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Abstract

A key limitation of semantic image segmentation approaches is that they require large
amounts of densely labeled training data. In this thesis, we introduce a method to
learn to segment images with unlabeled data. The intuition behind the approach
is that removing objects from images will yield natural images, however removing
random patches will yield unnatural images. We capitalize on this signal to develop
an auto-encoder that decomposes an image into layers, and when all layers are com-
bined, it reconstructs the input image. However, when a layer is removed, the model
learns to produce a different image that still looks natural to an adversary, which is
possible by removing objects. Experiments and visualizations suggest that this model
automatically learns to segment objects in images better than baselines.

Some parts of this thesis represent joint work with Dr. Carl Vondrick and Professor
Antonio Torralba.

Thesis Supervisor: Antonio Torralba
Title: Professor
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Chapter 1

Introduction

Semantic image segmentation is a central problem in computer vision to categorize

each pixel of an image into an object category, and has wide practical applications

in scene understanding. However, current approaches rely on datasets containing a

large number of images that have been annotated by a human pixel-by-pixel. A key

to improving segmentation models is to collect more and more data, but annotation

can be prohibitively expensive. For example, a human expert [38, 4] typically takes

an hour to densely annotate all pixels in just one training image! With correspond-

ing datasets for object recognition reaching millions of images [25, 37], how do we

efficiently scale up semantic segmentation?

In this thesis, we work on a slightly weaker form of full image segmentation. Our

goal is to, given an object category, identify all pixels in a set of images that belong

to that category. The difference between our definition and full image segmentation

is illustrated in Figure 1-1. We introduce and evaluate a principle for solving this

problem with unlabeled images. The only prior knowledge about the images are

that they are from a single scene category, such as bedrooms or kitchens. The main

intuition behind our idea is that when an object is removed from an image, the

resulting image should still look natural to a human eye. We propose and evaluate a

method for using this idea as a signal for segmentation. For example, if you remove

the bed from the scene in Figure 1-2, the image is still realistic. However, if you only

partially remove the bed, the image is not realistic anymore. This principle provides

15



Figure 1-1: Full-scene segmentation vs object segmentation: Our goal is not
to segment the entire image, but to label all the pixels from a certain object category.
Note that we do not require training a separate model per object category. The
model trained on unlabeled images discovers objects automatically. Examples are
taken from the ADE20K dataset [38].

Image Removed RemovedMask Mask

Removing	objects	yields
natural images

Removing	random	patches
yields	unnatural images

Figure 1-2: Layer Disposal for Segmentation: We make the simple observation
that if you remove an object from an image, the image still looks natural (middle).
However, if you remove a random patch, the image likely looks unnatural (right). In
this paper, we use this intuition as a signal to learn to semantically segment images.
Our model learns segmentations such that when a region is removed, the image looks
perceptually real to an adversary, which it does by removing objects.

16



a high-level rule for grouping: when a pixel is removed, its neighboring pixels should

also be removed if they belong to the same object. We operationalize this intuition

to automatically segment images.

We develop a neural network model that decomposes images into layers. We train

this model so that when all layers are combined together, it reconstructs the input

image. However, we also train the model so that if we randomly remove a layer,

the combination still appears perceptually real to an adversary trying to discriminate

between real images and generated images. Consequently, the model learns a layered

image decomposition that allows parts of the image to be removed. We show that the

model automatically learns to remove objects in order to make the output image still

appear realistic, a signal we capitalize on for learning to segment. Note that although

the problem statement deals with labeling a given object category, we do not have

to train a different model for each of these. We train a single model on images in

a scene category, and it automatically discovers the various objects. Although our

model could theoretically be used for full-image segmentation, we do not evaluate its

capability of doing so. Such and application to full-image segmentation and evaluation

could be part of future work.

We present three main experiments to analyze this approach, presented in Chap-

ters 4 and 5. Firstly, experiments show that our model learns to automatically seg-

ment images into objects for some scene categories, even without any labeled training

data, and our approach outperforms several basic baselines. Secondly, we show that

we can combine a small amount of labeled data with our approach to improve per-

formance. Finally, visualizations suggest that the model allows us to see behind

objects automatically, enabling graphics applications such as removing windows from

a picture or taking off the bed sheets.
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1.1 Related Work

1.1.1 Image Segmentation

Pixel-wise segmentation is widely studied in computer vision. Edge and boundary

detection seeks to recognize contours between objects [5, 20, 8, 15], but does not at-

tach category labels to segments. In constrast, semantic segmentation seeks to both

segment objects and assign labels, which is the task that we consider. [29, 33, 2, 3]

learn to semantically segment objects in images, however they require large amounts

of manual supervision. In this work, we do not require pixel-wise labeled data in or-

der to learn to segment objects; we only require images that are known to be within

a certain scene category. In related efforts, [19] investigate segmenting objects be-

hind occlusions, but also require supervision. [10] explore how to remove occlusions

from images, but require specifying the occlusions a priori. Our work is most related

to Sudderth and Jordan [27], which also use layered models for unsupervised seg-

mentation. However, our work differs because we learn a single model for semantic

segmentation that can work across multiple images.

