
Laboratory Assignments for Teaching Introductory
Signal Processing Concepts

by

Katherine Kem

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

Aug 18, 2017

Certified by. .
Adam Hartz

Lecturer
Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Department Committee on Graduate Theses

2

Laboratory Assignments for Teaching Introductory Signal

Processing Concepts

by

Katherine Kem

Submitted to the Department of Electrical Engineering and Computer Science
on Aug 18, 2017, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Science and Engineering

Abstract

This thesis proposes labs for a new, applications-based signal processing class. These
labs span topics in audio, image, and video processing and will combine signal pro-
cessing techniques with computational tools. The goal of these labs is to improve
student understanding of signal processing concepts and show them the power of
signal processing in everyday applications.

Thesis Supervisor: Adam Hartz
Title: Lecturer

3

4

Acknowledgments

I have many fabulous people to thank for helping me through this process.

Adam Hartz, my thesis supervisor, for always being encouraging, helpful and not

afraid to give good critical feedback. My academic advisor, Jeffrey Shapiro, for help-

ing me navigate my academic path and providing me with delicious sea food. Braden

Knight, for "linguistic and emotional support" and musical motivation. Neerja Ag-

garwal for being my 6-1 comrade-in-arms. The copy-editing-team of Kathleen Zhou,

Kenny Friedman, Colin McDonnell and JNH. The denizens of Jinder Neutral Hous-

ing for being awesome, supportive roommates: Manjinder Singh, Dirk Beck, Laura

Jarin-Lipschitz, and Matthew Tancik. David Hu for kindly letting me use his awesome

photos. And finally, my incredible parents, Martha and John Kem, for supporting

me throughout my entire life and letting me cry to them on the phone.

5

6

Contents

1 Introduction 13

1.1 First Principles of Instruction . 13

1.2 Signals at MIT . 14

1.3 Foundations Level Class Comparison 16

1.4 Goals of This Thesis . 18

2 Chord Detection 21

2.1 Chromagram . 21

2.2 Determine Closest Chord . 23

2.2.1 Chord Vectors . 23

2.2.2 Determine Similarity . 23

2.3 Chromagram Filtering . 25

2.3.1 Logarithmic Scaling . 25

2.3.2 Averaging Filter . 25

2.3.3 Viterbi Algorithm . 26

2.4 Resulting Chord Progression . 28

3 Musical Fingerprinting 31

3.1 Create Fingerprint . 31

3.1.1 Spectrogram . 32

3.1.2 Constellation . 32

3.2 Matching . 33

3.3 Matching a Distorted Song Clip . 35

7

3.4 Query Optimization . 36

4 JPEG Compression Lab 39

4.1 Perform Compression/Decompression 39

4.1.1 Compression . 40

4.1.2 Decompression . 43

4.2 Compare DCT and FFT . 46

4.3 Optimize Filter . 48

5 Phase Based Movement Magnification in Videos 51

5.1 Simplified Versions . 51

5.1.1 Displacement and Phase Relationship 51

5.1.2 Movement Magnification in One Dimension 52

5.1.3 Simple Two Dimensional Frames 54

5.2 Steerable Pyramid Version . 56

5.3 Gaussian Filter Version . 59

6 Conclusion 61

8

List of Figures

2-1 Spectrogram of First 10 Seconds of Wonderwall 22

2-2 Chromagram for Wonderwall Clip, Unfiltered 23

2-3 Chord Vectors . 24

2-4 Chord Structure from Unfiltered Chromagram 24

2-5 Time Averaged Chromagram . 26

2-6 Chord Structure from Time Averaged Chromagram 26

2-7 Wonderwall Chord Structure Post Viterbi Algorithm 28

3-1 Spectrogram of Stars Dance Clip . 32

3-2 Finding the Local Maximum in a Rectangle 33

3-3 Constellation and Spectrogram of Song Clip 33

3-4 Full Constellation of Stars Dance . 34

3-5 1.5 Second Song Query . 34

3-6 Time Matched Query for Original Clip 35

3-7 Distorted Song Query . 35

3-8 Time Matched Query for Distorted Clip 36

4-1 Original Uncompressed Image . 40

4-2 Discrete Cosine Transform Basis . 40

4-3 Quantization in the Frequency Domain, 𝑄 = 50 43

4-4 Block of pixels before and after compression 44

4-5 Complete Image Before and After Compression 45

4-6 Comparison of Images Compressed using Different Quality Factors . . 45

4-7 FFT Basis . 46

9

4-8 Quantization Matrix for DCT Version 47

4-9 Quantization Matrices for FFT Method 47

4-10 Final Compressed Images With 10 Coefficients 48

4-11 Image Generated from Random Quantization Matrix 49

5-1 One Dimensional Motion Magnification 54

5-2 Unmagnified Frames for One Directional Translation 55

5-3 Magnified Frames for One Directional Translation with 𝛼 = 3 56

5-4 Unmagnified Frames for Bidirectional Translation 57

5-5 Magnified Frames for Bidirectional Translation with 𝛼 = 3 57

5-6 Steerable Pyramid Filters for One Level 58

5-7 Diagram of Phase Based Motion Magnification from CSAIL [9] 58

5-8 Gaussian Windowed Frame . 60

10

List of Tables

1.1 HKN Underground Guide Class Ratings 17

11

12

Chapter 1

Introduction

This thesis proposes labs for an application-based class in signal processing at MIT.

These labs will facilitate learning and understanding of important signal processing

concepts through real-world design problems.

1.1 First Principles of Instruction

M. David Merrill, author of the book First Principles of Instruction [5] has spent years

studying education theory to determine which education strategies and approaches

are the most successful. He has identified five key First Principles as the foundations

behind s successful education curriculum. To qualify as a First Principle, it "had to

promote more effective, efficient, or engaging learning. When the principle had been

subjected to careful study, it had to be supported by the research." These five First

Principles are:

∙ Problem-Centered: Learning is promoted when learners acquire skill in the con-

text of real world problems.

∙ Activation: Learning is promoted when learners activate existing knowledge

and skill as a foundation for new skills.

∙ Demonstration: Learning is promoted when learners observe a demonstration

of the skill to be learned.

13

∙ Application: Learning is promoted when learners apply their newly acquired

skill to solve problems.

∙ Integration: Learning is promoted when learners reflect on, discuss, and defend

their newly acquired skill.

According to Merrill, "it is assumed that [...] these principles are necessary for ef-

fective, efficient, and engaging instruction. If this assumption is true, then it is

hypothesized that when a given instructional program or practice fails to appropri-

ately implement one or more of these First Principles, there will be a decrement in

learning and performance [5]." Ideally, classes will use a combination of all five of

these principles to maximize learning and retention.

1.2 Signals at MIT

A solid understanding of signals and signal processing can be applied to nearly every

area of electrical engineering, from optics and digital electronics to analog circuits

and robotics. It is one of the most versatile tools in the core electrical engineering

curriculum.

The following list shows the general progression of signals and signal processing

classes at MIT. Some classes in this progression already have an applications based

component. The course descriptions have been taken from the MIT course catalog

[6]:

1. Introductory Level : 6.01, 6.02, 6.03, or 6.S08. These are all introductory classes

at MIT that cover a range of topics. 6.02 is the only introductory subject

to cover signal processing. According to the course description, the "signals

module includes modeling physical channels and noise, signal design, filtering

and detection, modulation, and frequency-division multiplexing." This class has

a lab component.

