
Data Analytics and Visualizations for StarLogo Nova
Block Programming Platform

by

Phoebe Hiuchin Tse

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

July 24, 2017

Certified by. .
Eric Klopfer

Director of MIT Scheller Teacher Education Program
Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

2

Data Analytics and Visualizations for StarLogo Nova Block

Programming Platform

by

Phoebe Hiuchin Tse

Submitted to the Department of Electrical Engineering and Computer Science
on July 24, 2017, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, I designed and implemented an analytics tool for StarLogo Nova, a
block-based programming platform for creating 3D simulations and games. This tool
collects block data from the platform and visualizes the data into 15 different charts,
showcasing both high-level and the more detailed aspects about the data. As a way
to investigate how to improve StarLogo such that it is more accessible to beginner
users and more extensible to experienced users, the tool includes charts that focus
on the following four elements: tutorials, breed tabs, scrolling, and block size and
placement. Suggestions for how to improve StarLogo’s user interface, driven by a few
runs of this tool on the data, are documented in this thesis as well.

Thesis Supervisor: Eric Klopfer
Title: Director of MIT Scheller Teacher Education Program

3

4

Acknowledgments

I thank the members of the Scheller Teacher Education Program (STEP) lab for their

support, encouragement, and insightful feedback on my work. I specifically thank my

direct supervisor Daniel Wendel, who was always available to discuss everything from

the vision to project pivots to specific technical issues throughout the entire process to

thesis revisions. Also, I would like to thank Eric Klopfer for being willing to revise and

revise, as well as Paul Medlock-Walton for encouraging me to think beyond StarLogo

toward the vision of improving the block-based programming space as a whole. I hope

that the tool developed and insights discovered in this thesis project contributes to

the future of StarLogo as well as the broader space of block-based programming.

5

6

Contents

1 Introduction 13

1.1 StarLogo Nova Platform Overview . 13

1.1.1 Introductory Programs . 14

1.1.2 Users . 16

1.1.3 Interface . 17

1.2 Main Elements for Investigation . 17

1.2.1 Tutorials . 20

1.2.2 Breeds . 20

1.2.3 Scrolling . 22

1.2.4 Block Size and Placement . 24

1.3 Thesis Overview . 25

2 Evaluation of Current Block-Programming Analysis Tools 27

2.1 ScratchStats . 27

2.2 App Inventor . 29

2.3 StarLogo Approach . 30

3 Analytics Tool Overview 33

3.1 Goals . 33

3.2 Constraints and Challenges . 33

3.2.1 Public Projects Only . 34

3.2.2 Browser Limitations . 34

3.3 Interfacing with the Data Analytics Tool 35

7

3.3.1 Extracting Data . 35

3.3.2 Visualize Data . 36

3.4 Recap . 36

4 Implementation 39

4.1 Extracting Data . 39

4.2 Transforming Data: Finding Duplicates 40

4.2.1 Active Blocks and Functional Duplicates 41

4.3 Mining Data . 45

4.4 Visualizations . 46

4.4.1 Top 200 and Random 10,000 47

4.5 From Extraction to Visualization . 48

5 Results 51

5.1 How do the projects look as a whole? 53

5.1.1 Empty Projects . 54

5.1.2 Overview: Duplicated, Potentially Similar, or Empty 54

5.2 How similar/different are they to tutorials? 55

5.2.1 Top 200 Project Signatures are Tutorials or Tutorial-Inspired . 56

5.2.2 Breed Behavior Trends Similar to Tutorials 57

5.2.3 Project Sizes Slightly Different From Tutorials 59

5.2.4 Overview: Fairly Similar, Sometimes Larger 62

5.3 Are breed tabs organizing users’ code effectively? 63

5.3.1 Everyone breed is rarely used 63

5.3.2 The World breed can get overwhelmingly complex 66

5.3.3 Sometimes Too Many Breeds 67

5.3.4 Overview: Breeds Understood, but Visual Overload 70

5.4 What is the extent of required scrolling on the development page? . . 71

5.4.1 Vertical Scrolling . 71

5.4.2 Horizontal Scrolling . 75

5.4.3 Overview: An Overwhelming Amount of Scrolling 79

8

5.5 Summary . 80

6 Conclusions 81

6.1 How Do the Results Address Our Questions? 81

6.2 User Interface Suggestions . 83

6.3 Analytics Tool Impacts . 85

6.3.1 Verification of Currently Implemented Updates 86

6.3.2 Inspiring New Questions . 87

6.3.3 Limitations . 88

6.4 Future Work . 88

6.4.1 Block Usage Tree Map . 89

6.4.2 Group Projects by Type . 89

6.4.3 User Analysis . 90

6.5 Contributions . 90

A Visualizations Generated By Tool 93

A.0.1 Num Stacks by Num Blocks 93

A.0.2 Max Stack Height by Num Blocks 94

A.0.3 Frequency of Num Blocks . 94

A.0.4 Frequency of Num Breeds . 95

A.0.5 Frequency of Num Widgets 96

A.0.6 Stack Positions Filtered By Breed 96

A.0.7 Stack Positions Filtered By Stack Height 97

A.0.8 Num Blocks by Num Widgets 98

A.0.9 Num Blocks by Num Breeds 98

A.0.10 Max Stack Size: Largest Number of Vertically Stacked Blocks 99

A.0.11 Width Pixels by Width Blocks 100

A.0.12 Height Pixels by Height Blocks 101

A.0.13 Height Blocks by Width Blocks 101

A.0.14 Max Height Pixels . 102

A.0.15 Max Width Pixels . 103

9

10

List of Figures

1-1 Teachers With GUTS User Map . 14

1-2 Example of Tall and Wide Stacks . 18

1-3 StarLogo Development Page . 19

1-4 Scratch and Code.Org Development Pages 23

1-5 App Inventor Development Pages . 24

2-1 ScratchStats TreeMap of Block Usage 29

4-1 Overall System Architecture . 39

4-2 Top Level Blocks: No ‘Before’ and no ‘After’ connector 42

4-3 Examples of Different Stacks . 42

4-4 Partial Screenshot of Another Wide Stack 43

4-5 Tree Structure Example . 44

4-6 Duplication rate of top 200 project signatures 47

5-1 Entire Database Categorized by Signature 53

5-2 Top 200 Project Signatures Classified By Type 56

5-3 Number of Stacks vs Number of Blocks in Project in ‘Everyone’ Breed 58

5-4 Frequency of Number of Breeds . 60

5-5 Frequency of Number of Blocks . 61

5-6 Max Stack Size Across Different Breeds 64

5-7 Stacks Filtered By Breed . 65

5-8 Max Stacks vs Number of Blocks in Project in World 68

5-9 Num Blocks vs Num Breeds . 69

11

5-10 Project with Many Breeds . 70

5-11 Max Height Pixels Across Different Breeds 72

5-12 Stack Positions Filtered By Stack Height 74

5-13 Height Pixels by Height Blocks . 75

5-14 Max Width Pixels Across Different Breeds 77

5-15 Width Pixels by Width Blocks . 78

6-1 Proposed Mock-Up of Development Page Redesign 84

6-2 Frequency of Number of Widgets . 87

6-3 ScratchStats’ Block Usage Tree Map 89

12

Chapter 1

Introduction

StarLogo Nova is an online agent-based block programming environment that allows

users of a wide age range to build 3D simulations and games, in order to visualize and

better understand complex systems. By the end of Summer 2016, the engine running

the entirety of StarLogo Nova was completely rewritten from ActionScript (Flash) to

JavaScript [21]. Because the system underwent a huge overhaul, we decided to take

a step back and focus on how to make the StarLogo Nova platform better: easier for

beginners and more extensible for advanced users. In this chapter, we give a brief

description of StarLogo Nova and its users. We also discuss the specific areas of focus

in our investigation and give an overview of the rest of this thesis.

1.1 StarLogo Nova Platform Overview

StarLogo Nova is a web-based platform that allows users to create 3D models, games,

and simulations using programming blocks instead of textual code. The platform

teaches users how to code with blocks, so anyone, not just those who already know how

to write textual code, can build with the platform. StarLogo is agent-based, which

is useful in modeling how individuals or organizations interact with and are affected

by their environment and the system as a whole. Thus, one can use StarLogo to

create educational applications in many fields, including everything from ecosystems

to epidemiology.

13

Figure 1-1: Teachers With GUTS User Map

1.1.1 Introductory Programs

Project GUTS

Project Growing Up Thinking Scientifically (GUTS) is a major source of users for

StarLogo. Beginning in 2007 and initially held for middle and high school students

in New Mexico, this program introduces computational thinking within math and

science concepts, specifically abstraction, automation, and analysis [18] [8]. With

the Use-Modify-Create model, teachers use MIT’s StarLogo to teach students how

to create 3D models and simulations of ecosystems and other complex systems [17].

This typically means that students are given pre-built StarLogo projects to use, then

given tasks that require modifying the projects, and then encouraged to make their

own models on the platform [19].

Since its beginnings, GUTS has grown, partnering with code.org to offer GUTS’

curricula, and therefore StarLogo, to schools across the nation [3]. 43,654 individuals

across the globe have visited the GUTS site or registered for a Project GUTS online

course, as seen in Figure 1-1 [14]. Within recent years, Teachers with GUTS (TWIG),

an online and in-person professional development network of teachers in the Project

14

GUTS community, has grown across the globe as well [14]. Within TWIG professional

development courses, teachers are taught different ways of incorporating StarLogo

models into their classroom curricula and how to use StarLogo themselves.

Examples of introductory projects found in Project GUTS include Flower Turtles,

which is a basic project in which turtles draw flowers on the terrain, and the Epidemic

Model, which simulates a disease’s rate of infection in a population. Many students

and teachers who have participated in any part of Project GUTS and/or TWIG have

probably been exposed to projects like Flower Turtle and the Epidemic Model before.

Imagination Toolbox

Another source of users is Imagination Toolbox, a program held by the MIT Scheller

Teacher Education Program (STEP) Lab every year [7]. During this annual week-

long workshop, 20-30 teachers come together to learn how to build 3D games and

simulations in StarLogo, and how to incorporate the platform into their classrooms

[7]. Both formal and informal educators of any field are welcome to attend. StarLogo

users are directly attained through these annual workshops, and indirectly through

these teachers’ students outside the workshop.

Introduction to Programming with Imagination Toolbox (IPWIT) is a series of

tutorial projects that Imagination Toolbox workshop attendees are guided through.

This series of projects includes Orientation, which is essentially the Flower Turtles

project mentioned in the previous section, as well as other projects like a Paintball

shooting game or a Treasure Hunt game [6]. There is overlap between the projects

introduced in Project GUTS and those introduced in IPWIT. Additionally, these

IPWIT tutorial projects are available publicly on StarLogo’s resources page, so any

user using StarLogo can use these starter projects to learn how to use the platform.

15

1.1.2 Users

How Beginner Users Learn StarLogo Nova

As discussed in the previous section, a majority of end users are introduced to Star-

Logo Nova through some structured program with beginner tutorials. From our

understanding of how most users are introduced to the platform, we know that users

range from elementary school students to teachers and researchers. They often learn

from these tutorials, which include a series of guided instructions on how to make

4-7 types of 3D models and game projects. These guides contain screenshots and

detailed instructions on how to create 3D simulations by connecting the block pieces

together [6]. The tutorials in IPWIT also include detailed screenshots on how to

use the website itself, such as how to create a project and how to navigate between

different pages [6]. They also define the various terminology commonly used in the

system, such as ‘Agent’ and ‘Breed of Agents’.

It is therefore expected that most beginner users, no matter the age, have projects

that look similar to those provided in the tutorials. Their projects might not be very

large and could look like direct copies of existing tutorial projects. We do not know

exactly how users’ projects differ from the starter projects introduced to them in

programs like GUTS or IPWIT, though.

How Advanced Users Use StarLogo Nova

Once a user grows more familiar with the StarLogo platform, they may begin to

include more advanced, complex logic into their programs, straying further from tu-

torial projects. Just as complex text-based coding programs can get disorganized

and more difficult to read, StarLogo Nova’s complex projects can explode in size. For

example, in Figure 1-2a, we see a partial screenshot of a very tall stack of StarLogo

blocks. The user is interested in creating many agents and modeling relatively com-

plex behavior. As such, the stack of blocks is very tall. Additionally, because of the

nature of StarLogo blocks, the blocks’ widths can grow very wide very quickly. This

is seen in Figure 1-2b, which is a partial screenshot of multiple levels of nested blocks

16

[11].

1.1.3 Interface

The development space on the website is, for our purposes, the page of greatest

interest. On this page, end users create their projects with drag-and-drop block code,

run their code, and see their 3D models and games come to life. Figure 1-3 displays

what the development page looks like in edit mode [11]. In this mode, the page

is divided into 3 sections: the Project Information section at the top, Spaceland in

the middle, and the Workspace (Canvas and Drawer) at the bottom. The Canvas is

where blocks are placed, and the Drawer is where users can find and select the different

types of blocks that they want to use. Draggable and droppable, these blocks can

be connected together like puzzle pieces to create 3D games and simulations. In play

mode, the page hides the Workspace section such that blocks are not visible to the

end user. To navigate between any of these three sections, the end user is required

to scroll up and down the development page.

