Investigation of Connection Between Deep Learning
and Probabilistic Graphical Models
by
Paul Andrew Hager
S.B., Massachusetts Institute of Technology (2016)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2018

(© Massachusetts Institute of Technology 2018. All rights reserved.

AUthor ..o
Department of Electrical Engineering and Computer Science
February 1, 2018

Certified Dy . ..o
Devavrat Shah

Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted Dy . ..o
Christopher Terman
Chairman, Master of Engineering Thesis Committee

Investigation of Connection Between Deep Learning and
Probabilistic Graphical Models
by

Paul Andrew Hager

Submitted to the Department of Electrical Engineering and Computer Science
on February 1, 2018, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The field of machine learning (ML) has benefitted greatly from its relationship with
the field of classical statistics. In support of that continued expansion, the following
proposes an alternative perspective at the link between these fields. The link focuses
on probabilistic graphical models in the context of reinforcement learning. Viewing
certain algorithms as reinforcement learning gives one an ability to map ML con-
cepts to statistics problems. Training a multi-layer nonlinear perceptron algorithm is
equivalent to structure learning problems in probabilistic graphical models (PGMs).
The technique of boosting weak rules into an ensemble is weighted sampling. Finally
regularizing neural networks using the dropout technique is conditioning on certain
observations in PGMs.

Thesis Supervisor: Devavrat Shah
Title: Professor of Electrical Engineering and Computer Science

Acknowledgments

First, I would like to thank my advisor, Professor Devavrat Shah, for his continued
guidance and wisdom. Second, the staff of the Massachusetts Institute of Technology,
the Electrical Engineering and Computer Science Department, and especially Dr.
Katrina LaCurts. Many of them have been instrumental during the time this work was
composed. Third, Iris Fung and Benjamin Bloomberg must be thanked for helping
me see this thesis through to an end. Fourth, this work would not be possible without

the support of my family and group of friends.

Contents

1 Learning

1.1 Motivation
1.2 Problems in Interpretation
1.3 Problems in Prediction 0oL
1.4 Enviornments Lo

2 Graphical Models

2.1 Graph Theory
2.1.1 Directed Graphs
2.1.2 Undirected Graphs
2.1.3 Definitions oL

2.2 Probabilistic Graphical Models
2.2.1 Undirected PGMs
2.2.2 Directed PGMs oo
2.2.3 Factor Graphso
2.2.4 Conditional Independence
2.2.5 Marginalization Lo

2.3 Estimation Problems oo 0o

3 Deep Neural Networks

3.1 Vast Subfield
3.2 Backpropagation
3.3 Further Work

© o o N N

11
11
11
12
12
12
13
14
14
15
15
15

4 Connections and Open Questions 19

4.1
4.2
4.3
4.4
4.5

Backpropagation Lo 19
Boosting 19
Dropout Regularization. 20
Marginalization and Attention 20
Summary 20

Chapter 1

Learning

1.1 Motivation

Machine learning is enjoying a renaissance of interest. It is more important than ever
to draw parallels between the fields of machine learning and statistics, as connections

between disparate fields often lead to exciting discoveries.

Despite this fact, one must first clarify boundaries between the fields. One differ-
ence between the two fields that has been suggested is their purposes. Statistics is
the study of the collection, analysis, interpretation, presentation, and organization of
data. Therefore, to extend statistics is to better any of those facets. One extension

could develop a method which allows an easier interpretation of information.

Machine learning is the study and construction of algorithms that make predic-
tions on data. At first glance these two fields seem related but distinct. However this

idea is incorrect. The two are dependent fields and are intimately connected.

When one can interpret data perfectly one understands the mechanism or system
which creates it. In turn, if one can predict how a system evolves one can functionally

understand it.

1.2 Problems in Interpretation

A statistical study often proceeds according to the scientific method, many cycles of

subsets of the following procedures:

Observing phenomena

Recording measurements

Forming hypotheses

Inferring predictions

e Compare predictions and measurements

In statistics, the phenomena studied are not limited to any particular scientific disci-
pline or field. Proposed hypotheses are models by which the observations, sometimes
called variables or predictors, could have been generated. The simplest relationship
often used between the predictors is an affine transformation.

A more complete treatise on standard statistical methods can be found in [1].

1.3 Problems in Prediction

Many subfields of machine learning (ML) are studying how to make structured pre-
dictions given an input. The simplest of these tasks is binary classification, where
given an input one makes a decision between two targets. Binary classification can be
extended to its more general form multinomial classification, where the target set’s
cardinality is only constrained to be finite. When the target set’s cardinality extends
beyond the finite, we rename the task, regression. However, it is important to notice
the intent is still to make predictions, just onto a different range of values.

