulnerabilities discovered rose from 23 in 2013

to 54 in 2015 [12] — it is difficult to ever consider an attack tree to be fully complete.

Another limitation is a direct consequence of the two previously mentioned chal-

lenges: because cyber systems are so complex and face many unknowns, it is extremely

difficult to accurately determine any worthwhile risk metrics that can be added to the

attack tree. For our purposes, we define risk as the expression of the likelihood that

an adversary can exploit a specific vulnerability of a particular target to cause a given

set of consequences [4]. Without any such justifiable metrics2 it becomes infeasible

to run any sort of quantifiable analyses on the attack vectors proposed by an attack

tree to gain a better understanding of the system vulnerabilities.

2A standardized source of risk metrics does exist, the Common Vulnerability Scoring System
(CVSS) developed by the Forum of Incident Response and Security Teams (FIRST), but these
“CVSS scores” are not determined objectively, so one may be skeptical in placing full trust in it.
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Chapter 3

Attack Tree Generator

3.1 Current System

The attack tree generator we will be focusing on was developed by Dr. Howard

Shrobe at MIT CSAIL [53]. It was developed for usage in self-diagnosising adaptive

systems: systems that are capable of detecting their own malfunctions, diagnosing

the failure, repairing themselves after the failure. It was also seen as a useful tool

for long-term system monitoring, specifically as a means to detect attacks that would

avoid detection from systems that use straightforward methods like attack signatures

or anomaly profiling. Of course, the attack tree generator can also be used offline to

identify the security vulnerabilities in a computational environment.

The core components of the attack tree generator are (1) a structural model of

the potential computing environments, and (2) a set of rules describing the potential

attack methods and techniques on the system. The structural model describes the

network structure and topology, the system machine components and their subsys-

tems, data access rights and locations, and the dependency relationships between

these system components

The rules are are coded in a Lisp-based rule system and are written as goals with

missing antecedents, such as the one shown in Figure B-5. They are used to reason

about how an adversary might affect a desirable system property, such as: reliable

performance, privacy of communications, integrity of communications, integrity of
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stored data, or privacy of stored data. Using a backward chaining inference system,

as well as a description of the computing environment1 as supporting data, the rules

are expanded to either more rules, or the leaves of the reasoning chain. For this

generator, the leaves contain specific information about the system vulnerabilities

and exploitation methods (e.g., a web server with an OS that is vulnerable to buffer

overflow attack).

Together, the structural model and rule set covers the types of computing re-

sources present in the environment; what components those resources are composed

of; how the components depend on one another; and the attack methods and tech-

niques that could be used on those components. Given an adversarial goal against

a computing environment, the generator consults the rule set and computing envi-

ronment description, and expands the relvant rules to reason through all pertinent

attack vectors, eventually yielding an attack tree. Figure B-6 shows a sample attack

tree generated for the MIT CSAIL AI lab computing environment at the time (2001).

In this case, the adversary’s goal was to affect the reliable performance of a process

on a “typical dwarf” machine (a generic machine in the AI lab).

A summary of the structural model that was described in the original system

can be found in Figure B-7. As can be seen, we distilled the structural model into

three categories: Network structure and topology, System machine components and

resources, and Access rights. The first of these categories contains basic networking

components and abstractions like firewalls, routers, switches, and subnets. The second

is comprised of computer resources — code, data, and processes — and the operating

system, which has a scheduler and network stack. The last encompasses agents (i.e.,

users or processes), their capabilities, and machine access pools (i.e., collective access

rights).

Similarly, Figure B-8 shows a summary of the types of rules described in the orig-

inal system’s rule set. We categorized the different types of rules found into one of

the three prongs of the traditional security goals of the CIA model – Confidential-

1Note: the computing environment description is an explicit summary of the components found in
the system of interest, whereas the structural model is more of a template detailing what descriptions
the generator supports.
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ity, Integrity, and Availability2. For succinctness, we only include high level attack

techniques and methods, not specific vulnerabilities. The techniques and methods we

identified towards breaching confidentiality are against communications, uncovering

secrets, and discovering system code and data. To compromise integrity, there are

techniques that target code and data, and access rights. Lastly, the techniques we

identified against availability target performance and network communications.