1.1.2 Layered Visual Models

Layered image models are widely used in computer vision [31, 34, 28, 32, 11, 30],

however here we are leveraging them to segment images without pixel-level human

supervision. We develop a model that learns to decompose an image into separate

layers, which we use for segmentation. [34] is similar to our work in that they generate

images by layers, however they do not show that randomly removing layers is a signal

for semantic segmentations.

1.1.3 Noise in Learning

Dropout [26] is commonly used in neural networks to regularize training by randomly

dropping hidden unit activations. [13] also randomly drops neural layers to facilitate

training. Our work uses similar mechanism to randomly drop generated layers, but

18



we do it to encourage a semantic decomposition of images into layers of objects. Note

that the layers we drop are image layers, not layers of a neural network.

1.1.4 Emergent Units

Our work is related to the emergent behavior of neural networks. For example, recent

work shows that hidden units automatically emerge to detect some concepts in visual

classification tasks [36] and natural language tasks [22]. In this work, we also rely

on the emergent behavior of deep neural networks. However, we design the task so

segmentation explicitly emerges.

1.1.5 Unsupervised Representation Learning

Methods to learn representations from unlabeled data are related but different to

this work. For example, spatial context [7] and word context [21] can be used as

supervisory signals for vision and language respectively. While our work is also using

unlabeled data, we are not learning representations. Rather, we are directly learning

to segment images.

1.2 Contributions and Thesis Overview

The main contribution of this thesis is to introduce a novel method for learning to

segment images in a given scene category with unlabeled data by capitalizing on

the observation that removing a region from an image will result in an unnatural

image unless the region masks an object. The remainder of this thesis describes this

contribution in detail. Chapter 2 gives a brief background into the methods used.

Chapter 3 present our method to auto-encode images with a layered decomposition,

and shows how removing image regions is a useful signal for segmentation. Chapter 4

shows several quantitative experiments for semantic segmentation. Chapter 5 shows

some example qualitative results of images generated layer-by-layer and Chapter 6

offers concluding remarks.
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Chapter 2

Background

2.1 Convolutional Neural Networks

Deep Learning [18] has seen a lot of success in recent years in both supervised and

unsupervised tasks in computer vision, sparked by the performance of AlexNet [17]

in the ImageNet Large Scale Visual Recognition Challenge [24], an annual image

classification challenge. Convolutional Neural Networks (CNNs) such as AlexNet are

the most commonly used in vision applications. The main components of CNNs are

convolution operations that take into account spatial locality of pixels during learning

and inference. CNNs are a parametric model where the parameters are learned to

optimize a given objective function for a task on either labeled or unlabeled data.

The exact architecture and objective function of a convolutional neural network is

task dependent and in our case will be specified in later sections.

There is much current research on CNNs and their applications. Our contributions

are not focused on creating new CNN architectures, but on techniques to apply com-

monly used architectures to unsupervised image segmentation. In many places in our

model, the architectures can be substituted for others; hence improvements in CNN

architectures could lead to a direct improvement of our qualitative and quantitative

results.
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Figure 2-1: GAN illustration: The network 𝐺 attempts to fool network 𝐷 by
generating realistic looking images. In the case of image generation, 𝐷 and 𝐺 are
both convolutional neural networks.

2.2 Generative Adversarial Networks

A big focus in the deep learning research community has been generative modeling.

Informally, given an un-annotated dataset, a generative model aims to create similar

objects that are not in the dataset, but could belong in it. Essentially, the generative

model attempts to learn and sample from the probability distribution of the dataset.