Currently, there are a total of 108 different types of blocks that end users can use

in their programs. The block code can be run by pressing the 𝑅𝑢𝑛𝐶𝑜𝑑𝑒 button at

the top of the page. The resulting program is then visible in Spaceland, where end

users can see their 3D program’s button interfaces as well as their agents interacting

with one another.

1.2 Main Elements for Investigation

From my own interactions with the StarLogo Nova interface and from discussions

with StarLogo researchers, we established four initial areas of investigation that may

be useful for improving the platform’s accessibility to both new and expert users. We

used these four factors as the first step in thinking about what we wanted to learn

about how users use the platform, and ultimately how to make the platform easier

for beginners and more extensible for experts. The following sections describe these

four elements and pose questions of interest regarding each.

17

(a) Tall Stack

(b) Wide Stack

Figure 1-2: Example of Tall and Wide Stacks

18

Figure 1-3: StarLogo Development Page

19

1.2.1 Tutorials

In order to fully and thoroughly learn StarLogo Nova, one must be able to read (and

have the patience to read) the large set of instructions in the IPWIT tutorial guide,

which was discussed in Section 1.1.1, Introductory Programs. Aside from written

instructions, some additional in-person guidance is generally needed to explain the

guide and explain how to use the website. While this may reveal a need for an

improved orientation process to StarLogo Nova, this could potentially reveal a lack

of intuitiveness in the interface as well.

According to StarLogo Nova developers, over 90% of the projects on the platform

are expected to be from the last three years, mostly because of Project GUTS [8].

However, we do not have documentation on how the platform was introduced to

those who have not directly participated in these programs. It is unclear whether

teachers participating in GUTS or Imagination Toolbox had ever incorporated what

they learned about StarLogo in their curricula. If they did, it is still unclear exactly

how they introduced the platform to students.

Thinking about tutorials and their effect on users raises important questions for

evaluating the platforms’ accessibility to new users. How many of the projects are

duplicates of, or very similar to, tutorials? Exactly how different from the tutorials

are the more complex projects? Do users take the platform and expand upon it?

Answering these questions would bring interesting insight into how users use the

platform and how effective StarLogo Nova is in facilitating creative innovation.

1.2.2 Breeds

Agent-based programming allows for more decentralized thinking and thus allows

for modeling of emergent phenomena [20]. An agent has its own pre-defined set of

traits and behavior, and cannot change other agents. Instead, agents can interact

with other agents and react from said interactions. This type of programming is

particularly useful for modeling complex systems such as ecosystems in nature.

A breed is defined as a ‘prototype for an agent’ and is a term used particularly in

20

StarLogo [4]. This means that all agents of the same breed have the behavior defined

by the block code given to that breed. This ‘breed’ concept is a way to help end users

better understand how to code different types of agents and how to better organize

their StarLogo projects. On the platform, there are two special breeds called ‘The

World’ and ‘Everyone’. ‘The World’ is a special breed that is the only one in which

other agents can change its traits. Also, ‘The World’ is the only breed that exists

when a StarLogo game or simulation is loaded, so it is naturally the breed where most

agent creation occurs.

The ‘Everyone’ breed contains the blocks that define any shared behavior between

agents. If the ‘Everyone’ breed tab did not exist, any project in which agents possessed

shared behavior would have the shared behavior blocks repeated for each breed tab.

Having ‘Everyone’ was a way to help cut down on repetitive code. When breeds

do share behavior, they generally do so using Procedure blocks. For example, in a

simplified ecosystem model, both a Lion agent and an Antelope agent may grow in size

after eating. The Lion would grow larger after eating an Antelope, and the Antelope

would grow larger after eating grass. The shared behavior here is ‘growing in size’, but

they occur in different situations. Wrapping the blocks that define ‘growing in size’

in a Procedure block in ‘Everyone’ allows for both Lion and Antelope breed blocks

to call the Procedure when defining individual ‘eating’ scenarios, without repeating

code.

When users first begin creating a project, they are shown three default tabs that

represent three breeds: ‘The World’, ‘Everyone’, and ‘Turtle’ (a basic breed). These

tabs are similar to web browser tabs. When a tab is selected, the canvas that repre-

sents that particular breeds’ blocks is displayed. The ‘Everyone’ and ‘The World’ tabs

look the same as any other breed in the project, despite being conceptually special.

Similar to how one can view one tab at a time in a standard web browser, StarLogo

users can only view one breed at a time and therefore do not have the ability to visually

compare blocks between breeds at the same time. In addition, blocks can be copied

and pasted across breeds, but it is accomplished by a series of mouse clicks, and not

the usual drag and drop motion usually associated with these blocks.

21

Is the breed tabs layout getting in the way of users’ interaction with the plat-

form? Are users using the ‘Everyone’ and ‘The World’ breeds the way researchers

had anticipated? Are users’ blocks actually organized because of these different tabs

of breeds? Researchers are wondering about these questions and about how breed

tabs affect both new and expert users’ experiences with the platform.

1.2.3 Scrolling

As seen on Figure 1-2, the Workspace section, which contains the Drawer and the

Canvas, is below Spaceland. While working on their blocks, end users are not able

to see the running environment next to the block environment. Users cannot concur-

rently view Spaceland and their blocks. Being forced to only view one environment

at a time can make it difficult for end users to debug their projects. The platform’s

required scrolling could interfere with a new user’s ability to explore the StarLogo

Nova system to its greatest capacity, depending on the amount of scrolling. Requiring

users to scroll up and down between their blocks and their program generated by the

blocks is different from many of the popular block-based programming platforms that

currently exist- such as Scratch, code.org studios, and App Inventor [9] [3] [2] . For

Scratch and code.org, the canvas of blocks is on the right and the output window is on

the left. Scratch (Figure 1-4a) and code.org (Figure 1-4b) have similar layouts. For

App Inventor, the project output and the block workspace are on separate pages. To

navigate between them, users must click on buttons located in the top right corner.

This is pictured in Figure 1-5.

Overall, these other platforms’ layouts do not require as much vertical scrolling

for the user as StarLogo does. Also, StarLogo researchers have noted that users

are oftentimes required to scroll horizontally because when complexity increases, the

blocks tend to grow wider. The visual effect of such expansion is pictured in Figure

1-2b.

How often do users need to scroll up and down when developing? How often do

they need to scroll left and right? Does this amount of scrolling impact usability?

Would changing the layout of the development page improve usability and learnability

22

(a) Scratch Layout [9]

(b) Code.Org Layout [3]

Figure 1-4: Scratch and Code.Org Development Pages

23

Figure 1-5: App Inventor Development Pages

of the system? These are questions that StarLogo researchers have not looked into

yet, but are interested in answering. Gathering data on how screen real estate is used

could inform researchers how to redesign the development page such that scrolling is

minimized, and thus, hopefully improving the platform for new and advanced users.

1.2.4 Block Size and Placement

Blocks can explode in width incredibly quickly. This is especially common if the user

wants to use math blocks to compute certain values, since math expressions can have

many nested arguments, which could mean potentially many nested blocks. Stacks

of blocks can also grow very tall as projects grow in complexity. As users explore the

StarLogo platform, and as they gain more expertise with the system, the blocks may

become more and more difficult to organize and understand.

Aside from the actual size of each block, the placement of blocks and stacks of

blocks can also make one’s project visually confusing. For example, unused blocks

and unused stacks of blocks can be scattered all along the canvas without affecting

24

the program. With this potential visual overload of both active and inactive blocks,

users may find it difficult to understand how their own programs and blocks work.

Where are users’ blocks usually placed on the canvas? How large or small are

these blocks usually? How many projects in the database have abnormally huge

block stacks? Answering these questions would give insight into how visually complex

projects are, and better inform any future user interface design decisions.

1.3 Thesis Overview

What does a project’s similarity to or difference from a tutorial starter project say

about StarLogo’s ability to encourage creativity? Does the current layout help or

hinder users’ experiences with the site? Does the platform’s enforced need to scroll

frustrate users? Do the blocks’ sizes and positions make the platform visually over-

whelming? Without analyzing data on how users use the platform, these questions

will remain unanswered. With a greater understanding of the data, though, we can

begin to address these questions.

With data, we can ask more specific questions that would bring us closer to

understanding StarLogo’s specific impacts on users. How do StarLogo projects look

in the database? How similar to and how different from tutorials are projects? Are

breed tabs organizing users’ code effectively? What is the extent of required scrolling

on the development page?

This second set of questions, which can be answered with data analysis, motivates

this M.Eng project. Answers to these questions would equip us with the necessary

tools to begin evaluating StarLogo’s ability to encourage creativity and to determine

what design changes would improve user experience. This would thus give insight on

how to improve the platform for both beginner and advanced users.

The overall goal of this thesis is to create an analytics tool that collects data about

the projects on the StarLogo Nova platform and visualizes said data in an informative

matter. The tool is aimed to be effective in displaying relevant data that answers our

questions and is easy to build upon in the future. The analysis that is presented in

25

this thesis is an overall look at how users interact with the StarLogo Nova platform.

At the end of this thesis, I provide several recommendations for the redesign of the

StarLogo development page, informed by the data visualization results gathered from

our data analytics tool.

This chapter described the background and initial directions for StarLogo’s new

data analytics and visualizations. Chapter two is an evaluation of other block-

programming analytics research that has been done in recent years. Chapter three

discusses an overview of StarLogo Nova’s new data analytics tool. Chapter four de-

tails implementation steps and challenges encountered during the development of the

tool. Chapter five describes the results from the visualizations generated from our

analytics tool. Chapter six then lists the takeaways from our analysis, discusses the

tool’s impact, describes its limitations, and suggests a number of user interface mod-

ifications backed by the tool’s analysis. Possible future extensions to this project are

also discussed.

26

Chapter 2

Evaluation of Current

Block-Programming Analysis Tools

In this chapter, we describe the data analysis and statistics work accomplished within

the past few years in the block programming space. Specifically, Rita Chen’s M.Eng

thesis on ScratchStats, Benjamin Xie’s SuperUROP paper on App Inventor, and Xie’s

M.Eng thesis on App Inventor users are discussed [24] [15] [25]. We then detail how

their work can and cannot be applied to our StarLogo Nova analytics tool task given

our current constraints.

2.1 ScratchStats

Scratch is an online block programming community that users can use to create

stories, games, animations, and other applications. ScratchStats, an extension of the

Scratch website, displays aggregated user and project data. According to Rita Chen’s

M.Eng thesis, projects also contain remix trees to visualize how users have built upon

each others’ projects [24]. The data visualized on the ScratchStats page dates back

from 2007 to the present [10]. User data on ScratchStats include visualizations of the

following information about Scratch:

∙ Previous month’s website traffic

27

∙ Monthly activity trends, like new comments, projects, and users

∙ Monthly active users

∙ Age distribution of users

∙ Which countries Scratch users are located

These visualizations give interesting insight into the breadth of users who use Scratch.

Counting monthly active users is one way that Scratch measures success and engage-

ment on their platform.

In addition to visualizing user data, Scratch offers more project-specific data vi-

sualizations:

∙ Projects shared, users registered, comments posted, and studios created

∙ Remix trees [24]

∙ Monthly project shares, monthly comment activity

∙ Tree map of Scratch block usage from a random sample

As briefly mentioned earlier, Scratch, like StarLogo Nova, has a feature called ‘Remix’,

which is how users share projects, make copies of other projects, and build on top of

them [24]. The purpose of this is to encourage collaboration between and creativity

among users of the platform. These visualizations give insight into how users use the

Scratch platform. Additionally, the tree map pictured in Figure 2-1 displays how often

the different Scratch blocks are used across a random sample of projects. Hovering

over the rectangles on the chart gives users more detail about the appropriate block

type, and clicking through yields a zoomed-in perspective of the tree map.

A major piece of ScratchStats that inspired the way we designed StarLogo’s visu-

alizations is the interactivity of the visualizations. In ScratchStats, hovering over any

point on any area of the charts reveals a tooltip with more information about that

particular point in the chart [10]. Some charts in ScratchStats also have togglable

legends and clickable parts of the graph to give users the ability to ‘tinker’ with the

28

Figure 2-1: ScratchStats TreeMap of Block Usage

data [10][24]. Our analytics tool for StarLogo aims to incorporate similar interactivity

in our visualizations. The hope was to ensure that the visualizations were informative

and easy to understand.

2.2 App Inventor

App Inventor is a block-programming platform that is specifically used to develop

mobile Android applications. On the App Inventor homepage, basic statistics on

active monthly users, the number of registered users, weekly active users, number of

countries reached, and the number of applications built are available [2]. From Xie’s

M.Eng thesis and SuperUROP paper, we see that the App Inventor team has also

done some research into user progress data and grouping projects by type [25][15].

One of Xie’s goals was to investigate how users grew in their computational think-

ing skills as they continued to use App Inventor over time. To do this, Xie used

K-Means clustering algorithms to find similarities between representative users [25].

Using feature extraction and grouping, he also classified projects into different cate-

gories based on App Inventor’s palette, which organizes blocks by functionality. He

was thus able to gain insight on how users’ projects correlate with App Inventor

tutorials [15].

Although Xie’s work takes a different direction from ours, we can nonetheless draw

29

inspiration from his thesis. His work on analyzing the relationship between tutorials

and users’ projects inspired us to investigate tutorials’ impact on StarLogo users [15].

