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Abstract

The spatial organization of DNA in the cell nucleus plays an important role for gene
regulation, DNA replication, and genomic integrity. Through the development of
chromosome capture experiments (such as 3C, 4C, Hi-C) it is now possible to obtain
the contact frequencies of the DNA at the whole-genome level. In this thesis, we study
the problem of reconstructing the 3D organization of the genome from whole-genome
contact frequencies. A standard approach is to transform the contact frequencies into
noisy distance measurements and then apply semidefinite programming (SDP) formu-
lations to obtain the 3D configurations. However, neglected in such reconstructions
is the fact that most eukaryotes including humans are diploid and therefore contain
two (from the available data) indistinguishable copies of each genomic locus. Due to
this, the standard approach performs very poorly on diploid organisms. We prove
that the 3D organization of the DNA is not identifiable from exclusively chromo-
some capture data for diploid organisms. In fact, there are infinitely many solutions
even in the noise-free setting. We then discuss various additional biologically rele-
vant constraints (including distances between neighboring genomic loci and to the
nucleus center or higher-order interactions). Under these conditions we prove there
are finitely many solutions and conjecture we in fact have identifiability. Finally, we
provide SDP formulations for computing the 3D embedding of the DNA with these
additional constraints and show that we can recover the true 3D embedding with high
accuracy even under noise.

Thesis Supervisor: Caroline Uhler
Title: Assistant Professor
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Chapter 1

Introduction

The genome (for example, in humans) is formed out of chromosomes. Chromosomes

within a cell nucleus form a 3D structure, where the organization of chromosomes

affect many mechanisms such as gene regulation, DNA replication, epigenetic modi-

fication and maintenance of gene stability [2]. These factors make understanding the

3D structure of chromosomes a very important problem.

Thus the fact that genes lie in 3D space explains why genome sequencing is not

sufficient to determine the 3D structure of chromosomes. The question then becomes:

how can we determine the 3D structure? The first part of the answers lies in a

technology Hi-C which computes a contact frequency matrix between genomes [4].

Specifically, the contact frequency matrix 𝑓 has element 𝑓𝑖𝑗 indicating the number of

times genes 𝑖 and 𝑗 interact with each other. We then expect two genes 𝑖, 𝑗 to be

close together if and only if their contact frequency is high. We can then estimate

the distances 𝑑𝑖𝑗 between genes to satisfy [4]:

𝑑𝑖𝑗 ∝

⎧⎪⎨⎪⎩(1/𝑓𝑖𝑗)
𝛼 if 𝑓𝑖𝑗 > 0

∞ otherwise

where 𝛼 is a constant called the conversion factor, which is not necessarily known

beforehand because it changes based on the resolution of the data [10]. This formula

captures the intuition that the closer together genes are, the more often they inter-
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Figure 1-1: An example of a configuration of genes in 2D space.

act. Once we have these distance estimates, we need to uncover the true distances

(because the estimated distances are noisy). This is most often resolved by phrasing

the problem as an optimization problem, i.e. how close can we get to the estimated

distances assuming we are in a 3 dimensional coordinate system.

One currently un-addressed problem is the case of diploid chromosomes, meaning

there are two copies of each chromosome. All the work summarized above assumes

there is only one copy of each chromosome, which is the monoploid case. This is not

true in the case of the human genome: we possess two copies of each chromosome.

Because of this, Hi-C data will give us contact frequencies which describe the com-

bination of contact frequencies between the pairs of chromosomes. Intuitively this

should still be solvable: we have
(︂
𝑚

2

)︂
constraints and 6𝑚 variables when there are

𝑚 pairs of chromosomes present (𝑚 = 23 for the human genome). So despite having

less information than in the monoploid case, we still can hope to recover the original

coordinates of each pair of chromosomes. This problem going forward is the focus of

our research.

12



1.1 Goals

Ultimately, we wish to determine the spacial configuration of diploid chromosomes

from observations. The most basic data we can utilize is Hi-C data, which gives us

contract frequencies between genes. However, we can add more data if it is necessary

to uniquely determine the organization of genes.

We then have two main goals:

1. Identifiability: We would like to find a set of constraints generated from ob-

served data which uniquely determines the organization of genes. Proving uniqueness

would be the best case scenario.

2. Solvability: Simply knowing a unique solution exists is not sufficient because

we must be able to solve the optimization problem. In many cases optimization

problems are NP-complete so we need to devise an efficient algorithm in this case.

