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Abstract

As drones and autonomous cars become more widespread it is becoming increasingly
important that robots can operate safely under realistic conditions. The noisy infor-
mation fed into real systems means that robots must use estimates of the environment
to plan navigation. Efficiently guaranteeing that the resulting motion plans are safe
under these circumstances has proved difficult.

We build a mathematical framework for analyzing the quality of estimated geom-
etry, rigorously developing the notion of shadows. We then examine how to use these
tools guarantee that a trajectory or policy is safe with only imperfect observations
of the environment. We present efficient algorithms that can prove that trajectories
or policies are safe with much tighter bounds than in previous work. Notably, the
complexity of the environment does not affect our method’s ability to evaluate if a
trajectory or policy is safe.

We also examine the implications of various mathematical formalisms of safety
and arrive at a mathematical notion of safety of a long-term execution, even when
conditioned on observational information.
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Chapter 1

Introduction

The writing of this thesis coincides with the rapid deployment of robots outside of

factories. Drones are inexpensive and widely available, basic autonomy is present in

mass-produced cars such as the Tesla Model S and robots are autonomously delivering

room service in high-end hotels.

Deploying a robot that operates robustly in unstructured environments remains

incredibly difficult. Rarely is it sufficient open a textbook, implement an algorithm

and release your robot into the wild. One contributing factor is the lack of efficient,

provably-correct algorithms that work on realistic models. For much of the state of

the art work, we expect it to fail in certain circumstances.

Many problems in robotics are provably hard to compute efficiently. Figuring

out how to move a robot between two configurations and several other variants of

planning problems are PSpace and NP-hard [23, 5, 28]. Figuring out where a robot

is in a map and other variants of the localization problem have also been shown to

be NP-Hard [6, 33]. Common variants of decision making under uncertainty are also

provably hard [17, 20]. While the dream of provably correct, efficient algorithms for

robotics would make life much easier for engineers, it’s not clear that it is achievable.

If all problems in robotics are robustly, provably hard, it doesn’t make sense to search

for such algorithms.

Robotics is also very difficult from a mathematical perspective. Even reasoning

about seemingly simple questions such as "what joint angles place the robot hand
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in the desired location” can quickly escalate into requiring understanding lie-groups

and algebraic geometry. Robotics requires reasoning about randomness in locations,

transformations, and even the geometry of the environment. In these cases the some-

times the basic mathematics has not yet been developed. Probability and statistics

over such objects sometimes lacks the machinery necessary to answer the questions

important to robotics.

In practice, these difficulties mean that most robotics algorithms rely on heuris-

tics and lack theoretical guarantees of correctness and efficiency. Finding such ideal

algorithms is not just difficult—they might simply not exist. At the same time we

often find that our algorithms often fail in practice—a result that can be extremely

costly if not deadly.

1.1 Motivation

This thesis examines the safe robot navigation problem. How can we get a robot

from point 𝑎 to point 𝑏 such that the probability of collision with a set of estimated

obstacles is less than some small, fixed 𝜖? As drones and autonomous cars using

commodity sensors become more ubiquitous it is becoming increasingly important to

understand this problem.

This leads to the following questions:

∙ How can we characterize the quality of our estimate of the obstacle given that

we can only observe it with noisy sensors?

∙ What is the optimal way to handle the constant stream of information available

to robots in practice? Are there issues that can cause undesired behavior in

practice?

∙ Is it even possible to efficiently estimate the probability that a single trajectory

collides in the regime where 𝜖 is small?

∙ Can we efficiently solve or approximate the safe-robot navigation problem?
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This thesis aims to address these questions through the development of both ef-

ficient algorithms and the mathematics necessary to understand the problem. While

this thesis is primarily focused on theoretical developments, it aims to understand is-

sues that the author encountered during more applied work in industry and academia.

1.2 Related Work

Robot navigation with uncertainty is a problem that has been studied in several

different contexts. The work can be divided into several categories: methods that

reason about planning under uncertainty in general fashion and are able to handle

safe robot navigation; methods that reasons about uncertainty in the state of the

robot; and methods that reason about uncertainty of the environment. There are

also two general classes of approaches to reasoning about uncertainty. The first class

of methods rely on Monte-Carlo based sampling techniques while others reason about

uncertainty in a more symbolic fashion.

One general model of reasoning about uncertainty is the Partially Observable

Markov Decision Process (POMDP) model—a markov decision process where the

state cannot always be directly observed [13]. POMDPs can model many robotics

problems with uncertainty including navigation, grasping and exploration [13, 9, 27].

Solving POMDPs is provably hard, and in some cases even undecidable [20, 17].

Though solving POMDPs is also often hard in practice, there is a large body of work

aiming to solve sufficiently small, structured POMDPs [15, 26, 21, 1, 31].

In practice it is often desirable to trade generality for performance and use an al-

gorithm tailored towards reasoning about uncertainty in robot navigation. The first

class of specialized methods focuses on uncertainty in the robot’s position and orien-

tation (pose) and how well the system tracks the desired trajectory. Some methods

attempt to quantify the uncertainty to identify how far the robot might stray from

the ideal trajectory. They then proceed to use that information to know how far away

to stay from obstacles [16, 4]. When the robot of interest has complicated, nonlin-

ear dynamics, robust motion plans can by computed using sum-of-square funnels for
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characterizing how well a robot can recover from deviations from the ideal trajectory

[32, 18, 29, 30].

Other branches of work focus more on uncertainty in the shape and location of the

obstacles themselves. Some works attempt to identify shadows, or regions where the

obstacle could be and avoid those during planning [12, 24]. However, since models of

random geometry were not widely available and understood, these works often failed

to provide theoretical guarantees and sometimes make errors in their derivations

resulting in trajectories that are consistently unsafe [24]. Given a generative model

for obstacles, it becomes possible to develop a sampling-based method that is provably

safe [25, 11]. However, these methods have a runtime that depends on 1
𝜖

where 𝜖 is

the allowable probability of collision. In the regime where the acceptable probability

of collision, 𝜖, is very small, these methods can become very slow.

1.3 Contributions and Outline

This thesis builds machinery to help understand and solve the safe navigation prob-

lem. Chapter 2 builds the mathematical foundations necessary to both understand

and solve the safe planning problem. It starts by addressing the question of how to

define a probability of collision. It defines a distribution over shapes which we use as

a model for the remainder of the work. Such obstacles are referred to as polytopes

with Gaussian distributed faces (PGDF). It then discusses how to compute the in-

tersection of probability of an arbitrary shape a random half-space drawn from any

distribution. It introduces the notion of a shadow—the generalization of a confidence

interval to shapes. The notion of shadows will be crucial in the development of ef-

ficient algorithms later in the work. Finally we show how to construct shadows for

the distribution defined earlier in the chapter. We believe this work has applications

beyond the safe navigation problem.

Chapter 3 discusses an efficient algorithm for bounding the probability of collision

of a trajectory. It develops an algorithm that can be used to bound the probability

of intersection of any collision checkable set with a set of PGDF obstacles. This
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algorithm can be used to efficiently bound the probability that a robot trajectory will

collide with a set of estimated obstacles. While the probabilities produced by the

algorithm are not tight we briefly discuss tightness in the low-probability regime.

Chapter 4 discusses algorithms for the safe planning problem. It defines the safe

planning problem as the search for a robot trajectory with probability of collision

less than a fixed 𝜖. Then we examine the approximate safe planning problem where

the true probabilities of collision are replaced with the bounds computed using the

algorithm in chapter 3. We examine the computational complexity of the problem.

First we show a trivial, exponential time algorithm that shows the problem is in 𝑁𝑃 .

We then discuss the submodularity of the cost function which we hope can be used to

find a polynomial time algorithm to solve this approximate safe planning problem. We

briefly discuss some hardness results of the problem with high dimensional obstacles.

Chapter 5 examines the issues with generalizing the above methods to the online

setting where the robot has a constant stream of information and can change its

desired trajectory. This is the "safe” analog of transitioning from motion planning

to policy search. Unlike the setting where we are presented a single information set

before execution, safety is not guaranteed by always following a trajectory with a low

probability of collision. We present a toy example that illustrates this phenomenon.

Even though the robot is always following a safe trajectory, its probability of colliding

approaches 1. We suggest a different criterion for safety—guaranteeing that the

lifetime probability of collision does not exceed a particular value. We then present a

simple way of ensuring that such a criterion is met. We analyze when the presented

criterion is necessary in addition to sufficient. In order to better understand the

criterion we compare it to safety under an information oracle—an oracle which can cut

off the flow of information at any point in time. This helps us develop an equivalent,

more intuitive way to guarantee safety without relying on a mathematically technical

formulation. Finally we show how the algorithm introduced in chapter 3 can be

modified to ensure that a policy is safe.

Finally chapter 6 discusses future directions based on the presented work. We

discuss other potential applications of bounding random geometry, like manipulation
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under uncertainty. We also discuss the development of better models and how they

can be understood using the machinery developed in chapter 2. We discuss directions

for future work on safe planning that are guided by the included complexity results

and known structure. Finally we take a step back and analyze the potential impact

of the presented ideas to the deployment of safe, efficient and reliable robots in the

real world.
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Chapter 2

Shadows

In order to be able to provide safety guarantees for robot operation in domains with

uncertainty about obstacles, we must develop a formal understanding of the relation-

ship between randomness in the observations and resulting estimate. Consider the

following scenario: the robot must avoid an obstacle but gets only a noisy observation

of said obstacle. Given this noisy observation, it computes an estimate of the space

occupied by the obstacle and avoids this region. Given the observation, however, the

true space occupied by the obstacle is random and not guaranteed to be inside the

estimated region. It is not sufficient for the robot to avoid the estimated region to

ensure non-collision.