Additionally, Xie’s analysis makes sure to only focus on active blocks [25]. This means

that any blocks that did not contribute to project functionality were considered noise

and removed. StarLogo blocks are similar to App Inventor blocks in that blocks

can be placed on the canvas without actually contributing to the functionality of the

resulting programs. Because of this, we decided to similarly filter out this noise when

generating visualizations for our StarLogo tool. Further details on this process is

described in Chapter 4, Implementation.

2.3 StarLogo Approach

We chose to make the visualizations interactive, similar to how ScratchStats charts

are, in order to give users the option to view the data with a variety of perspectives

[24]. For example, we decide to make breeds togglable for some charts so that users of

our tool can compare the data between different breeds. Also, similar to Xie’s work,

we decide to filter out inactive blocks, which do not contribute to StarLogo program

functionality [25]. This includes blocks that are disconnected or stacks that are not

connected to a valid top level block. By doing this, we are able to effectively remove

noise in our data source.

There is no existing data analytics tool or infrastructure to support data analysis

of how users use the StarLogo Nova platform. On the site, though, any StarLogo user

can open a public project and view its block code in the browser. This block data

is used as our initial data source for our analytics tool. Structured in a large JSON

format, this data includes the block names, positions, and how the blocks are linked

to each other for every breed of a given project. The tool aims to programmatically

extract this data from the server and to make it more understandable.

Unlike both ScratchStats and Xie’s work with App Inventor, though, StarLogo’s

tool currently only works with decontextualized block data. Thus, questions of

monthly activity, remix trees, and user growth over time will not be addressed in

30

our visualizations and analysis. We decided to choose visualizations that would con-

vey an informative overlook of data that would give insight into the pervasiveness of

tutorials, the effectiveness of breed tabs, the extent of scrolling, and block size and

placement. A list of the visualizations generated by our tool is found in Appendix

A. Potential ways to build upon Chen’s and Xie’s theses in StarLogo are discussed in

greater detail in Section 6.3, Future Work.

Our goal was to create a tool that would collect and visualize StarLogo data to shed

light on how to best lower the floors and raise the ceilings for users. Specifically, we

wanted to address questions about the relationship between projects in the database

and tutorials, about how breed tabs affect usability, about how the need for scrolling

impacts usability, and about how StarLogo blocks’ sizes and positions influences user

experience. With the inspiration garnered from ScratchStats and App Inventor, we

have designed a tool that aims to achieve this goal.

31

32

Chapter 3

Analytics Tool Overview

The following chapter describes our goals as well as the high-level constraints and

challenges we encountered. A discussion on the StarLogo Nova Data Analytics tool

interface follows.

3.1 Goals

We want to gather information on how to improve the StarLogo Nova platform,

particularly in raising the ceilings and lowering the floors for users of many levels

of expertise. In order to accomplish this, we need to understand how the platform

is used. We aim to investigate the factors mentioned in Chapter 1, Introduction

(Tutorials, Scrolling, Breed Tabs, and Block Size and Placement) and to understand

these factors’ impacts on usability. Thus, we decided to build a data analytics tool

that collects, transforms, and visualizes StarLogo block data so that we can better

achieve these goals.

3.2 Constraints and Challenges

There are two substantial factors that affected how we went about achieving all of the

aforementioned goals. The following sections discuss what constraints and challenges

we encountered that led us to follow more creative methods of collecting data and

33

drawing meaningful information from said data.

3.2.1 Public Projects Only

Projects on the StarLogo Nova platform can be either private or public, a setting

configured by end-users themselves. For this thesis, we only have access to public

data, and thus, our conclusions are drawn from public project data alone. This

public project data is accessible through an HTTP GET request, which the platform

uses every time it renders a StarLogo project. The data gathered and reported in

this thesis is equivalent to the data one would find from opening the public projects

available on the website and looking at their blocks.

Only having access to public projects introduces some constraints. Public project

block data does not possess any information about the users who created the projects,

so we will be making analyses from a decontextualized perspective rather than from

the context of users. There is also a chance that public projects are different from

private projects in some significant way. For example, public projects may look

more complete, organized, or interesting if users decide to only publish their ‘better’

projects publicly 1. If this is the case, our conclusions will be constrained to analyzing

‘good’ projects only.

Our analysis may not be an accurate representation of all projects due to selection

bias. Despite all of this, we can still find useful data from these public projects

nonetheless. We can still gain much insight into StarLogo by analyzing and comparing

public projects’ blocks and breeds.

3.2.2 Browser Limitations

As mentioned previously, the data source for our analytics tool is the data received as

an HTTP response to a GET request, which is the same way that blocks are loaded

onto the StarLogo platform in the browser. The current StarLogo code that loads

block data runs in the browser, which means our tool must also run in the browser
1On the contrary, we see in Chapter 5 that the public projects in our data source are often

incomplete, disorganized, and duplicates of tutorial projects.

34

in order to collect this block data. Given our dependence on HTTP requests and the

browser, the tool needed to use the web browser for extracting and transforming the

data. Our tool’s performance can be impacted when it is given a larger amount of

data. For example, it takes around 7 hours to query the server for all the projects in

the database. Also, it takes about 1 minute to render the SVG visualizations for over

8,000 projects. In practice, the tool is intended to be used for full database querying

relatively infrequently, so the amortized time cost of using our tool is about 1 minute.

Our initial plan was to create a simple script to query for and process the StarLogo

block data. However, because of Cross-Origin Resource Sharing (CORS) rules, we

needed to build a separate server that acted as a proxy between our querying code

and the StarLogo server. We had also wanted this tool to specifically be for StarLogo

researchers, not the general user body. Therefore, this analytics tool is an external

web-based tool. It is not an extension of any part of the StarLogo Nova website at this

time. Working with these browser limitations makes this task less straightforward,

and hence, more technically intriguing.

3.3 Interfacing with the Data Analytics Tool

StarLogo’s new data analytics tool is a web-based tool that extracts data from the

StarLogo server and then visualizes it. Using our tool involves a few manual steps

that will be outlined in the following subsections.

3.3.1 Extracting Data

The first step is to adjust the configurations such that the tool knows how many

samples to query from the database. As mentioned previously, it takes around 7 hours

for our tool to query for around 400,000 project samples, which is approximately the

size of the current database that is loaded into the Beta server. More details about

what the Beta server is follows in Chapter 4, Implementation.

After the tool finishes running, the data is manually extracted by removing the

string out from either the browser’s LocalStorage or IndexedDB, depending on where

35

the data was stored, which depends on the size of the stored data. This data is then

saved locally and the researcher using the tool can then run the 𝑝𝑎𝑟𝑠𝑒𝐷𝑎𝑡𝑎.𝑝𝑦 script.

This script creates .𝑡𝑥𝑡 and .𝑐𝑠𝑣 files needed for the visualization step and takes less

than a second to run on about 69,240 project samples. This is the number of public

projects found after querying for 400,000 projects.

3.3.2 Visualize Data

After the 𝑝𝑎𝑟𝑠𝑒𝐷𝑎𝑡𝑎.𝑝𝑦 script is finished running, change the configurations for the

tool such that the tool knows that it is tasked to visualize the data. Charts are then

rendered on the browser, visualizing the data source specified by the configurations.

At this time, the configurations allow the tool to visualize a representative project

for each of the top 200 most popular project signatures. The tool can also visualize

a representative project for each of 10,000 random signatures not in the top 200.

Project signatures are discussed in greater detail in Section 4.2: Transforming Data:

Finding Duplicates. In Section 4.4.1 Top 200 and Random 10,000, we explain why we

chose to visualize the top 200 most popular project signatures and a random sample

of 10,000 project signatures not in the top 200.

3.4 Recap

Without much data analysis infrastructure available with StarLogo now, it is unclear

to researchers how users’ projects relate to tutorials, how effective breed tabs are, how

users feel about the need for scrolling on the development page, and how visually

overwhelming the blocks are to users. These are four key aspects we suspect to

have substantial impact on both beginner and advanced users. With our dependency

on the browser, collecting and visualizing project data becomes a more technically

interesting challenge.

Creating data analysis tools have had lower priority in previous years when com-

pared to other feature requests and bug fixes. However, given that StarLogo Nova had

just underwent such a huge overhaul from Flash to JavaScript, this thesis takes on the

36

opportunity to provide greater visibility of the StarLogo platform to researchers than

they have had before. Building a tool that collects and visualizes project block data

can provide an incredible amount of information that would bring insight into how

users use StarLogo as a whole, setting the foundation for more data-driven platform

design decisions in the future.

37

38

Chapter 4

Implementation

This chapter discusses implementation details and technical challenges encountered

during development. Limitations of our implementation are also discussed. Figure

4-1 illustrates the general architecture of the system, both when it is extracting data

and when it is visualizing the data. Our tool accesses data from the Beta server,

which holds a clone of the live database from October 2016. The Beta version of the

site is the new version of StarLogo that is currently being developed.

4.1 Extracting Data

To request data from the Beta server, our analytics tool’s client sends a request to

its server for a predetermined amount of data. Then, the tool’s server sends GET

requests to the Beta server. The Beta server responds with string responses that hold

Figure 4-1: Overall System Architecture

39

the project data. Our tool’s server then sends this to our client, which reads and

transforms the data. This process repeats until the client has received the desired

number of data samples (the desired number of projects). In Figure 4-1, the multiple

arrows between our server and Beta server represent how the server sends chunks of

GET requests to the Beta Server at a time.

Avoiding DDOS

StarLogo uses Amazon Web Services (AWS) cloud computing services [1]. Because

our method of getting data is similar to a DDOS attack on the StarLogo Nova Beta

server, AWS automatically shuts down my connection if I try to send a couple hundred

of GET requests immediately after another. To fix this, I chunk the number of GET

requests by chunks of 100, restarting the connection after every 100 GET requests

to the Beta server. The size of the chunks are parameters that can be changed as a

configuration setting.

Asynchronous Manipulation: Using Promises

Because sending HTTP requests are asynchronous, chunking the GET requests was

a bit trickier than writing a simple for-loop. Because of ECMAScript 6 Promises,

the functionality was achieved through a series of Promise functions. These functions

involve pre-processing the responses received from the Beta server too, making this

data collection step a little more complex.

4.2 Transforming Data: Finding Duplicates

Duplicates of IPWIT, Project GUTS, and other tutorial projects could appear in

our visualizations many times because many users are introduced to the platform

through a standardized program. Tutorials are generally how users are introduced

to this platform, so we would expect a fairly significant percentage of the projects in

our samples to be similar, or even exact duplicates. This is especially since tutorials

provide very specific directions, so users are oftentimes following these step-by-step.

40

These duplicated projects would only reveal how tutorial-developers (i.e. StarLogo

researchers) use StarLogo, not how the general body of StarLogo users use it. Star-

Logo Nova’s ‘remix’ feature allows users to copy another project and build on top

of it, which is another possible reason that many of our data samples may be exact

duplicates of other projects. Duplicates can be seen as a source of noise in our data.

With this in mind, we implemented a way to detect when different projects are so

similar that they should be considered duplicates.

4.2.1 Active Blocks and Functional Duplicates

Our analysis is done on projects’ active blocks only, similar to Xie’s work in App

Inventor [25]. Active blocks are top level blocks that are connected to other blocks,

and other blocks that are connected to a top level block. Inactive, disconnected

blocks are not compiled into the program and thus do not contribute to the program’s

functionality. Figure 4-2 pictures the types of blocks that are considered top level

blocks, but none of those blocks alone are active because they are not connected to

other blocks. On the other hand, Figure 4-3 shows examples of active blocks.

We define ‘Functional Duplicates’ to be projects whose active blocks are in the

same order, have the same structure, and have the same frequency. Because of this,

our analysis will consider two projects different even if they look fairly similar. In

Figure 4-3, we see that the stacks have similar block types, but they do not have

the same order. Our tool recognizes each of the stacks in Figure 4-3 as different.

One may argue that these stacks are similar enough to be considered duplicates, but

measuring similarity between our data samples requires something like a tree edit-

distance algorithm. However, because implementing such an algorithm is beyond the

scope of this M.Eng project, we chose to preserve the differences between stacks even

if they do not seem very significant.

Our tool’s data processing functionality can be built upon for any future work

in measuring similarity. If our tool had combined projects that ‘looked similar’, we

would have lost some information about the original data. Our more conservative

approach of preserving these seemingly minute differences builds the foundation for

41

Figure 4-2: Top Level Blocks: No ‘Before’ and no ‘After’ connector

Figure 4-3: Examples of Different Stacks

future investigation into measuring similarity between projects.

For the rest of this thesis, references to blocks in regard to our data analysis refer

to active, connected blocks as described in this section.

Building a Tree Structure

A data sample received from the Beta server is a very large, complex tree of both

active and inactive blocks representing one project. Ignoring inactive blocks, we

create tree structures for each project, where each breed and its blocks is a subtree

of the larger project tree structure.

To filter out the inactive blocks, the tool iterates through the decompressed, de-

42

Figure 4-4: Partial Screenshot of Another Wide Stack

coded project data to build a tree structure that consists of only active blocks. More

concretely, project A would be a functional duplicate of project B if they both have

the same number of breeds and between their corresponding breeds, they use the

same stacks of blocks with the same structure. Functionally duplicate projects do

not need to have breeds with the same names.