The algorithm must also be robust because we cannot rely measured data to be exact,

there will always be error.

1.2 Thesis Roadmap

The remainder of the thesis is organized as follows:

Chapter 2 goes over past work in this field which motivates many of the ideas

later in this thesis and formally states the problem we will be discussing. In Chapter

3 we prove Hi-C contact frequencies are not sufficient for uniqueness and provide a

construction of all possible solutions.

Starting in Chapter 4 we add constraints beyond those derived from Hi-C fre-

quencies. We propose new constraints based on the beads on a string model. We

then explore how this influences our problem and provide a proof of uniqueness in 2D

while demonstrating in 3D we still do not have uniqueness.

In Chapter 5 we examine two possible new sets of constraints. Under these new

constraints we prove there exist finitely many solutions and conjecture we in fact have

uniqueness.
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In Chapter 6 we present an algorithm to solve the constraint systems build up in

this thesis. Using simulated data in small configurations we demonstrate that we can

extract the true solution with high accuracy even under noise.
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Chapter 2

Problem Introduction

First we discuss past work done in this field. The state of the art method is a system

ChromSDE which solves for the 3D configuration of monoploid genes given Hi-C data.

The algorithm is efficient and resistant to noise. However, the methods do not directly

generalize to diploid chromosomes. Nevertheless, we utilize many similar ideas to the

work done here so they are important to discuss.

2.1 Kernel Matrix

The first key insight to ChromSDE is to work with the kernel matrix. In general,

given 𝑑-dimensional vectors 𝑣1, 𝑣2, ..., 𝑣𝑚, the kernel matrix for the vectors 𝐾 is an

𝑛 × 𝑛 matrix where 𝐾𝑖𝑗 = 𝑣𝑇𝑖 · 𝑣𝑗. This is also referred to as the Gram matrix. The

kernel matrix can alternatively be written as the product of a 𝑚 × 𝑑 matrix and its

transpose, specifically:

𝐾 =

⎡⎢⎢⎢⎢⎢⎢⎣
− 𝑣1 −

− 𝑣2 −
...

− 𝑣𝑚 −

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
| | |

𝑣1 𝑣2 . . . 𝑣𝑚

| | |

⎤⎥⎥⎥⎦

where we simply insert the coordinates vectors as the rows/columns of our matrices.

Because 𝐾 is the product of these matrices, we know it has rank at most 𝑑. It is also a
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classical result that the kernel matrix must be positive semi-definite as a consequence

of the factorization we give above. The reason why we work with the kernel matrix

is because it helps give us identifiability : rotations, reflections and translations of the

original coordinates yield infinitely many different configurations but all sharing the

same distances between genomic regions, but if we center the kernel matrix then all

these transformations do not change the kernel matrix. This in turn gives us hope of

a unique solution for the Gram matrix.

2.2 Semi-Definite Programming

The next step in ChromSDE is to find some kernel matrix 𝐾 which is close to our

approximate distances. Specifically, suppose 𝑑𝑖𝑗 is the approximate distance between

genes 𝑖 and 𝑗 given by the contact frequencies. We then specify a semi-definite

program (SDP) where the kernel matrix 𝐾𝑖𝑗 adheres to the approximate distances 𝑑𝑖𝑗

as closely as possible; specifically we have:

𝑑2𝑖𝑗 = ‖𝑣𝑖 − 𝑣𝑗‖22 = ‖𝑣𝑖‖22 − 2𝑣𝑖 · 𝑣𝑗 + ‖𝑣𝑗‖22 = 𝐾𝑖𝑖 − 2𝐾𝑖𝑗 +𝐾𝑗𝑗

In the noiseless case, we’d like to find a rank 3 matrix 𝐾 which satisfies 𝑑2𝑖𝑗 = 𝐾𝑖𝑖 −

2𝐾𝑖𝑗 +𝐾𝑗𝑗 for all pairs 𝑖, 𝑗. However, this is a non-convex optimzation problem due

to rank constraints being non-convex. Thus we perform a SDP relaxation and search

for general positive semi-definite matrices 𝐾 satisfying the constraints with minimal

trace. Because trace is an 𝐿1 norm on the necessarily non-negative eigenvalues of the

matrix, this tends to force many of the eigenvalues of the solution to be 0, giving

us a low rank solution. This is also now a convex optimization problem, so we can

solve for the (unique) solution efficiently. It can be shown that for sufficiently large

configurations and no noise, the solution to the SDP will in fact be equal to the true

kernel matrix 𝐾. [9]