2. Foundations Level : 6.003. "Presents the fundamentals of signal and system

analysis. Topics include discrete-time and continuous-time signals, Fourier se-

14

ries and transforms, Laplace and Z transforms, and analysis of linear, time-

invariant systems. Applications drawn broadly from engineering and physics,

including audio and image processing, communications, and automatic control."

This class has no lab component.

3. Header Level : 6.011. "Covers signals, systems and inference in communica-

tion, control and signal processing. Topics include input-output and state-space

models of linear systems driven by deterministic and random signals; time- and

transform-domain representations in discrete and continuous time; and group

delay. State feedback and observers. Probabilistic models; stochastic processes,

correlation functions, power spectra, spectral factorization. Least-mean square

error estimation; Wiener filtering. Hypothesis testing; detection; matched fil-

ters." This class has no lab component.

4. Graduate Level : There are several classes at the graduate signal processing level.

Some of these include a laboratory or project component.

Generally, an electrical engineering student at MIT will take this progression of signals

classes, but undergraduates often stop this progression at the header-level. At this

point in the progression, a student can graduate having never analyzed a physical

signal within an explicit signal processing context. Some other classes touch on topics

and techniques tangentially related to signal processing: systems and controls are

covered in the AUS course 6.302, and transforms are used as a method of analysis in

circuit classes such as 6.002 and 6.012. However, within the signals class progression

itself, more advanced signals concepts are not applied to real world scenarios until

the graduate level.

This thesis proposes applications-based labs for a foundation-level signal process-

ing class. There is currently on foundation-level signals and systems class, 6.003.

6.003 uses a combination of lectures, recitations, problem sets, and exams. The lec-

tures contain demonstrations, fulfilling the Demonstration principle (see Section 1.1).

In having students use what they’ve learned to solve problems in problem sets and

exams, the class uses the Application principle. The class progression builds on past

15

skills to teach new topics, which touches on the Activation principle. However, it

fails to address the Problem-Centered principle by not including a real world context

for students in which to apply their skills. It also fails to address the Integration

principle by having no opportunity for students to discuss their takeaways. One way

to address these missing principles is to add a laboratory component to the class.

1.3 Foundations Level Class Comparison

Some of the other electrical engineering foundations-level classes already contain

applications-based projects. I’ve compared the student feedback of these classes with

the current version of 6.003.

The four classes satisfying the foundation-level requirements for the electrical en-

gineering curriculum are:

∙ 6.002: Circuits and Electronics

∙ 6.003: Signals and Systems

∙ 6.004: Computation Structures

∙ 6.007: Electromagnetic Energy

Of these four classes, 6.003 is the only class with no laboratory or applications compo-

nent. The HKN Underground Guide [3] publishes ratings for overall class score, which

come from student surveys at the end of the class. The overall scores for the nine

semesters most recently published (spanning from Spring 2012 to Spring 2016) have

been averaged together, weighted by the number of student responses per semester,

and are displayed in Table 1.1. 6.003 has the lowest overall score by a half point or

more with a score of 5.1. This low score, when combined with the student comments

addressed below, suggests a deficiency in the current version of the class.

In addition to this numerical feedback on classes, the HKN underground guide

also collects comments from students, publishing student opinion summaries as well

as direct quotes. It aggregates the feedback and publishes what students commonly

16

Class Overall Score
6.002 5.6
6.003 5.1
6.004 6.1
6.007 5.6

Table 1.1: HKN Underground Guide Class Ratings

These ratings are on a scale of 1 to 7, where 1 corresponds to "very poor" and 7 corresponds
to "excellent." 6.007 has a much smaller class size than the others and therefore is more
susceptible to small sample bias.

found "cool" or "uncool" about the class. I’ve looked at the feedback for all nine

semesters published since the Spring 2012 term for all four foundation-level classes.

For 6.003, seven of these nine semester summaries listed the in-class demos as one

of the "cool" aspects of the class. This suggests that students enjoyed seeing signals

applied to real world situations. Five semester summaries said that the abstract,

overly mathematical aspect of the class was "uncool." A student in the Spring 2012

class said, "this class is so mathematical sometimes, it’s hard to see the relevance to

real life." The Spring 2014 summary stated that "as the material was very theoretical

many students felt that having more examples and applications would have helped

solidify concepts."

In contrast to the highly theoretical 6.003, 6.004 has a substantial laboratory

component and the highest overall score of 6.1. The summary for Spring 2016 de-

scribed 6.004 as having a "balanced mix of theoretical and hands on experience" and

that "students enjoyed the labs and found them useful in solidifying concepts used in

lecture." Feedback consistently confirmed that the labs "helped the students gain a

better understanding of the material." In addition to facilitating student learning, the

labs for 6.004 made students feel accomplished and excited. A student from the Spring

2013 class said that one lab "was probably the coolest thing I have ever done...you

will shed tears of joy." This feeling of pride and excitement about the assignments

and material is missing from the 6.003 feedback.

This 6.004 feedback suggests that a lab component improves student understand-

ing and motivation. However, not all labs are created equal. According to the Un-

17

derground Guide class summary, students enjoyed the 6.002 labs and thought that

"completing [them] helped them gain a better understanding of the material" (Spring

2014). However, one lab, in which students construct a miniature music player,

had much better reception than the "long and boring" amplifier characterization lab

(Spring 2013). Applying the concepts learned in class to making a real life circuit in

the music player lab was more exciting for students than the more tedious amplier

lab.

The labs in 6.007 received a mixed reception. Many students found the labs

"interesting, reasonable, and helpful" (Spring 2015). However, some considered the

labs "fun and interesting though not necessarily contributing to learning" (Fall 2014).

Students did appreciate the interesting applications of the concepts learned in 6.007.

A Fall 2012 student said, "[there’s] always immediate applications to what you learn

often in technology you use everyday" [3].

Labs should be carefully created to be fun and exciting while reinforcing concepts

learned in class and facilitating understanding. According to David Merrill, "the

most motivating of all events is when people realize that they can solve a problem or

perform a task that they couldn’t do before. Learning is the most motivating of all

activities when learners can observe their progress. The key exclamation is, ’Watch

me! See what I can do!’" [5]. An applications-based laboratory component allows

students to see their progress in a real world context and have an exciting result they

can show off.

1.4 Goals of This Thesis

Adam Hartz and Dennis Freeman are currently working on the curriculum for a

new sophomore level, applications-based signal processing class likely to be offered

in Spring 2018. This year I worked with Adam Hartz in designing four of the labs

and projects that the students will complete for this class. The course spans signal

processing applications in image, audio, and video processing.

The currents signals class hits three of the five principles of instruction (Section

18

1.1): Demonstration, Application, and to some extent Activation. In completing

the labs described in this paper, students will apply the skills learned in class to

real world design problems achieving the Problem-centered principle of instruction.