3.2 Proposed Modifications

3.2.1 New IT Modifications

IT Structural Model Changes

The current structural model contained basic IT system components as men-

tioned in Section 3.1. However, to capture the components found in modern IT sys-

tems, the structural model has to be modified to include components not originally

considered. The first of these new components is actually an entirely new category

that should included in the structural model: Communication protocols.

The machines found in current IT systems use a myriad of communication proto-

cols for various purposes. Since these communication protocols can be exploited in

different ways, it would be prudent to include them in the structural model. With

respect to the OSI model of networks [62], we mainly concern ourselves with appli-

cation layer communication protocols. The types of application-layer protocols we

consider are transfer protocols, and logon protocols. We focus on these two types of

protocols because we believe them to be the prominent forms of interactions on IT

systems.

Common transfer protocols we think should be included are: HTTP, HTTPS,

FTP, FTPS, SFTP, and SCP. We consider the insecure and secure versions of these

protocols to be distinct because the security protocol they run on top of may have

2Although there are different models of security goals that might be more applicable, such as
the Parkerian Hexad that builds upon the CIA model [1], we chose the CIA model because it has
garnered the most consensus.
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their own vulnerabilities that need to be taken into account. Our proposed logon

protocols include: SSH; Telnet3; and Remote Desktop Protocol (RDP), a common

protocol used by Windows computers.

Since communications in IT systems have moved to both wired and wireless medi-

ums, we must also include some physical layer protocols to capture these changes. To

that end, we include the most common wired and wireless physical layer protocols

used in IT systems, Ethernet and Wi-Fi, respectively. To capture the notion of wire-

less communications, we add wireless access points (WAPs) to the Network structure

and topology category since these access points can be used carry out different attacks

(e.g., capturing network traffic, spoofing access points, etc) [57].

The rest of our suggested modifications fall under the System machine components

and resources category. Something the original model does not consider are the

various types of peripherals that may be connected to a machine; the exact peripherals

themselves are not entirely interesting, but rather the presence of the external ports

are. Specifically, peripheral ports like USB and Thunderbolt have been subjected to

attacks in the past [39, 52], so we think it’s valuable to include them.

Next, we need to consider a computer resource that is often overlooked: firmware,

the low-level software code that provides the necessary capabilities and functionalities

for the underlying hardware work. Firmware has recently gained much attention in

the security field as it can provide a strong foothold for adversaries, and a number of

firmware vulnerabilities have been found[60, 63].

These proposed changes to the structural model for IT systems are summarized

in Figure B-9.

IT Rule Set Changes

As IT systems have grown, so too have the techniques and methods adversaries

use to compromise their confidentiality, integrity, and availability goals. In order to

reflect these new possibile attacks, the original rule set has to be expanded. With

3The current system does include notions of SSH and Telnet, but not as their own communication
protocols.
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that in mind, we identified the new attack techniques and methods that should be

included in a modified rule set.

Originally, exfiltration and reverse engineering were not considered. To us, ex-

filtration is distinct from just reading files on a target system in that exfiltrating

implies the actual movement of the file out of the target system (instead of just the

information), which would allow an adversary to, for example, decrypt secured files

at their leisure. Similarly, reverse engineering, can be performed on binary files to

determine the underlying code and data and reveal potential vulnerabilities.

Another novel technique against confidentiality is a side-channel attack against

cryptographic keys, whose secrecy is paramaount since they’re used in the encryption

or authentication of data. Side-channel attacks are those that retrieve side-channel

information — information that is neither the plaintext or ciphertext of an encryption

process — based on the physical implementation of a cryptosystem. This side-channel

information can potentially be used to break the system. Examples of relevant infor-

mation include timing information, power consumption, electromagnetic leaks, and

even sound. [54]

The techniques adversaries can use to compromise the integrity goals of a system

have evolved since the the development of the attack tree generator. To compromise

the communications of a system (as well as that of the data), adversaries can em-

ploy a variety of man-in-the-middle attacks, attacks in which adversaries alter the

communication between two parties; the result of this is usually a person or program

successfully masquerading as a legitimate person or program. Man-in-the-middle at-

tacks include spoofing and session hijacking attacks [10]. These attacks can also be

used to compromise the confidentiality of network traffic, but we keep it as an attack

against integrity because of the impersonation qualities.