To adapt to noise, we essentially add slack to all the constraints. For each con-

straint of the form 𝑓𝑖(𝐾) = 𝐶𝑖, we add a term of (𝐶𝑖 − 𝑓𝑖(𝐾))2 to our objective
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function (which is currently simply the trace of the matrix). This way 𝐾 is strongly

incentivized to follow the constraints, but if it is not desired, e.g. there is measure-

ment error on 𝐶𝑖, the solution can stray from the constraint. This addition makes

the method very robust to noise.

The key to this approach is that even in the presence of noise the SDP will return

a matrix of rank mostly 3; to be precise, the majority of the mass of the matrix is

concentrated on the first 3 eigenvalues. Let the top 3 eigenvalues of 𝐾 be 𝜆1, 𝜆2, 𝜆3

with corresponding eigenvectors 𝜈1, 𝜈2, 𝜈3. Then letting

𝑣𝑖 =
[︁√

𝜆1𝜈1𝑖
√
𝜆2𝜈2𝑖

√
𝜆3𝜈3𝑖

]︁
yields a very high quality approximation of the original coordinates of the genes.

When the matrix is correct, this will perfectly re-construct the original solution up

to orthogonal transformations.

It should be noted that another powerful part of ChromSDE is its ability to adapt

to different values of 𝛼. Specifically, the authors of the paper lay out techniques to

search for the correct value of 𝛼 based on evaluating metrics on the 3D coordinates

generated by the previously described algorithm. They then search for the 𝛼 value

which scores the highest on their metrics.

Overall ChromSDE is a very powerful method for determining 3D structure of

genes. However, as mentioned before, the approach does not perfectly generalize to

diploid chromosomes. In particular, based on some preliminary numerical experi-

ments we find that if we mimic their approach of performing an SDP relaxation, the

resulting kernel matrix has rank approximately 5 rather than 3, implying the result-

ing method of taking eigenvectors as coordinates for our vectors will result in a very

poor approximation.
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2.3 Diploid Case

We now give a formal presentation of our problem. Let 𝑓 ∈ R𝑚×𝑚
≥0 be a Hi-C interac-

tion matrix, where 𝑓𝑥𝑖,𝑥𝑗
measures the interaction strength between genomic regions

with coordinates 𝑥𝑖 and 𝑥𝑗 in R2 or R3. Let 𝑑 ∈ R𝑚×𝑚 be the pairwise distance ma-

trix, where 𝑑𝑥𝑖,𝑥𝑗
is the distance between 𝑥𝑖 and 𝑥𝑗. By [4], the relationship between

the Hi-C interaction matrix and the pairwise distance matrix is

𝑑𝑥𝑖,𝑥𝑗
=

⎧⎪⎨⎪⎩(1/𝑓𝑥𝑖,𝑥𝑗
)𝛼 if 𝑓𝑥𝑖,𝑥𝑗

> 0

∞ otherwise
(2.1)

where we ignore the earlier discussed constant of proportionality because we are

interested in the spacial configuration, the absolute distances are not critical. A

cell has two copies of each chromosome and gene. We denote the coordinates corre-

sponding to the two genomic regions in a homologue pair by 𝑥𝑖 and 𝑦𝑖. In practice,

only a combination of true interaction strengths 𝑓𝑥𝑖,𝑥𝑗
, 𝑓𝑥𝑖,𝑦𝑗 , 𝑓𝑦𝑖,𝑥𝑗

and 𝑓𝑦𝑖,𝑦𝑗 can be

measured. We denote it by 𝐹𝑖𝑗. We assume the following relationship between the

measured interactions and the true interactions

1

𝐹𝑖𝑗

=
1

𝑓𝑥𝑖,𝑥𝑗

+
1

𝑓𝑥𝑖,𝑦𝑗

+
1

𝑓𝑦𝑖,𝑥𝑗

+
1

𝑓𝑦𝑖,𝑦𝑗
.

Applying (2.1) gives

1

𝐹𝑖𝑗

= (𝑑𝑥𝑖,𝑥𝑗
)1/𝛼 + (𝑑𝑥𝑖,𝑦𝑗)

1/𝛼 + (𝑑𝑦𝑖,𝑥𝑗
)1/𝛼 + (𝑑𝑦𝑖,𝑦𝑗)

1/𝛼.