In this thesis we use generative image modeling as a tool for unsupervised image

segmentation. In particular, we use the approach of Generative Adversarial Networks

(GANs) [12, 23]. In GANs, two networks compete against each other. The generative

network, 𝐺, maps noise vectors into images, while a discriminative network, 𝐷, takes

as input either an image from a dataset or an output of 𝐺 and attempts to discriminate

between the two. The task of 𝐺 is to maximize the error of 𝐷. The overall idea is

illustrated in Figure 2-1.
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(a) Generations of DCGAN bedrooms (b) Real samples from LSUN bedrooms

(c) Generations of DCGAN kitchens (d) Real samples from LSUN kitchens

(e) Generations of DCGAN towers (f) Real samples from LSUN towers

Figure 2-2: GAN Examples: On the left are outputs of the trained generator. On
the right are real samples from the dataset used to train the GAN. The architecture
used during training is that of DCGAN: Deep Convolutional Generative Adversarial
Networks. [23].
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Formally, let 𝑥𝑖 ∈ R𝑊×𝐻 be an unlabeled image in our dataset, and 𝑧 ∈ R𝐷 be a

noise vector sampled from 𝑈 ≡ Unif[−1, 1], the uniform distribution on [−1, 1]. For

parametric functions 𝐺𝜃𝐺 : R𝐷 → R𝑊×𝐻 and 𝐷𝜃𝐷 : R𝑊×𝐻 → R, we wish to find

𝜃𝐺, 𝜃𝐷 solving the objective function

min
𝜃𝐺

max
𝜃𝐷

∑︁
𝑧∼𝑈

log(𝐷𝜃𝐷(𝐺𝜃𝐺(𝑧))) +
∑︁
𝑖

log(1 −𝐷𝜃𝐷(𝑥𝑖))

The networks are trained using variants of Stochastic Gradient Descent, most

commonly Adam [16].This objective function is intractable in practice, so GANs are

trained using coordinate ascent; in each iteration of gradient descent the two networks

are updated independently and one after the other.

GANs using convolutional neural networks are known to generate high quality

images. An example set of generations of models trained on various LSUN [35] scene

categories is shown in Figure 2-2, together with real samples from the dataset. One

limitation of GANs is that they require a large amount of training data. Due to the

large number of examples available in the LSUN dataset, we use this as the main

training dataset for our generative model.
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Chapter 3

Method

We present a method for learning a semantic segmentation model by taking advantage

of a layered version of generative adversarial networks. Let 𝑥𝑖 ∈ R𝑊×𝐻 be an unla-

beled image in our dataset. Note that for simplicity of notation, we assume gray-scale

images, however our method easily extends to color images. We follow an encoder-

decoder setup. We will encode an image into a latent code 𝑧𝑖 ∈ R𝐷, then decode the

code into 𝐾 image layers. The decoder mirrors 𝐺 in the adversarial network setup in

the previous chapter.

We describe the model in two phases. We first describe a generative model that

extends the original DCGAN to produce realistic images in a layered representation.

Similar to DCGAN, it will take as input randomly sampled noise and output an

image. In our case, the Generator will be stochastic; there is a one-to-many mapping

from noise vectors to output images, as opposed to the one-to-one mapping in the

case of the DCGAN generator. One technicality in most current GAN architectures

is that the mapping is not of noise vector to image, but of batch of noise vectors to

batch of images. This is due to the batch normalization layer, and could be remedied

with solutions such as layer normalization [1]. The second part of our model is the

inference phase. We reinterpret the noise vector in the generator as a latent vector,

and given an image from the dataset we wish to find a latent vector that when fed into

the generator reconstructs the image. Assuming the generator reconstructs the image

in layers, we will have essentially split the input image into layers containing different
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Figure 3-1: Network Architecture: We visualize our neural network architecture.
Given an input image, we generate 𝐾 layers and masks to combine them. However,
each layer only has a certain probability of being combined with the current composite.

objects in each layer, which is our goal. Under a perfect generator that fully captures

the distribution of the input dataset, there is always a latent vector that reconstructs

the image perfectly. But in reality, the generator cannot be perfect. Therefore there

is not necessarily a latent vector that perfectly reconstructs the image. This creates

difficulties for inference, which we address in this chapter.

3.1 Generation Model

We use a simple layered model for image generation. Given a latent code or noise

vector 𝑧 ∈ R𝐷, we stochastically and recursively decode it to produce an image:

𝐺0(𝑧) = 𝑓0(𝑧) (3.1)