Another devastating attack adversaries use to subvert a system’s integrity is to fo-

cus their efforts on compromising some of the elements found throughout the system

supply chain. This type of attack can be especially fruitful because of the growing

use of commercial off-the-shelf technology, which potentially have vulnerabilies unex-

plored by the developers and users, that are being used as a result of systems’ growing
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size and complexity. A system supply chain can be found at all levels of abstraction:

open-source software, for example, can be thought of as part of a system’s supply

chain, as can hardware components developed by upstream manufacturer.

Lastly, adversarial attacks against a system’s availability include DoS attacks

against system performance, and encryption attacks against the code and data. DoS

attacks come in many flavors, but they’re all aimed at making a machine or network

resource unavailable to its intended users either temporarily or indefinitely; more often

than not, they’re especially hard to prevent. On the other hand, encryption attacks4

utilize crypto systems to encrypt files on a target system, making them inaccessible.

These proposed changes to the rule set for IT systems are summarized in Figure

B-10.

3.2.2 IoT and OT Modifications

Structural Model Changes

The main structural model modifications that need to be made to account for

IoT systems fall under the Communication protocols and System machine components

and resources categories. The new communication protocols are the commonly used

Bluetooth and ZigBee physical layer protocols, as well as the MQTT and CoAP

application protocols. Security details regarding these communication protocols are

described in Section 2.1.4

New system components that need to be considered are embedded operating sys-

tems, and the various types of physical devices found in IoT systems. Details re-

garding embedded operating systems are described in Sections 2.2.3 and 2.2.4. The

physical devices that need to be included are actuators, sensors, and microcontrollers

and microprocessors; as endpoints, these devices can be used as entry points into an

IoT system.

OT systems bring about new elements to the Communication protocols and Net-

4We use the term “encryption attack” here instead of the common “cryptoransomware” to distin-
guish between the goal of the latter to ransom the secret keys and goal of the former to just make
the data inaccessible.
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work structure and topology categories. The new communication protocols that need

to be considered are the common OT application protocols: MODBUS and DNP3.

Security details regarding these application protocols are described in Sections 2.2.3

and 2.2.4.

As described in Sections 2.2.3 and 2.2.4, the real-time constraints of these systems

means that their are strict latency requirements on the network; this is an important

aspect of OT systems that needs to be captured.

These proposed changes to the structural model for IoT and OT systems are

summarized in Figure B-11.

Rule Set Changes

The integrity of the code and data in IoT systems is subjected to security vul-

nerabilities not already mentioned. The various sensors found therein can be fed

false data to disrupt the overall functionality of the system. Similarly, the physical

availability of the IoT devices leads to physical tampering of the onboard code and

data. The performance (availability) of these devices can also easily be affected by

any amount of physical damage an adversary can cause them.

The class of attacks against OT systems as mentioned in Section 2.2.4 are already

taken into account by the proposed modifications that have already been mentioned.

With that said, there aren’t new modifications to suggest.

These proposed changes to the rule set for IoT and OT systems are summarized

in Figure B-12.
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Chapter 4

Example IoT System

The sample IoT system we analyzed was an urban surveillance system, which can

be found in Figure B-13; because of its size and complexity, it makes for a relevant use

case. An urban surveillance system collects and stores data from the many video feeds

it manages, processes and renders that data, and transmits it to external applications

that act on it accordingly. In this case, the external applications trigger alarms and/or

events on the interpretted data, and display the relevant video feeds.

The highlighted section comprises the data collection, and data processing and

video rendering functionalities. Though many components are shown in Figure B-13,

we only consider a handful of them to be relevant. The IP surveillance camera acts as

our data source; for our purposes, this type of camera is regarded as an IoT device.

The video surveillance manager (VSM) directs a group of these cameras to provide

the appropriate video coverage. The video data produced travels across the local

access network (LAN) and collects at the storage server. From there, the display

server (DP) renders the data and transmits it to a third party for displaying. At

the same time, the video processing server (MD) processes the data into something

suitable for use by the alarm and event application(s). The main operator console

server (CM) allows for supervision and control of the entire operation.