In order to provide theoretical guarantees about a robot’s operation in such a

domain we must develop mathematics regarding the random shapes that come from

estimating geometry with noisy observations. The ultimate aim of this chapter is to

develop shadows, a geometric equivalent of confidence intervals for uncertain obsta-

cles. The concept of shadows will prove useful in the development of provably correct

algorithms for safe robot navigation problem later in the thesis.

Understanding the mathematics behind shadows turns out to be rather involved.

Section 2.1 begins by formally defining the notion of an 𝜖-shadow. A significant

portion of the section is spent motivating our definition of shadows and seeing how it

avoids issues with previous methods of bounding random geometry. We then provide

an example of a distribution from which these random shapes can be drawn. We
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introduce polytopes with Gaussian distributed faces (PGDF) which will be used to

develop examples and algorithms throughout this thesis.

It turns out that shadows can have surprising and non-intuitive behavior. In order

to build an intuition for shadows we provide some theorems that characterize half-

space shadows of any distributions. First we show how to find collision probabilities

between a random half-space and an any set. This helps introduce some of the basic

geometric notions that will be used to understand and construct shadows. We then

develop a theorem that helps us understand the existence and uniqueness of an 𝜖-

shadow for any distribution and a fixed 𝜖. The answers here are can be surprising

and suggest that random geometry can behave quite differently than random vectors.

Section 2.2 addresses the algorithmic question of how to compute shadows for

PGDF obstacles. It provides several algorithms for computing shadow lower bounds

for PGDF obstacles. Unlike the shadows of section 2.1, these bounds are often loose:

there are situations in which the computed 𝜖−shadow is also a 𝜖′−shadow for 𝜖′ < 𝜖.

We compare the tightness of these different shadow bounds in different scenarios.

We also present a general method of building 𝜖-shadows for polytopes given only a

mechanism for generating shadows of half-spaces, and we comment on the tightness

of the bounds generated with the method.

2.1 Mathematics of Shadows

In this section we develop the mathematical machinery necessary to build and char-

acterize shadows. Computational and algorithmic developments will be presented in

a later section.

2.1.1 Definitions

In this section we define the notion of a shadow as well as give an example distribution

of obstacles for which we can compute shadows for concrete obstacle estimates.

In order to be able to distinguish the space that the robot operates in from the

space of half-space parameters we introduce the following notation: bold, nonscript
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capital letters refer to subsets of R𝑛 corresponding to the robot’s workspace. Our

robots usually operate in 𝑋 = R𝑛. 𝑋 refers to this vector space throughout the

document. Capital script letters refer to subsets of the dual of the robot’s workspace’

i.e., sets of half-space parameters over the robot’s workspace. Half-space obstacles can

be represented as points in 𝒳 = R𝑛. 𝒳 refers to this space of half-space parameters

throughout the document. We also note that the goal of the chapter is to bound

random obstacles. A random obstacle is defined as a random convex polytope which

the robot is not allowed to collide with. This analysis can be made applicable

Shadows

Definition 1 (𝜖−shadow). A set 𝑆 ⊆𝑋 is an 𝜖−shadow of a random obstacle 𝑂 if

𝑃 (𝑂 ⊆ 𝑆) ≥ 1− 𝜖.

It is important to note that an 𝜖−shadow may be quite different than the set of

points with probability more than 𝜖 of being inside the random obstacle as used by

Sadigh and Kapoor [24].

Guaranteeing non-intersection of the robot trajectory with the obstacle given only

the set of points of low probability of colliding, requires either understanding the

correlation between the event that nearby points collide or using a union bound over

all points in the trajectory.

Since robot trajectories necessarily pass through an infinite number of points, a

union-bound alone cannot be used to guarantee safety. While in this case, a guarantee

can be found using smoothness of the Gaussian PDF and constructing simplices that

enclose the trajectory, doing so introduces additional restrictions on the resulting

trajectories. In practice this usually causes the the computed probability bound to

be greater than 1, rendering the theoretical guarantees of the algorithm useless.

An example of the difference between a shadow and the set of points likely in the

obstacle can be see in figure 2-1. The shadow is a subset of the likely points, but can

used to verify the trajectory of the safety. The set of likely points is not sufficient

information to verify the safety of the trajectory.
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Figure 2-1: A fair coin is flipped. If the coin is heads the square is in the left position,
otherwise in the right. The orange region identifies the points with probability at
least 0.5 of being in the obstacle. Either outline represents a valid 0.5−shadow. The
shadow is sufficient to show that a trajectory that avoids the shadow has probability
less than 0.5 of colliding with the obstacle. Merely knowing that the orange region is
the set of points with at least 0.5 probability of being in the obstacle is not sufficient
to provide any guarantees about the safety of a trajectory. We also note that shadows
need not be unique—two 0.5-shadows are shown.

Polytopes with Gaussian Distributed Faces

Computing shadows requires having some sort of characterization of the uncertainty

with respect to obstacles in the environment. We formalize this notion as assumptions

about the distribution from which obstacles are drawn.

We use homogeneous coordinates throughout for simplicity. We recall that a

polytope 𝑃 ⊆𝑋 is the intersection of half-spaces:

𝑃 =
⋂︁
𝑖

𝛼𝑇
𝑖 𝑥 ≤ 0.

We consider the case where the parameters 𝛼1...𝑘 are drawn from Gaussian distri-

butions with known parameters. From here on, a polytope with parameters drawn

from Gaussian distributions is referred to as a polytope with Gaussian distributed

faces (PGDF). Note that for any 𝜆 ≥ 0, 𝜆𝛼 and 𝛼 correspond to the same half-space.

We will show that this model can be derived under reasonable conditions and discuss

the fundamental limitations and drawbacks of the model.

This model is relevant because it can be derived from segmented point-cloud data.

If we are given a point cloud representation of the obstacle with points grouped by face

and the points are observed with Gaussian noise then the true faces can be estimated

with a linear regression. If this regression is performed in a Bayesian setting, the
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posterior distribution over the face parameters is a Gaussian distribution, suggesting

that assuming 𝛼 is Gaussian distributed is reasonable [2, 22].

The model, however, does discard information often available to robotic systems.

Robot sensors such as Kinects and LIDARs often provide point clouds in conjunction

with free space information. In addition to identifying the first time each “ray" hits

an obstacle in the environment, these sensors also provide the information that the

space in between the sensors and the point is likely collision free.

Later in this chapter we show how to efficiently compute 𝜖−shadows for the PGDF

model in practice.

2.1.2 A characterization of half-space Shadows

Before we discuss how to compute shadows efficiently in practice, we develop a math-

ematical theory of shadows to help get intuition for their behavior. For random

half-spaces of any distribution we will answer the following questions: When does

there exist an 𝜖-shadow? Are shadows unique?

We connect the notion of a shadow with the classic notions of dual and polar cones

in convex analysis. The analysis in this section is done with complete generality and

does not assume that obstacles are PGDF. The only restriction, which we take to make

analysis cleaner, is that sets with an empty interior under the standard topology have

zero measure. More intuitively, we assume the probability that we select parameters

from a zero volume set is zero.

Exact Probabilities of Intersection

First we compute the exact probability that a random half-space 𝛼𝑇𝑥 ≤ 0, parametrized

by 𝛼, will intersect an arbitrary set 𝐴 ⊆𝑋. We relate this value to the measure of a

dual cone, a notion from convex geometry. More formally, we examine how to find:

𝑃 (∃𝑥 ∈ 𝐴 such that 𝛼𝑇𝑥 ≤ 0).

Theorem 1. 𝑃 (∃ 𝑥 ∈ 𝐴 : 𝛼𝑇𝑥 ≤ 0) = 1− 𝜇(𝒞⋆) where 𝒞⋆ is the dual cone of 𝐴.
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Figure 2-2: The red cone is the dual cone of blob outlined in blue. The blue cone is
the polar cone of the same region. Note how the polar cone is a reflection of the dual
cone. The red and blue cones are in the dual space while the blob outlined in blue is
not.

Proof. Recall that the dual cone 𝒞⋆ of 𝐴 is the set {𝛼 | 𝛼𝑇𝑥 ≥ 0, ∀𝑥 ∈ 𝐴}.

First we examine the set of parameters 𝛼 such that there exists an 𝑥 ∈ 𝐴 such

that 𝛼𝑇𝑥 ≤ 0. The complement of this set is the set {𝛼 | 𝛼𝑇𝑥 > 0 ∀𝑥 ∈ 𝐴}. Thus

𝑃 (∃ 𝐴 ∈ 𝑋 : 𝛼𝑇𝑥 ≤ 0) = 1− 𝑃 (𝛼𝑇𝑥 > 0, ∀𝑥 ∈ 𝐴).

Up to the boundary, which is measure zero, {𝛼 | 𝛼𝑇𝑥 > 0, ∀𝑥 ∈ 𝐴} is exactly the

dual cone of 𝐴 up to the zero-measure boundary.