We define a ‘child’ block to be a block that is connected to the current block’s

nested socket, or a block that is connected to its ‘after’ socket. For example, the

‘forward’ blocks in Figure 4-3 have a ‘before’ connector and an ‘after’ connector. In

the top left stack of Figure 4-3, the ‘forward’ block’s child is the ‘left by _ degs’ block

while in the bottom left stack, the ‘forward’ block does not have a child. Blocks can

also have arguments, which we distinguish from children because arguments tend to

contribute to width calculations more than children do. Figure 4-4’s wide stack shows

an example of a block with many nested arguments. Argument and children blocks

are represented visually differently on the StarLogo platform, and so too in the tree

structures we create.

Our tool peruses through the block data, filters out the unused blocks, and builds

up a tree consisting of active root, children, and argument blocks. The final tree

structure looks like the following:

𝐵𝑙𝑜𝑐𝑘𝑁𝑎𝑚𝑒 : [[𝑐ℎ𝑖𝑙𝑑1, 𝑐ℎ𝑖𝑙𝑑2, ...],

[𝑎𝑟𝑔1, 𝑎𝑟𝑔2, ...]]

where the first element of the array is an array of the block’s immediate children,

and the second element in the array is an array of immediate arguments. The array

data type was chosen in this case because we want to ensure the ordering of block

names are standardized across the different trees built for all the different projects.

43

Figure 4-5: Tree Structure Example

Figure 4-5 shows a side-by-side comparison of an example stack of blocks and its

corresponding tree structure. Note that we also ignore literal values, like the ‘5’s in

Figure 4-5, in our tree structure.

Signatures

After constructing the tree structure of all the active blocks in a project, the tool

keeps a stringified copy of the project’s tree object as a ‘signature’. When the tool is

in ‘Extract’ mode, it builds projects’ tree signatures from the data and then updates

the tool’s internal hashmap of project signatures. Every key in the hashmap is a tree

signature, and every value is a list of project IDs that have that particular signature.

When the tool is in visualization mode, we input the IDs of different project

signatures into the tool via 𝑝𝑎𝑟𝑠𝑒𝐷𝑎𝑡𝑎.𝑝𝑦. Instead of building a signature, the tool

builds an ‘Augmented Tree’ that contains the tree structure signature as the backbone.

The additional information added to this backbone includes the project’s stacks’

positions, block heights and widths in pixels, breed names, and other pieces of data.

The ‘Augmented Tree’ contains data that are useful for visualizations, but are not

used to distinguish similarity between projects and thus are not included in ‘Extract’

mode’s signature creation. Because this process gives us access to project IDs, we

were able to also manually opened some projects on the StarLogo site when testing

our tool’s accuracy and when observing outlier projects.

44

4.3 Mining Data

As mentioned in the introduction of this thesis, we initially went about investigating

how to raise the ceilings and lower the floors for StarLogo users by thinking about

tutorials, scrolling, breed tabs, and block sizes and placement. This played a large

role in our decisions on which statistics were useful to gather and which were not.

Project wide information, such as the number of breeds and the number of blocks

in a project, contributed to building an overview of how projects looked regarding

tutorials and breeds tabs. Finding information about the position of block stacks and

their widths and heights in pixels were useful in determining how users used screen

real estate. Additional information, such as the number of widgets in a project, was

included in our analysis as a way to see how far projects have deviated from the

default blank projects, thus aiding in measuring how ‘creative’ users are with the

platform, and how accessible it is for new users to grow to be expert users.

Complexity of block-based programming projects are multidimensional- there are

many aspects that contribute to the complexity of a given project. This could include

the number of blocks in the project, frequency of certain block types, number of nested

blocks in the stacks, number of breeds, and other factors. For this project, we use the

total number of blocks in a given project as a general measure of overall complexity.

For example, we wanted to see how stack heights and widths change based on the

increasing number of project blocks.

Throughout iteration, we learned that averages were not as informative as focusing

on the extreme cases. Averages, like average block widths or average project block

lengths, were not as effective in characterizing projects as expected. For instance,

visualizing the maximum width of a stack of blocks gives more information about the

complexity of a particular stack than would visualizing an average width for all stacks.

So, in our final implementation, we opted for visualizations that highlight outliers-

minima and maxima- as well as charts that display trends. We could have averaged

the x-coordinate positions of all stacks in a given project and plotted those averages.

Instead, we plot every stack’s top level x- and y-positions so that we could preserve

45

information about each stack’s position and top level block name. This alternative

approach provides richer information than averaging out all of the stacks’ x-positions.

Manual Work

The block data itself does not store any information about blocks’ pixel details. So,

to collect data on block pixel widths and heights, we needed to manually measure the

blocks and manually test how blocks dynamically resize when connected to others.

Alternatively, we could have used ScriptBlocks, StarLogo Nova’s block library, to load

the blocks visually and then get the pixel measurements after the blocks have been

loaded. However, loading and rendering each project and then measuring each block

with ScriptBlocks is a very time-consuming task, much more time-consuming than

using pre-measured values. Also, pixel measurements for each block do not need to be

calculated every time the tool was run since they would only change if ScriptBlocks

changed, which does not happen often. We therefore used the Page Ruler Google

Chrome Extension to manually measure each of StarLogo’s blocks’ heights and widths

[16]. This method is sufficient for our needs, because our goal is to gain an improved,

bigger picture understanding of how users use the platform as a whole. We do not

require much precision in our pixel measurements.

4.4 Visualizations

We used an open source data visualization library called D3, version 4, to output

graphs for this analytics tool [5]. This is a JavaScript library we used to generate

scatter plots, box and whisker plots, circle graphs, and other types of charts specifi-

cally for the StarLogo Nova data. These charts include togglable legends and hovering

tooltips, in an effort to make the visualizations interactive and informative. Alterna-

tive software, such as a popular desktop data visualization application called Tableau,

could also be used for visualization once data is extracted [13]. For our purposes, we

decided to continue forward with D3 since it is not a desktop app, but instead a li-

brary that programmers can use to write customizable graph-generating code. Using

46

Figure 4-6: Duplication rate of top 200 project signatures

D3 ensures that future users of this analytics tool can make changes and updates

easily.

4.4.1 Top 200 and Random 10,000

Ideally, we would visualize a representative project from each project signature in the

entire database. However, we ran into RAM and performance issues when attempting

to visualize every single data point. In this thesis, we visualize the top 200 most

popular project signatures and a random sample of 10,000 signatures that are not

part of the top 200 most popular signatures.

We wanted to see how the most popular projects in the database looked, so we

stepped through a list of signatures sorted by decreasing number of occurrences until

any new signatures stopped enhancing our understanding of the most popular be-

havior in the database. This was determined to be at the 200th project signature,

since after that point, the signatures had very few occurrences and hence stopped

representing ‘popular’ behavior of the database. Figure 4-6 shows what we found for

the top 200, where the X-Axis represents the 𝑛𝑡ℎ most popular project signature and

the Y-Axis is the number of occurrences in the database. The number of duplicates

per signature is inferred to decrease in a predictable manner for signatures after the

200𝑡ℎ. We determined that the 200𝑡ℎ most popular project would be the threshold

between signatures that represented ‘popular’ and ‘not popular’ behavior.

For our random sample, we wanted to have a sample size that captured the be-

47

havior of the signatures not part of the top 200 project signatures. We chose a sample

size of 10,000 because it was the largest sample size we were able to take before reach-

ing performance limits, which are discussed in the next section. Additionally, we saw

that, after repeatedly visualizing random 10,000 samples of our project signatures,

we would consistently receive qualitatively similar results.

Visualizing both the top 200 project signatures and a random sample of 10,000

project signatures not in the top 200 therefore gives us a close approximation of the

behavior of all of the projects in the database. That being said, the number of popular

projects to visualize and the random sample size can both be re-configured in the tool.

4.5 From Extraction to Visualization

As briefly mentioned in Section 3.3 Interfacing with the Data Analytics Tool, running

our tool involves a few steps. These are discussed in more technical detail here.

1. Set Extract Mode In this step, the tool requests data from the Beta server and

builds tree object signatures from this project data. The 𝑀𝑂𝐷𝐸 configuration

in 𝑐𝑜𝑚𝑚𝑜𝑛.𝑗𝑠 is set to 𝐸𝑥𝑡𝑟𝑎𝑐𝑡. In this mode, the tool stores a hashmap with

{𝑡𝑟𝑒𝑒𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 : [𝐼𝐷1, 𝐼𝐷2, ...]} key-value pairs. This hashmap is stored in

either LocalStorage or IndexedDB, depending on the size of the data, and is

updated until the tool has finished querying and processing all the data from

the Beta server.

2. Manually Load Extracted Data The data is stored in the browser either

in LocalStorage or IndexedDB as a string and must be loaded locally as a .𝑡𝑥𝑡

file. This can be done with manual copy-and-pasting from the browser’s Local-

Storage interface, or by running a few commands on Chrome console to copy

the string from IndexedDB. In our tests with public project data, LocalStorage

suffices.

3. Run Python Script 𝑃𝑎𝑟𝑠𝑒𝐷𝑎𝑡𝑎.𝑝𝑦 is a Python script that parses the .𝑡𝑥𝑡

file that was created manually in Step 2. This script iterates over the tree

48

signatures, counts the frequency of each signature, and chooses a representative

project ID for each signature. This information is generated into a .𝑐𝑠𝑣 file.

Also, a list of representative IDs for the top 200 project signatures and a list

of representative IDs from 10,000 random signatures not in the top 200 are

generated into .𝑡𝑥𝑡 files. These files are needed for visualization. Each ID that

is added to the .𝑡𝑥𝑡 files represents a different signature in the database, so there

are no duplicates in our visualizations.

4. Visualization Mode After the necessary .𝑡𝑥𝑡 files are generated, the tool’s

𝑀𝑂𝐷𝐸 configuration in 𝑐𝑜𝑚𝑚𝑜𝑛.𝑗𝑠 needs to be set to either ‘VIZ_200’ or

‘VIZ_10K’, which visualizes the top 200 project signatures or the random sam-

ple of 10,000, respectively.

5. D3 Graphs Rendered All graphs are loaded onto one page, one after the

other. Scrolling down the page reveals the different charts. This was done so

that all the visualizations are available at once for the user. This format is

borrowed from ScratchStats, which also shows all of its visualizations on one

page [10].

Limitations

As a brief benchmark, running the tool to visualize 10,000 random project samples

takes around 15-20 minutes. During the development of this thesis, this running time

was the longest we could work with. D3 uses SVG for graphs, so as the data set size

increases, the laggier rendering becomes. Tooltips that appear when hovering over

certain data points are also slow to render at large sample sizes. Ways to improve this

can be addressed in future iterations of this tool, especially if it becomes an extension

to StarLogo Nova for the general body of StarLogo users.

Also, because this tool involves a multiple step process of extracting and then

visualizing the data, and because the data transformation depends on the browser,

the tool requires a researcher to take a few manual steps to get meaningful data. In

future iterations, data extraction from the browser and automating .𝑐𝑠𝑣 and .𝑡𝑥𝑡 file

49

generation could improve the tool’s usability.

50

Chapter 5

Results

In this chapter, we showcase examples of the data visualizations our tool generates,

representing data from the top 200 most popular project signatures. We also include

visualizations generated from a random sample of 10,000 project signatures not in

the top 200. The most popular signature occurs 1712 times and represents an empty

project with three breeds. The 200𝑡ℎ most popular project signature occurs 18 times

and is an IPWIT tutorial project remix.

As mentioned in Section 4.4.1 Top 200 and Random 10,000, we visualize the top

200 most popular signatures and 10,000 other random signatures to give us a sense of

what the entire database looks like, without actually visualizing the entire database

and without crossing our performance limits. We include visualizations of the top 200

and the random 10,000 side-by-side as a way to compare the behavior of the most

popular projects with that of the less popular projects. In doing so, we aim to achieve

an accurate overview of the entire database’s project behaviors.

We have reached the conclusions in this section by analyzing the tool’s generated

data visualizations, manually opening the representative projects from each of the

top 200 popular projects, and manually opening large project outliers. Manually

opening a project involves using the project ID to view the project on the StarLogo

Nova platform. The pie charts included in the following chapter were also generated

manually after running our analytics tool. Given our tool’s capability, we ask the

follow questions about our data:

51

∙ How do the StarLogo projects look as a whole?

Our analysis involved filtering out inactive blocks from our project data because

they were a source of noise. We wanted to know how the database looked after

filtering these out. We were especially curious since the StarLogo team did not

previously have an answer to this question before.

∙ How similar are projects to tutorials? How different?

As mentioned in Chapter 1, Introduction, most users learn StarLogo with tuto-

rials from standard programs like IPWIT or Project GUTS. We wanted to know

how similar projects were to tutorials, or how different the projects were from

tutorials. We wondered how users expanded their projects away from tutorials,

if they did. These insights could shed light on how well StarLogo has been able

to encourage creativity for both new and expert users.

∙ Are breed tabs organizing users’ code effectively?