𝐺𝑘(𝑧) =

⎧⎪⎨⎪⎩𝑓𝑘(𝑧) ⊙𝑚𝑘(𝑧) + 𝐺𝑘−1(𝑧) ⊙ (1 −𝑚𝑘(𝑧)) with prob. 𝑝𝑘

𝐺𝑘−1(𝑧) otherwise
(3.2)
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The 𝑘th layer is only added with probability 𝑝𝑘. Our intention is that the neural

networks 𝑚𝑘(𝑧) ∈ R𝑊×𝐻 will generate a mask and 𝑓𝑘(𝑧) ∈ R𝑊×𝐻 will generate

a foreground image to be combined with the previous layer. To ensure the mask

and foreground are in a valid range, we use a sigmoid and tanh activation function

respectively. ⊙ denotes element-wise product. The base case of the recursion, 𝐺0(𝑧),

is the background layer and always present. To obtain the final image, we recurse a

fixed number of times 𝐾 to obtain the result 𝐺𝐾(𝑧). 𝐾 is a hyper-parameter in our

network, and any number of methods of assignments to 𝑝𝑘 could work. In our work,

we assume all 𝑝𝑘 are the same.

3.1.1 Layer Disposal

The generation model 𝐺𝐾(𝑧) is stochastic because each layer is only added with a

certain probability. We will train 𝐺𝐾(𝑧) to generate images that still look perceptually

real to an adversary even when some layers are disposed. To be robust to this type

of corruption, we hypothesize that the model will learn to place objects in each layer.

Removing objects will fool the adversary, however removing an arbitrary patch will

not fool the adversary because those images do not occur in nature.

We train 𝐺𝐾(𝑧) to generate images that fool an adversary. To do this, we use

𝐺𝐾(𝑧) as the generator in a GAN. We use a convolutional network 𝐷 as a discrim-

inator and optimize our generator 𝐺 to fool 𝐷 while simultaneously training 𝐷 to

distinguish between generated images and images from the dataset. Figure 3-2 shows

a few final generations of our model. Note that the final composite images look very

similar in quality to the composite images of original DCGAN, shown in Chapter 2.

Although the images are formed layer by layer, the training method allows the final

image to look realistic. It is important to note that we use the exact same training

objectives and discriminator as the original DCGAN, although our generator archi-

tecture is slightly different. As better and better models for GANs are available, we

may use them in our model to improve our quality. Figure 3-6 shows a few qualita-

tive examples of learned layer generations from this model. Notice the network can

automatically learn a decomposition of objects and their boundaries.
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(a) Regular Layered GAN Generations (b) Reduced bottleneck Generations

Figure 3-2: Example Generations: We visualize some example generations of our
model. They are similar in quality to DCGAN, although they were produced in a
layered representation. Note that there is less color variation in the reduced bottleneck
images, possibly due to using a latent vector with spatial dimensions.

3.1.2 Reduced Bottleneck

One important difference in our generator as opposed to the original DCGAN gener-

ator is that our latent vector has spatial dimensions instead of being a flat vector. We

are essentially reducing the bottleneck of the autoencoder. We choose 𝑧 ∈ R𝐷×𝑊0×𝐻0 ,

where 𝐷, 𝑊0 and 𝐻0 are hyper-parameters in our model. We assume that the gen-

erator is not able to capture the full variability of the probability distribution of the

dataset. Since we want to use our generations for semantic segmentation, we care

about the location of objects in the generations a lot more than overall color of the

image. By adding spatial dimensions to the latent vector, we hypothesize that we are

able to capture more variability in object locations instead of color differences. We

see a qualitative example of this in Figure 3-2. It seems that the model trained with

spatial dimensions has a lot less variability in color than the original model.

28



(a) Original Images (b) Reconstructions

Figure 3-3: Pixel-wise Reconstructions of Real Images: The original images
are on the left and the reconstructions are on the right. Note that the textures of
the reconstructions are similar to the original images, but there are no clear object
boundaries, and the images do not look realistic.

3.2 Inference Model

We have so far described the generation process given a latent code 𝑧. To segment

an image 𝑥, we need to infer this code. We will train an encoder 𝐸(𝑥) to predict the

code given an image 𝑥. We investigate two strategies to infer the latent code. The

first method tries to match the image with its reconstruction, and the second method

tries to match the latent codes directly.

As a note, in the samples shown in this section we do not use the reduced bot-

tleneck. We use the original latent vector of DCGAN with no spatial dimensions,

although reconstruction quality is similar in either case. In the final model in which

we report results in the next chapter we use the reduced bottleneck.
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(a) Original Images (b) Reconstructions

Figure 3-4: Pixel-wise Reconstructions of Fake Images: The original images are
on the left and the reconstructions are on the right. The reconstructions are better,
even though the encoder was not trained on images from the dataset.