In demonstrating the working labs and discussing what they’ve learned with the

instructors, TAs, and their peers, students will reach the fifth principle of instruction,

Integration. The goal of these labs is to not only facilitate learning and deepen

understanding, but also get sophomore level electrical engineering students excited

about the applications of signal processing concepts in everyday life.

The following chapters will detail the labs developed for the new signal processing

class. Chapter 2 details a lab centered around chord detection. Students will identify

the chord structure of songs from the frequency content of the recording while using

filtering and computation techniques to improve the results. Chapter 3 details a

musical fingerprinting lab based on the popular app, "Shazam." Students will create

unique fingerprints based on frequency content of each song and use them to identify

short song clips against a database. Chapter 4 details a lab based on the JPEG

image compression protocol. In this lab students will implement a JPEG compression

program and compare the effects of different transforms and filters on the results.

Chapter 5 details a lab in which students will amplify movements in videos using a

phase-based technique. It is based off a paper from Bill Freeman’s group at MIT

CSAIL [9].

19

20

Chapter 2

Chord Detection

For this lab, inspired by the book Fundamentals of Music Processing [8], students

will analyze a recording of the song to find the underlying chord structure. Students

will learn about the frequency content of music and how examining signals in the

frequency domain can reveal previously unknown characteristics.

The chord detection process begins with making a chromagram, which describes

the pitch profile of the song. For each point in time, the chord closest to the pitches in

the chromagram is recorded as the chord being played. Filtering and Markov models

can be used to improve the results.

Students will first implement a naive chord detection program, then experiment

with filtering and Markov models to improve the program.

2.1 Chromagram

To demonstrate the chord detection process, I’ve analyzed the 1995 song Wonderwall

by Oasis.

First, students will make a spectrogram of the song to see the frequency content

over time. Students can experiment with different FFT window lengths and different

hop sizes. The window and hop size should be chosen such that the feature detection

rate is faster than the typical chord change, but not so small that the time samples

are subject to bias from irrelevant frequency content. Choosing a feature detection

21

Figure 2-1: Spectrogram of First 10 Seconds of Wonderwall

Spectrogram created with FFT window length of 186 milliseconds and an overlap of 93
milliseconds, giving us a feature detection rate of about 10 Hz as suggested by a paper by

T. Cho et al [1].

rate much faster than typical chord changes allows results in more accurate time

stamps for chord changes. Students can also improve the note detection by zero-

padding the spectrogram, which adds more samples to signals in the frequency domain

but does not improve the actual resolution. This finer sampling of the frequency

spectrum results in sampled values closer in frequency to the precise note frequencies

and therefore more accurate note detection.

Audible frequencies range from about 20 Hz through about 20 kHz. However, the

useful range for chord detection is only from about 100 Hz to 1000 Hz, as frequencies

outside this range rarely occur in music. Only these useful frequencies are displayed

in Figure 2-1’s spectrogram of the first 10 seconds of Wonderwall.

Next, students will write a program which creates a chromagram from the spectro-

gram. A chromagram is a way of representing the complete pitch class profile of the

song. For chord detection the octave of a note doesn’t matter, just its pitch. Thus,

the chromagram sums together the spectrogram signal sampled at all notes of the

same pitch within the useful range. This process is repeated for every pitch value and

every point in time for the spectrogram. The resulting chromagram contains the full

pitch profile of the song clip as it changes over time. Figure 2-2 shows the resulting

chromagram for the 10 second clip of Wonderwall.

22

Figure 2-2: Chromagram for Wonderwall Clip, Unfiltered

2.2 Determine Closest Chord

Now that the students have a chromagram to show the pitch class profile of the song

clip, they will determine which chord is being played at each point in time. They will

begin with a naive approach, in which the chromagram at each time step is compared

to a bank of vectors representing the different possible chords. The vector determined

to be most similar to the chromagram, according to the Pearson correlation coefficient,

is labeled as the likely correct chord.

2.2.1 Chord Vectors

Each chord is represented by an array of 12 binary values representing which notes

make up the chord. There are 60 possible chords, but many of them are uncommon.

To simplify this demonstration, I’ve chosen to use only 25 chords: the 24 major

and minor chords, which are the most commonly used, and the chord Esus, which

is a chord in the example song Wonderwall. Chords can be added or removed by

instructors or students if desired. Figure 2-3 shows the chord vectors for the 25

chosen chords.

2.2.2 Determine Similarity

Students will write a program comparing the chromagram at each timestep to the

chord vectors using the Pearson’s correlation coefficient. The chord vector with the

highest correlation coefficient is recorded as the most similar chord. When the most

similar chord is computed for each timestep and combined, the result shows an ap-

23

Figure 2-3: Chord Vectors

proximation of the overall chord structure as seen in Figure 2-4. For reference, the

actual chord structure of the introduction to Wonderwall repeats the chords F#m,

A, Esus, and B.

Figure 2-4: Chord Structure from Unfiltered Chromagram

The resulting chord structure for the song clip is still not ideal. It contains a lot

of noisy misdetections that do not actually represent the underlying chord structure.

However, even this naive approach shows some general trends.The longest cohesive

chords in Figure 2-4 are F#m and A, the first two chords in the clip. With this

naive approach, the program has some difficulty discerning the Esus chord from the

Em chord as they have two of three notes in common. The B chord is also detected,

though it is much shorter than the others and difficult to discern from the noise. These

common, volatile misdetections are undesirable, but instead of just changing the size

of the window to decrease the time resolution, reductions in these misdetections can

be accomplished through filtering. In the next part of the lab, students will explore

24

different methods of improvement on this naive approach to chord detection.

2.3 Chromagram Filtering

While Figure 2-4 shows some of the underlying chord structure, the results are still too

noisy. Students will improve the results using the following techniques: logarithmic

scaling, averaging filters, and the Viterbi algorithm.

2.3.1 Logarithmic Scaling

Human ears discern volume logarithmically, so by adjusting the values of the chro-

magram to a decibel scale, the values will more closely correspond to the volume the

ear itself hears. Students will move their chromagrams to a decibel scale.

2.3.2 Averaging Filter

There are a lot of short, single timestep misdetections in the naive chord detection

results in Figure 2-4. One approach to reduce the number of these single step misde-

tections is to determine the closest chord using a longer time step. To achieve this,

students will implement a simple averaging filter in the time domain for each pitch

in the chromagram. The students can test how different averaging window lengths

affect the resulting chromagram and detected chord structure.

There are some trade-offs when picking the window length of the filter. A shorter

window will show better time resolution and as pick up on the more rapid chord

changes. However, it will still allow for some noise and incorrect results due to

quicker music signatures and arpeggiation, which do not contribute to the underlying

chord trend. A longer window length smooths the signal, revealing the longer-term

chord trends. However, this is at the cost of detecting more rapid chord changes the

accuracy of when a chord changes. A paper by Cho et al [1] recommends a window

length equal to about 1.5 seconds when using just the averaging filter to improve the

results. This is a pretty wide window as some chords change more rapidly than the

25

window length, and it will drastically reduce the resolution in the time domain of our

chromagram. However it does do much better job at finding the underlying chord

structure of the song. Figure 2-5 shows this time averaged, logarithmically scaled

chromagram.

Figure 2-5: Time Averaged Chromagram

For the intro to Wonderwall, the resulting chord structure for the time-averaging

technique results in correctly detecting three of the four initial chords of the song.