Visually similar to web browser tabs, breed tabs can only be viewed one at

a time and aim to keep different agents’ blocks separated, in order to make

the blocks more manageable. Although different from typical breeds, the two

special breeds ‘Everyone’ and ‘The World’ are visually represented as tabs, just

like any other breed. Our analytics tool can reveal how ‘Everyone’ and ‘The

World’ are used by users of all levels of expertise, and reveal if the tab layout

actually organizes blocks effectively.

∙ What is the extent of required scrolling on the development page?

Earlier, we expressed interest in learning how scrolling on the development page

(i.e. scrolling between Spaceland and the canvas) may impact usability. We

also discussed how StarLogo block stacks’ sizes and positions can potentially

be overwhelming. With our visualizations, we observe how much the page’s

layout, block stack sizes, and block positions contribute to the development

page’s required amount of scrolling. Then, we infer from our data if both

beginner and advanced users are possibly limited by this amount of scrolling.

52

Figure 5-1: Entire Database Categorized by Signature

5.1 How do the projects look as a whole?

We queried approximately 400,000 projects from the Beta server and received data

on 69,240 public projects. After processing this data, we found that these 69,240

projects yield 34,618 different tree object signatures, not including the Completely

Empty project signature. This means that 50% of the project data we received are

copies of some other project in the database. The 69,240 projects represent only

34,618 functionally different projects.

In Figure 5-1, we see a pie chart that represents the percentage of projects in

the database that have the indicated signature types. 24.6% of the database, that is

17,085 projects out of the 69,240 projects, share the top 200 most popular project

signatures. For this pie chart, we manually opened a representative project from each

of the top 200 signatures on the StarLogo site, describing each of the signatures by

inspecting projects’ blocks and titles. Detailed results from this are found in Section

5.2.1, Top 200 Project Signatures are Tutorials or Tutorial-Inspired.

41.9% of the database, which is 29,006 projects, have unique signatures. This

means that each of these projects’ arrangement of blocks only occur once in the

database. 24.4% of the database, that is 16,880 projects, share signatures that are

53

not unique, but are not duplicated enough to make the top 200 threshold. Specifically,

this 24.4% represents signatures that have less than 18 occurrences but more than 1

occurrence.

5.1.1 Empty Projects

As we see in Figure 5-1, 9.1% of the database, that is 6,269 projects, are Completely

Empty. Completely Empty is defined as a project without any blocks at all. The

number of Completely Empty projects is gathered from a direct filter of projects

without any blocks at all. Thus, the tool does not currently have the granularity

of determining how many breeds are in these Completely Empty projects. We can

also see in the figure that the most popular project signature is Functionally Empty

with 3 breeds- which represents 2.5% of the database. Functionally Empty refers to

projects that only contain inactive blocks.

After manually opening a representative project from each of the top 200 project

signatures, we found that the project signature that represents a Functionally Empty

project with 4 breeds appears in the top 200 and represents 0.04% of the entire

database. Taking these three types of empty projects together, we see that at least

12% of the projects in the entire database is empty in some way. There may even

be more empty projects (i.e. functionally empty with a different number of breeds)

among the unique signatures and the other 5,412 signatures. A significant portion

of the projects in the database are empty, which may indicate something about how

accessible the platform is to new users.

Note that the visualizations generated by our new analytics tool do not include

Functionally Empty or Completely Empty projects.

5.1.2 Overview: Duplicated, Potentially Similar, or Empty

We have discussed a high-level view of the StarLogo projects database. An overview

of what was discussed and how it addresses our question ‘How do the projects look

as a whole?’ follows.

54

∙ Empty At least 12% of the database is empty or functionally empty, including

Completely Empty projects, projects with three breeds but no active blocks, and

projects with four breeds but no active blocks. This percentage does not include

the empty projects that may not have been explicitly captured. For example,

there could be a project in the database with a signature that represents a

project with 2 breeds with no functional blocks. So, at least 12% of the database

is empty.

∙ Duplicated Half of the database of public projects are duplicates of some other

project. We found 69,240 public projects, but they represent only 34,618 func-

tionally different projects.

∙ Many Unique, but Potentially Similar Over 40% of the database’s projects have

unique signatures- these projects do not look like any other project in the

database. Also, the top 200 project signatures only represent 24.6% of the

entire database. As stated previously, projects that are considered ‘different’ in

our analysis might still look similar. This shows that there is diversity in the

database, but ‘how diverse?’ is still an open question.

5.2 How similar/different are they to tutorials?

We are aware that most users are introduced to StarLogo through some tutorial or

standardized program like GUTS. As stated in Chapter 1, Introduction, over 90% of

the projects on the platform are expected to be from Project GUTS [8]. How similar

are projects to tutorials? If users do explore the platform beyond tutorials, how

different are the projects? We use our analytics tool to visualize projects’ similarities

to and differences from tutorials. In the following sections, we discuss how the projects

represented by the top 200 most popular signatures look and then detail how project

samples look from breed and block-level perspectives.

55

Figure 5-2: Top 200 Project Signatures Classified By Type

5.2.1 Top 200 Project Signatures are Tutorials or Tutorial-

Inspired

Using the StarLogo Nova platform, we manually opened a representative project

from each of the top 200 duplicated signatures and determined that they were mostly

remixes of either IPWIT tutorials or Project GUTS projects. Figure 5-2 is another

pie chart that shows the classification of each of the signatures in the top 200. We

qualitatively characterized the signatures in the top 200 by seeing if projects shared

similar titles, similar blocks, and similar behavior when the code was run.

Figure 5-2 shows that over 40% of the projects that share one of the Top 200

project signatures share a signature that is some remix of Flower Turtle, an IPWIT

and GUTS tutorial project. The Flower Turtle project is a project that involves

creating an agent that leaves a trail as it moves around the terrain in a flower path.

Remixes of Bumper Turtles, a tutorial project from Project GUTS, is the second most

shared type of project signature. A brief glance over the rest of the top 200 project

signatures’ representative projects indicate that most of these signatures are remixes

of some other tutorial-related projects.

56

The ‘Orientation-Like’ project signature type, mentioned in Figure 5-2, look like

Flower Turtle projects, which makes sense because this tutorial is called Orientation

in IPWIT. We preserved this difference in the pie chart since there were a substantial

number of projects who chose to title their projects ‘Orientation’ and not Flower

Turtles, which may speak to how users were introduced to the tutorial. In other

words, this could show the reach of Project GUTS versus Imagination Toolbox.

The ‘Unknown’ project signature type represents difficult-to-describe signatures,

such as those that are almost empty, have a few stacks, or whose code has no describ-

able behavior when run. Another interesting project title we found when manually

opening representative projects was ‘Herpes Transmission’. The project itself looks

like a modification of the Epidemic Model project, which is another tutorial. Instead

of grouping this particular project signature with the Epidemic Model category, we

preserved the ‘Herpes Transmission’ label in this pie chart to present an example of

how users are applying StarLogo. The other project categories in Figure 5-2 that

have not been explicitly described in this section are known to be GUTS or IPWIT

tutorials as well.

From this analysis, we realize that most of the top 200 project signatures represent

tutorial-related projects, and therefore, the visualizations of the top 200 project sig-

natures in this chapter are viewed with the understanding that they represent tutorial

remixes, or in other words, early experiences with StarLogo.

5.2.2 Breed Behavior Trends Similar to Tutorials

Figure 5-3 shows an example of one of the charts generated by our visualization tool.

The X-Axis is the number of blocks in a project, the Y-Axis is the number of stacks,

and the legend is togglable between different breeds. Each point represents a project

under the color-specified breed. In this screenshot, we are looking specifically at the

‘Everyone’ breed.

Figure 5-3a is the visualization for the top 200 project signatures. Most of the

points, no matter what the total number of blocks are in the project, are at 0 stacks

for the ‘Everyone’ breed. Only 8 of the top 200 project signatures have 1 or more

57

(a) Top 200 Project Signatures

(b) Random 10k Project Signatures

Figure 5-3: Number of Stacks vs Number of Blocks in Project in ‘Everyone’ Breed

58

stacks in the ‘Everyone’ breed. Having at least 1 stack means that, if the user used

the ‘Everyone’ breed correctly, there is some shared behavior between all the agents

in that project. Because the top 200 represents tutorial remixes, we can conclude that

the tutorials themselves very rarely use the ‘Everyone’ breed, and thus, very rarely

have shared behavior between their agents.

We can compare this with our random sample visualization in Figure 5-3b. We

can see that a large number of projects still have 0 stacks in their ‘Everyone’ breed,

but there are also a significant number of projects that have 1 or 2 stacks. So, a

significant number of projects have 1 or 2 Procedures shared between agents, if users

were using ‘Everyone’ the way we expected them to. Overall, this shows that projects

seem to follow the behavior introduced to them through IPWIT tutorials or those

from Project GUTS. We can look at another chart generated by our tool that displays

users’ breed behavior at a higher level. In Figure 5-4, we see a histogram that counts

how many breeds each project has. In Figure 5-4a, we see that most of the projects

have three breeds. This is expected, since most tutorials introduce students to three

breeds, which is also the default number of breeds when a user creates a new StarLogo

project. When we look at the histogram from our random sample in Figure 5-4b, we

see that 3 breeds is still a popular choice. 41.68% of the projects in our random

sample have more than 3 breeds, and only 2 of the project signatures in this random

sample have less than 3 breeds (2 breeds). More than half of the projects in our

sample keep the default number of breeds- which is similar to the behavior displayed

in the tutorial remixes of the top 200 project signatures.

5.2.3 Project Sizes Slightly Different From Tutorials

In Figure 5-5, we find another chart generated by our tool: a histogram that describes

the counts of how many total blocks each project in the data sample has. Figure 5-5a

is an overview of the distribution for the top 200 most popular project signatures,

while Figure 5-5b shows the zoomed in results from our random sample. Our tool

makes this histogram interactive, as you can zoom in to see the distribution in a

specific quartile.

59

(a) Top 200 Project Signatures

(b) Random 10k Project Signatures

Figure 5-4: Frequency of Number of Breeds

60

(a) Top 200 Project Signatures

(b) Random 10k Project Signatures

Figure 5-5: Frequency of Number of Blocks

61

When zooming into the first and second quartiles in Figure 5-5a, we see that

projects with a total of 9 blocks is the most popular, which is expected because

a standard Flower Turtles project is 9 blocks large. Another popular project size

is 45 blocks. Again, these numbers represent the results from the top 200 project

signatures, which consist of tutorial remixes. If we compare these results to the

histogram in Figure 5-5b, we see that there are a fair amount of projects with 9

blocks. However, the most popular project size in our random sample is 13 blocks.

Projects between 45 and 50 blocks large are also fairly popular. In general though,

we see that there is a variety of different project sizes in our random sample.

Does this indicate that users are exploring the platform more? Or does it mean

users are remixing projects and only changing them a little bit? It is not immediately

clear why projects are a little bigger in our random sample. Investigating this could

be an interesting direction to look into for future research. Overall, we know that

users as a whole are deviating from tutorials in some way.

5.2.4 Overview: Fairly Similar, Sometimes Larger

Projects in the database do seem fairly similar to tutorials, though there is a significant

portion of projects that are different. The following insights about similarity with

tutorials were gathered from analyzing the project data.

∙ Top 200 ∼ Tutorial Remixes The top 200 project signatures represent remixes

of tutorial or tutorial-related projects. The signatures in the top 200 that are

not clearly tutorial projects are either functionally empty or close to empty,

thereby probably representing projects created by new users and potentially

examples of users attempting to follow tutorials. A majority of projects in our

random sample have 3 breeds, the default number of breeds for a new StarLogo

project. This is also the most common number of breeds in the top 200 most

popular signatures, which are mostly tutorial remixes.

∙ Breed Complexity is Similar The breed behavior between the top 200 signatures

and our random sample is similar, which implies that most projects in the

62

database are similar to tutorials in terms of breed complexity. For instance,

the ‘Everyone’ breed is the least complex and ‘The World’ breed is the most

complex, both for tutorials and for the signatures in our random sample.

∙ Overall Contain More Blocks Projects in our random sample of 10,000 overall

have slightly more total project blocks than those in the top 200. In general,

there is large diversity in the number of total project blocks in our random

sample. It is unclear why this is, but it does indicate that users are straying

away from tutorials.

5.3 Are breed tabs organizing users’ code effectively?

We would like to know if the way that breeds are visually displayed as tabs effectively

organizes users’ blocks. As a reminder, StarLogo projects have a default of three

breed tabs: ‘The World’, ‘Everyone’, and ‘Turtle’ (a basic breed). Each breed has

its own set of blocks. If ‘Everyone’ was used correctly, then the ‘Everyone’ breed

across all the projects in our samples should mainly contain Procedure blocks, if they

contain anything at all. This is because it is not very common for breeds to all share

the same attributes, and if they do, they might not share that behavior all the time.

Thus, we would expect the ‘Everyone’ breed to be empty or to have the code that

defines these shared behaviors as Procedures, to be called by the code in other breed

tabs whenever applicable. We expect ‘The World’ breed to have blocks in which other

agents are created. We would like to know if these tabs actually help users organize

their block code. The charts in the following sections give insight into how breeds

are used by users, including the top 200 popular project signatures that stem from

IPWIT or Project GUTS tutorials.