3.2.1 Pixel-wise Image Reconstruction

One possible strategy is to train 𝐸 to minimize the pixel-wise reconstruction error

over our unlabeled dataset. The encoder would be given by

𝐸 = arg min
𝐸

∑︁
𝑖

‖𝐺𝐾(𝐸(𝑥𝑖)) − 𝑥𝑖‖22

In this case we also have a choice of either training the generator 𝐺𝐾 with this

objective along with the standard GAN objective, or letting it stay fixed while training

the encoder only. It is known that the GAN training objective is unstable and difficult

to balance with other objectives, so we decided to keep the generator fixed while

training the encoder with the above objective. The resulting reconstructions are

shown in Figure 3-3. The reconstructions are low-quality, and not fit to be used

for object segmentation. We hypothesize that this is the case because the generator

cannot fully capture the probability distribution of the dataset. Therefore, when the
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encoder is training to minimize pixel-wise distance to a real image, it cannot match

exactly and training is unstable, since it is not guaranteed that there exists a latent

vector that reconstructs the image.

Another strategy is to train the encoder to reconstruct generated images, i.e.

outputs of 𝐺𝐾(𝑧) for randomly sampled 𝑧. Although this seems an indirect method

for reconstruction since we care in the end about reconstructing real images from the

dataset, the problem is guaranteed to have a solution, since by definition the output of

the generator will be in its own range. After training, we give as input to the encoder

real images and look at reconstruction quality. The result is pictured in Figure 3-4.

Note in the pixel-wise reconstruction models we have to account for the fact that

the generator is stochastic; each generator output for a single latent vector might

have different layers enabled. We account for this by training a binary classifier for

each layer. The binary classifier is a standard CNN classifier. This classifier takes

as input the input image and the output layers of the generator, and decides which

layers should be included in the image for the reconstruction. It takes as input the

layered decomposition of the reconstruction, not the original layered decomposition.

This is not the architecture we end up using for the final model, as the reconstructions

are still not strong and the overall architecture is unnecessarily complicated, so it is

not included in our model architecture figure above.

3.2.2 Latent Vector Reconstruction

The reconstructions in both cases above were not strong. We hypothesize that this is

because the mean-squared reconstruction in pixel-space is not semantically meaning-

ful. We therefore use a different strategy. We will train 𝐸 to reconstruct the latent

codes from sampled scenes from the generator. The new objective function becomes

min
𝐸

∑︁
𝑧∼𝒩 (0,𝐼)

‖𝐸 (𝐺𝐾(𝑧)) − 𝑧‖22

While this does not guarantee a strong reconstruction in pixel space, it may enable

a more semantic reconstruction, which is our goal. We note this strategy is discussed
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(a) Original Images (b) Reconstructions

Figure 3-5: Latent Vector Reconstructions of Fake Images: The original images
are on the left and the reconstructions are on the right. The reconstructions are
much higher quality, and have crisp object boundaries. In addition, the images are
semantically very similar.

by [9], but they do not experimentally use it. Other inference strategies are also

possible, however this is beyond the scope of this thesis. Note that once again,

during training the encoder never sees images from the dataset; it only trains on

outputs of the generator, 𝐺𝐾(𝑧). Only during testing does the encoder see real images

from the dataset. We visualize the reconstructions for this new training method in

Figure 3-5. The reconstructions are now much higher quality. We also note that the

reconstructions are semantically similar instead of pixel-wise similar; they generally

have similar types of objects in similar locations as the original image, although the

exact details of the object might be different.
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(a) “Window”-like layer (b) “Bed”-like layer

(c) “Kitchen Appliance”-like layer (d) “Kitchen Counter”-like layer

Figure 3-6: Example Layers: We visualize some generations from different layers.
For example, some layers specialize to segmenting and generating windows, while
others specialize to beds.
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3.3 Learning

We learn the parameters of the neural networks 𝐷, 𝐸, and 𝐺 jointly. We optimize:

min
𝐷,𝐸

∑︁
𝑧∼𝑈

[︀
log𝐷 (𝐺𝐾(𝑧)) + 𝜆‖𝐸

(︀
𝐺̄𝐾(𝑧)

)︀
− 𝑧‖22

]︀
+
∑︁
𝑖

log (1 −𝐷 (𝑥𝑖)) (3.3)

max
𝐺

∑︁
𝑧∼𝑈

log𝐷 (𝐺𝐾(𝑧)) (3.4)

where 𝑈 is the uniform distribution on the interval [−1, 1] and 𝐺̄ indicates that

no layers are dropped. To optimize this min-max objective, we alternate between

minimizing Equation 3.3 and maximizing Equation 3.4 using mini-batch stochastic

gradient descent. Note that this objective is similar to a generative adversarial net-

work [12], however there is also an encoder 𝐸. We use 𝜆 = 1. Importantly, to train

our model, we only need a collection of unlabeled images. The model will learn to

auto-encode images such that layers can be randomly removed and still produce a

realistic image.