It is able to detect the repeated chord structure of F#m, A, then Esus, and has

eliminated most of the errors from the previous unfiltered version. With this longer

window length, however, it is unable to pick up on the shorter B chord, which should

occur around the 5 second mark. Figure 2-6 displays these results.

Figure 2-6: Chord Structure from Time Averaged Chromagram

2.3.3 Viterbi Algorithm

Time-averaging has taken care of some of the issues of false chord detection from the

original chromagram. However, the long window length has reduced the resolution

in the time domain and eliminated some of the shorter chord changes. Ideally, the

26

chord detection program should use a shorter filter window and still get accurate

chord changes.

To this end, students will combine the time-averaging method from the previous

section with a probabilistic model to get the best of both worlds. After the chords are

detected from a smoothed chromagram, the students will use the Viterbi algorithm

[2] to determine the most likely sequence of chords from the observed chord structure.

The Viterbi algorithm uses Markov models to find the most likely sequence or "Viterbi

path" given a string of observed states.

The information needed to run the Viterbi algorithm is (1) the initial belief over

the chords, (2) a transition model with the probabilities of transitions from one chord

to another between timesteps, and (3) an observation model which shows the proba-

bility of detecting a chord given that a chord is being played. Students will have the

opportunity to choose and test different probability models on the system.

Probability Models

Students will come up with probability models to use for the Viterbi algorithm and

test them on the results. There are several different ways students can design these

models, including using existing published chord change data or using some knowledge

of music theory. For this example, I’ve used more basic initial belief and transition

models. I’ve defined the models below.

For the initial belief distribution, I’ve used a uniform belief over all 25 chords.

The following equation shows the initial probability for some chord 𝑖:

𝑃𝑖 =
1

25
(2.1)

The transition model is the probability of moving from chord 𝑖 to chord 𝑗 between

timesteps. I’ve chosen a transition model with an equal probability of moving between

chords, but a probability 10 times higher for self-transition. This disincentivizes chord

27

changes. The transition model from chord 𝑖 to chord 𝑗 is defined below.

𝑃𝑖𝑗 =

⎧⎪⎨⎪⎩
1
34

for 𝑖 ̸= 𝑗

10
34

for 𝑖 = 𝑗
(2.2)

The observation model is the probability of detecting some chord 𝑖 given that some

chord 𝑗 is being played. For this model, the Pearson correlation coefficient between

vectors was chosen as the chord detection value. Correlations of 0 or below (corre-

sponding to zero common notes) were set to a low nonzero value, in this case 0.02.

The detection probability distribution for each played chord is then normalized. The

resulting observation model has diminishing probabilities for false detections assigned

to chord pairs with two, one, and zero common notes, respectively.

2.4 Resulting Chord Progression

The chord transition model and the averaging filter window length, 𝐿, can be ma-

nipulated by the students to determine the combination with the best performance.

According to the Cho et al paper [1], the ideal value for the averaging-filter when

combined with the Viterbi algorithm is 𝐿 = 3. The results of the complete chord

detection algorithm on this 10 second sample of Wonderwall are shown in Figure 2-7.

The results from this hybrid method show improvements over the averaging-filter only

Figure 2-7: Wonderwall Chord Structure Post Viterbi Algorithm

Averaging filter window width N=3

method. The time stamps of the chord changes are more accurate and it picked up on

the short B chord. It’s still not perfect; the B chord detection is sandwiched between

28

short, incorrect F#m and Esus detections, but it is the most accurate chord structure

result yet and does not include the short, single step misdetections characteristic of

the naive chord detection approach in Figure 2-4.

29

30

Chapter 3

Musical Fingerprinting

The popular app "Shazam" identifies songs from a short, recorded clip, by creating a

fingerprint of the clip and matching it to a database of songs [10]. In this lab students

will match short song clips - both perfect and distorted - to the correct time in the

full song and then to a song within a database. Through this lab students will learn

about computational tools and combine them with the signal processing tools they’ve

already learned to great effect.

The general procedure as outlined by the paper by Avery Wang [10] is as follows: A

unique fingerprint for the song clip is created based on the locations of the frequency

peaks in time. A hash value is generated for each point in the fingerprint, and

compared to a hashed database of songs. The reverse lookup returns the location of

the clip in the database.

3.1 Create Fingerprint

To create the database, a fingerprint is generated for each song and song clip to make

it uniquely identifiable. To demonstrate this process, students will create a fingerprint

for a short song segment. The following example uses the song Stars Dance by Selena

Gomez.

31

Figure 3-1: Spectrogram of Stars Dance Clip

Spectrogram created using FFT window-length of 2048 samples (about 92 ms) and hop
size of 256 samples (about 11 ms)

3.1.1 Spectrogram

The first step of the fingerprinting process is to create a spectrogram on the song.

Students can experiment with the effects of different window-lengths and hop sizes.

However, it is important that the spectrogram values remain consistent throughout

the implementation of the lab to ensure that the resulting fingerprints will match up.

Figure 3-1 is the spectrogram of the song clip.

3.1.2 Constellation

A song can be distinguished by its unique frequency profile. A frequency profile is

like a constellation of a song; the positions of the frequency peaks in time create a

signature of the song. Notably, the position of these peaks holds even in recorded clips

distorted by some background noise, although the magnitude of the peaks relative to

baseline activity may be affected.

Students will write a program to create this "constellation" of peaks. In order to

avoid spurious peaks throughout the spectrogram, students can find the local maxi-

mum peak above some threshold within a small rectangular region of the spectrogram.

Figure 3-2 is an example of this process performed on a single rectangle. The size

of this rectangle is significant: too large, and the constellation will be too sparse,

leaving out potentially useful identifying structures; too small, and the constellation

will potentially pick up false peaks as well as make the future matching steps more

32

Figure 3-2: Finding the Local Maximum in a Rectangle

Figure 3-3: Constellation and Spectrogram of Song Clip

Constellation generated using a rectangle width of 60 samples (about 700 ms), and a
height of 40 frequency bins (about 430 Hz).

computationally complex. In this step, students can select a rectangle size they deem

appropriate. For each rectangle of the spectrogram, the largest peak above a certain

threshold is recorded, and the resulting constellation has been plotted over the spec-

trogram to show how they match up. Figure 3-3 shows the resulting constellation for

the song clip.

3.2 Matching

In this next section of the lab students will use the generated constellations to match

the song clip to the correct time in the full song.

A full song constellation must be generated in order to match the clip to the

correct time in the full song. Figure 3-4 is the constellation of the full song, 𝐶(𝐷).

The constellation of a short time slice, or "query", is compared to the constellation

33

Figure 3-4: Full Constellation of Stars Dance

Figure 3-5: 1.5 Second Song Query

Query length is 1.5 seconds.

as a whole. Figure 3-5 shows the query constellation.

To identify where a query clip occurs within the full song, the query constellation is

translated along the length of the full constellation. For each time offset, the number

of constellation points that match is recorded as a score. The offset with the highest

score is the most likely time location of the query.