5.3.1 Everyone breed is rarely used

The Max Stack Size chart in Figure 5-6 is an interactive circle chart generated by our

analytics tool. It shows the disparity between stack heights across different breeds,

63

(a) Top 200 Project Signatures

(b) Random 10k Project Signatures

Figure 5-6: Max Stack Size Across Different Breeds

64

Figure 5-7: Stacks Filtered By Breed

where stack height refers to the number of blocks vertically placed in a stack. The

Y-Axis represents the total number of blocks in a project. Each circle in the circle

charts represents the maximum stack size for a specific project for a specific breed.

The size of each circle is proportional to how many blocks are in the tallest stack of a

given breed for a given project. It is clear even from just a glance that the ‘Everyone’

breed, both in the top 200 and in our random sample, is the least complex breed.

Small and sparse circles in the ‘Everyone’ column show that the top 200 project

signatures themselves do not use ‘Everyone’ very often. This makes sense, because

tutorials are meant to be simple, and including Procedures into tutorials would be a

little too advanced for a brand new user to understand. In general, as stated earlier,

we do not expect users to use the ‘Everyone’ breed very much.

Our random sample shows a more diverse use of the ‘Everyone’ breed, but gener-

ally, it is aligned with what is expected. Figure 5-7 is a scatter plot of all the stacks

in our random sample of 10,000, filterable by breed. The X-Axis is the x-position on

the canvas in pixels, and the Y-Axis is the y-position on the canvas in pixels. Briefly

65

hovering over the ‘Everyone’ breed points in Figure 5-7 reveals tooltips that state

what the top level block is for each point. For the ‘Everyone’ points, most top level

blocks are Procedures, as expected. Users may be understanding the notion of the

‘Everyone’ breed well and are creating projects significantly different from tutorials.

However, for projects who have 0 stacks in the ‘Everyone’ breed, it is possible that

those projects have repetitive code across their breeds that would otherwise be rep-

resented as Procedure blocks in ‘Everyone’. Investigating this is a possible direction

for future iterations of our analytics tool.

As an aside, investigating ‘Everyone’ revealed an unexpected potential area of

improvement for the platform. While opening projects manually on the StarLogo

site, we realized that with the breed tab layout, we needed to click the ‘Everyone’

tab in order to see what was in it. We could not tell if it was an empty canvas just

by looking at the tab, which would have otherwise been more efficient.

5.3.2 The World breed can get overwhelmingly complex

From a high level look at Figure 5-6, it is clear that ‘The World’ is most complex. The

circles with the largest radius are most prevalent in ‘The World’ column for both the

top and bottom charts. The tallest stack from our random sample’s visualization, for

example, is 379 blocks tall, which is over 40 times as many blocks as the most popular

Flower Turtles project (9 blocks) in the database. The sheer number of blocks reveals

just how complex projects can get.

To get a better sense of the complexity of ‘The World’, we can take a look at

Figure 5-8. This is a scatter plot generated by our data analytics tool that shows

the maximum stack height on the Y-Axis and the number of total blocks in the

project on the X-Axis. Each point in this figure represents a project, specifically its

‘The World’ breed. The stack height increases dramatically between 0 and 20 total

project blocks. The trend is even clearer in the results from our random sample.

Stack heights explode between projects of size 0 and 200 blocks, and look to continue

expanding as the number of project blocks increases. Stack height in ‘The World’

breed is overwhelmingly complex.

66

After manually opening of the representative projects from our random sample on

the StarLogo site, we found that ‘The World’ was indeed the place where users added

blocks to create agents. We would need further investigation into the types of blocks

present in ‘The World’ breed in our sample to gain more concrete confirmation of

how well users understand ‘The World’. For instance, are people creating agents in

other breeds or in the ‘Everyone’ breed when they should be placed in ‘The World’?

Again, this is a possible direction for future iterations of our tool.

What is clear, though, is that ‘The World’ breed is very overwhelming and does not

help make users’ blocks particularly organized. Since agents and terrain elements are

normally created and set up in ‘The World’, numerous, large stacks can be scattered

all over just ‘The World’ itself.

5.3.3 Sometimes Too Many Breeds

Figure 5-9 contains box-and-whisker plots generated by our analysis tool. The Y-Axis

represents the number of blocks in a project and the X-Axis is the number of breeds

a project has. Figure 5-9a is the visualization from the top 200 project signatures,

representing the behavior of tutorial-based projects. We can see from the figure that

most projects have 3 breeds, the default, with a few exceptions. This is aligned with

expectations.

When we take a look at Figure 5-9b, which represents our random sample, how-

ever, we see that a significant number of projects have more than 10 breeds- some

even 26 breeds. Adding too many breeds might indicate that these projects’ users do

not truly understand how to use StarLogo and its breeds. After manually opening

some of these large projects on the StarLogo page, we found that it was visually over-

whelming to see so many breed tabs on the screen. Having over 20 breeds could mean

that expert users are building very complex projects, but in general, users should

not be creating so many breeds. One theory is that users may be confusing StarL-

ogo breeds with the Scratch concept of sprites, which requires users to create a new

‘canvas’ for every character or element of the program [9].

Regardless, the breed tabs themselves are overwhelming, since it is difficult to tell

67

(a) Top 200 Project Signatures

(b) Random 10k Project Signatures

Figure 5-8: Max Stacks vs Number of Blocks in Project in World

68

(a) Top 200 Project Signatures

(b) Random 10k Project Signatures

Figure 5-9: Num Blocks vs Num Breeds

69

Figure 5-10: Project with Many Breeds

what each breed is and what each breed tab contains. A screenshot of a project with

many breeds is pictured in Figure 5-10 which shows how difficult it is look at the

breed tabs and understand what kinds of blocks are in each tab. Also, in StarLogo,

some breeds are purposefully empty. Since empty breed tabs look the same as other

tabs, it could be difficult to tell which of these breeds are intentionally empty and

which are not.

According to Figure 5-9b, projects with more breeds generally have more blocks.

So, when projects grow to this size, rendering and general site performance is greatly

slowed, since there are so many blocks. If a user loses track of which breed they want

to make changes to, it would be natural to click the breed tabs until they find the

correct breed. However, this search method would be doubly time-consuming because

rendering blocks after each breed tab switch is noticeably slower for larger projects.

5.3.4 Overview: Breeds Understood, but Visual Overload

We have gathered the following from our analysis on projects’ breed behavior:

∙ Aligned with Expectations From a glance, users are generally using ‘Everyone’

and ‘The World’ the way we expect them to.

∙ Breed Tabs Overwhelming When the number of breeds increases, the breed tabs

themselves become overwhelming and disorganized. This is especially over-

whelming for experts, or users who are otherwise comfortable enough with the

platform to add so many breeds.

∙ Breed Tabs are Uninformative The tab’s labels do not indicate anything about

what kinds of blocks and how many blocks there are in that breed.

70

∙ The World is Complex The blocks in ‘The World’ breed can become visually

overwhelming. The tab layout does not improve this visual block overload

much.

5.4 What is the extent of required scrolling on the

development page?

The next few charts visualize how and where users place their blocks on the screen.

To better understand the pixel values conveyed in these charts, we will compare

the measurements to a standard 1366 by 768 screen resolution computer screen [23].

Overall, the widths, heights, and positions of the stacks in StarLogo projects impact

the amount of vertical and horizontal scrolling required for the user.

5.4.1 Vertical Scrolling

As mentioned in the beginning of this thesis, users need to scroll all the way to the

bottom of the development page in order to see the blocks in their project. In order

to see the program that they have created with their blocks, they would need to

scroll back up to Spaceland. This vertical scrolling is enforced by the layout of the

development page as a whole. The user would need to scroll even more depending on

how their blocks look on the canvas. Consider Figure 5-11, which contains two more

circle charts generated by our data analytics tool. The Y-Axis represents the number

of blocks in a project and the radius of each circle represents the height in pixels of

the tallest stack for a given breed, per project. The maximum height in pixels for

Figure 5-10a is 1194 pixels. This means that the tallest stack of the top 200 project

signatures is 1194 pixels tall. On a standard 1366 by 768 computer display, a 1194

pixel-tall stack of blocks would require 1.5 scrolls. However, if we take a look at the

maximum height pixels of our random sample, we can already tell by how huge the

circles are that stacks are substantially larger. In fact, the largest stack in our random

sample was 11,823 pixels tall. On our standard computer screen, that would require

71

(a) Top 200 Project Signatures

(b) Random 10k Project Signatures

Figure 5-11: Max Height Pixels Across Different Breeds

72

about 15 full screen scrolls in order to look through every block in the stack. If a user

edits this tall stack at the bottom and then wants to run their code, they would have

to scroll down the development page to the canvas, scroll 15 times to the bottom of

the canvas, possibly scroll 15 times back up the canvas to double check their code,

and then scroll one last time on the development page to Spaceland. After manually

opening these large outlier projects in StarLogo, the project loading performance was

also very noticeably slowed. Our data analytics tool reveals the type of usability

problems that StarLogo’s expert users may run into.

Positioning of block stacks also affects scrolling. Users can place their blocks

anywhere on the canvas, expanding the canvas size while doing so. Figure 5-12 gives

us a glimpse of this, as it visualizes the stack positions, filterable by stack height.

Every point on this scatter plot represents every active stack of blocks that exists in a

given sample of projects. The X and Y axes are in pixels, and are positioned in such

a way to reflect what the canvas coordinates are on the StarLogo page. Therefore,

the placement of the points indicates where the top level blocks are on the canvas

in StarLogo. A quick glance at this scatter plot is a bird’s eye view of what would

happen if every StarLogo Nova project on the website was overlaid on top of each

other. This legend is togglable by stack height. We see here that as the stacks get

taller, the positions start pushing the canvas limits further, thus expanding the canvas

to be taller and wider.

Figure 5-12a represents the positions for all of the active stacks in the top 200

popular project signatures. The top chart in Figure 5-12a displays the positions of

the smaller stacks and the bottom displays the positions of the tallest stacks. The

lowest y-position on this chart is around 500 pixels for the shortest stacks and is

around 1100 for the tallest stacks. On our standard screen resolution of 1366 by

768, this means no required scrolling for shorter stacks, but a small scroll for the

tallest stacks. Our random sample that is represented in the charts in Figure 5-12b,

however, display a wide variety of usage beyond basic tutorial remixes. The top chart

in Figure 5-12b represents the positions of the smaller stacks and the bottom chart

in Figure 5-12b represents the positions of the tallest stacks. The lowest y-position

73

(a) Top 200 Project Signatures

(b) Random 10k Project Signatures

Figure 5-12: Stack Positions Filtered By Stack Height

74

(a) Top 200 Project Signatures (b) Random 10k Project Signatures

Figure 5-13: Height Pixels by Height Blocks

is around 2500 pixels for the shorter stacks and 5500 for the tallest ones. This would

translate to at least 3 scrolls for the shorter stacks and at least 7 full screen scrolls

for the tallest stacks. Stack height and stack positions could impact the usability for

StarLogo users, both for those who choose to make very tall stacks and for those who

just choose to place their blocks on the edges of the screen.

We can additionally take a look at Figure 5-13, which shows the rate of change in

the height in pixels as the number of vertically stacked blocks increases. Both Figures

5-13a and 5-13b show a fairly linear relationship. Rough calculations of each charts’

slopes yields a value of around 40 pixels/block for the left and 30 pixels/block for

the right. This represents the average height of the blocks being used in the top 200

signatures and in our random sample, respectively. The linear relationship indicates

that the growth in stack height pixels is caused by an increase in the number of blocks.

This trend is not the case for width, as discussed in the next section.

5.4.2 Horizontal Scrolling

StarLogo users may need to do a significant amount of horizontal scrolling on the

platform. This is mainly because StarLogo blocks automatically resize width-wise,

as discussed earlier in this thesis. Note that the drawer, the container of all of the

blocks, takes up about 237 pixels including the left margin- which is about 17% of

75

the width of a standard 1366 by 768 laptop screen. This is glued to the left side of

the screen, so a blank canvas is a maximum of 1366− 237 = 1129 pixels.

Figure 5-14 is a circle chart similar to Figure 5-11, except that the circle radii

refer to the width in pixels of the widest stacks in a given breed for a given project.

On Figure 5-14a, the widest stack is 861 pixels, which is less than the 1129 pixel

width default of the canvas. We can conclude that these projects’ stacks are not very

wide and do not require much horizontal scrolling, especially since the top 200 project

signatures represent simple tutorial remixes.

However, our random sample includes projects that are more complex than the

standard tutorial remixes. The maximum width in pixels for Figure 5-14b is 5416

pixels, which translates to almost 5 large width-wise scrolls, considering the 1129

pixel default width. This is not ideal, since sideways scrolling is not as natural or as

widely used of an interaction as vertical scrolling [22].

We can look back at the scatter plot in Figure 5-11 too and see that the top

200 project signatures’ positions have a maximum x-position of around 600 pixels for

small stacks and 900 pixels for taller stacks. This means horizontal scrolling is not

necessary. However, if we look at the chart generated by the random sample, the x-

position of the stacks in the two charts on the right are 2500 pixels for shorter stacks

and 3500 pixels for taller stacks. This translates to around 2 or 3 large width-wise

scrolls.