3.4 Semantic Segmentation

We take advantage of the emergent masks of the layers for semantic segmentation.

After training, we will have 𝐾 different masks 𝑚𝑘(𝑧). Since 𝐾 is typically small (we

use 𝐾 = 5), we can manually inspect a few examples on the training set and attach

a name to each one. We use these masks as the semantic segmentation prediction.

Figure 3-6 shows a few examples of learned masks from this model. Note that not all

masks are meaningful.
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3.5 Network Architecture and Implementation De-

tails

Our network architecture is similar to DCGAN [23] when possible. The encoder

contains 3 layers of 4x4 convolutions with a stride of 2, followed by a single layer

of 3x3 convolutions of stride 1, and then another single layer of 4x4 convolutions

of stride 2. Since we use reconstructions for image segmentation, we care about

encoding spatial location of the objects, so we use a latent vector of size 64 x 4 x 4.

The decoder has identical architecture, but contains up-convolutions instead. Each

layer is generated independently from the hidden state vector without tied weights.

We add batch normalization [14] between layers, leaky ReLU for the encoder and

discriminator and ReLU for the generator. We train with Adam [16] with learning rate

0.0002 and beta 0.5 for the object discovery experiments and learning rate 0.00002

for finetuning. We train for 2 epochs over the dataset for both scene categories. In all

examples we use 5 foreground layers and set the probability that a layer is included

to 0.4. We plan on making all code and data publicly available.
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Chapter 4

Quantitative Experiments

We present two quantitative experiments to evaluate our model. We evaluate how

well layers automatically emerge to classify pixels to belong to a specific object cate-

gory. We present both an unsupervised experiment and a semi-supervised experiment,

where we augment our model with very few labeled examples to further improve our

results.

4.1 Experimental Setup

We experiment with our approach using images of certain scene categories from the

LSUN dataset [35], specifically bedrooms and kitchens. For bedrooms, we focus

on segmenting bed and window. For kitchens, we focus on segmenting appliances

and countertop. The dataset contains a total of 3, 033, 042 images of bedrooms and

2, 212, 277 images of kitchens which we train separate models on. Note that apart

from scene category, these images are otherwise unlabeled, and do not have any pixel

level annotations. We random crop images to 3 × 64 × 64 and scale to [−1, 1].

Precision-Recall and Average Precision: A key to our quantitative evaluation

is using precision-recall curves and average precision. For a binary classifier, the

precision is the fraction of the selected elements that are positives. The recall, on the

other hand, are the fraction of the total number of positives selected. The precision-

recall curve plots the recall as the independent variable and precision as the dependent

variable. A perfect classifier would have perfect precision of 1.0 for all values of recall
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(a) Bedroom: Beds

(b) Bedroom: Windows

(c) Kitchen: Counters

(d) Kitchen: Appliances

Figure 4-1: Example Results: The left image contains some cases where we cor-
rectly segment the mask of objects, and the right image contains some failure cases.
The first row is the generated mask, second row is the ground truth mask, and third
row is the input image.

< 1.0. If the classifier assigns a score to each element, we assume we select the

highest scores first. A perfect classifier would select all positives before selecting any

negatives. The average precision is the area under the precision-recall curve, and is

1.0 for a perfect classifier.
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Bedrooms Kitchens
Bed Window Appliance Counter

without Labeled Images Random 0.31 0.13 0.10 0.07
Autoencoder 0.37 0.20 <0.10 0.11
Kmeans 1 × 1 0.34 0.17 0.15 0.08
Kmeans 7 × 7 0.34 0.15 0.14 0.07
Disposal 0.50 0.30 0.13 0.10

with Labeled Images Average Mask 0.52 0.19 0.12 0.10
Random Init 0.58 0.32 0.17 0.11
Disposal + Prior 0.59 0.33 0.13 0.11
Disposal + Finetune 0.69 0.50 0.19 0.15

Table 4.1: Semantic Segmentation Average Precision: We report average pre-
cision (area under precision-recall curve) on pixel-wise classification for four object
categories. Our approach can semantically segment images without supervision bet-
ter than simple baselines. Moreover, the model can be fine-tuned with a little bit of
labeled data to further improve results.