Students will use this technique to match the query to the correct location in the

full song. Figure 3-5 shows the example query matched to the the full song as seen

in Figure 3-4. Figure 3-6 shows the results of this procedure. The top graph shows

the query constellation in blue matched against the full constellation in red. The

bottom graph shows the score on the y axis for each offset on the x axis, with the

highest speak score corresponding to the optimal offset. For the query in Figure 3-6

the correct time location was successfully found. The maximum score for the location

was 30 matching points, far higher than any other time step.

34

Figure 3-6: Time Matched Query for Original Clip

Figure 3-7: Distorted Song Query

3.3 Matching a Distorted Song Clip

The fingerprinting and matching procedure correctly placed the song clip within the

song, but this clip was an exact copy of the original song. What happens if the clip

to be identified isn’t perfect, such as they type one’s phone might record in a car or

coffee shop? Students will perform the same fingerprinting and matching procedure

on a distorted song clip to see if it still works.

Using the same spectrogram settings and rectangle size as the previous section,

a constellation for the distorted query was created and is shown in Figure 3-7. This

query was matched against the undistorted full song constellation as seen in Figure

3-4 using the same procedure as described in the previous section. The procedure

successfully matched the distorted query to the appropriate location in the full song

and the results can be seen in Figure 3-8. Once again, the top graph shows the query

constellation in blue matched against the full constellation in red. The bottom graph

35

Figure 3-8: Time Matched Query for Distorted Clip

shows the score on the y axis for each offset on the x axis, with the highest speak

score corresponding to the optimal offset.

The maximum score for the distorted query is only 10, which is much lower than

the undistorted query’s 30 matching points. However, these 10 matched points are

still significantly higher than the scores for all other offsets. Despite the distorted,

noisy nature of this song clip, the underlying frequency structures were identifiable.

3.4 Query Optimization

The sliding constellation method works well when comparing the query to the single

song to determine the offset. However, when comparing an unknown song clip query

to a larger database of songs, the process of comparing every constellation point in the

query (size 𝑀) to every constellation point in the database (size 𝑁) is computationally

expensive, and increases as 𝑀 · 𝑁 . The "Shazam" app manages to search a large

database of songs in a matter of seconds.

To reduce the computational complexity of the search students will implement a

simple hash function. A hash value ℎ is computed for every constellation point (𝑛, 𝑘).

Given a well chosen hash function, the constellation points are approximately evenly

spread over all hash values. A lookup table of the hash values reduces the point values

to be matched from 𝑁 values to about 𝑁
𝐿

values. This reduces the computational

complexity from 𝑀 ·𝑁 to 𝑀 ·𝑁
𝐿

, where 𝑁 is the number of constellation points in the

36

database, 𝑀 is the number of constellation points in the query, and 𝐿 is the number

of hash values.

Students will likely initially implement a simple hash value of ℎ = 𝑘. This results

in 𝐿 number of hash values, ℎ, corresponding to the number of frequency bins in the

constellation. To improve the speed of the hash function the number of hash values 𝐿

should be increased by using more complex hash definitions. Students will be aware

of this from the 𝑀 ·𝑁
𝐿

relationship, and should they desire they can design a better

hash function.

37

38

Chapter 4

JPEG Compression Lab

Students interact with compressed images on the internet almost every day, but may

not have thought about the signal processing techniques used to compress these im-

ages. The purpose of this lab is to teach two-dimensional image processing techniques

and reinforce the relationship between the spatial and frequency domains through the

context of JPEG image compression. In this lab, students will implement a program

performing JPEG compression on an image, compare the performance of different

transforms in the context of JPEG image compression, and determine the best kind

of filter to use for the lossy stage of the process.

The general procedure for JPEG compression is as follows: the image is first

divided into small blocks of pixels and transformed to the frequency domain. The

less important high-frequency data is attenuated by a low pass filter. The block of

reduced frequency information is encoded and returned. The procedure is reversed

to decompress the file and recreate the image.

4.1 Perform Compression/Decompression

The first task students will complete is to implement a JPEG compression program

and use it to compress an image of their choice. I’ve demonstrated the process using

the image in Figure 4-1, taken by David Hu. Usually, in standard JPEG compression,

the image is converted to YIQ format and the luma and chrominance layers are

39

Figure 4-1: Original Uncompressed Image

compressed separately using different filters. However, for the sake of simplicity this

example uses a flattened image which reduces it to a single greyscale layer.

4.1.1 Compression

Figure 4-2: Discrete Cosine Transform Basis

The DCT results in a block in the frequency domain with the lower frequency components
in the upper left corner and the higher frequency components in the lower left corner.

To compress the image to JPEG format, students first will write a program that

separates the image into boxes of 8 by 8 pixels. They will then convert each box to

from the spatial domain into the frequency domain using the two-dimensional Discrete

40

Cosine Transform, which is defined by the following formula.

𝑋𝑘1,𝑘2 =
𝑁1−1∑︁
𝑛1=0

𝑁2−1∑︁
𝑛2=0

𝑥𝑛1,𝑛2𝑐𝑜𝑠
[︂
𝜋

𝑁1

(︂
𝑛1 +

1

2

)︂
𝑘1

]︂
𝑐𝑜𝑠

[︂
𝜋

𝑁2

(︂
𝑛1 +

1

2

)︂
𝑘2

]︂
(4.1)

To visualize the DCT of an 8 by 8 pixel block I’ve generated a DCT basis as seen in

Figure 4-2. Any 8 by 8 combination of pixels can be reconstructed by a combination

of these functions. JPEG compression uses the Discrete Cosine Transform instead of

the more common Fast Fourier Transform, which students will be more familiar with

at this point in the class. Students will explore the reason for the use of the DCT

over the FFT as described in Section 4.2.

Now that the block of pixels is entirely in the frequency domain, students will

implement the lossy part of the compression. The human eye itself acts as a low pass

filter [7], so eliminating the higher frequency data reduces the information necessary

to represent the image while minimizing the perception of change to the human eye.

The following quantization table is the default luminescence JPEG standard table

corresponding to 75% compression [4].

𝑇𝑏 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 49 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.2)

Each element of the 8 by 8 pixel frequency domain block is divided by the corre-

sponding element in the quantization matrix, then rounded to the nearest integer.

The larger divisors in the lower right corner of the block attenuate the higher fre-

quencies and the lower divisors in the upper right corner preserve more of the lower

frequency information. To increase or decrease the compression of the image, this

standard table can be adjusted via the quality factor 𝑄. The scale factor 𝑆 is deter-

41

mined based on the quality factor 𝑄 as follows

𝑆 =

⎧⎪⎨⎪⎩
5000
𝑄

if 𝑄 < 50

200 − 2 ·𝑄 if 𝑄 ≥ 50
(4.3)

This scale factor 𝑆 is then applied to each element of the base matrix from equation

4.2.

𝑇𝑆[𝑖] =

[︃
𝑆 · 𝑇𝑏[𝑖] + 50

100

]︃
(4.4)

The elements are rounded down to the nearest integer value. Students can compare

the effects of compression with different quality factors on their images. A comparison

of quality factors on image quality can be seen in Figure 4-6 towards the end of this

section. If unspecified, all further examples in this chapter will use a quality factor

of 50 corresponding to the unchanged quantization table from Equation 4.2.