A longer, more complete treatment of a number of problems and topics in ML can

be found in [3].

1.4 Enviornments

The environment for a reinforcement learning (RL) task can be described by B’ =
(S,0,A,P,Q,R). S is a multi-dimensional set of states, which may be have a finite
or countably infinite support. O be a multi-dimensional observation set, which again
may have a finite or countably infinite support Notably, it could also be a subset of
S. Given a state, s, A(s) is a space of available actions, again this can an arbitrary
set but for the sake of convenience let, A = U,A(s). P represents the probability
distribution of transitioning between states. () represents the probability distribution
of outputting and observation. R is a function, R : (S x A x S) — R, which maps a
previous state, a new state, and an action to a real number. One with background
in decision theory can recognize the similarity to a Markov Decision Process (MDP).
For a brief introduction to MDPs, succinctly introduced in [2].

For the remainder of the work, we consider a reduced space of processes where

the following conditions are assumed.

e Given a state, s;, and action, a, transitions between states are deterministic,

thus Py, 45, = 1 and Py 5, =0 V(b,s:) # (a, 55).

e Given a state, s;, and observation, o are deterministic, thus @, ,, = 1 and

Qsi0p =0 Vsi # s5.

Under these assumptions, we can fully characterize the RL environment as B =
(S,0,A,R).

Furthermore, the learning and prediction tasks outlined in 1.3 are other special
cases of the framework, B’. For example, classification can be described as an envi-
ronment where the input is the state s; and the binary classes are the actions available
to the agent at every state. When explicit targets are unavailable, as is the case after
selecting an action, the system must wait and proceed until it receives feedback. One
could then think of actions of ordered collections of predictions.

In the game theory field, one could think of this as the state of the game, or the

current node of the game tree. For notational convenience, we will consider that some

latent space, S, represents the true state. The information available to us is available
to the player / agent is only some subset of that S or some f(S) = O. This O is
available at each time when a decision is demanded of the agent. Often these are
called information sets in the game theory literature, one could also consider this as
a just some observations of the underlying state. A simple structure to make this

concept clear is a hidden Markov model where:
1. a state .5; is conditionally independent of all states, Sy, S1, - S;_2 given S;_1.
2. a state S; is conditionally independent of all states, S;i2, 513, -+ given S;.1.
3. an observation O; are conditionally independent of all S;|j # ¢ given S;.

For some intuition about the meaning of conditionally independent used here see
section 2.2.4.

One may consider a general idea of this task where states may be a function of
all previous states, observations and actions. Thus the true states and observations

take the forms,

Si<Si—1,~~- ,05 Oz’—l,v-- 05 Ai—1, ... ,0)
Oi(Si, 05 Oi-1, 0, Ai—1, 0)-

We can summarize this information in a history, h(i, G, A), of an agent interacting
with an environment up to point ¢ where the graph G describes the conditional
relationships of all states and observations and A are an agents’ sequence of actions.
One can now see a history h partially satisfies an RL environment, B with only the
function R removed. An appropriately general R remains an open question, however

please grant for all further discussions R will be specified.

10

Chapter 2

Graphical Models

This chapter provides a brief introduction to graphs. It extends further into using
graphs as representations of joint probability distributions. Those who have previ-

ously studied graphs should proceed to 2.2.4.

2.1 Graph Theory

For the following discussion, let a graph, G, consist of two objects (V, E). V is a set
of nodes, one can think of it as an arbitrary collection of items. The letter V is used
because nodes are commonly referred to as vertices in the graph theory community

and the terms will be used interchangeably.

2.1.1 Directed Graphs

A more principled introduction to graph theory can be found in [5]. Despite it being
taught motivated by a different set of problems. This text refers to digraphs, the
following discussion will refer to these objects as directed graphs. E is a set of pairs
of nodes, e = (v;,v;) where v;,v; € V. These pairs may therefore represent arbitrary
connections between nodes.

Note, the above definitions do not prevent self loops, e;;, however for much of the

following discussion graphs with self-loops will not be considered.

11

2.1.2 Undirected Graphs

An undirected graph differs from those defined in 2.1.1 by one property. An edge,
e in an undirected graph does not communicate an ordering onto its incident nodes.
Therefore, an undirected graph’s edge set, E, contains edges, e = {v;,v;}, where

v, v; € V.