We do require some images with ground truth for evaluation. We use images and

labels from the ADE20K dataset [38] for the kitchen and bedroom scene categories

as the test set. For each scene category, we create a training dataset and validation

dataset of randomly selected examples. For bedrooms, the training and validation

each contain 640 examples. For kitchens, they each contain 320 examples. The

sizes are limited by the number of annotations available in ADE20K for each scene

category. We chose kitchens and bedrooms as they are the largest scene categories

in the LSUN dataset and because we have a sufficient number of densely labeled

examples in ADE20K.

For each identified object category in each scene, we create binary masks from the

ADE20K dataset and pair them with their corresponding images. Due to the fact that

ADE20K does not label behind occlusions, we combine labels to form the appropriate

ground truth map. For example, pillows are often on the bed. We therefore define

beds as the combination of beds, pillows, and comforters. For kitchen appliances, we

define them as microwaves, ovens, dishwashers, stoves, and sinks. We evaluate the

model versus baselines as pixel-wise binary classification. The mask represents the

confidence of model that the pixel belongs to the specified object category. We run

each experiment on a scene category and report the average precision as our metric.
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(a) Windows (b) Beds

Figure 4-2: Precision-Recall: We plot precision-recall curves for each layer’s mask.
Our approach obtains good precision with low recall, suggesting that the model’s most
confident segmentations are fairly accurate. Notice how layers tend to specialize to
certain object categories. The mask from layer 3 works well for segmenting windows,
but the same layer does not work for beds. A similar trend exists for mask 5, but
segments beds. This suggests that the model learns to group objects.

4.2 Object Discovery

We quantitatively evaluate how well our model is able to do semantic segmentation

without labeled training images in Table 4.1. Our results suggest that a decomposition

of objects is automatically emerging in our model, which can semantically segment

objects better than unsupervised baselines.

For each scene category, we train on the LSUN dataset with 5 foreground layers.

We then inspect the layers on the training set and identify which layer visually best

represents each object category. We then extract the masks from the layers of each

object that we chose. If multiple layers are chosen, we average the output masks

together. We use the outputs of these masks as scores and calculate average precision.

We also graph the precision-recall curves for the two objects for bedrooms in Figure

4-2. Important thing to note is that when evaluated on the bed objects, masks 2

and 5 indeed do the best, while mask 3 does worse than random. When evaluated

on window objects, however, mask 3 does the best and masks 2, 5 do worse than

random. This shows that each mask generally captures a single object, suggesting

the masks are learning a semantic decomposition.

We compare to a few simple baselines. The random benchmark corresponds to

a random guess for each pixel. The autoencoder benchmark corresponds to training
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the model with the disposal probability set to 0. In almost every case, our model

with disposal receives a higher average precision, suggesting that removing layers

does help to obtain an object segmentation. The kmeans baseline corresponds to

clustering RGB patches across the dataset, and using distance to cluster centers as a

segmentation score. We try both 1 × 1 and 7 × 7 patches with the same number of

clusters as our model (𝐾 = 5). For each object category, we find the best performing

cluster center on the ADE20K training set and evaluate with this cluster center on the

validation set. In almost every case, our model outperforms this baseline, suggesting

that we do not just learn a color decomposition of the image.

Finally, we conduct an ablation on the model. In our experiments, each layer is

initialized both randomly and independently. We also tried initializing each stream

identically (but still randomly). We found that performance significantly dropped

(beds dropped to 0.37 AP and windows dropped to 0.14 AP) and each stream produces

similar outputs. This suggests that initializing layers independently helps each layer

specialize to different objects.

4.3 Refining with Labels

We explore incorporating human labels into the model. As a baseline, we calculate

the average segmentation over the ADE20K dataset for each object category. For

each object category we average each mask from the labeled dataset and we evaluate

with this single mask. Recall that our model did not have access to this prior because

it never saw a densely labeled image!

Table 4.1 shows results for the Average Mask. For most object categories, the

unlabeled model outperforms the average mask, which suggests that our model can

outperform naive priors estimated with labeled data, even though it never saw labels.

For the bed objects, the simple prior does better, possibly because beds are large

and usually in a certain location (bottom). Windows, on the other hand, could be in

many different locations and are usually smaller, hence the prior could not perform

as well. Since we perform well in low-recall regions and lose to the prior in high-recall
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(a) Bedroom: Windows (b) Bedroom: Beds

(c) Kitchen: Counter (d) Kitchen: Appliances

Figure 4-3: Performance versus size of labeled data: We plot segmentation
performance versus the size of the labeled dataset during fine-tuning. In general,
more labeled data improves performance.
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regions, we obtain further improvement by averaging the output of the model and

the prior. Results are shown under Disposal + Prior. As expected, the bed category

improves, while the window category does not obtain as much improvement.