Defining 𝐷𝑖𝑗 := 1/𝐹𝑖𝑗 and setting 𝛼 = 1
2

(which is often the case for many biological

systems such as equilibrium globules [4]) gives

𝐷𝑖𝑗 = (𝑑𝑥𝑖,𝑥𝑗
)2 + (𝑑𝑥𝑖,𝑦𝑗)

2 + (𝑑𝑦𝑖,𝑥𝑗
)2 + (𝑑𝑦𝑖,𝑦𝑗)

2,
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or equivalently

𝐷𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖2 + ‖𝑥𝑖 − 𝑦𝑗‖2 + ‖𝑦𝑖 − 𝑥𝑗‖2 + ‖𝑦𝑖 − 𝑦𝑗‖2.

We note that any orthogonal transformation, translation or permutation of 𝑥𝑖

and 𝑦𝑖 keeps all 𝐷𝑖𝑗 the same. Our goal is then the same as before: identity what

additional constraints (if any) are necessary for a unique solution to exist, and then

devise an algorithm to extract the solution given the observed data.

Throughout this thesis we will assume we lie in a generic configuration. This

means the spacial coordinates of all the genomic regions are algebraically independent.

Non-generic configurations have measure 0 in the space of all configurations, so this

is a safe assumption to work with due because even if they are not generic, any small

perturbation will be with probability 1. It is also very convenient because it allows

us to avoid algebraically degenerate configurations in our arguments.
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Chapter 3

Hi-C Constraints

We first investigate the case where we only have access to Hi-C data. In the mono-

ploid case this data was sufficient to uniquely determine the configuration of genes.

However, here we will show that Hi-C constraints are not sufficient for us to have a

unique solution up to translations and orthogonal transforms for dimensions greater

than 1, demonstrating the solution is not identifiable.

In the rest of this thesis, we will denote the coordinates of true genomic regions

by 𝑥*
𝑖 , 𝑦

*
𝑖 and the true combinations of interaction strengths and distances by 𝐹 *

𝑖𝑗 and

𝐷*
𝑖𝑗, respectively. The symbols 𝑥𝑖, 𝑦𝑖 will be variables in the systems of polynomial

equations defined by 𝑥*
𝑖 , 𝑦

*
𝑖 , 𝐹

*
𝑖𝑗, 𝐷

*
𝑖𝑗.

3.1 Non-identifiability

Here we show for dimensions greater than 1, the solution is not identifiable from 𝐹 *
𝑖𝑗

up to orthogonal transformations, translations and permutations of 𝑥*
𝑖 and 𝑦*𝑖 as we

present an infinite class of solutions. Now take any other set of points 𝑥𝑖, 𝑦𝑖 satisfying

for each 𝑖:

𝑥𝑖 + 𝑦𝑖 = 𝑥*
𝑖 + 𝑦*𝑖 , ‖𝑥𝑖‖2 + ‖𝑦𝑖‖2 = ‖𝑥*

𝑖 ‖2 + ‖𝑦*𝑖 ‖2 (3.1)

Note that these constraints are independent across different values of 𝑖. For each 𝑖,

the set of (𝑥𝑖, 𝑦𝑖) which satisfy the equations (3.1) are opposite points on a sphere
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with center (𝑥*
𝑖 + 𝑦*𝑖 )/2 and the second constraint defines the radius of the sphere.

For dimensions > 1 this defines an infinite set of points.

Now observe that for a set of 𝑥𝑖, 𝑦𝑖 satisfying the equations (3.1)

𝐷*
𝑖𝑗 = 2 · (‖𝑥*

𝑖 ‖2 + ‖𝑦*𝑖 ‖2) + 2 · (‖𝑥*
𝑗‖2 + ‖𝑦*𝑗‖2)− 2(𝑥*

𝑖 + 𝑦*𝑖 ) · (𝑥*
𝑗 + 𝑦*𝑗 )

= 2 · (‖𝑥𝑖‖2 + ‖𝑦𝑖‖2) + 2 · (‖𝑥𝑗‖2 + ‖𝑦𝑗‖2)− 2(𝑥𝑖 + 𝑦𝑖) · (𝑥𝑗 + 𝑦𝑗)

= ‖𝑥𝑖 − 𝑥𝑗‖2 + ‖𝑥𝑖 − 𝑦𝑗‖2 + ‖𝑦𝑖 − 𝑥𝑗‖2 + ‖𝑦𝑖 − 𝑦𝑗‖2.