𝑃 (∃ 𝑥 ∈ 𝐴 : 𝛼𝑇𝑥 ≤ 0) = 1− 𝑃 (𝛼𝑇𝑥 > 0, ∀𝑥 ∈ 𝐴)

= 1− 𝜇(𝒞*).
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Shadows and Polar Cones

A related notion in convex geometry, the polar cone, allows us to relate the con-

struction of shadows with a distribution in the halfspace parameter space. Please see

appendix A for the related definitions. A correspondence theorem defines a bijection

between a set we understand (polar cones) and a set we are trying to characterize

(shadows). This will allow use to use our knowledge of the existence and uniqueness

of polar cones to understand the existence and uniqueness of shadows.

The proof of the correspondence theorem (theorem 3) will highlight a problem

with our current definitions. Since a 0.25−shadow is also a 0.5−shadow, it will prove

difficult to construct a one-to-one map between all shadows and another object which

we understand. Thus we consider only maximal shadows.

Definition 2 (Maximal 𝜖-shadow). An 𝜖−shadow 𝐴 ⊆ 𝑋 of a random shape 𝑂 is

maximal if 𝑃 (𝑂 ⊆ 𝐴) = 1− 𝜖.

This leads to our first, and most general, method of constructing shadows.

Theorem 2. For every set 𝒴 ⊆ 𝒳 of measure 1 − 𝜖, the polar cone 𝒞0 of 𝒴 is a

𝜖−shadow for the random shape defined by the measure.

Proof. Recall that a point 𝑥 is in collision with the halfspace defined by 𝛼 if 𝛼𝑇𝑥 ≤ 0.

Consider a set 𝒴 of measure 1 − 𝜖. Since sets with empty interiors have zero

measure, we can assume without loss of generality that 𝒴 is open.

First we identify the set of points 𝐴 = {𝑥 | 𝛼𝑇𝑥 > 0, ∀𝛼 ∈ 𝒴} ⊆ 𝑋, that is the

set of points not inside any halfspace defined by a point in 𝒴 . Up to the boundary,

which is a set of measure zero, this is exactly the polar cone, 𝐶0 of 𝒴 .

With probability 1 − 𝜖, a draw of 𝛼 will be in 𝒴 and thus not correspond to a

halfspace that intersects 𝐶0. This implies that 𝐶0 is an 𝜖−shadow.

Theorems 1 and 2 can be combined to give a correspondence theorem that will

allow us to better understand shadows.

Theorem 3. There is a one-to-one correspondence between convex cones in parameter

space of measures 1− 𝜖 and maximal 𝜖-shadows.
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Proof. Our proof will show that applying the construction in theorems 1 and 2 and

reversed yields the identity.

First we start with a convex cone in the space of half-space parameters, 𝒴 , of

measure 1 − 𝜖. Theorem 2 tells us that the polar cone of 𝒴 is an 𝜖−shadow. The

construction in theorem 1 tells us that the probability of the shadow not containing

the random halfspace is the measure of the negative of it’s dual cone.

Since 𝒴 is a convex cone, the negative of the dual cone of the polar cone the

original set 𝒴 itself.

The same procedure works for the reverse direction.

Theorem 3 gives us guidelines about how to construct shadows. It shows that the

sets used to compute the probabilities of shadows should be convex cones if we wish

for our shadows to be tight.

It also gives insight to when to when 𝜖−shadows are not unique. Any set of

measure 1− 𝜖 with a distinct polar cone can be used to create a distinct shadow.

The non-uniqueness gives insight into why not all shadows are equivalent when

bounding the probability of intersection. One 𝜖−shadow may be sufficient to certify

non-collision, but another might not. This suggests that we will have to search

through a continuous set of shadows for the one that gives the strongest bound.

Finally it helps us answer the question of whether nontrivial shadows always exist.

In 𝒳 = R𝑛, if the distribution over parameters is such that any halfspace through

the origin has measure greater than 𝜖 then the only shadow is the entire space (the

trivial shadow). This comes from the fact that the minimal convex cone with suf-

ficient measure then becomes the entire space. For example, consider constructing

an 𝜖 = 0.25-shadow with 𝛼 ∼ 𝒩 (0, 𝐼). The distribution is symmetric and all halfs-

paces through the origin have measure 0.5. Thus we cannot construct any non-trivial

0.25−shadows for this distribution.

This suggests a procedure by which we can find the maximal 𝜖 such that no 𝜖-

shadow smaller than the full space cannot exist.
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Theorem 4. Let

𝜖⋆ = inf
𝛼∈𝒳

𝜇(𝛼𝑇𝑥 ≤ 0)

Then for all 𝜖′ < 𝜖, there do not exist any 𝜖′−shadows.

Since any convex cone that strictly contains a halfspace through the origin must be

the entire vector space, and no halfspace has measure more than 𝜖, for any 𝛿 < 𝜖 there

cannot exist an 𝛿−shadow. In other words there is no shadow that contains the set

with probability more than 1−𝜖. We note that for PGDF obstacles there always exists

an 𝜖 ∈ (0, 1) such that a non-trivial shadow does not exist. This fact is surprising,

does not match our intuition and suggests that care must be taken in ensuring that

planning methods are truly safe. Future work also includes understanding whether

other important models of random geometry also undergo this phase transition.

2.2 Computing Shadows for PGDFs

In the previous section we constructed shadows for halfspace obstacles in full gen-

erality. Unfortunately, even the integrals required to determine the probability that

a shadow contains an obstacle can be difficult to compute. In this section we will

suggest three different ways to compute shadow lower bounds. Instead of trying to

compute a shadow that is tight with respect to its probability, we will construct shad-

ows for which it is easy to compute a lower bound on the probability that a shadow

contains a random shape. At first we will restrict our attention to halfspaces from

a PGDF faces. In section 2.2.3 we will use the developments in the previous section

to construct a shadow for a PGDF with an arbitrary number of faces. Sections 2.2.1

and 2.2.1 present bounds that are more effective when the parameters of the half-

space are relatively well known (when the mean of the distribution is far from the

origin with respect to the norm induced by the precision matrix) and section 2.2.2

presents a bound that works better when there is relatively little information about

the parameters.

27



2.2.1 Gaussian Elliptical Shadows

Figure 2-3: Set 𝐵 corresponds to parameters of half-spaces that will be contained
within our shadow. We lower bound the measure of set 𝐵 using the measure of set
𝐴, an ellipsoid of measure 1− 𝜖.

In this section we construct a shadow for a given distribution of random shapes

as follows. We identify a sufficiently large scaled covariance ellipse around the mean

parameter vector such that its measure is 1− 𝜖. We then take the polar cone of this

ellipse and use it as our shadow. A pictorial outline of the derivation is presented in

figure 2-3.

We begin by identifying required size of the covariance ellipse.

Lemma 1. Let 𝛼 ∼ 𝒩 (𝜇,Σ), 𝜑 be cdf of the Chi-Squared distribution with 𝑛 degrees

of freedom and:

𝒳 = {𝛽 | (𝛽 − 𝜇)𝑇Σ−1(𝛽 − 𝜇) ≤ 𝜑−1(1− 𝜖))}.

Then 𝑃 (𝛼 ∈ 𝑋) = 1− 𝜖.

Proof. First we note that 𝛼 is equal in distribution to Σ𝛼′+𝜇 with 𝛼′ ∼ 𝒩 (0, 𝐼). 𝛼′𝑇𝛼′

is then a Chi-Squared random variable with 𝑛 degrees of freedom. Thus 𝑃 (𝛼′𝑇𝛼′ ≤

𝜑−1(1− 𝜖)) = 1− 𝜖. If we let 𝑍 = {𝛼 | 𝛼𝑇𝛼 ≤ 𝜑−1/2(1− 𝜖)} then 𝑃 (𝛼′ ∈ 𝑍) = 1− 𝜖.

Let 𝑌 be the image of 𝑍 under the map we used to generate a random variable
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identical in distribution to 𝛼. Then 𝑌 = {𝛽 | (𝛽 − 𝜇)𝑇Σ−1(𝛽 − 𝜇) ≤ 𝜑−1(1− 𝜖)} and

the measure of 𝑌 under the distribution over 𝛼 must be the same as the measure of

𝑍 under the distribution over 𝛼′. Thus 𝑃 (𝛼 ∈ 𝑌 ) = 1− 𝜖.

Now, given this ellipse of sufficient measure, we can compute its polar cone and

resulting 𝜖−shadow. We note that if the ellipse given in lemma 1 contains the origin

in its interior, the resulting polar cone will be empty. We compute the polar cone by

first computing the minimal cone 𝒞 which contains the ellipse, and then computing

the polar cone of 𝒞.

For the remainder of the section we assume that the space has been rotated and

scaled such that 𝜇 = (0..., 0, 1).

Theorem 5. For nondegenerate PGDF halfspaces, there exists Σ′ such that

𝑋 = {< 𝑥1....𝑥𝑛−1, 𝑧 >| 𝑥𝑇Σ𝑥 ≥ 𝑧}

is an 𝜖−shadow.

Our proof is constructive and tells us how to compute Σ.

Proof. Let 𝒳 = {𝛽 | (𝛽 − 𝜇)𝑇Σ(𝛽 − 𝜇) ≤ 𝑟2} be the ellipse identified in lemma 1.