2.1.3 Definitions

A walk between nodes v; and v; is a sequence of edges, (e, e, - ,€,_1), such that

€ = (kal, Uk) and

err1 = (U, 1) VE|[1 <k <n-—1

€1 = (U’ia.>7en71 = (.7Uj>'

The first condition is an edge in the walk must be directed towards a node from which
the next edge is pointed away. The second condition is the first edge must point away
from the initial node and the last edge must point towards the final node. There are
special walks where the first and last edges are incident to the same node; these are
called cycles.

Often it can be informative to restrict one’s thinking to walks which do not include
an edge multiple times. This idea is formalized and often called a path in G between
v; and v;. Paths can be thought of as walks with distinct edges. A path exists between

nodes v; and v; if there is a walk between these nodes, v;, v; and

ek e | VEI|1<kI<n|k#l

2.2 Probabilistic Graphical Models

The main idea of this section is to detail how graphical structures are used to describe

joint probability distributions.

12

A node represents a random variable and an edge denotes a relationship, poten-
tially a dependency, between two variables. Note, a lack of an edge will not mean
independence between two variables. The two non-adjacent variables will for some
set of observed variables be independent. This idea allows us to encode a family of
distributions on n variables, for which every probability distribution is a member,
in a complete undirected graph of n nodes. This representation is not necessarily
efficient as others but from its formulation below you can see it captures all possible
relationships. Such a graph that represents a probability distribution will be referred
to as a probabilistic graphical model (PGM). The flexibility is possible because an
edge does not imply a dependency simply that a dependency is possible.

2.2.1 Undirected PGMs

Although an undirected PGM was introduced in the beginning of this section, it is
worth examining the exact structure proposed. Consider again the graph on n nodes.
The family of joint probability distributions described are any that adhere to the

following form:

p @y, @2,) = [[plailN(z))

i=1
where N(v;) be the set of adjacent nodes to a node, v;. Note, the N(z;) = V/,, because
the graph is fully connected. Therefore one could interpret this family as the set of
distributions where every variable is possibly dependent on every variable. This family
is universal in that every joint probability distribution on n variables is a case of this
distribution with some subset of the variables not being directly dependent. However,
this is not a terribly interesting representation of every distribution because, as will
be shown, finding the marginal distribution of any one variable requires summing over
all other settings for every other variable 2.2.5. Thus, one seeks to find the minimally
connected graph which describes the distribution in concern and does not contain any

additional dependence relationships.

13

Factorization

There is a theorem relating to the family of probability distributions represented by
undirected PGMs, called the Hammersley-Clifford Theorem. The meaning of it is
that a distribution must be able to factor according to its maximal cliques. Where
mazimal clique is a clique such that addition of another member would eliminate the

clique property of the subset of nodes.

2.2.2 Directed PGMs

This search for efficient leads one to examine using a directed graph to describe
a probability distribution, especially those with the additional condition of being
acyclic. For this discussion, the parents of node z;, will be m(z;). Where a parent of
x; is any node with a directed edge leading to the node x;. The probability distribution
families described by these graphs are those that satisfy the following form.

n

p (xh Ly ,:L’n) = Hp(lﬂﬂ'(l’,))

=1

It is a worthy exercise to construct a directed PGM where the family of distributions
is different than the family represented by an undirected PGM with edges between

the same nodes.

2.2.3 Factor Graphs

The final structure of PGMs introduced will be factor graphs. Factor graphs are
efficient in representing joint distributions where clusters of variables all must satisfy

a joint condition. Specifically, the family described is

2.2.4 Conditional Independence

When speaking about conditional independence in undirected PGM, one should as-
sume some subset of nodes, V.., have been observed and their nodes and incident edges
have been removed from the graph. The variables represented in a connected compo-
nent, V,, are conditionally independent from any subset, V;, disconnected in the new
graph. The concept of graph separation extends to the directed PGM except in a
particular case. This case is often referred to as a V structure or an explaining away
of nodes. These names refer to when a child node of multiple parents is observed,

the former parents are not conditionally independent as they would be were it an

undirected PGM.

2.2.5 Marginalization

Finding a marginal distribution for a variable is equivalent to reducing the PGM to
only the relevant information about that variable. There are reduction algorithms one
can use to squash the uncertainty encoded in different variables into their neighbors of
a graph. Thus one can see the appeal and efficiency of using graphs with the minimal

number of dependencies possible to describe their relationships.

2.3 Estimation Problems

Besides representing known distributions using PGMs, one may also want to observe a
phenomenon and create a new model. For such a situation, one must face the following
problems according to the information already collected about the phenomenon. They

are ordered according to most prior information to least.
1. Given the factorization structure, learn the parameters of the factors.