Hence they constitute a valid solution to the exact problem. It is clear this produces

infinitely many solutions because there are infinitely many possible values of ‖𝑥1−𝑥2‖

when there should only be 4 possible values.

It is interesting to note that the above construction only fails when 𝑥*
𝑖 = 𝑦*𝑖 for

all 𝑖, i.e. the sphere has radius 0, in which case we have a monoploid genome.

3.2 Distances within homologous pairs are fixed

Despite not having identifiability, we can show the distances between homologue pairs

is uniquely defined by the Hi-C constraints. Let 𝑥𝑖, 𝑦𝑖 be any set of points satisfying

for all 𝑖 ̸= 𝑗:

‖𝑥𝑖 − 𝑥𝑗‖2 + ‖𝑥𝑖 − 𝑦𝑗‖2 + ‖𝑦𝑖 − 𝑥𝑗‖2 + ‖𝑦𝑖 − 𝑦𝑗‖2 = 𝐷*
𝑖𝑗 (3.2)

Note that this holds for 𝑥𝑖, 𝑦𝑖 being equal to the real solution. We seek to show that

‖𝑥1 − 𝑦1‖ is equal to some constant, and then generalize the argument to all other

indices. Perform a shift so that 𝑥1 = −𝑦1 = 𝑣. This is valid because shifts preserve

distances. Setting 𝑖 = 1 we can write:

‖𝑣 − 𝑥𝑗‖2 + ‖𝑣 − 𝑦𝑗‖2 + ‖ − 𝑣 − 𝑥𝑗‖2 + ‖ − 𝑣 − 𝑦𝑗‖2 = 𝐷*
1𝑗
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Expanding this out into dot products and simplifying:

4‖𝑣‖2 + 2(‖𝑥𝑗‖2 + ‖𝑦𝑗‖2) = 𝐷*
1𝑗 =⇒ 2(‖𝑥𝑗‖2 + ‖𝑦𝑗‖2) = 𝐷*

1𝑗 − 4‖𝑣‖2

Now take the original distance equation for any 𝑗 ̸= 𝑘 and both not equal to 1.

Substituting in the above:

𝐷*
1𝑗 +𝐷*

1𝑘 − 8‖𝑣‖2 − 2(𝑥𝑗 + 𝑦𝑗) · (𝑥𝑘 + 𝑦𝑘) = 𝐷*
𝑗𝑘 =⇒ 𝑠𝑗 · 𝑠𝑘 = 𝑇𝑗𝑘 − 8‖𝑣‖2

where 𝑠𝑗 =
√
2(𝑥𝑗 + 𝑦𝑗) and 𝑇𝑗𝑘 = 𝐷*

1𝑗 + 𝐷*
1𝑘 − 𝐷*

𝑗𝑘, so a vector 𝑠𝑗 is in the same

dimension as our data points. Form a matrix (𝑑 + 1) × (𝑑 + 1) matrix 𝑇 ′ satisfying

𝑇 ′
𝑖𝑗 = 𝑇(𝑖+2)(𝑗+𝑑+2). This matrix represents the dot products between 𝑠2, 𝑠3, ..., 𝑠𝑑+2

and 𝑠𝑑+3, 𝑠𝑑+4, ..., 𝑠2𝑑+3. Note that the entries of 𝑇 ′ can be written as polynomials in

terms of the coordinates of the chromosomes. It follows that det(𝑇 ′ − 8𝐽‖𝑣‖2) can

be viewed as a polynomial in terms of ‖𝑣‖2, with coefficients that are polynomials in

terms of the coordinates of the chromosomes. We claim that under generic configu-

rations, det(𝑇 ′) ̸= 0. Because the coefficients are polynomials in terms of the original

coordinates, det(𝑇 ′) can be written as a polynomial in the original coordinates. So

det(𝑇 ′) ̸= 0 for generic configurations as long as the polynomial does not identically

vanish.

In general dimensions it is difficult to argue if the polynomial vanishes, but for low

dimensions it suffices to present one configuration where the polynomial is nonzero.