Against a system like this, there are a number of attacks an adversary could

consider. A list of example attacks is given in Figure B-14; these attacks are those that

one would see in modern IT and IoT systems. Fortunately, these types of attacks are
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covered by the attack tree generator design changes offered in Sections 3.2.1 and 3.2.2,

as well as the original structural model and rule set.

As mentioned in Section 3.1, a description of the computing environment is also

necessary for the attack tree generator to be utilized. To that end, we provide an

example, Lisp-based description of the urban surveillance system in Figure B-15. It

covers the structural model definitions for the relevant components of the surveillance

system mentioned earlier.
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Chapter 5

Future Work

An obvious next step is to implement the suggested modifications in the men-

tioned spaces — IT, IoT, and IIoT — and verify their validity against sample system

environments. We don’t claim that the suggested modifications are fully comprehen-

sive, but believe them to be sufficient; we understand that completeness is unobtain-

able and realize that we will inevitably need a refinement process.

Other modifications to the attack tree generator we’d like to consider are towards

the recognition of Advanced Persistent Threats (APTs). The current system only con-

cerns itself with all the steps leading up to and including an exploit. APTs, however,

include post-exploitation activity, such as persisting on a device for an arbitrarily

long time, and evading detection or avoiding other defense mechanisms. Analyses on

the life cycle — the steps an adversary takes to compromise a system — of these

APTs have been done by Lockheed Martin [25] and MITRE [13], which could guide

our efforts.

Along those lines, we would like to put some work into developing a framework

which can systematically guide someone in the development of attack trees. To the

best of our knowledge no such framework exists, and the only methdology mentioned

thus far involves spending the time thinking through all adversarial possibilities and

then having someone else look over it, and repeating that cycle [50]. If one can

emulate the thinking process and methodology an adversary uses, then he or she can

more easily think through all the possible attack cases; we believe that a framework
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built around this could drastically simplify the process of developing attack trees for

many users. Resources like MITRE’s Common Vulnerabilities and Exposures (CVE)

[15]; Common Weaknesses Enumerations (CWE) [16]; and Common Attack Pattern

Enumeration and Classification (CAPEC) [14] would prove invaluable towards this

endeavor as they highlight the different adversarial patterns seen in the wild, and at

different levels of abstractions.
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Communication Objects have the ability to network
with Internet resources or even with
each other, to make use of data and

services and update their state.
Relevant examples include Wi-Fi,

Bluetooth and Zigbee.

Addressability Objects can be located and addressed
via discovery, look-up or name services,

and hence remotely interrogated or
configured.

Identification Objects are uniquely identifiable.
Relevant examples include RFID, NFC

(Near Field Communication), and
optically readable barcodes.

Sensing Objects collect information about their
surroundings with sensors, record it,

forward it or react directly to it.

Actuation Objects contain actuators to
manipulate their environment.

Emedded information processing Smart objects feature a processor or
microcontroller, plus storage capacity,

that can be used, for example, to
process and interpret sensor

information.

Localization Smart things are aware of their
physical location, or can be located.
Relevant examples include GPS and

mobile phone networks.

User interfaces Smart objects can communicate with
people in an appropriate manner.

Table A.1: IoT enabling technologies [33]
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Control Server Hosts supervisory control software that
communicates with lower-level control

devices.

Master Terminal Unit (Unit) Device that acts as the master in an
ICS with respect to RTUs and PLCs.

Remote Terminal Unit (Unit) Special purpose data acquisition and
control unit designed to support

remote stations.

Intelligent Electronic Devices
(IED)

“Smart” sensor/actuator that acquires
data, communicates to other devices,

and perform local processing and
control.

Human-Machine Interface (HMI) Software and hardware that allows
human operators to monitor the state

of a process under control.

Data Historian Centralized database for logging all
process information within an ICS.

Input/Output (IO) Server Control component responsible for
collecting, buffering and providing
access to process information from

control sub-components.