This quantization step is where the information is lost. For the higher frequencies

the information is completely lost and the coefficients become 0. To demonstrate

the results of this step, a block of pixels (from the example image) before and after

quantization is shown in Figure 4-3.

After quantization, all of the nonzero coefficients are in the upper left corner. The

block of pixels can be deconstructed such that the nonzero low frequency coefficients

are at the beginning of a list, and a long trail of zeros from the high frequency

coefficients is at the end. When using an encoding method such as Huffman or run-

length encoding on this deconstructed block, these repeated characters result in a

much smaller file size. The order of pixels in this deconstruction is the following.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.5)

For this implementation of JPEG compression I’ve used run-length encoding instead

42

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−550.63 −29.20 19.90 −10.73 1.13 −0.35 4.61 1.41
−21.59 −10.28 3.85 8.64 3.23 4.45 2.98 −2.18
−4.97 10.10 19.02 7.71 −0.11 0.89 −1.14 −2.21
3.20 20.98 −10.41 6.06 −1.96 −6.45 −4.30 −0.93
5.37 −7.60 4.91 7.45 4.63 −3.76 1.08 −0.99
1.35 3.29 6.25 −14.10 2.78 −3.67 −2.67 2.33
1.38 −4.54 0.61 −1.63 0.72 5.36 −2.02 −0.65
0.45 0.17 −1.65 −3.30 −1.30 −1.73 −1.01 −1.11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(a) Before Quantization⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−34 −3 2 −1 0 0 0 0
−2 −1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(b) After Quantization

Figure 4-3: Quantization in the Frequency Domain, 𝑄 = 50

Float values in the "before quantization" array are displayed to only 2 decimals here.

of Huffman encoding but students can choose which encoding procedure they prefer.

The quantized block from Figure 4-3 was deconstructed and encoded using run-length

encoding and the resulting compressed list is below.

[(-34, 1), (-3, 1), (-2, 1), (0, 1), (-1, 1), (2, 1), (-1, 1), \\

(0, 1), (1, 1), (0, 2), (1, 2), (0, 51)]

Students will implement a program to perform this process on every 8 by 8 block

of pixels and add to a long list of characters which represents the entire compressed

JPEG image. As I implemented the current version of this lab, this list is not serialized

into a file, though at this point in the process it could be. Instead, the compression

function returns the compressed list as well as the dimensions of the original image.

4.1.2 Decompression

Now that the image has been compressed, the file size is much smaller, which makes it

easier to store and transfer. However, one can’t just look at this compressed list and

43

Figure 4-4: Block of pixels before and after compression

see an image. In this part of the lab, students will write a decompression program to

convert the compressed list back into an array of pixels.

First they will reverse the encoding process used in the compression step (in this

example run-length encoding), resulting in a long list of integers corresponding to

frequency coefficients. Every 64 coefficients is one 8 by 8 block of pixels. The 8

by 8 block is reconstructed from these 64 coefficients using the same ordering as

shown in equation 4.5. The resulting block is then multiplied elementwise by the

same quantization matrix as was used in the compression stage. The block is then

converted back to the spatial domain using an inverse two-dimensional Discrete Cosine

Transform. Due to the compression process, the resulting block will be different from

the original block, but given a reasonable choice of quality factor 𝑄, it will be at least

recognizable, if not nearly identical the original. See Figure 4-4 for a side by side

comparison of a block of pixels before and after compression.

This process is performed for every 8 by 8 block of pixels, and the blocks are

arranged such that the final image matches the original image’s dimensions. A side

by side comparison of the full image before and after compression is shown in Figure

4-5. A comparison of images compressed using two vastly different quality factors,

𝑄 = 50 and 𝑄 = 10 respectively, is shown in Figure 4-6. The image has been zoomed

in to better see the difference.

44

Figure 4-5: Complete Image Before and After Compression

Figure 4-6: Comparison of Images Compressed using Different Quality Factors

45

(a) Real (b) Imaginary

Figure 4-7: FFT Basis

4.2 Compare DCT and FFT

The Discrete Cosine Transform is the transform used for JPEG compression, but at

this point in the course students will be much more familiar with the Discrete Time

Fourier Transform or the Fast Fourier Transform. However, the DCT is superior to

the FFT for this particular application. In this next part of the lab students will

compare JPEG compression using the DCT and the FFT to determine these reasons

for themselves. One way to compare these transforms is to look at the basis for each.

The basis for the DCT can be see earlier in Figure 4-2. The basis for the FFT can

be seen in Figure 4-7.

Because the image is an entirely real signal, it can be entirely represented by even

functions (e.g. cosines). The DCT decomposes the image into an entirely cosine basis,

so the 8 by 8 block is represented by only 64 real coefficients. The FFT is constructed

of both even and odd functions, so the same 8 by 8 pixel block must be represented

by 128 coefficients: 64 real and 64 imaginary. The goal of compression is to represent

the image with the least space possible, so twice as many coefficients to represent the

same quality image is undesirable.

To demonstrate the superiority of the DCT for this application, students will

compare the outcomes of JPEG compression using both the DCT and the FFT with

the same number of coefficients. To make sure the lossy step is fair to both the DCT

46

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 4-8: Quantization Matrix for DCT Version

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(a) Real

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(b) Imaginary

Figure 4-9: Quantization Matrices for FFT Method

and FFT techniques, instead of dividing by a quantization matrix and rounding off

to the nearest integer, each block will be multiplied by a matrix entirely composed

of zeros and ones, eliminating the higher frequency content and keeping the lowest

frequency content. For this example I used the 10 lowest frequency coefficients. The

matrix used for the DCT method can be seen in Figure 4-8. The matrices used for

the FFT method can be seen in Figure 4-9.

The rest of the compression and decompression process remains the same for both

the DCT and FFT methods. The resulting photo comparison can be seen in Figure

4-10. The image has been zoomed in to better see the difference. The DCT image is

closer to the original image than the FFT image using the same amount of coefficients.

47

(a) DCT (b) FFT

Figure 4-10: Final Compressed Images With 10 Coefficients

4.3 Optimize Filter

The quantization matrix used in JPEG compression operates as a low pass filter,

attenuating higher frequencies and passing the lower frequencies. The human eye

itself operates as a low pass filter [7], so this results in an image that appears closest

to the original. In this section of the lab, students will discover for themselves that

the low pass filter results in the best image for the number of coefficients saved.

To reach this conclusion, students will compare JPEGs compressed using different

filtering methods and determine which results in the best image.

Students will be presented with side by side images compressed using the DCT

compression method and randomized quantization matrices. These 8 by 8 pixel quan-

tization matrices are generated with 16 randomly placed ’1s’ and the rest ’0s’. This

ensures that the same number of coefficients is used to represent either image. These

quantization matrices are multiplied by each pixel block in the lossy step of the com-

pression. Of the two resulting images, students will choose which one looks closer to

the original image. This image is saved and a new image compressed using a newly

generated random quantization matrix is compared to it. After a few dozen image

comparisons, the resulting "best" image will have been generated from a matrix with

48

(a) Generated Image

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0 0 0
1 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0
1 0 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(b) Matrix Used to Generate Image

Figure 4-11: Image Generated from Random Quantization Matrix

most of the ones in the lower frequency coefficients. This demonstrates that the low

pass filter is the ideal filter for JPEG image compression. An example of an image

generated from a random matrix and the corresponding matrix can be seen in Figure

4-11.