We expand the equation of the above surface for convenience:

𝑟2 = (𝛽 − 𝜇)𝑇Σ(𝛽 − 𝜇)

= 𝛽𝑇Σ𝛽 − 2𝛽𝑇Σ𝜇 + 𝜇𝑇Σ𝜇.

Now we compute the equation for the normals to the surface at point 𝑥

2Σ𝑥− 2Σ𝜇.

Then we identify the set where the normal vectors are orthogonal to the vector to the
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point 𝑥:

𝑥𝑇 (Σ𝑥− Σ𝜇) = 0

𝑥𝑇Σ𝑥− 𝑥𝑇Σ𝜇 = 0

𝑥𝑇Σ𝑥 = 𝑥𝑇Σ𝜇.

Plugging this into the equation of the original ellipse gives us the equation for the

plane that contains the set where the ellipse is tangent to the minimal containing

cone:

𝛽𝑇Σ𝜇− 2𝛽𝑇Σ𝜇 + 𝜇𝑇Σ𝜇 = 𝑟2

−𝛽𝑇Σ𝜇 + 𝜇𝑇Σ𝜇 = 𝑟2

𝜇𝑇Σ𝛽 = 𝜇𝑇Σ𝜇− 𝑟2.

This is a linear equation in 𝛽 which we can use this to solve for 𝛽𝑛 in terms of the

remaining indices of 𝛽. Substituting it plugged into the original equation yields the

equation of a new ellipse. Let Σ𝐸, 𝑥0, 𝑟
′ be the parameters of this new ellipse in the

form (𝛽𝑇
1...𝑛−1 − 𝑥0)

𝑇Σ𝐸(𝛽1...𝑛−1 − 𝑥0) ≤ 𝑟′2.

Now we can directly identify the equation of the cone as:

𝛽𝑇

⎛⎝Σ𝐸 0

0 −𝑟2

⎞⎠ 𝛽 ≤ 0; 𝛼𝑛 ≥ 0.

Alternatively we can describe the set as {𝛽 |
√︁
𝛽𝑇
1..𝑛−1Σ

′𝛽1..𝑛−1 ≤ 𝛽𝑛}, where Σ′ = Σ𝐸

𝑟2
.

This identifies our cone as a standard-norm cone with the norm induced by Σ′, and

makes finding the dual cone a standard problem. The dual cone is just ||𝛽1...𝑛||⋆ ≤ 𝛽𝑛

where || · ||⋆ denotes the dual norm [see 3, example 2.25, page 52]. The dual norm is

the natural one induced by Σ′−1. Thus the dual cone is

𝛽𝑇

⎛⎝Σ′−1 0

0 1

⎞⎠ 𝛽 ≤ 0; 𝛽𝑛 ≥ 0.
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Finally since 𝐶0 = −𝐶⋆ we can write down the equation of the polar cone which

defines the shadow.

𝛽𝑇

⎛⎝Σ′−1 0

0 1

⎞⎠ 𝛽 ≤ 0; 𝛽𝑛 ≤ 0

When we dehomogenize the coordinate system we get a conic section as a shadow.

We refer to Handlin’s Conic Sections Beyond R2 for a classification of different sections

and a discussion of conic sections in high dimensions [8], but we note that this step

implies that the procedure does not always produce non-degenerate shadows.

Double Ellipse Refinement

Figure 2-3 clearly illustrates that the shadows computed using the above method

are not tight. We note that the resulting probabilities can be improved as follows:

instead of using a single ellipse to lower bound the measure of set 𝐵 we will use two

half-ellipses as in the figure below. The first half-ellipse is computed using the same

computation as above, and the second is the maximal-radius half-ellipse with the

same center as the original ellipse. This is illustrated in figure 2-4

Figure 2-4: Using two ellipses allows us to compute a tighter bound
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2.2.2 Conic Shadows

We note that the shadow bounds derived in section 2.2.1 fail to provide a non-trivial

shadow when the covariance is too “small” relative to the distance of the mean from

the origin. As this becomes the case another class of shadow lower bound approaches

being tight. We suggest how such a bound can be computed below. We can compute

the measure of a cone going through the mean of the distribution by transforming

our space to one where the Gaussian distribution is Isotropic and then computing the

portion of the full space taken up by cone. This process is illustrated in figure 2-5.

Figure 2-5: Using a cone through the mean to compute a shadow lower bound.

2.2.3 From Halfspaces to Polytopes

The previous sections focused on half-spaces because duality is very intimately re-

lated to the construction of shadows. This relationship is not as powerful for general

polytopes, and makes computing the exact probabilities corresponding to shadows

difficult without a large enumeration.

Recall that a polytope is defined as the intersection of half-spaces
⋂︀
𝑖

𝛼𝑇
𝑖 𝑥 ≤ 0.

Constructing tight shadows for polytopes in practice depends critically on understand

the correlation between 𝛼1...𝑛. In this section we make no assumptions regarding the

correlation between the 𝛼’s. In practice, we may have strong prior shape information

but a poor estimate of the location of the object. In this case our shadows would not
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be maximal. In other words, there may exist a strictly smaller set that is also a valid

𝜖-shadow. We demonstrate an example where our shadows are tight, and provide

some analysis suggesting cases the shadows we construct are close to tight. Exploring

how knowledge of correlation may be used to produce tighter shadows for polytopes

remains an interesting direction for future work.

We can construct an 𝜖-shadow from shadows for individual faces and a union

bound.

Theorem 6. Given 𝜆𝑖 ∈ R+,
∑︀
𝑖

𝜆𝑖 = 1 and 𝑌𝑖 an 𝜆𝑖𝜖 shadow of the half-space defined

by 𝛼𝑖,
⋂︀
𝑖

𝑌𝑖 is an 𝜖−shadow of
⋂︀
𝑖

𝛼𝑇
𝑖 𝑥 ≥ 0.

Proof. We note for the object to not be contained within the shadow, at least one

face must fall outside of its corresponding shadow 𝑌𝑖. We will bound the probability

that any face falls outside its shadow.

The probability that the face corresponding to 𝛼𝑖 falls outside of its shadow is 𝜆𝑖𝜖.

Applying a union bound gives us that the probability that any face falls outside its

shadow is upper bounded by
∑︀

𝜆𝑖𝜖 = 𝜖.

We note that one natural choice of 𝜆𝑖 is 1
𝑚

where 𝑚 is the number of faces. We

note that this may, however, be suboptimal if some faces are much less likely to cause

problems for robot safety than others.
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Chapter 3

Algorithm for Bounding Probability

of Collision

In this section we focus on bounding the probability that a given robot trajectory

collides with a set of obstacles drawn from the posterior distribution of a Bayesian

estimation process. One of the most important consequences of the developments of

chapter 2 is a fast algorithm for bounding the probability that a fixed set intersects

a PGDF obstacle. We develop a generic algorithm that can bound the probability of

intersection between a set of PGDF obstacles with any collision-checkable set.

3.1 Motivation

One way to estimate the probability of collision is to use a Monte Carlo technique

based on sampling the location of obstacles and collision checking the trajectory. Take

for example the following naïve algorithm. Sample 𝑛 sets of obstacle geometries and

let 𝑝 be the portion of these geometries for which there is a collision. This algorithm

is very simple and does not introduce any slackness (𝐸[𝑝] is the exact probability

of collision). However, if you want to guarantee the probability of collision is less

than 𝜖, 𝑛 must be at least 𝑂
(︀
1
𝜖

)︀
samples for this method to be useful. In essence

the algorithm has to see at least a couple of failures in expectation to be useful.

This a fundamental limitation of sampling based algorithms that do not sample in a
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transformed space.

In the context of robot safety, where we want robot collisions to be extremely rare

events (ex. 𝑝 = 10−7), this implies that Monte Carlo methods tend to perform poorly.

While variance reduction techniques have been shown to improve performance, it is

not sufficient in the regime where collisions happen rarely [10].

In this chapter we show how the 𝑂
(︀
1
𝜖

)︀
dependence can be avoided by searching

for shadows instead of sampling. We will search for a certificate, or proof, that the

probability is less than 𝜖. This will enable our method to have a complexity 𝑂
(︀
log 1

𝜖

)︀
,

linear in the number of required digits of precision. Searching for a shadow also results

in tighter bounds than previous work without sacrificing correctness. Another benefit

of searching for shadows is that it avoids the slackness that would be introduced by

taking shadows of the same probability and using a union bound to compute the

probability bound. The difference is highlighted in figure 3-1.
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(a) An even allocation of shadows. Notice the
intersection of the shadow and trajectory in
the top right.

-2 0 2 4 6 8 10

-2

0

2

4

6

8

10

(b) A carefully chosen allocation of shadows
that can prove the trajectory is safe. Notice
how the bottom left obstacle has a much larger
shadow.

Figure 3-1: An optimal pair of shadows can show that the trajectory is safe, while
shadows of equal probability cannot. The sum of the probabilities corresponding to
the two shadows in figures a) and b) are equal.

This contrasts with many previous works that used uniformly sized shadows such

as [12] and [24]. This implies that in the worst case a method using uniformly sized
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shadows can only find a plan if an 𝜖
𝑛

safe plan exists. Not only can this lead to un-

necessarily conservative behavior, it also has a dependence on the environment that

does not necessarily affect the true probabilities of collision in a way that matches

our intuition. For safety what matters is the number of obstacles “close” (measured

by a combination of distance and uncertainty) to the trajectory, not just the number

of obstacles present in the environment. Searching for shadows instead of choosing

their size uniformly allows us to close the quality gap between geometric/symbolic

algorithms and Monte-Carlo algorithms by a factor of 𝑛, without sacrificing correct-

ness.