We simply need to present a case where det(𝑇 ′) ̸= 0. For 𝑑 ≤ 3 we can check this

using some python code:

1 import numpy as np
d = 3

3 x = [ ]
y = [ ]

5

f o r i in range (2*d + 3) :
7 x . append (np . random . randn (d) )

y . append (np . random . randn (d) )
9

y [ 0 ] = −x [ 0 ]
11

de f norm(v ) :
13 r e turn np . dot (v , v )
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15 de f D( i , j ) :
r e turn norm(x [ i ]−x [ j ] )+norm(x [ i ]−y [ j ] )+norm(y [ i ]−x [ j ] )+norm(y [ i ]−y [ j ] )

17

matrix = np . z e r o s ( ( d+1, d+1) )
19

f o r i in range (d+1) :
21 f o r j in range (d+1) :

matrix [ i ] [ j ] = D(0 , i +1) + D(0 , j+1+d+1) − D( i +1, j+1+d+1)
23

pr in t (np . l i n a l g . det ( matrix ) )

The arrays 𝑥[] and 𝑦[] in our program represent 𝑥𝑖 and 𝑦𝑖, but 0-indexed instead

of 1-indexed. Thus we have for a generic configuration det(𝑇 ′) ̸= 0. Therefore 𝑇 ′ has

full rank so by the matrix determinant lemma:

det(𝑇 ′ − 8𝐽‖𝑣‖2) = (1− 8‖𝑣‖2𝑢𝑇 (𝑇 ′)−1𝑢) det𝑇 ′

where 𝑢 is a column vector of all 1’s. 𝑢𝑇𝑇 ′−1𝑢 is a fixed scalar and det𝑇 ′ ̸= 0, so

this is a linear equation in terms of ‖𝑣‖2. It follows there is a unique solution for ‖𝑣‖

and thus the distance between the homologue pair 𝑥1, 𝑦1 can be uniquely determined

in terms of the constraints as long as 𝑚 ≥ 2𝑑 + 3. Because this process arbitrarily

selected the first index, we can argue the same for any other index 𝑖 and therefore

the distance between homologue pairs is uniquely determined by the 𝐹 *
𝑖𝑗.

3.3 Classification of all solutions from 𝐹 *
𝑖𝑗

We now show the construction in Section 3.1 classifies all solutions to 𝐷*
𝑖𝑗 = ‖𝑥𝑖 −

𝑥𝑗‖2+‖𝑥𝑖−𝑦𝑗‖2+‖𝑦𝑖−𝑥𝑗‖2+‖𝑦𝑖−𝑦𝑗‖2 up to translations and orthogonal transforms.

By Section 3.2 we know ‖𝑥𝑖−𝑦𝑖‖ for all 𝑖. Perform a translation such that 𝑥1 = −𝑦1 =

𝑣 for some vector 𝑣. Note that we know ‖𝑣‖ but not the direction of 𝑣. Then for any

𝑗 ̸= 1, plug in 1, 𝑗 into the constraint for 𝑖, 𝑗:

4‖𝑣‖2 + 2(‖𝑥𝑗‖2 + ‖𝑦𝑗‖2) = 𝐷*
𝑖𝑗 =⇒ 2(‖𝑥𝑗‖2 + ‖𝑦𝑗‖2) = 𝐷*

𝑖𝑗 − 4‖𝑣‖2
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Because we know ‖𝑣‖2, we have a constraint on what ‖𝑥𝑗‖2 + ‖𝑦𝑗‖2 is equal to.

Similarly to Section 3.2, if we define 𝑠𝑗 =
√
2(𝑥𝑗+𝑦𝑗) and 𝑇𝑗𝑘 = 𝐷𝑖𝑗+𝐷𝑖𝑘−𝐷𝑗𝑘−8‖𝑣‖2

we find:

𝑠𝑗 · 𝑠𝑘 = 𝑇𝑗𝑘

but note that because we have access to the diagonal constraints now, this relationship

holds for all 𝑗, 𝑘 and not just 𝑗 ̸= 𝑘. Thus we have 𝑇 is a symmetric (𝑚− 1) · (𝑚− 1)

matrix admitting a rank 𝑑 factorization. Let 𝑆 be the matrix formed with the vectors

𝑠𝑗. We then have 𝑇 = 𝑆𝑆𝑇 . There is a result on rank factorizations of symmetric

matrices that any other factorization 𝑇 = 𝑆 ′𝑆 ′𝑇 satisfies 𝑆 = 𝑆 ′𝑄 for some orthogonal

matrix 𝑄. Thus for any other solution 𝑠′𝑗, we have 𝑠𝑗 = 𝑠′𝑗𝑄, implying all solutions

are simply orthogonal transformations of each other (rotations, reflections, etc.)