49

50

Chapter 5

Phase Based Movement

Magnification in Videos

This lab, based on a paper from Professor Bill Freeman’s group at MIT CSAIL [9],

explores Fourier techniques in three dimensions. Through this lab, students will learn

about the relationship between phase and the spacial domain. The method generally

works by amplifying the change between each frame, which magnifies the motion of

the video. To demonstrate this, the students will amplify motion in simplified frames

as well as actual videos.

5.1 Simplified Versions

5.1.1 Displacement and Phase Relationship

Before delving into the implementation of phase magnification in one dimension,

students must have a firm grasp of the relationship between spacial translation and

phase. A one dimensional discrete signal has the following transform.

𝑥[𝑛] ⇔ 𝑋(Ω) (5.1)

51

A one dimensional discrete signal with some spacial displacement 𝑛0 has the following

transform.

𝑥[𝑛− 𝑛0] ⇔ 𝑋(Ω)𝑒−𝑗Ω𝑛0 (5.2)

The translation in the spacial domain corresponds to a change in phase in the fre-

quency domain. Conversely, a change in phase in the frequency domain corresponds

to a shift in the spacial domain. Students will take advantage of this relationship

by magnifying the phase of the signal causing a corresponding magnified shift in the

spacial domain.

5.1.2 Movement Magnification in One Dimension

To demonstrate this process, students will first perform movement magfication on a

one-dimensional "video." Students will first choose the one-dimensional image they

wish to translate. For this demonstration I’ve used a simple sinusoid with one cycle

as the image function where 𝑁 is the number of samples per unit (ie position 𝑥 = 𝑛
𝑁

).

𝑥[𝑛] = 𝑐𝑜𝑠
(︂

2𝜋𝑛

𝑁

)︂
⇔ 𝑋(Ω) (5.3)

A small time-dependent displacement is added in the spacial domain changing the

function as follows

𝑥[𝑛 + 𝛿(𝑡)] = 𝑐𝑜𝑠

(︃
2𝜋

𝑛 + 𝛿(𝑡)

𝑁

)︃
⇔ 𝑋(Ω)𝑒𝑗Ω𝛿(𝑡) (5.4)

I’ve defined 𝛿(𝑡) as the following.

𝛿(𝑡) = 0.005𝑠𝑖𝑛(8𝜋𝑡) (5.5)

Students will plot this time-dependent shifting frame and use a slider to adjust the

time 𝑡 to see the small spacial translation. Figure 5-1a shows the image at time 𝑡 = 0.

In moving the time slider, students will see an extremely small, barely perceptible

sinusoidal movement of the image.

52

Next, students will perform phase magnification on their time-dependent images.

First they will need to isolate the initial phase shift. The transformed signal with

time-dependent displacement is

𝑋(Ω) =
∞∑︁

𝑛=−∞
𝐴𝑛𝑒

−𝑗Ω(𝑛+𝛿(𝑡)) (5.6)

The phase of this is

𝜑 = −Ω(𝑛 + 𝛿(𝑡)). (5.7)

The full phase shouldn’t be magnified, only the phase corresponding to the time-

dependent shift 𝛿(𝑡). To do this, the DC component of the phase, Ω · 𝑛, must be

filtered out. Students should remove this DC component by subtracting the phase of

the signal at rest as follows.

∆𝜑 = −Ω(𝑛 + 𝛿(𝑡)) − (−Ω · 𝑛) = −Ω · 𝛿(𝑡) (5.8)

The resulting change in phase, ∆𝜑 = −Ω · 𝛿(𝑡), is directly proportional to the time-

dependent shift function. To amplify the magnitude of this shift, students will mul-

tiply the phase difference ∆𝜑 by some magnification factor 𝛼, and add the new phase

shift back into the original function.

𝑋𝛼(Ω) =
∞∑︁

𝑛=−∞
𝐴𝑛𝑒

−𝑗Ω(𝑛+(1+𝛼)𝛿(𝑡)) (5.9)

Reconstructing the signal results in the following.

𝑋𝛼(Ω) ⇔ 𝑥[𝑛 + (1 + 𝛼)𝛿(𝑡)] (5.10)

The phase amplification has resulted in a time-dependent shift of magnitude 𝑎𝑙𝑝ℎ𝑎

greater than the original function. Students will implement this phase-magnification

process on the one-dimensional images they used in Figure 5-1a. In addition to

a slider corresponding to time 𝑡, students will have a slider corresponding to the

desired magnification factor 𝛼. They can use these sliders to see how different values

53

(a) Rest State (b) Maximum Displacement with 𝛼 = 50

Figure 5-1: One Dimensional Motion Magnification

of 𝛼 affect the movement of the image in time. Figure 5-1b shows the maximum

displacement of the image for the 𝛼 = 50 case. The displacement is much greater

than that of the original image (corresponding to the 𝛼 = 0 case).

Now that the students have examined how this phase based motion magnification

affects movement in one dimension they will explore simple two dimensional frames

before moving on to actual footage.

5.1.3 Simple Two Dimensional Frames

In two dimensional frames the displacement function has both a time and spacial

component, 𝛿(𝑥, 𝑡). To explore simple movements in simple frames, students will first

perform the phase magnification process is performed on 16 by 16 pixel frames with

sinusoidal translations.

The process for performing simple phase based motion magnification process on

these smaller frames is as follows. First, a reference frame is chosen, and the phase of

this reference frame is calculated. For each frame in the video, the phase is calculated,

and the phase of the reference frame is subtracted from it. This step acts as a

bandpass filter and removes the DC component of the phase signal as seen in the

one dimensional example (Eq 5.8). This phase difference is multiplied by the chosen

𝛼, and the new frame is constructed with the new phase just as is done in the one

dimensional example (Eq 5.9).

54

One Directional Movement

First students will work on a video with the property of one-directional translational

movement. Two separeted pixels are translated up and down repeatedly. The first

three frames for the unmagnified video are in the top row of Figure 5-2. The middle

row of the figure shows the phase of each frame, and the bottom row shows the phase

difference of each frame.

Figure 5-2: Unmagnified Frames for One Directional Translation

Top row shows the frame, middle row shows the phase, bottom row shows the phase
difference from the reference frame (frame 1).

With a value of 𝛼 = 3 (small because the dimensions of each frame are only 16 by

16), the resulting magnified frames are in Figure 5-3. For the one-directional motion

case, the magnification process results in a perfect movement magnification with no

interference.

Two Directional Movement

Instead of using two pixels moving in unison, students will next address two move-

ments in different directions. Figure 5-4 shows two pixels moving between frames

with one moving vertically and the other moving horizontally.

The phase based motion magnification process is performed on this video with an

amplification value of 𝛼 = 3 once again, and the resulting frames are in Figure 5-5.