An interesting byproduct of our algorithm is a safety certificate. Our method finds

a set of shadows that show the trajectory in question is safe with probability at least

1− 𝜖. These shadows provide easy to verify, interpretable, proof that the trajectory is

safe. These certificates can be used to understand which obstacles are likely to collide

with the robot and which are not. Formally the problem we address is follows: given

a set 𝑋 and PGDF obstacles drawn from distributions with parameters 𝜇𝑖𝑗,Σ𝑖𝑗, find

the minimal 𝜖 such that the probability that an obstacle intersects 𝑋 is less than 𝜖.

We explain our algorithm in two parts. First, in section 3.2 we present an algorithm

that bounds the probability that a single obstacle intersects the fixed set. This allows

us to focus on the search of a single shadow and understand the restrictions of our

algorithm. In section 3.3 we present serial and parallel versions of the algorithm for

many obstacles and discuss computational complexity in further detail.

3.2 The Single Obstacle Case

In the case of a single obstacle, we can frame finding a probability bound as the search

for the maximal shadow. In other words we wish to find a solution to the following

optimization problem where 𝑋 is the set of states visited by the robot trajectory (the
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swept volume):

minimize
𝜖∈(0,1)

𝜖

subject to shadow(𝜖) ∩𝑋 = ∅
(3.1)

It is not immediately clear that this optimization is convex, or otherwise solvable

in polynomial time. In order to make the optimization easily solvable we restrict

ourselves to a class of easily computable shadow lower bounds obtained in chapter

2. In particular, we restrict ourselves to shadows coming from the single and double

ellipse bounds for PGDF obstacles presented in sections 2.2.1 and 2.2.1 combined with

theorem 6. When this mapping is non-degenerate, it is a one-to-one from probabilities

to shadows. Let 𝑆(𝜖) be one of these two maps. We restrict ourselves to the following

optimization:

minimize
𝜖∈(0,1)

𝜖

subject to S(𝜖) ∩𝑋 = ∅
(3.2)

An important property of the map is that it is monotone. If 𝜖1 ≥ 𝜖2 then 𝑆(𝜖1) ⊂

𝑆(𝜖2). This implies that the set of probabilities that map to shadows that do not

intersect 𝑋 is an interval subset of (0, 1). This means that we can find the minimal

𝜖 for this class of shadows with a simple bisection search on the interval (0, 1). The

pseudocode for this search is presented in algorithm 1 and a figure illustrating the

execution is shown in figure 3-2.

To achieve precision 𝜖, algorithm 1 requires 𝑂
(︀
log 1

𝜖

)︀
iterations due to the bisection

search. In every iteration there is a single call to a collision checker.

3.3 Generalization to Multiple Obstacles

In this section we generalize algorithm 1 to handle multiple obstacles, analyze the

resulting computational complexity, and show that it provides a tighter bound on the

probability of collision than previous work. We refer to the collision probability as
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(a) First iteration of the bisection search (b) Second iteration of the bisection
search

(c) Third iteration of the bisection
search. Since it overshot in this iter-
ation (detected as a collision between
the shadow and robot by the collision
checker) it will try a smaller shadow in
the next iteration

(d) Fourth and final iteration of the bi-
section search as it has found a shadow
that does not collide within the desired
numerical precision of the optimal one.

Figure 3-2: An visualization of the execution of algorithm 1
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Algorithm 1 Finding an Optimal Shadow

1: function FindOptimalShadow(𝑋,𝜇,Σ, 𝜀)
2: 𝜖𝑚𝑖𝑛 ← 0
3: 𝜖𝑚𝑎𝑥 ← 1
4: while 𝜖𝑚𝑎𝑥 − 𝜖𝑚𝑖𝑛 ≤ 𝜀 do
5: 𝜖 ← 𝜖𝑚𝑎𝑥−𝜖𝑚𝑖𝑛

2

6: S ← GenerateShadow(𝜇,Σ, 𝜖)
7: if Intersects(S,X) then
8: 𝜖𝑚𝑖𝑛 ← 𝜖
9: else

10: 𝜖𝑚𝑎𝑥 ← 𝜖
11: end if
12: end while
13: return 𝜖𝑚𝑎𝑥

14: end function

risk throughout this section.

In order to generalize algorithm 1 we search for a separate shadow for each obstacle

and then sum up the probabilities for each shadow (justified by a union bound). The

search can be done for each obstacle in parallel.

Algorithm 2 Finds a bound on the risk of the set 𝑋 intersecting a set of random
obstacles.

1: function AggregateRiskBound(𝑋,𝜇1...𝑛,Σ1...𝑛, 𝜀)
2: for 𝑖← 1...𝑛 do
3: 𝜖𝑖 ← FindOptimalShadow(𝑋,𝜇𝑖,Σ𝑖,

𝜀
𝑛
)

4: end for
5: return

∑︀
𝑖

𝜖𝑖

6: end function

After compensating for the increased numerical precision necessary for multiple

obstacles, we get the computational complexities presented in table 3.1.

Table 3.1: Computational complexity of shadow finding in algorithm 2 for numerical
precision 𝜀, minimum probability 𝜖 and 𝑛 obstacles

serial parralel
collision checker calls 𝑂(𝑛 log 𝑛 log 1/𝜖) 𝑂(log 𝑛 log 1/𝜖)
number of threads 1 𝑂(𝑛)

We note that the parallel algorithm is work-efficient—it does not do any more
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work than the serial algorithm.

It is important to compare the complexity of the given algorithm compared to that

of a collision check with 𝑛 objects. Our algorithm is able to bound the probability

of collision with only a 𝑂(log 𝑛 log 1/𝜖) slowdown compared to a collision check with

obstacles of a known location. This suggests that robots can be made behave safely

and reason about uncertainty without greatly increasing the required computation.

3.4 Verification of Safety Certificates

We note that the low computational complexity of algorithm 2 implies that it can be

run on an embedded system with limited computational resources. This allows an

low power system to verify that actions suggested by another system, perhaps with

significantly more computational resources, is safe. It also allows us to verify that

the trajectories found by an algorithm dependent on heuristics or machine learning

is truly safe.

For systems that are even more computationally constrained we note that verifi-

cation is possible with a single collision check. If we stores the probabilities for the

individual shadows in algorithm 2, we can verify that a trajectory is safe with very

little communication and computational overhead. This would only require a single

collision check by the low-power system. In terms of communication, it requires only

the transmission of these probabilities, the states visited by the trajectory, and the

parameters of the obstacle distribution.
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Chapter 4

Algorithms for Finding Safe Plans

In chapter 3 we demonstrated that the computational complexity of bounding the

probability of collision for a trajectory is asymptotically not not much more expensive

than a traditional deterministic collision check. It does not seem that a similar result

is possible for either minimum risk or risk constrained planning with the shadows

used in 3. In this chapter we present a NP-hardness result for the risk constrained

planning. In a sense our hard our NP-hardness result is unsatisfying as it requires

that the obstacles live in a space of dimension 𝑂(log 𝑛). In practice robots operate

in a space of dimension 3 which means this proof does not preclude the existence of

an efficient algorithm for safe planning. It does suggest that if an efficient algorithm

were to exist, it would have to use the properties of a space of fixed dimension. For

completeness, a naïve, exponential time algorithm is described in this chapter as well.

4.1 Motivation

While finding trajectories that can avoid obstacles with high probability has become

increasingly important, the safe motion planning problem lacks certain structures that

make the deterministic motion planning problem comparably easy to solve. This ends

up making it difficult to efficiently provide the same theoretical guarantees to safe

motion planning that are available in the deterministic setting.

One way of evaluating a deterministic motion planner is asking whether it is prob-
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abilistically complete—does the probability of finding a plan, if one exists, approach 1

as the amount of allowed computation approaches infinity? While sampling based mo-

tion planning algorithms are often probabilistically complete under mild conditions,

they cannot be applied directly to the safe motion planning case without paying a

high computational cost.

Safe motion planning does not satisfy the Bellman principle of optimality. In other

words it lacks the important Markov-like Dynamic Programming structure that al-

lows sampling-based methods like the Rapidly-exploring Random Tree (RRT) family

of motion planning algorithms to be probabilistically complete. When evaluating

completeness for deterministic motion planning the trajectory used to reach a par-

ticular state, only that it is reachable. In the safe motion planning problem the

trajectory taken to reach a particular configuration is critical—it is exactly what de-

termines the probability of collision. Furthermore, since the probability of collision

at different points along a trajectory is not independent, the reachability of future

configurations under a risk constraint is dependent on the previous trajectory. Since

the RRT family of planners generally maintain only one path to every configuration

(thus the term random tree), they may not find the safe path if multiple feasible

paths exist. This suggests that simply adding a risk constraint to the standard RRT

algorithm is not probabilistically complete. An execution of an RRT to only generate

safe plans is shown in figure 4-1 to illustrate the issue.