As I opened some projects manually on the StarLogo platform, I realized that

I had to manually scroll to the right, even if just a little bit, in order to see that

there were stacks of blocks off-screen. This was because, as expected, users are not

accustomed to needing to scroll horizontally to reveal new content [22]. Because users

can choose to place their blocks anywhere on the screen, they may choose to place

them far off to the side or even to the bottom as a way to hide the blocks, and

potentially forget about them.

Figure 5-15 is another box-and-whisker plot that shows how the width of a stack

in pixels changes by the width in number of blocks. In Figure 5-15a, there does

not seem to be much correlation since it is a visualization of the top 200 project

76

(a) Top 200 Project Signatures

(b) Random 10k Project Signatures

Figure 5-14: Max Width Pixels Across Different Breeds

77

(a) Top 200 Project Signatures

(b) Random 10k Project Signatures

Figure 5-15: Width Pixels by Width Blocks

78

signatures, which are simpler projects. However, Figure 5-15b follows an almost

exponential trend, which clearly indicates how blocks expand in width very rapidly.

Future iterations of this project may involve more exact calculations of the trend line

for this particular graph.

5.4.3 Overview: An Overwhelming Amount of Scrolling

We do not know exactly how users feel without conducting user studies, but we have

calculated the amount of scrolling that is caused by block sizes and block positions

on the canvas.

∙ Users Must Scroll, Regardless of Expertise The layout of the development page

itself requires scrolling down to reach to the canvas and scrolling back up to view

Spaceland. Users of any experience level would need to frequently scroll up and

down between their blocks and their program. Also, users of any expertise can

place their blocks anywhere on the canvas, so users may need to scroll a large

amount to find their blocks, if they placed their blocks near the edges of the

canvas.

∙ Vertical Scrolling Aside from the Spaceland to Canvas and Canvas to Space-

land scrolling, there is still a large amount of vertical scrolling required on the

platform. Blocks grow tall as users add more children blocks, so users may need

to scroll up and down to see all of the blocks in their taller stacks and to add

blocks to these stacks. This issue worsens as projects grow more advanced and

complex.

∙ Horizontal Scrolling When blocks get very wide, which happens quickly, users

may need to scroll horizontally frequently. This is particularly an issue for

projects with more advanced logic, or with projects that use math expression

blocks.

79

5.5 Summary

After observing the visualization results generated by our tool and opening some

projects manually, we were able to make the following observations about StarLogo

Nova. Some of these attributes were already known by researchers, but the analysis

and visualization tool was able to provide more explicit data and holistic backing for

the intuitions they had previously.

∙ A non-trivial number of projects in the database are empty.

∙ Most popular projects are tutorial-driven, as expected.

∙ Many projects look like tutorials, even in our random sample.

∙ The number of total blocks in a project differ from those of the tutorial, but

many stay around the popular sizes (9 blocks and 45 blocks). An explanation

for this is not yet determined.

∙ We can assume users generally understand how to use the ‘Everyone’ and ‘The

World’ breeds.

∙ Breed tabs can get overwhelming and do not convey information about the

project as efficiently as we would like.

∙ Users, both new and expert ones, are required to scroll vertically and horizon-

tally fairly often.

80

Chapter 6

Conclusions

In this chapter, we document the impacts that our StarLogo Analytics tool can have

on the future of the platform. We discuss user interface recommendations drawn from

the visualizations we generated with the tool as well. Limitations and future work

are also discussed.

6.1 How Do the Results Address Our Questions?

We have been investigating our data in hopes of finding out ways to raise the ceilings

for expert users and lower the floors for beginner users. In particular, we wanted to

know how tutorials, breed tabs, scrolling, and block sizes and positions affect usability.

The following list summarizes what we have learned about StarLogo project data and

what conclusions could be drawn from them.

1. Most Projects are either Functionally Empty or Completely Empty

This implies that a significant portion of users are confused about how to start

a project at all on StarLogo. Rethinking tutorials and how they are introduced

to new users may help. In addition, the layout of the development page can be

redesigned such that users can see the blocks right away as soon as they land

on the development page. Currently, users need to know to scroll all the way

to the bottom of the page to start building programs, so theoretically, if users

81

do not know to scroll down, get confused, and give up, their projects would be

Completely Empty.

2. Many Projects are Similar to Tutorials

At least 24.6% of the projects in the database have signatures that represent

some remix of an IPWIT or Project GUTS tutorial, or are functionally empty

or close to functionally empty. The breed complexity, stack sizes, and positions

of the other 63% of non-empty database projects imply that many of these

other projects are built on top of tutorials in some way, too. It is implied, then,

that many StarLogo projects are similar to tutorials, are fairly basic, or stem

from a tutorial in some way. Therefore, StarLogo could improve in encouraging

users to be more creative with the platform beyond the tutorials provided to

them. To address this, further investigation and user studies would need to be

conducted to see how new users become experts of StarLogo.

3. Breed Tabs Can Get Overwhelming

Even with more than 10 breeds, the breed tabs themselves create visual overload.

Also, it is difficult to know the content of a breed just by looking at the breed

tabs. Users must click the tabs in order to see what the tab consists of. Even

then, it is not clear to users if there are off-screen blocks that are only viewable

if users scroll horizontally. Inefficiencies and visual overload may indicate a

need to rethink how breeds are being conveyed on the platform. Also, adding

a thicker border of whitespace on the right of the screen could be a stronger

indicator to users of whether there are off-screen blocks.

4. Blocks Contribute to Excessive Required Scrolling

Stacks of blocks can be placed in many positions and can grow, in theory, in-

finitely tall or wide. The platform requires users to scroll vertically and horizon-

tally in large amounts fairly frequently because of the layout and how the blocks

expand. ‘The World’ breed is particularly complex and disorganized. The vi-

sual overload and disorganization of blocks on StarLogo can hinder users’ desire

82

to be creative and to make more complex projects.

In the next section, we discuss suggestions on how to update the StarLogo platform

in order to address what we have learned from our results.

6.2 User Interface Suggestions

After analyzing the visualizations generated by our new analytics tool as well as

manually opening some outlier projects on the StarLogo platform, we have compiled

a list of recommended user interface updates. These suggestions are informed by our

data and aim to improve the platform such that floors are lowered and ceilings are

raised. Figure 6-1 displays a low fidelity mock-up of a proposed development page

redesign.

Side-By-Side Spaceland and Canvas

Being able to see the code while running the code is helpful in debugging. Placing

Spaceland and the canvas side-by-side would be useful for both early and advanced

end users of StarLogo. It would enable users to see the code behind their simulations

and games while they are running the code, thus showing beginner users the bridge

between their code and their final program.

In addition, popular block-programming platforms like code.org and Scratch use a

similar side-by-side layout as shown in Figure 6-2 [3][9]. Using a format that seems to

already be widely used could improve learnability of the StarLogo system. Changing

the layout in this way would decrease the overall amount of vertical scrolling required

for the user, and expose users to the canvas earlier on the page. As mentioned in the

previous section, having the canvas at the bottom of the page could mislead students

who do not scroll all the way down to look for it, which could be one contributing

factor for the 9.1% of Completely Empty projects in the database. Moving the canvas

higher up could counteract that.

The canvas height would be stretched out to be 15% taller than the default canvas

height (The minimap can be collapsed, as described in the next two sections). With

83

Figure 6-1: Proposed Mock-Up of Development Page Redesign

this new layout, the width of the canvas would decrease by around 20% to 40%

depending on whether the block drawer is opened or not. This may increase the

amount of horizontal scrolling, but it is possible that this new canvas, which is taller

than it is wide, may affect where users place their blocks. For instance, they may stack

their blocks more vertically than horizontally. Blocks can still resize to really large

widths, so shrinking the width of the canvas may still encourage users to place their

wider blocks off-screen (to the right). To truly know if this change would improve or

worsen user experience with the platform, this new layout would need experimentation

and testing.

Collapsible Elements

From our own experiences, the ability to manipulate editor windows provides useful

flexibility for text editor users. So, I suggest having every major element of this

screen collapsible to provide greater flexibility for users. For instance, the drawer is

about 237 pixels wide, which is a significant amount of screen real estate that could

otherwise be used for more blocks or for more of Spaceland. This proposed redesign

gives users the flexibility to hide the block drawer, which could be beneficial for all

user levels. This suggestion is driven by the other suggestion to move Spaceland and

84

the canvas to be side by side. A collapsible drawer would be able to bring back more

width to the canvas, thus reducing any newly introduced sideways scrolling.

Spaceland can also be minimized, so at best, the canvas can be the full 1366

pixels wide if the user is using a 1366 by 1768 screen. The freedom to expand or

hide Spaceland, the canvas, the drawer, the minimap, and the project information

box could give users more freedom in where they put their blocks as well as lessen

the visual overload that more complex projects possess.

Minimap

No longer being developed, StarLogo TNG was a desktop application that preceded

StarLogo Nova. TNG had implemented a minimap which is a translucent display

that gives a bird’s eye view of the code. Minimaps allow users to see how their blocks

look as a whole, which can make navigation between different parts of the page easier.

Users could drag blocks between breeds, navigate between different breeds using the

map, and get a glimpse of where ones’ blocks were placed on any given breed [12].

In Figure 6-1, I recommend the same concept to be added at the bottom of the

canvas in StarLogo. The highlighted box in the minimap represents the breed that

is currently selected, which would replace the current tab layout of the breeds. This

way, users have a preview of which breed they are navigating to without needing

to guess the content of each. This would be especially useful for expert users who

have more breeds in their projects. Seeing a preview of each breed’s canvas means

users will know if blocks are hiding in the corners of the screen, too. The minimap

would resize when there are more breeds in a project. This is one solution to the

overwhelming breed tabs and excessive scrolling issues mentioned earlier.

6.3 Analytics Tool Impacts

Aside from revealing the weaknesses of StarLogo Nova and elucidating information

on how users use the system, our analytics tool has other impacts as well. During and

before development of our tool, changes were made to the Beta version of StarLogo

85

Nova that had not been released in the live version yet. Our tool provides data

visualizations that support many of these decisions and are relevant to these new

changes. We discuss the tool’s effect of inspiring new questions among the research

team as well.

6.3.1 Verification of Currently Implemented Updates

While this tool was being developed, other StarLogo team members were working on

changes to the platform to improve the system. Their tasks were informed by ‘good

guesses’ and observations of the platform, but not from any explicit data results. We

discuss one example of a concurrent change that our tool’s visualizations corroborate.

This example proves that our new analytics tool gives more concrete reasoning for

user interface decisions and its results are aligned with researchers’ intuitions about

the platform.

Widget Bug

StarLogo researchers were aware of a bug on the platform such that when the screen

is resized, all the widgets would disappear. This bug was made known to researchers

through user feedback, but the extent of the bug’s prevalence for users was unclear.

The bug, at the time of the writing of this thesis, is fixed, but the measurable impact

of the fix was hard to determine. With the help of our data analytics tool, however,

we are able to get a better understanding of these statistics. Figure 6-2 is a histogram,

generated by our tool, that shows the number of widgets that each project signature’s

representative project contains. This chart contains the data from our random sample

of 10,000 project signatures (the chart for the top 200 project signatures all have 3

or more widgets). As we see in Figure 6-2, 62 of the projects have 0 widgets, which

represents 0.62% of project signatures. Thus, the widget bug did not affect too many

users, but now researchers better understand the reach of the bug fix. In addition,

this type of information can clarify how prevalent a bug is, which can better inform

researchers of how to prioritize future bug fixes.

86

Figure 6-2: Frequency of Number of Widgets

6.3.2 Inspiring New Questions

This preliminary version of our analytics tool sparked intrigue almost immediately

when first introduced to the STEP lab. Researchers expressed how they appreciated

being able to visually see how StarLogo was being used. One strong indication that

this tool is useful is in the number of new questions and requests for different types

of visualizations. Researchers were curious to know more, such as how much tutorial

remixes differ from tutorials, what the trend lines looked like exactly, and even what

users would do if presented with a different visual representation of breeds. Some

researchers expressed interest in a similar tool that could be applied to multiple

different block-programming languages. This is an indicator of success for our tool, as

it provides new information, provides the foundations needed for future user interface

experiments, and leads researchers to think of new questions about the platform that

had not presented themselves before.

Additionally, we ourselves also asked new questions while developing the tool.

87

For instance, because some breeds in StarLogo Nova are meant to be empty, it may

be useful to redesign how intentionally empty breeds are displayed. Should they be

minimized? Should they be placed somewhere else? These are new questions that

have been inspired by the visualizations developed by our tool.

6.3.3 Limitations

As mentioned earlier in this thesis, one major limitation of our analysis is that we do

not know anything specific about users. This means that we do not know which of

the projects visualized in our tool belong to the same users.

It is additionally not clear how many of the projects in the database are actually

‘similar’, since we filter out functional duplicates and do not measure similarity. By

preserving these differences in our analysis, though, we can dive deeper into the

question of similarity in future iterations. The trade off was that the analysis we have

now does not fully answer the similarity question. We decided to choose the route of

creating a solid foundation for future research into similarity. For example, the tree

signatures we built, which preserves the differences between similar projects, could be

passed into some similarity algorithm in the future. The task of building an accurate

similarity algorithm could be an entirely other project in itself.