The resulting frames do not show the desired magnification. Instead, interference

55

Figure 5-3: Magnified Frames for One Directional Translation with 𝛼 = 3

Top row shows the frame, middle row shows the phase, bottom row shows the phase
difference from the reference frame (frame 1).

from the attempted phase-magnificaton of opposing movements affects every pixel in

the frame. In practice, videos tend to contain movements of many different directions

and frequencies, so to successfully magnify the motion of a video some change must

be made to the process. As the students move on from these simpler frames to real

video clips, they will have to implement a means of isolating the different motions in

order to get meaningful results.

5.2 Steerable Pyramid Version

The first motion isolation technique I explored in creating this lab was the method

recommended by Bill Freeman’s group’s paper [9], the complex steerable pyramid

decomposition. Students will not implement the method described in this section

and will instead implement the method described in Section 5.3.

Complex steerable pyramid filters "decompose an image according to spacial scale,

orientation, and position [9]." The scale and position components of the filters isolate

the motions, approximating the one-directional movement case. After performing the

phase magnification process on these filtered frames, they are combined to construct

a new phase magnified frame with little noise or interference from opposing motions.

One level of a complex steerable pyramid filter bank is shown in the frequency domain

56

Figure 5-4: Unmagnified Frames for Bidirectional Translation

Top row shows the frame, middle row shows the phase, bottom row shows the phase
difference from the reference frame (frame 1).

Figure 5-5: Magnified Frames for Bidirectional Translation with 𝛼 = 3

Top row shows the frame, middle row shows the phase, bottom row shows the phase
difference from the reference frame (frame 1).

57

Figure 5-6: Steerable Pyramid Filters for One Level

Figure 5-7: Diagram of Phase Based Motion Magnification from CSAIL [9]

in Figure 5-6.

This program was mainly constructed by directly converting the MATLAB code

release from the CSAIL Video Magnification Group [9] to Python.

Figure 5-7 is a diagram of the methodology used by Bill Freeman’s group. Each

frame is decomposed using a complex steerable pyramid filter bank as seen in Figure 5-

7 section (a). The phase is then extracted from each frame component, and temporally

filtered as seen in Figure 5-7 section (b). This removes the DC component of the phase

resulting in a phase difference, and also selects which frequencies of movement should

be magnified. The phase difference of each frame component is added back to the

original phase to construct the new magnified frame component as seen in Figure

5-7 section (d). Finally, the steerable pyramid is collapsed to construct the new full

58

frame. This process is performed for every frame in the video.

A video of a baby breathing from the CSAIL lab’s code release was magnified

using this program [9]. The program took about 45 minutes to run on a laptop, and

the resulting video showed a noticeable amplification in movement.

5.3 Gaussian Filter Version

The complex steerable pyramid method is the movement localization method rec-

ommended by the paper [9], but complex steerable pyramid filters may be difficult

to understand for sophomore-level students. Similar results can be reached using a

simpler technique students will have already encountered: the Gaussian filter.

Generally speaking, within the small localized area of a video, movements will

likely be due to the motion of the same object, and therefore likely be in the same

direction. Students will take advantage of this by localizing the region in which they

implement the phase magnification algorithm.

The simplest way to accomplish this would be to run the algorithm on square

subsections of the larger frame. This would localize the motion magnification to

a much smaller area and likely eliminate much of the interference from conflicting

movements. Students may implement this naive localization technique first. However,

using discrete sections will not allow movements to cross the border of each section,

leading to strange edge effects. Using a Gaussian window smoothly attenuates the

signal outside of a small region. This localizes the signal to a small region just as

breaking the frame into squares would, but with the smooth attenuation of the signal

it will not result in strange edge effects. Figure 5-8 shows a frame with a Gaussian

window applied to it. This will isolate the phase magnification procedure to only

movements in this region.

Students will use Gaussian filters centered at different points around the image

(one standard deviation apart) to decompose each frame. Each Gaussian component

is then separately phase magnified and recombined to create the complete magnified

frame. A summary of this process is below.

59

Figure 5-8: Gaussian Windowed Frame

1. Gaussian windows applied to frame to create localized components.

2. Phase of each windowed frame is calculated, and the reference frame’s phase is

subtracted from them, which eliminates the DC signal and results in the phase

difference. The phase difference is unwrapped and smoothed using a moving

average filter.

3. The magnified phase difference is added back to the original windowed-frame

phase and the new Gaussian frame component is generated.

4. Finally, the complete frame is generated by adding each Gaussian component.

Students will perform this process for every frame in the video.

I tested this Gaussian localization phase magnification method on a video with a

shape of 172 by 172 pixels and 81 Gaussian windows. The program took about 10

minutes to run. The resulting video showed a noticeable magnification of movement.

60

Chapter 6

Conclusion

The labs described in this paper will be incorporated into a new sophomore-level signal

processing class at MIT offered tentatively in the Spring 2018 term. The educational

benefits of these labs will not be measured until the class is offered but the hope

is that the applications-based approach will improve upon current signals classes.

With the addition of these applications-based labs, the real life relevance of signal

processing will be made clear while allowing students to apply their new found skills

to interesting problems. This Problem-Centered approach is one of the key tenants of

M. David Merrill’s five First Principles of Instruction [5] and will hopefully increase

the impact of signals education at MIT.

These labs have been designed to improve student understanding of signal process-

ing techniques and allow them to apply what they’ve learned to real world projects.

The chord detection lab from Chapter 2 will teach students about the frequency

content of music and how examining signals in the frequency domain can reveal pre-

viously unknown characteristics. The musical fingerprinting lab from Chapter 3 will

teach students about the powerful combination of newly learned signal processing

techniques with computational tools. The JPEG compression lab from Chapter 4

will teach students about the relationship between the spacial and frequency domains

and allow them to explore different filters and transforms. The motion magnifica-

tion lab from Chapter 5 teaches students the relationship between translation in the

spacial domain and phase in the frequency domain, as well as filtering techniques in

61

three dimensions.

62

Bibliography

[1] Cho, T., Weiss, R. J., & Bello, J. P. Exploring Common Variations in State of the

Art Chord Recognition Systems. Music and Audio Research Laboratory (MARL).

[2] Forney, G. The viterbi algorithm. Proceedings of the IEEE, 61(3), 268-278, 1973.

[3] HKN Underground Guide. https://underground-guide.mit.edu. Accessed:

August 15, 2017.

[4] Kornblum, J. D. Using JPEG quantization tables to identify imagery processed

by software. The International Journal of Digital Forensics & Incident Response,

2008.

[5] Merrill, M. D. First Principles of Instruction. Hoboken, NJ: Wiley, 2012.

[6] MIT Subject Listing and Schedule. http://catalog.mit.edu/subjects/. Ac-

cessed: August 18, 2017.

[7] Morgan, M. J., & Watt, R. J. Mechanisms of interpolation in human spatial vision

[Abstract]. Nature, 299(553), 555th ser, 1982.

[8] Mueller, M. Fundamentals of Music Processing: audio, analysis, algorithms, ap-

plications. Springer, 2016.

[9] Wadhwa, N., Rubinstein, M., Durand, F., & Freeman, W. T. Phase-Based Video

Motion Processing. MIT Computer Science and Artificial Intelligence Lab, 2015.

[10] Wang, A. L. (2003). An Industrial-Strength Audio Search Algorithm. Shazam

Entertainment, Ltd.

63