This suggests that a different approach is necessary for approaching the safe mo-

tion planning problem. In approaching the safe motion planning problem, we propose

a naïve algorithm based on a Rapidly-exploring Random Graph (RRG) developed for

optimal deterministic motion planning [14]. This naïve algorithm will require expo-

nentially more computation than the original RRG algorithm. This algorithm will be

probabilistically complete under the standard assumptions for deterministic motion

planning. While the algorithm requires a lot of computation to find a safe plan once

that plan is present in the graph found by the RRG, it suggests that the method of

approximating paths in the robot’s configuration space can remain unchanged.

We will then show that finding a modification to the above algorithm that makes
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(a) An execution of an RRT modified to only find safe
plans. Uniformly sized shadows are shown for reference.

(b) The trajectory found by the RRT between the
start and destination configuration with optimal shad-
ows found by algorithm 2. Note that the RRT tends
to choose suboptimal trajectories (this can be shown to
happen with probability 1). While this suboptimality
does not affect it’s ability to find trajectories in a deter-
ministic setting, it does affect its ability to find trajecto-
ries in a risk constrained setting since it cannot reduce
total risk “taken” to get to a particular configuration.

Figure 4-1: Safe RRT
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it polynomial time is difficult. We provide several proof outlines for variants of the

hardness result. First we construct a reduction from 3SAT to the safe planning

problem where the obstacles are in a space of dimension 𝑂(𝑛). We then describe how

the result can be strengthened in several ways. We discuss how an Application of the

Johnson-Lindenstrauss lemma can allow us to use a space of dimension 𝑂(log 𝑛). We

also show how in the reduced space we can strengthen our result to prove hardness

of multiplicative approximation to a 1±Θ
(︀
1
𝜖

)︀
factor.

4.2 A Probabilistically Complete Planner for Safe

Motion Planning

In this section we propose a probabilistically complete safe planner. In other words, if

there exists a safe trajectory 𝜏 and a 𝛿 > 0 such that the 𝛿-inflation of the trajectory

{(𝑥, 𝑡) | 𝑑(𝑥, 𝜏(𝑡)) ≤ 𝛿} is safe, the probability that the planner finds a safe trajectory

approaches 1 as the number of iterations the algorithm is allowed to run goes to

infinity. We note that this notion of 𝛿-inflation is equivalent to saying that if the robot

was slightly inflated and took the same trajectory, the resulting trajectory would still

be safe. This is a slightly stronger condition than allowing small deviations from the

original trajectory at any point.

Our algorithm relies on a probability of collision oracle, a function

ProbCollision : 𝑋 → [0, 1]

that computes the probability of collision. We note that the algorithms presented

in chapter 3 can be used in this algorithm, as can a monte-carlo method with 𝑂
(︀
1
𝜖

)︀
complexity. We note that the naïve algorithm will be exact if the ProbCollision oracle

is exact, and approximate if it is approximate. We also note that if a randomized

algorithm not guaranteed to be correct with probability 1 is used to implement this

oracle, slight modifications may be necessary to use it in the naïve algorithm and

ensure that the result is correct with high probability.
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The 𝛿-inflation of the trajectory guarantees that with probability 1, an RRG will

contain a safe trajectory in a limit. At each iteration of the RRG we simply brute

force test all of the paths in the RRG to see if any are safe. This algorithm is presented

in Algorithm 3 and is only a slight modification from the original RRG algorithm.

Any valid steering function from the motion planning literature may be used inside

algorithm 3.

Algorithm 3 A brute force safe planning algorithm based on an RRG
Precondition: exists a safe 𝛿-inflation of a trajectory 𝜏 that is safe for some 𝛿 > 0.

1: function NaiveSafeRRG(𝑥𝑔𝑜𝑎𝑙, 𝜖,n)
2: 𝐺.𝑉 ← {𝑥𝑖𝑛𝑖𝑡, 𝑥𝑔𝑜𝑎𝑙}
3: 𝐺.𝐸 ← ∅
4: for 𝑖← 1 to 𝑛 do
5: 𝑥𝑟𝑎𝑛𝑑 ← Sample(𝑖)
6: G ← SafeExtendRRG(G, 𝑥𝑟𝑎𝑛𝑑, 𝜖)
7: for all path ∈ 𝐺, path.start = 𝑥𝑖𝑛𝑖𝑡, path.end = 𝑥𝑔𝑜𝑎𝑙 do
8: if ProbCollision(path) ≤ 𝜖 then
9: return path

10: end if
11: end for
12: end for
13: return ∅
14: end function

Theorem 7. If a safe 𝛿-inflated trajectory exists then, as the number of iterations,

𝑛→∞, the probability that algorithm 3 finds a safe trajectory is 1.

Proof. The existence of a safe 𝛿−inflated trajectory guarantees that the RRG will

eventually contain a safe path. Once the RRG contains a path, it will be enumerated

and the algorithm will identify it as safe using the ProbCollision oracle and return

it.

We note however, that Algorithm 3 involves a step which enumerates all paths,

and is at worst exponential in the size of the graph. This means that Algorithm 3

can be exponentially slower than a RRG for a similar deterministic motion planning

problem.
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4.3 Hardness

We characterize the hardness of the approximate safe planning problem with PGDF

planning problem via a reduction to 3-SAT. The reduction is relatively robust–it does

not matter if we use the shadows used in chapter 3 or exact shadows. This section

contains only a proof outline.

The outline of the proof is as follows:

1. Construct a gadget to capture information information about 𝑛 variables using

𝑂(𝑛) obstacles and adding 𝑂(𝑛) nodes to the graph and 𝑂(𝑛) obstacles in a

space of dimension 𝑂(𝑛).

2. Construct a gadget to capture information about 𝑚 clauses adding 𝑂(𝑚) nodes

to the graph.

3. Use a Johnson-Lindenstrauss embedding to embed, the graph and obstacles in

a space of dimension 𝑂(log 𝑛)

4. Use the gap in cost between good solutions and bad solutions to the problem is

not only hard to compute exactly, but also hard to approximate to within a 1
𝜖

factor.

Theorem 8. Determining the existence of a path of probability less than 𝜖 in a graph

of size 𝑂(𝑛) and 𝑂(𝑛) PGDF obstacles is NP-hard if the obstacles live in a space of

dimension 𝑂(log 𝑛).

We use two lemmas in the proof. One is the classic Johnson-Lindenstrauss Lemma.

Lemma 2 (Johnson-Lindenstrauss Lemma). Given an 𝜖 ∈ (0, 1) and a set 𝑋 of 𝑚

points in R𝑁 and 𝑛 = 𝑜( log𝑚
𝜖2

), there exists a matrix 𝐴 : R𝑁R𝑛 such that for all points

𝑥, 𝑦 ∈ 𝑋

(1− 𝜖)||𝑥− 𝑦|| ≤ ||𝐴𝑥− 𝐴𝑦|| ≤ (1 + 𝜖)||𝑥− 𝑦||

We also use the fact that an embedding that approximately preserves distances

also approximately preserves orthogonality.
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Lemma 3. Given two orthogonal vectors 𝑥, 𝑦, and a corresponding Johnson-Lindenstrauss

embedding matrix 𝐴 for parameter 𝜖, and 𝜃 the angle between 𝐴𝑥,𝐴𝑦 then | cos 𝜃| =

𝑂(𝜖)

We will construct a graph and a set of obstacles that will capture a specific 3-SAT

problem. We have one axis that corresponds to the gadget number.

First we construct a gadget for capturing information about variables in the 3-SAT

formula. For convenience we place the "start“ node of the graph at the origin.

For each variable we assign a dimension and a variable node centered along this

new axis. We add one obstacle at the +1 coordinate on that dimension and one the

−1 coordinate. We add a node close to each obstacle. We connect these two nodes to

the previous and next variable nodes. This construction is illustrated in figure 4-2.

Figure 4-2: An example of a variable gadget

Now we add a gadget for every clause. We add a clause node at the next gadget

index. For every variable that appears unnegated we set the corresponding index

closer to +1. For each variable that appears negated we set the corresponding index

to −1.

Since the risk is paid for each obstacle only once, choosing a path through the

graph is equivalent to choosing an assignment of variables. If the risk is only paid

for as many obstacles as there are variables the 3SAT is satisfiable. Otherwise one

variable must be both true in some clauses and false in others.
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Chapter 5

Safety in the Online Setting

So far in this thesis we have focused on guaranteeing safety in the following paradigm:

1. The episode begins

2. The robot gets information about its environment

3. The robot decides what action/trajectory to execute

4. The robot executes the action/trajectory

5. The episode ends

However, this paradigm rarely matches reality exactly. Instead of planning once,

robots often replan as they either deviate from the original trajectory or receive

additional sensor information.

This chapter examines how to guarantee safety in this more complicated setting.

5.1 Motivation

The safety guarantees developed earlier in this thesis, and in many other works, only

guarantees that during a single episode, the probability of collision between steps 1

and 5 is less an some fixed 𝜖 ∈ (0, 1). While these assumptions make it easier to

develop mathematical formalisms guaranteeing safety, they do not necessarily match
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robot operation in practice. Ideally, we would guarantee that the lifetime probability

of collision of the robot is less than 𝜖 while giving the robot the flexibility to change

its desired trajectory upon receiving additional information. In fact we can show that

a system that obeys a safety guarantee in the simple paradigm can be made to collide

with probability arbitrarily close to 1 when used in a situation where it is allowed

to re-plan. Simply always following paths that are currently 𝜖-safe is not sufficient

to guarantee that the lifetime probability of collision remains low. This example is

illustrated in figure 5-1 and explained below.