Table A.2: ICS components [55]
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OT IT

Average node
complexity

Low (simple devices,
sensors, actuators)

High (large servers/file
systems/databases)

Number of users Limited Very high

Multi-vendor
environment

Frequent Moderate

System lifetime
(years)

Some tens Some

Outage of system
availability

Rarely/never tolerable Often tolerable

Tolerability of time
delays

Low/none (real-time) Medium/high

Acceptable processing
times

Milliseconds – minutes Minutes – days

Tolerability of failures Low/none Medium/high

Communication
protocol stacks

Special
purpose/proprietary/real-

time

General-purpose (i.e.,
TCP/IP, UDP)

Operating systems Real-time, embedded,
special-purpose

General-purpose (i.e.,
Windows, Unix)

Table A.3: System characteristics for OT and IT systems [5]
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Figure B-1: IoT reference model [8]
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I Insecure web interface

II Insufficient authentication/authorization

III Insecure network services

IV Lack of transport encryption/integrity verification

V Privacy concerns

VI Insecure cloud interface

VII Insecure mobile interface

VIII Insufficient security configurability

IX Insecure software/firmware

X Poor physical security

Figure B-2: The Top 10 IoT Vulnerabilities for 2014 [46]
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Figure B-3: General SCADA system layout [55]
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Figure B-4: Example attack tree [50]
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Figure B-5: Example vulnerability rule for control relationships [53]
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SIZE

WORKLOAD-OS-0.USER-WORKLOAD

reduces to

Goal: TAKES-INDIRECT-CONTROL-OF

TYPICAL-ATTACKER

TYPICAL-DWARF.OS.JOB-ADMITTER.USER-JOB-ADMITTER

SIZE

WORKLOAD-OS-0.USER-WORKLOAD

reduces to

Goal: MODIFY

TYPICAL-ATTACKER

SIZE

JOB-LAUNCH-QUEUE-OS-2.USER-JOB-LAUNCH-REQUEST-QUEUE

SIZE

WORKLOAD-OS-0.USER-WORKLOAD

SEQUENTIAL

Goal: LOGON

TYPICAL-ATTACKER

DWARFS-ADMINISTRATOR

TYPICAL-DWARF.OS

SIZE

JOB-LAUNCH-QUEUE-OS-2.USER-JOB-LAUNCH-REQUEST-QUEUE

SEQUENTIAL

Goal: ACHIEVE-KNOWLEDGE-OF

TYPICAL-ATTACKER

(PASSWORD DWARFS-ADMINISTRATOR)

SIZE

JOB-LAUNCH-QUEUE-OS-2.USER-JOB-LAUNCH-REQUEST-QUEUE

reduces to

Goal: GUESS

TYPICAL-ATTACKER

(PASSWORD DWARFS-ADMINISTRATOR)

SIZE

JOB-LAUNCH-QUEUE-OS-2.USER-JOB-LAUNCH-REQUEST-QUEUE

reduces to

Do: DICTIONARY-LOOKUP-ATTACK

TYPICAL-ATTACKER

DWARFS-ADMINISTRATOR

Goal: ACHIEVE-CONNECTION

TYPICAL-ATTACKER

TYPICAL-DWARF.OS

SSH

SIZE

JOB-LAUNCH-QUEUE-OS-2.USER-JOB-LAUNCH-REQUEST-QUEUE

reduces to

Do: CONNECT-VIA

TYPICAL-ATTACKER

TYPICAL-DWARF

SSH

Do: LOGON

TYPICAL-ATTACKER

DWARFS-ADMINISTRATOR

TYPICAL-DWARF.OS

Repeatedly: SUBMIT-USER-JOBS

DWARFS-ADMINISTRATOR

JOB-LAUNCH-QUEUE-OS-2.USER-JOB-LAUNCH-REQUEST-QUEUE

Figure B-6: Sample attack plan for the MIT CSAIL AI lab system topology
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∙ Network structure & topology

– Filters/firewall policies

– Routers

– Switches

– Subnets

∙ System machine components & resources

– Computer resource

* Code
* Data

· Data residences & format transformations
* Processes

· System
· Server

– OS

* Scheduler
* Network stack

∙ Access rights

– Agents

– Access Pools

– Capabilities

Figure B-7: Original structural model
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∙ Confidentiality

– Communication

* Monitor network traffic

– Secrets

* Guess password
* Dictionary lookup
* Social engineering

– Code/data

* Read code/data

∙ Integrity

– Code/data

* Modify code/data

– Access rights

* Hack access rights

∙ Availability

– Performance1

* Gain direct/indirect control of processes

– Network

* Control network stack

Figure B-8: Original rule set

1Here we abuse the definition of availability to include that of reliability (i.e., reliable perfor-
mance).
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∙ Communication protocols