6.4 Future Work

Our new analytics tool can benefit from automation between extracting and visu-

alizing the data. Adding best fit lines to the charts may also give more concrete

numbers to the trends we see. In addition to making the tool generally more usable,

the following features can be added as extensions, which would bring more depth to

the analysis the visualizations currently provide.

88

Figure 6-3: ScratchStats’ Block Usage Tree Map

6.4.1 Block Usage Tree Map

As discussed in Chapter 2, ScratchStats includes a tree map of the block usage across

Scratch. A screenshot of this visualization is included again in Figure 6-3 [10]. Hov-

ering over an individual rectangle displays the percentage of the random sample that

has that particular category or type of block. This would be useful to do for StarLogo,

as it would inform researchers what blocks are used and what blocks are not. This

would thus enable researchers to investigate why certain blocks are used more than

others and learn how to improve the blocks that are on the platform. If we use block

categories as the grouping criteria, like Xie does in his SuperUROP project, this tree

map would also bring us closer to grouping projects by type [25]. Future iterations

of our analytics tool could include a tree map like this. The transformed data source

generated by our tool includes block names, so this change would simply be extending

the code to generate a tree map specific visualization.

6.4.2 Group Projects by Type

Xie’s work in App Inventor was able to classify projects by their block usage [15].

StarLogo can benefit from this sort of analysis. Additionally, our analysis tool can

89

potentially be extended with machine learning techniques to see how much projects

cluster toward tutorial projects and toward each other. This would act as a way

to measure similarity between projects. Our tree signature string may not work

for machine learning methods, since complex string or tree edit-distance algorithms

would better fit our string data type. Would identifying each project as a map of

{𝑏𝑙𝑜𝑐𝑘𝑁𝑎𝑚𝑒 : 𝑛𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠} for all block names work better, as Xie does in his

App Inventor analysis [25]? Determining how to represent each project in these

machine learning techniques would be an important challenge. Such analyses could

help researchers understand how many projects in the entire database are remixes of

the Flower Turtle tutorial, or even determine how different projects are from Project

GUTS tutorials.

6.4.3 User Analysis

In the future, if researchers are able to gain access to information about individual

StarLogo users, more user analysis can be done. This can look like Xie’s work, which

followed the progress of a user from their first App Inventor project to their later ones

[25]. This could also mean creating visualizations of how many users are teachers, of

how frequently users use the platform, and of how often users make more than one

substantial project. Our existing visualizations could also be updated with this new

data by having projects be filterable by certain users, user demographics (i.e. age or

locations), or even by user expertise.

6.5 Contributions

In this thesis project, I have contributed the following:

∙ Gathered and documented pixel width and height data for each block currently

in StarLogo Nova

∙ Built an analytics tool that extracts data and visualizes data about StarLogo

Nova’s block usage

90

∙ Analyzed the preliminary visualizations generated by the tool in order to inves-

tigate what the most popular types of projects are

∙ Used the visualizations to determine how outlier StarLogo projects look

∙ Provided user interface redesign suggestions for the platform

With this new tool, researchers can now extract and visualize their data. With this

new ability, they will be able to make more informed decisions regarding redesign of

the platform. We hope that this tool is used and extended so that researchers will be

able to better understand StarLogo Nova usage and to make more informed decisions

on how the platform engages users, how it teaches programming and computational

concepts, and how it encourages creativity among users.

91

92

Appendix A

Visualizations Generated By Tool

A.0.1 Num Stacks by Num Blocks

The Y-Axis represents the number of stacks and the X-Axis represents the number

of total blocks in a project. The legend is togglable by breed. Each point on the

chart represents one data point for each breed of every project in the data source.

Hovering over a point on the chart reveals a tooltip displaying that point’s X and Y

coordinates.

93

A.0.2 Max Stack Height by Num Blocks

The Y-Axis represents the maximum stack height (in number of blocks) and the X-

Axis represents the number of total blocks in a project. The legend is togglable by

breed. Each point on the chart represents one data point for each breed of every

project in the data source. Hovering over a point on the chart reveals a tooltip

displaying that point’s X and Y coordinates.

A.0.3 Frequency of Num Blocks

This is a histogram that counts how often each project size occurs in the data source.

The X-Axis represents the total number of blocks in a given project. Clicking on the

‘Update’ button zooms into the histogram, revealing different views between different

quartile values.

94

A.0.4 Frequency of Num Breeds

This histogram displays the frequencies of different breed counts in the data source.

It shows how many projects in the data source have 𝑥 number of breeds, where 𝑥 is

some nonnegative integer. The X-Axis represents the total number of breeds that a

given project has. Clicking on the ‘Update’ button zooms the histogram to different

quartile views.

95

A.0.5 Frequency of Num Widgets

This histogram displays the frequencies of widget counts in the data source. It shows

how many projects in the data source have 𝑥 number of widgets, where 𝑥 is some

nonnegative integer. The X-Axis represents the total number of widgets that a given

project has. Clicking on the ‘Update’ button zooms the histogram to different quartile

views.

A.0.6 Stack Positions Filtered By Breed

This chart gives a high level depiction of where each active stack in every breed of

every project is placed on the canvas. The X-Axis and Y-Axis are in pixels. Each

point represents an active stack (i.e. a stack of connected blocks whose top level block

is a valid top level block). This chart’s legend is togglable by breed. Hovering over a

point shows the x- and y-coordinates, the breed name, total number of blocks in the

project, project ID, and the top level block name of that stack.

96

A.0.7 Stack Positions Filtered By Stack Height

This chart gives a high level depiction of where each active stack in every breed of

every project is placed on the canvas. The X-Axis and Y-Axis are in pixels. Each

point represents an active stack (i.e. a stack of connected blocks whose top level block

is a valid top level block). This chart’s legend is togglable by stack height (measured

in number of blocks). Hovering over a point shows the x- and y-coordinates, the breed

name, total number of blocks in the project, project ID, and the top level block name

of that stack.

97

A.0.8 Num Blocks by Num Widgets

This box-and-whisker plot shows what the relationship is between the number of total

blocks in a project and the number of widgets that project has. The Y-Axis is the

number of blocks in a project and the X-Axis is the number of widgets. Hovering

over a box displays a tooltip with the min, max, median, quartile 1, and quartile 3

values. Hovering over a point shows the point’s x- and y-coordinates.

A.0.9 Num Blocks by Num Breeds

This box-and-whisker plot shows what the relationship is between the number of total

blocks in a project and the number of breeds that project has. The Y-Axis is the

number of blocks in a project and the X-Axis is the number of breeds. Hovering over

a box displays a tooltip with the min, max, median, quartile 1, and quartile 3 values.

Hovering over a point shows the point’s x- and y-coordinates.

98

A.0.10 Max Stack Size: Largest Number of Vertically Stacked

Blocks

This circle chart compares the maximum stack height, measured in blocks, across

different breeds. The Y-Axis is the number of total project blocks. The X-Axis

represents the different breeds a project can have in the following order: ‘Everyone’,

‘Other Breed’, ‘The World’, and ‘Turtle’. The ‘Other Breed’ column encompasses

the data from all breeds that are not the usual defaults of ‘Everyone’, ‘The World’,

and ‘Turtle’. The legend is togglable by stack height in blocks. The larger the

radius, the more blocks contribute to the height of a given stack. Hovering over each

point displays a tooltip with project ID, stack height in blocks, and their x- and

y-coordinates.

99

A.0.11 Width Pixels by Width Blocks

This box-and-whisker plot shows what the relationship is between the largest stack

width value in pixels and the largest stack width value in number of blocks. This

tracks how the number of blocks width-wise relates to how many pixels those blocks

are. The Y-Axis is the number of pixels and the X-Axis is the number of blocks that

contribute to the maximum width. Each point represents one stack in each breed

of every project in the data source. Hovering over a box displays a tooltip with the

min, max, median, quartile 1, and quartile 3 values. Hovering over a point shows the

point’s x- and y-coordinates.

100

A.0.12 Height Pixels by Height Blocks

The Y-Axis is the height of the tallest stack in pixels and the X-Axis is the height of

the tallest stack in number of blocks. Each point represents one stack in each breed

of every project in the data source.

A.0.13 Height Blocks by Width Blocks

This box-and-whisker plot shows what the relationship is between the height of a

stack and the width of a stack, both measured in number of blocks. The Y-Axis

is the number of blocks height-wise and the X-Axis is the number of blocks width-

wise. Each point represents a stack in each breed of every project in the data source.

Hovering over a box displays a tooltip with the min, max, median, quartile 1, and

quartile 3 values. Hovering over a point shows the point’s x- and y-coordinates.

101

A.0.14 Max Height Pixels

This circle chart shows how tall the tallest stack is in each breed of every project in

the data source. The Y-Axis is the number of blocks that contribute to this height

value and the X-Axis is the breed name. The legend is togglable by height in pixels.

The larger the radius, the larger the number of pixels that contribute to the height of

the tallest stack in that project’s breed. Hovering over each point displays a tooltip

with project ID, stack height in blocks, and their x- and y-coordinates.

102

A.0.15 Max Width Pixels

This circle chart shows how wide the widest stack is in each breed of every project in

the data source. The Y-Axis is the number of blocks that contribute to this width

value and the X-Axis is the breed name. The legend is togglable by width in pixels.

The larger the radius, the larger the number of pixels that contribute to the width of

the widest stack in that project’s breed. Hovering over each point displays a tooltip

with project ID, stack width in blocks, and their x- and y-coordinates.

103

104

Bibliography

[1] Amazon web services. “https://aws.amazon.com/”. Accessed July 18, 2017.

[2] App Inventor. “http://appinventor.mit.edu/explore/”. Accessed May 30, 2017.

[3] Code.org Studio. “https://studio.code.org/courses”. Accessed October 15, 2016.

[4] CS in Science Guide: StarLogo Nova Blocks Introduced.
“https://code.org/curriculum/science/files/CS_in_Science_Guides.pdf”.
Accessed May 10, 2017.

[5] D3: Data Driven Documents. ‘https://d3js.org/’. Accessed January 15, 2017.

[6] IPWIT 2013 Activities. “http://www.slnova.org/resources/ipwit-2013-
activities/”. Accessed February 10, 2016.

[7] MIT Scheller Teacher Education Program Imagination Toolbox.
“http://education.mit.edu/portfolio_page/imagination-toolbox/”. Accessed
June 15, 2017.

[8] Project GUTS: Growing Up Thinking Creatively.
“http://www.projectguts.org/”. Accessed May 10, 2017.

[9] Scratch. “https://scratch.mit.edu/”. Accessed February 20, 2017.

[10] Scratch Statistics. “https://scratch.mit.edu/statistics/”. Accessed April 25, 2017.

[11] Starlogo Nova. “http://www.slnova.org/”. Accessed June 14, 2017.

[12] Starlogo TNG. “http://education.mit.edu/portfolio_page/starlogo-tng/”. Ac-
cessed November 10, 2016.

[13] Tableau. “https://www.tableau.com/”. Accessed January 15, 2017.

[14] Teachers with GUTS. “https://teacherswithguts.org/members/map”. Accessed
June 28, 2017.

[15] Xie, Benjamin, Isra Shabir, and Hal Abelson. Measuring the Usability and
Capability of App Inventor to Create Mobile Applications. 2015 ACM SIGPLAN
Conference on Systems,Programming, Languages and Applications: Software for
Humanity (SPLASH), October 2015.

105

[16] Blarg. Page Ruler Chrome Extension. “https://blarg.co.uk/tools/page-ruler”.
Accessed January 20, 2017.

[17] Parmenter, Bob, Irene Lee, and Dave Simon. Education & Outreach White
Paper: K-12 Educational Program. New Mexico EPSCoR, December 2011.
“http://archive.nmepscor.org/sites/all/documents/RII4Planning/PARMENTER
_whitepaperREVISED.pdf”.

[18] Lee, Irene, Fred Martin, and Katie Apone. Integrating Computational Thinking
Across K–8 curriculum. 2014 ACM Inroads Volume 5 Issue 4, pages 64–71,
December 2014.

[19] Lee, Irene, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson,
Joyce Malyn-Smith, and Linda Werner. Computational Thinking For Youth in
Practice. 2011 ACM Inroads Volume 2 Issue 1, pages 32–37, March 2011.

[20] Odell, James. Obects and Agents Compared. Jour-
nal of Object Technology Volume 1 Number 1, May 2002.
"http://mars.ing.unimo.it/didattica/cas/L4/Odell_ObjectsAgents.pdf".

[21] Pan, Jin. Performance Engineering of the StarLogo Nova Execution Engine.
Master’s thesis, Massachusetts Institute of Technology, August 2016.

[22] Sherwin, Katie. Beware Horizontal Scrolling and Mimicking Swipe on Desk-
top. “https://www.nngroup.com/articles/horizontal-scrolling/”. Accessed June
15, 2017.

[23] RapidTables. Screen Resolution Statistics.
“http://www.rapidtables.com/web/dev/screen-resolution-statistics.htm”. Ac-
cessed July 3, 2017.

[24] Chen, Rita. ScratchStats: A Site for Visualizing and Understanding Scratch
Usage Data. Master’s thesis, Massachusetts Institute of Technology, June 2010.

[25] Xie, Benjamin Xiang-Yu. Progression of Computational Thinking Skills Demon-
strated by App Inventor Users. Master’s thesis, Massachusetts Institute of Tech-
nology, June 2016.

106