We experiment further with semi-supervised learning by fine-tuning the best per-

forming mask for each object class. After training the model without labels as before,

we choose the mask best suited for each object category and train the network with

labeled examples from the ADE20K dataset for the object category. In other words,

we use the unsupervised learning algorithm as an initialization for the supervised ver-

sion of the problem, where images from ADE20K are the inputs and the masks from

ADE20K are the labels. We also experiment with varying the size of the training set.

We report average precision, and as a baseline we use the same model but initialized

randomly from scratch. We run each model for 150 epochs over the training set.

Plots are shown in Figure 4-3 and average precision is reported in Table 4.1. In

each case fine-tuning beats random initialization, and is the best performing model

overall in all object classes. The plots also show that in many cases the fine-tuning

model outperforms scratch initialization even with 20% of the training data. This

shows that in the semi-supervised setting the model can be trained with much fewer

examples, which is favorable in areas such as image segmentation where labeled data

is expensive. Another interesting note is that for the window object class our unsuper-

vised model actually comes close to the supervised random initialization model, which

suggests that the unsupervised model in this case is strong enough to outperform a

non-trivial supervised model.
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Chapter 5

Qualitative Results

We qualitatively give several examples of images that are built up layer by layer in

Figure 5-1. For each example we give the original image that was used as input,

partial reconstructions for each layer that is added, the layer that is added, and the

mask that the layer uses. These results suggest that as the generative model improves

we will be able to remove layers from images to see behind objects. As an example,

in the bottom right we can see that when the bed layer (layer 5) is removed we are

able to uncover the headboard behind it.

In addition, we show further examples in Figure 5-2 where layers are always kept

during the generation process; 𝑝𝑘 for each layer is 0. We see that layers are a gener-

ally less meaningful decomposition, even though the final reconstruction is of similar

quality. This qualitatively shows that the layer disposal actually provides a signal to

the generator to create meaningful layer decompositions.

5.1 Cityscapes and LSUN Towers

We also show visualizations from a model trained on the Cityscapes dataset [6] and

the LSUN Towers dataset in Figure 5-3. The Cityscapes dataset did not learn very

well, as can be seen by the reconstruction quality and the layer decompositions. We

hypothesize that this is because of the size of the dataset. With only 30,000 images,

it does not have enough to train the GAN and Encoder to convergence. The LSUN
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Figure 5-1: Visualizing Layer Decomposition: We visualize the outputs of differ-
ent layers from our model given an input image. Different layers automatically emerge
to both reconstruct objects and their masks, which we use for semantic segmentation.
Moreover, this enables potential graphics applications, such as de-occluding objects
in an image.

Towers dataset has 708,264 images. The reconstructions look generally good, but the

layer decomposition is not perfect. Many layers have seemed to learn the complete

image. This could be due to the images only having a single object. Explorations to

improve these models could be the basis of future work.
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Figure 5-2: Layer decomposition without disposal: When disposal probabilities
are set to 0, we observe that the layers do not learn the decomposition as well. It
seems that compared to the previous model a lot of the layers do not learn anything.
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Figure 5-3: Cityscapes and LSUN Towers: In Cityscapes the reconstructions not
look good, as well as the layer decompositions. We hypothesize this is because of the
lack of training examples in the dataset. The LSUN Towers dataset has generally
good reconstructions, but the layered decomposition is faulty.
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Chapter 6

Conclusion and Future Work

We propose a simple principle for learning to do semantic segmentation with unlabeled

data. We capitalize on the observation that removing a region from an image will

result in an unnatural image unless the region masks an object. Since annotating

large-scale and pixel dense training data for segmentation is expensive, we believe

developing approaches for segmentation without labeled data can have significant

impact.

This work opens much future directions for improvement and research. A topic

that should be studied rigorously is why the different layers learn different objects.

Although we offer an ablation study that suggests it could be due to random initial-

ization, it is not conclusive. Furthermore, if we have an explicit method of causing

each layer to be unique, we could possibly add many more layers to the model to

capture even more detailed object segmentations. Another extension is making the

probabilities of each layer a learnable parameter. With this additional degree of free-

dom, the model could automatically learn object frequencies, and possibly also lead

to more robust models that extend to many scenes.

We believe that this could also open up a new application of GANs. By replacing

the GAN generator with a network with a certain structure, as we did by replacing it

with a layered network, we could learn to generate samples with the same structure.

Along with an accurate inference mechanism we could reconstruct original examples

from a dataset to fit the structure in an unsupervised fashion.
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