– Ethernet

– Wi-Fi

– Transfer protocols

– Logon protocols

∙ Network structure & topology

– Wireless access points

∙ System machine components & resources

– Peripherals

* USB
* Thunderbolt

– Computer resources

* Firmware

Figure B-9: Changes for IT structural model
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∙ Confidentiality

– Code/data

* Exfiltrate code/data
* Reverse engineering

– Secrets

* Side-channel attack

∙ Integrity

– Communications

* Man-in-the-middle attack

– System subcomponents

* Infiltrate supply chain

∙ Availability

– Performance

* DoS

– Code/data

* Encryption

Figure B-10: Changes for IT rule set
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∙ Communication protocols

– Bluetooth

– ZigBee

– CoAP

– MQTT

– MODBUS

– DNP3

∙ System machine components & resources

– OS

* Embedded OS

– Actuators

– Sensors

– Microcontrollers and microprocessors

∙ Network structure & topology

– Latency requirements

Figure B-11: Changes for IoT and OT structural model

60



∙ Integrity

– Code/data

* False data injection
* Physical tampering

∙ Availability

– Performance

* Physical damage

Figure B-12: Changes for IoT and OT rule set
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Figure B-13: Urban surveillance IoT network [7]
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∙ Exfiltrate data

– From camera (e.g., physical tampering)

– From storage server

∙ Limit system functionality

– Disrupt video display

* Corrupt data
* Inject false data
* Physically damage cameras
* Corrupt or prevent DP rendering

– Disrupt event & alarm generation

* Corrupt data
* Inject false data
* Corrupt or prevent MD processing

– Interfere with generated events & alarms

* Hide events & alarms
* Intercept events & alarms

∙ Limit system access

– DoS attack

– Gain control of cameras (i.e., botnet)

– Gain control of VSM

– Gain control of CM

Figure B-14: Example attacks against urban surveillance IoT network
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Figure B-15: Code for urban surveillance system

;;; Example CCTV Network

(in-package :aplan)

;; We’re assuming that entire network is internal (LAN)

(defsite cctv-network "192.0.0.0" "255.0.0.0")

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Communication pool

;;

;; Encompasses Routers and Switches

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(make-object ’authorization-pool :name ’communication-pool)

;; Capabilities for communication pool

(defcapability communication-super-user communication-pool)

(defcapability communication-user-write communication-pool

:greater (communication-super-user))

(defcapability communication-user-read communication-pool

:greater (communication-user-write))

;; Define users in communication pool

(defuser router-administrator

:capabilities (communication-super-user)

:authorization-pools (communication-pool))
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(defuser switch-administrator

:capabilities (communication-super-user)

:authorization-pools (communication-pool))

;; Define machines in communication pool

(defrouter cctv-router ("192.0.0.0") :authorization-pool

communication-pool :superuser router-administrator)

(defswitch cctv-switch switch "192.1.1.1" :authorization-pool

communication-pool :superuser switch-administrator)

;; Define resources in communication pool

(defresource router-password-file password-file

:capability-requirements ((write communication-super-user)

(read communicationr-user-read))

:machines (cctv-router))

(defresource router-configuration-file configuration-file

:capability-requirements ((write communication-super-user)

(read communication-user-read))

:machines (cctv-router))

(defresource switch-configuration-file configuration-file

:capability-requirements ((write communication-super-user)

(read communication-user-read))

:machines (cctv-switch))

;; Define router access policies

(tell-policy cctv-router telnet :negative-location-mask "255.0.0.0"

:negative-location-address "192.0.0.0")

(tell-policy cctv-router ssh :positive-location-mask "0.0.0.0"

:positive-location-address "0.0.0.0")
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;; Define switch access policies

(tell-policy cctv-switch telnet :negative-location-mask "255.255.0.0"

:negative-location-address "192.1.0.0")

(tell-policy cctv-switch ssh :positive-location-mask "0.0.0.0"

:positive-location-address "0.0.0.0")

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Server pool

;;

;; Encompasses Storage Server, Display Server,

;; and Video Processing Server

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(make-object ’authorization-pool :name ’server-pool)

;; Capabilities for server pool

(defcapability server-super-user server-pool)