First the robot finds a trajectory with collision probability 𝜖 and starts executing

it. As it travels by the first obstacle, it gets more informative observations regarding

the location of the obstacle. It now knows for sure it will not collide. Once it passes the

first obstacle it searches for a new trajectory with probability of collision 𝜖 of collision

and starts executing this. It repeats this process until it has reached its destination

or collides. It is important to note that this example is not convoluted and is not

far from how practical robot systems behave. It is quite common that robots obtain

better estimates of obstacles as they get closer and then re-plan less conservative

trajectories. It is also common for systems to merely require that any action they

take be safe instead of explicitly proving that the lifetime sequence of actions they will

take will be safe (especially when this sequence of actions is unknown when execution

begins). In doing so, these systems repeatedly take small risks without keeping track

of them, allowing the systems to collide more frequently than the safety guarantee

indicates.

Computation of the real probability of collision (approaching 1) in the scenario

presented in figure 5-1 follows quite directly. Say that during each step the probability

that the robot will collide with the first obstacle is 𝛼𝜖 and with the remaining obstacles

1− 𝛼𝜖. Let 𝐶𝑖 denote the event that the robot collides in the execution of step 𝑖.
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(a) The robot finds a trajectory with probability 𝜖 of collision and begins execution.
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(b) After having passed the first obstacle the robot uses all the new information it obtained to
find a new trajectory with probability of collision 𝜖. Since the robot now knows that the first
segment of the trajectory was collision free, the fast and future portion of the trajectory have a
combined collision probability of 𝜖.

Figure 5-1: An illustration about how a robot can be always taking an action that is
safe, but still be guaranteed to eventually collide.
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𝑃 (𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) = 𝑃 (𝐶1) + 𝑃 (𝐶𝐶
1 )𝑃 (𝐶2|𝐶𝐶

1 ) + ...

= 𝛼𝜖 + (1− 𝛼𝜖)𝛼𝜖 + ... + (1− 𝛼𝜖)𝑛𝛼𝜖

In the limit of number of episodes this becomes

=
𝛼𝜖

1− (1− 𝛼𝜖)

= 1

Since we clearly do not want our robots to collide with the environment with

probability one we need to understand what constitutes safe behavior in this “online”

setting where the robot is receiving a constant stream of information and is constantly

making decisions.

In this chapter of the thesis we develop a notions of policy safety and absolute

safety—a way of guaranteeing that the lifetime collision probability is less than a

fixed 𝜖, even when the robot has access to a constant stream of information and is

allowed to react to the new information.

5.2 Absolute Safety

First we formalize how our robotic system makes decisions. Let 𝑂𝑡 be the set of

observations by the robot (eg. sensor data) up to, but not including time 𝑡. Let 𝐴𝑡 be

the action that the robot commits to at 𝑡. If there is a processing delay, this action

might only be executed at a time 𝑡′ > 𝑡.

Definition 3 (policy). A policy 𝜋 : 𝑂𝑡 → 𝐴𝑡 is a function from observations to

actions.

This allows us to define a natural notion of safety for policies. Let 𝑈 be the event

that something unsafe (ex. a collision with an obstacle) occurs.

Definition 4 (Policy Safety). A policy 𝜋 is 𝜖-policy safe with respect to an event 𝑈
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if the probability of 𝑈 under the policy is less than 𝜖.

𝑃 (𝑈 |𝜋) ≤ 𝜖

In order to understand policy safety, it is important to be clear on how the policy

is allowed to use randomness. Consider the policy that uses randomness internally

illustrated in figure 5-2.

Start

Flip a fair coin

Take an action
unsafe with

probability 0.5𝜖

Take an action
unsafe with

probability 1.5𝜖

Figure 5-2: A flow chart for a policy that can cheat a natural definition of safety
using internal randomness

While the overall probability of failure in the policy of figure 5-2 is still 𝜖, after

the policy flips the coin, it knowingly takes an action that is unsafe with probability

1.5𝜖. If we want to prevent such behavior, it is also not sufficient to merely ban

the policy from using randomness. Not only is randomness useful for computation,

but banning internal randomness ends up making little difference. The observations

often contain sufficient randomness to enable to policy to emulate having an internal

random number generator.

We define absolute safety as a notion of safety that forces the policy to always

commit to a plan that is sufficiently safe given the current sensor observations.

Definition 5 (Absolute Safety). We say that a policy 𝜋 is 𝜖−absolutely safe if at
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every point in time 𝑡 the following holds true:

∫︁ ∞

0

𝐸[𝑝𝑡|𝜋(𝑂𝑡)]𝑑𝑡 = (5.1)∫︁ 𝑡

0

𝑝𝑡𝑑𝑡 +

∫︁ ∞

𝑡

𝐸[𝑝𝑡|𝜋(𝑂𝑡)]𝑑𝑡 ≤ 𝜖 (5.2)

where 𝑝𝑡 is the probability of an unsafe event at time 𝑡, given the information up to

the last point in time where the policy could change the action affecting the probability

of collision.

We note that the second term in equation (5.2) is exactly the probability of colli-

sion given the current information.

5.2.1 Absolute Safety vs traditional

The definition of absolute safety is somewhat different than is traditionally used to

guarantee safety. In order to better understand this condition, we develop some

comparisons to these more traditional mathematical conditions used to guarantee

safety.

First we note the second term in equation (5.2) is exactly the probability of col-

lision given the current information. This allows an alternative interpretation of the

condition of absolute safety. At every time the following must hold true: the sum of

the future risk, and some accounting of past risk must always be less than 𝜖. This a

strictly stronger condition than requiring that future actions have risk less than 𝜖—an

often used condition that is broken by the counterexample presented in the beginning

of the chapter.

Comparing absolute safety to policy safety is more complicated. In order to be

able to better understand the difference we introduce the notion of an information

adversary. An information adversary is a particular kind of adversary that tries to

make the system unsafe by turning off the system’s sensor stream.

Definition 6 (Information Adversary). An information adversary is an agent that

has access to the internal state of the robot and can stop the sensor stream at any
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point. The information adversary attempts to maximize the probability of an unsafe

event such as collision. In the notation used earlier in the chapter, an information

adversary can at any time 𝑡 ensure that 𝑂𝑡′ = 𝑂𝑡 for all 𝑡′ ≥ 𝑡.

The notion of an information adversary is what allows us to compare absolute

safety to policy safety. We use two theorems to compare the two notions of safety.

Theorem 9. 𝜖-absolute safety guarantees 𝜖-policy safety.

Theorem 10. A system that is 𝜖-policy safe at all times guarantees 𝜖-absolute safety.

More informally, absolute safety is a stronger condition than policy safety that

requires the system’s actions always be safe under the current information set.

The proof of the theorem 9 follows almost by definition.

Proof. Recall that we use 𝑈 to denote the unsafe event. We simply consider time 0,

the beginning of the episode. Absolute safety gives us the following conditions:

∞∫︁
0

𝐸[𝑝𝑡|𝑂𝑡]𝑑𝑡 = 𝑃 (𝑈 | 𝜋) ≤ 𝜖

The proof of theorem 10 is by contradiction. If the theorem did not hold true, we

could explicitly construct a set of actions by the information adversary that would

make the policy unsafe. Absolute safety is stronger than policy safety in two ways:

1. No hedging bets. Absolute safety does not allow the robot to choose a risky

path half the time and a safe path half the time, even if the expected risk is

acceptable.

2. Relying on future information to make decisions. Absolute safety does not allow

a system to rely on receiving future observations.

Proof. Assume for the sake of contradiction that there exists a set of observations 𝑂

and a time 𝑡 for which absolute safety does not hold. That is to say that conditioned
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on these observations

𝑡∫︁
0

𝑝𝑡𝑑𝑡 +

∞∫︁
𝑡

𝐸[𝑝𝑡 | 𝜋]𝑑𝑡 > 𝜖

Let the information adversary stop the flow of information to the robot at time 𝑡.

Let 𝐴1 de note the event that the system fails during times (0, 𝑡] and 𝐴2 denote the

event that the sy stems fails during times (𝑡,∞). We note that a system can fail at

most once, so 𝐴1, 𝐴2 are exclusive.

Utilizing the fact that
∞∫︀
𝑡

𝐸[𝑝𝑡|𝑂]𝑑𝑡 = 𝑃 (𝐴2|𝑂) and
𝑡∫︀
0

𝑝𝑡 | 𝑂𝑑𝑡 = 𝑃 (𝐴1 | 𝑂), we

get that the probability of failure 𝑃 (𝐴1 ∪ 𝐴2) = 𝑃 (𝐴1) + 𝑃 (𝐴2) ≥ 𝜖 violating our

assumption that the system is policy safe under the set of observations 𝑂.

5.2.2 Absolute Safety using Shadows

In this section we examine how to augment the algorithm in chapter 3 to guarantee

absolute safety. Recall that absolute safety is the following condition:

𝑡∫︁
0

𝑝𝑡𝑑𝑡 +

∞∫︁
𝑡

𝐸[𝑝𝑡 | 𝜋]𝑑𝑡 ≤ 𝜖

Alternatively using the fact that the second term is simply the future probability

of collision given the current information we get the following condition: (Note that

𝑈 is the collision event)

𝑡∫︁
0

𝑝𝑡𝑑𝑡 + 𝑃 (𝑈) ≤ 𝜖

𝑃 (𝑈) is exactly the probability of collision computed in algorithm 2. The integral

in the first part can be computed using information available at the current time.