2. Given the relevant variables and their alphabets, learn the factorization struc-

ture (and, in turn, the parameters of the factors).

15

3. Given the variables, learn their alphabets, and, in turn, their (factorized) joint

distribution.

4. Learn the number of variables in the system, their alphabets, and their joint

distribution.

These problems of estimation were proposed in [8].

My central claim is deep learning algorithms are attempting to address all four
problems simultaneously. Specifically one could view the training of a DNN as a
graph selection problem where an edge is only present if the weights after training

are greater than some threshold.

16

Chapter 3

Deep Neural Networks

This is a pointer to areas for further exploration by the reader.

3.1 Vast Subfield

Deep Neural Networks (DNN) are another name for any multi-layer perceptron al-
gorithm. However, the class of algorithms called DNNs is now a vast subfield of
machine learning. One can attribute much of the recent popularity of this subfield
to [6]. Although, it is not the singular example of landmark work. An example of an
effective training and deployment of an agent to interact with a certain environments

can be found in |7] or [9)].

3.2 Backpropagation

An important concept to understand with regard to DNNs are how they are trained.
The training technique is varied and a large topic in itself but a common thread
through much of the literature is backpropagation. Generally, backpropagation is the
practice of changing the model’s parameters in some relation to the observed errors

in the current model’s predictions. For a brief theoretical introduction please see [4].

17

3.3 Further Work

The field continues active research with many focuses including but not limited to:

e How to efficiently and effectively train a model to make predictions in a new

environment
e How environments should be represented by an agent or model
e How to efficiently retain information about an agent’s history

e How agents should select actions given their history

18

Chapter 4

Connections and Open Questions

Another perspective is deep neural networks (DNN) are hierarchical potentially non-
linear mappings of input features to new features. In the spirit of different perspectives

I present a few open questions worth studying.

4.1 Backpropagation

Imagine a DNN with a single input node a layer of two hidden nodes and a single
output node. Is there a way to display a PGM for this algorithm? One can naively

|| .
™' however perhaps there is a

imagine it being represented by a table of size |A|"1
more efficient space representation. Is there also a way to describe backpropagation in
a procedural manner relating to this PGM? Ostensibly, the information gathered from
a single training point is simply updating the tables to reflect the new information,

however inefficient. Perhaps one must build a hierarchical data structure to capture

and succinctly update the larger structure.

4.2 Boosting

One could alternatively think of this model training technique, boosting, as increasing
the weights, edges, of the trees, among a polytree, which correctly meet the targets.

However if more efficient one could equally decrease the strength of non-helpful com-

19

putation graphs.

4.3 Dropout Regularization

A common technique in the deep learning subfield is to dropout weights during train-
ing. Dropout randomly selects a reduced space of models to be selected. Could
the addition of dropout be shown to be equivalent to a randomly quasi-mean field

approximation in PGMs?

4.4 Marginalization and Attention

It is also worth mentioning PGMs attention’ is explicitly encoded in the edges present
in a graph. When one marginalizes a variable in a PGM, using any algorithm, forward-
backward, message passing, or loopy belief propagation (LBP), one encodes all the
information of the joint distribution into a single distribution 2.2.5. After marginal-
izing each variable, it can be easily distinguished which variables are closely related
and affect each other.

As a tool for determining relationships in DNNs, the subfield now attempts to
maximize the output of a single node and show the values of the input and internal
nodes leading up to that node which maximize this output. Could one cast this as a

form of marginalizing the node?

4.5 Summary

Statistics holds a bright future for all those willing to delve into further study as well

as a number of interesting problems to learn more.

20

Bibliography

[

2|

3]

4]

[5]

17l

8]

19]

Jennifer Hill Andrew Gelman. Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge University Press, 2007.

Richard Bellman. A markovian decision process. Indiana Univ. Math. J., 6(4):679—
684, 1957.

C Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2
edition, 2006. Information Science and Statistics.

Robert Hecht-Nielsen. Neural Networks for Perception, chapter 3, pages 65-93.
Academic Press, 1992.

R. M. Wilson J. H. van Lint. A Course in Combinatorics. Cambridge University
Press, 2001.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 1097-1105. Curran Associates, Inc., 2012.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 518(7540):529—
533, 02 2015.

Devavrat Shah. 6.438 Algorithms for Inference. https://ocw.mit.edu. License:
Creative Commons BY-NC-SA., Fall 2014.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484-489, 01 2016.

21