(defcapability server-user-write server-pool

:greater (server-super-user))

(defcapability server-user-read server-pool

:greater (server-user-write))

;; Define users for server pool

(defuser server-administrator

:capabilities (server-super-user)

:authorization-pools (server-pool))

(defuser server-user

:capabilities (server-user-write)
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:authorization-pools (server-pool))

;; Define machines/computers for server pool

(defcomputer storage linux-computer "192.1.1.2"

:authorization-pool server-pool

:superuser server-administrator)

(defcomputer display linux-computer "192.1.1.3"

:authorization-pool server-pool

:superuser server-administrator)

(defcomputer video-processing linux-computer "192.1.1.4"

:authorization-pool server-pool

:superuser server-administrator)

;; Define resources in server pool

(defresource video-database database

:capability-requirements ((write server-super-user)

(read server-user-read))

:machines (storage))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Manager pool

;;

;; Encompasses Main Operator Console Server, and Video Surveillance

;; Manager

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(make-object ’authorization-pool :name ’manager-pool)

;; Capabilities for manager pool

(defcapability manager-super-user manager-pool)
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(defcapability manager-user-write manager-pool

:greater (manager-super-user))

(defcapability manager-user-read manager-pool

:greater (manager-user-write))

;; Define users for manager pool

(defuser manager-administrator

:capabilities (manager-super-user)

:authorization-pools (manager-pool))

(defuser manager-user

:capabilities (manager-user-write)

:authorization-pools (manager-pool))

;; Define machines/computers for manager pool

(defcomputer main-operator-console windows-7-computer

"192.1.1.5"

:authorization-pool manager-pool

:superuser manager-administrator)

(defcomputer typical-video-surveillance-manager windows-7-computer

"192.1.1.6"

:authorization-pool manager-pool

:superuser manager-administrator)

;; Define resources in server pool

;; Master password file contains login info for all servers/devices

;; on the network

(defresource master-password-file password-file

68



:capability-requirements ((write manager-super-user)

(read manager-user-read))

:machines (main-operator-console))

;; Local password file contains login info for the (camera) devices

;; that fall under the video-surveillance-manager

(defresource local-password-file password-file

:capability-requirements ((write manager-user-write)

(read manager-user-read))

:machines (typical-video-surveillance-manager))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Device pool

;;

;; Encompasses Video Surveillance Manager, and IoT Camera

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(make-object ’authorization-pool :name ’device-pool)

;; Capabilities for device pool

(defcapability device-super-user device-pool)

(defcapability device-user-write device-pool

:greater (device-super-user))

(defcapability device-user-read device-pool

:greater (device-user-write))

;; Define users for device pool

(defuser device-administrator

:capabilities (device-super-user)

:authorization-pools (device-pool))
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(defuser device-user

:user-type typical-user

:capabilities (device-user-write)

:authorization-pools (device-pool)

:machines (typical-camera))

;; Define machines/computers for device pool

(defcomputer typical-camera embedded-linux-computer "192.1.1.7"

:authorization-pool device-pool

:superuser device-administrator)

;; Define resources for device pool

(defresource devices-scheduler-policy scheduler-policy-file

:capability-requirements ((write device-super-user)

(read device-user-read))

:machines (typical-camera))

(defresource devices-password-file password-file

:capability-requirements ((write device-super-user)

(read device-user-read))

:machines (typical-camera))

(defresource device-video-file graphic-video-file

:capability-requirements ((write device-user-write)

(read device-user-read))

:machines (typical-camera))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Processes and attackers

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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;; Instantiate server processes

(instantiate-a-process ’storage-server-process ’(storage))

(instantiate-a-process ’display-server-process ’(display))

(instantiate-a-process ’video-processing-server-process

’(video-processing))

;; Instantiate manager processes

(instantiate-a-process ’operator-console-server-process

’(main-operator-console))

(instantiate-a-process ’video-surveillance-manager-process

’(typical-video-surveillance-manager))

;; Instantiate device processes

(instantiate-a-process ’typical-user-process

’(typical-camera) :role-name ’typical-camera-process)

;; Instantiate attacker

(create-attacker ’typical-attacker :negative-mask-address "192.1.0.0"

:negative-mask-mask "255.255.0.0")
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