This leads to a modification that can allow us to certify that a system is safe under

replanning. This leads to the following modification to algorithm 2 that guarantees
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𝜖-absolute safety:

1. Compute 𝜖1 =
𝑡∫︀
0

𝑝𝑡𝑑𝑡

2. Verify that any new proposed trajectory has probability of collision less than

𝜖− 𝜖1

If the trajectory chosen always passes the above safety check, the policy is guaranteed

to be 𝜖-absolutely safe.

5.3 Conclusion

Guaranteeing safety in the online setting can be rather nuanced and identifying de-

sired behavior can be difficult. For example, policy safety allows the system to take

actions that are known to be risky. Absolute safety and the information adversary

model on the other hand, can be too restrictive. We hope that future work will take

care to define safe behavior in a manner appropriate for the application.
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Chapter 6

Conclusion

The contributions of this thesis can be split into two halves. The first half consists

of contributions of a mathematical nature. The thesis presents a way of quantifying

the quality of estimated shapes through models of random geometry and shadows.

It presents the PGDF model of random polytopes and describes how to compute

shadows of PGDF polytopes. For arbitrary distributions over half-spaces we show

how to find probability of intersection. We characterize the existence and uniqueness

of 𝜖-shadows for arbitrary distributions as well.

The second half presents algorithms that utilize the mathematics developed in the

first half. We present an efficient algorithm that an be used to bound the probability

of collision for a trajectory. We also discuss issues with generalizing our algorithm

to guarantee safe operation in a setting with a continuous flow of sensor data. We

present a general method that can be used to guarantee safety in such settings.

6.1 Future Work Related to Safe Navigation

While the algorithm we presented for bounding probability of collision is exponentially

faster than the state of the art Monte-Carlo based methods, much work remains to

be done. The bounds computed by the algorithm are not tight, and there is hope

that they can be improved.

The algorithm presented in chapter 3 does not compute actual motion plans. We
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hope that a practical algorithm for finding safe plans can be obtained. Finally, the

PGDF has some surprising behavior that was highlighted in chapter 2. We hope that

future work will develop better estimation methods and statistical models in order to

avoid the degenerate behavior shown in chapter 2.

6.2 General Future work

The main contribution of the work is towards developing and applying a theory of

random geometry. Many systems, robotic and otherwise, must interact with geometry

in the environment. While we have many methods that estimate geometry based on

noisy observations, we often lack a rigorous understanding of how these methods

perform as statistical estimators [7, 19]. Understanding the mathematics behind

random geometry will not only help us understand how our current methods perform,

but also how to design better methods.

As demonstrated in this thesis, a better understanding of random geometry allows

us to efficiently reason about uncertainty in our estimates of geometry. In this thesis

we used this information to compute the probability that a particular robot trajectory

would collide with a set of estimated obstacles. This information could be used for

other applications as well. If we desired to improve our estimates of obstacles, this

information could inform us as to which observations would yield the most valuable

information. Perhaps this information can be used to devise grasping strategies that

are robust to the uncertainty in the estimates of the geometry.

Finally this thesis demonstrated that reasoning about uncertainty in this frame-

work can be done efficiently. Many problems in robotics that require reasoning about

uncertainty are provably hard. Restricting the problem in question to a specific distri-

bution of obstacles, and examining the underlying mathematics led to a very simple,

efficient approximation algorithm. In fact, the proposed algorithm is barely slower

than its equivalent for the deterministic setting. Hopefully understanding the math-

ematics behind random geometry will give us insight to what actually makes these

problems computationally hard, and suggest ways to get around the fundamental
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computational restrictions at little practical cost.
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Appendix A

Geometry and Vector Space Primer

The methods of bounding random geometry presented in this thesis require under-

standing the relationship between geometry in the space that robots operate in (usu-

ally R3) and the space of half-space parameters of geometry over R𝑛 (the dual space).

Duality in convex geometry studies precisely this when examining half-spaces (sets

of the form 𝛼𝑇𝑥 ≤ 0). The dual of the vector space R𝑛 is defined by the map that

sends the half-space 𝛼𝑇𝑥 ≤ 0 to 𝛼. The space of parameters 𝛼 of half-spaces over R𝑛

is called the dual space.

Throughout this thesis we use homogeneous coordinates, embedding the point

< 𝑥1, ...𝑥𝑛 >∈ R𝑛 as < 𝑥1, ...𝑥𝑛, 1 >∈ R𝑛+1. We can undo this mapping by sending

any point < 𝑥1....𝑥𝑛, 𝑥𝑛+1 > to 1
𝑥𝑛+1

< 𝑥1, ..., 𝑥𝑛 >. This proves convenient as it allows

us write an equation such as 𝛼𝑇𝑥 ≤ 𝑏 compactly as < 𝛼1, ..., 𝛼𝑛,−𝑏 >𝑇 𝑥 ≤ 0 and

describe affine transformations on the original coordinates as linear transformations

(as matrices) on homogeneous coordinates.

While an in depth discussion we refer to Boyd et al. [3], we introduce the minimal

set of dual geometry concepts necessary to understand the developments in this thesis.

We discuss polar cones, dual cones, norm cones and dual norms.
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A.1 Cones

Definition 7 (Convex Cone). We say that a set 𝐶 is a convex cone if 𝐶 is convex

and closed under positive scaling. In other works 𝐶 is a cone if for any 𝑥, 𝑦 ∈ 𝐶, 𝜆1 ≥

0, 𝜆2 ≥ 0, 𝜆1𝑥 + 𝜆2𝑦 ∈ 𝐶.

Definition 8 (Dual Cone (𝐶⋆)). The dual cone, 𝐶⋆ of a set 𝑋 is

𝐶⋆ = {𝛼 | 𝛼𝑇𝑥 ≥ 0, ∀𝑥 ∈ 𝑋}

In other words the dual cone of a subset of a vector space 𝑋 is the set of linear

functions that do not contain any point of 𝑋. If 𝑋 is a set of linear functionals, it’s

dual cone can be interpreted as contained in all the half-spaces defined by 𝛼𝑇𝑥 ≤ 0

with 𝑥 in the set 𝑋.

Taking the dual cone of the dual cone of 𝑋 yields the minimal convex cone con-

taining 𝑋. If 𝑋 was already a convex cone then taking the dual twice yields exactly

the original set.

Definition 9 (Polar Cone (𝐶0)). The polar cone, 𝐶0 of a set 𝑋 is

𝐶0 = {𝛼 | 𝛼𝑇𝑥 ≤ 0, ∀𝑥 ∈ 𝑋}

The polar cone of a set 𝑋 is the set of linear functions that contain every point in

𝑋.The relationship between a polar cone and the dual cone is described in theorem

11.

Definition 10 (Norm Cone). Let || · || be a norm (distance measure) on R𝑛. The

corresponding norm cone is

𝐶 = {(𝑥1, ...𝑥𝑛, 𝑟) | ||𝑥|| ≤ 𝑟}

We say that the dual space of R𝑛 is the space of linear functionals 𝛼 over R𝑛,

where 𝛼𝑇𝑥 ≤ 0
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Figure A-1: The dual cone of the blue blob
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Figure A-2: The polar cone of the blue blob. Note it’s relation with the dual cone.
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A.2 Useful Theorems about dual and polar Cones

Theorem 11. Let 𝐶⋆ be the dual cone of 𝑋, and 𝐶0 the polar cone of 𝑋. Then

𝐶⋆ = −𝐶0

Theorem 12. Let 𝐶 be the norm cone corresponding to || · ||. Then the dual cone,

𝐶⋆ is the norm cone with norm || · ||⋆, the dual norm of || · ||

A.3 Dual Norms

Definition 11 (Dual Norm (|| · ||⋆)). The dual norm of || · || is ||𝑥||⋆ = sup
𝑦
{𝑦𝑇𝑥 |

||𝑦|| ≤ 1}

Theorem 13. Let ||𝑥|| =
√
𝑥𝑇Σ𝑥 for Σ ≻ 0. Then ||𝑦||⋆ =

√︀
𝑦𝑇Σ−1𝑦

Proof. We simply apply the KKT conditions to the definition of a dual norm.

||𝑦||⋆ = sup(𝑥𝑇𝑦 | ||𝑥|| ≤ 1)

Now we apply the KKT conditions

0 = ∇(𝑥𝑇𝑦 − 𝜆(
√
𝑥𝑇Σ𝑥− 1))

0 = 𝑦 − 2𝜆Σ𝑥

2
√
𝑥𝑇Σ𝑥

Since our problem is of a linear function over a convex domain our solution will lie on

the boundary of the domain. This implies that ||𝑥|| = 1 and allows us to solve for 𝑥.

𝑥⋆ = 𝜆Σ−1𝑦

=
Σ−1𝑦√︀

𝑦𝑇Σ−1ΣΣ−1𝑦

=
Σ−1𝑦√︀
𝑦𝑇Σ−1𝑦
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Now we can evaluate the supremum

sup(𝑥𝑇𝑦 | ||𝑥|| ≤ 1) = 𝑥⋆𝑇𝑦

=
𝑦𝑇Σ−1𝑦√︀
𝑦𝑇Σ−1𝑦

=
√︀

𝑦𝑇Σ−1𝑦
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