So in summary, we have shown that the quantities 𝑥𝑗 + 𝑦𝑗 are unique up to

orthogonal transforms once we’ve fixed 𝑥1 + 𝑦1 = 0 via translation. On top of this

we also have ‖𝑥𝑗‖2+ ‖𝑦𝑗‖2 is unique. This shows that the solutions we derived in the

previous section are exhaustive as desired. Going forward, we will make use of the

fact that this solution set is exhaustive in our arguments.
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Chapter 4

Beads on a String Model

As we saw in the previous chapter, the Hi-C constraints were not sufficient for iden-

tifiability in 3 dimensions. This is already an interesting finding, as often times it is

assumed this data is sufficient to uncovering the spacial organization of genes. Due

to this, we augment our constraints with inter-domain distances based on the beads

on a string model [8].

Let 𝑥*
1, 𝑥

*
2, . . . , 𝑥

*
𝑛 and 𝑦*1, 𝑦

*
2, . . . , 𝑦

*
𝑛 form chains of genomic regions where the dis-

tances between consecutive genomic regions are known, i.e. ‖𝑥*
𝑖 − 𝑥*

𝑖+1‖ = 𝑎*𝑖 and

‖𝑦*𝑖 − 𝑦*𝑖+1‖ = 𝑏*𝑖 . Here, a chain represents the beads which make up a single chromo-

some. We refer to these constraints as inter-domain distances. Let 𝑥𝑖, 𝑦𝑖 be any set

of points satisfying for all 𝑖 ̸= 𝑗:

‖𝑥𝑖 − 𝑥𝑗‖2 + ‖𝑥𝑖 − 𝑦𝑗‖2 + ‖𝑦𝑖 − 𝑥𝑗‖2 + ‖𝑦𝑖 − 𝑦𝑗‖2 = 𝐷*
𝑖𝑗, (4.1)

‖𝑥𝑖 − 𝑥𝑖+1‖ = 𝑎*𝑖 and ‖𝑦𝑖 − 𝑦𝑖+1‖ = 𝑏*𝑖 . (4.2)

From the results in Section 3.1, we have that for each 𝑖, (𝑥𝑖, 𝑦𝑖) are diametrically

opposite points on some sphere with known center and radius and we can explicitly

compute the centers and radii from the results. Denote the 𝑖-th sphere by 𝑆𝑖 and let

it have center 𝑐𝑖 and radius 𝑟𝑖. Then ‖𝑐𝑖 − 𝑥𝑖‖ = 𝑟𝑖 and 2𝑐𝑖 − 𝑥𝑖 = 𝑦𝑖.
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4.1 Finitely many solutions in 2D

Let us consider the case of 2 dimensions. We have 𝑦1 = 2𝑐1 − 𝑥1 and 𝑦2 = 2𝑐2 − 𝑥2.

Plugging this into ‖𝑦1 − 𝑦2‖ = 𝑏*𝑖 we get:

𝑏*𝑖 = ‖(2𝑐1 − 𝑥1)− (2𝑐2 − 𝑥2)‖2

= ‖(2𝑐1 − 2𝑐2)− (𝑥1 − 𝑥2)‖2

= ‖2𝑐1 − 2𝑐2‖2 + ‖𝑥1 − 𝑥2‖2 − 2(2𝑐1 − 2𝑐2) · (𝑥1 − 𝑥2)

Note that ‖2𝑐1−2𝑐2‖2, ‖𝑥1−𝑥2‖2 are fixed quantities. This implies there is exactly

one solution for (2𝑐1− 2𝑐2) · (𝑥1−𝑥2) (and 𝑐1 ̸= 𝑐2 by the generic property), and then

because we know the length of 𝑥1−𝑥2 (its just 𝑎𝑖), this implies there are two possible

angles for 𝑥2 − 𝑥1 and thus there are two possible solutions (this is where we use the

2D constraint).

Now that we know there’s two possible solutions for 𝑥1 − 𝑥2, note that because

𝑥1, 𝑥2 are constrained to lie on circles, each solution for 𝑥1 − 𝑥2 leads to at most two

possible solutions for (𝑥1, 𝑥2). This is because two circles intersect at most twice. In

turn this implies there are at most 4 solutions for 𝑥2. We now investigate the four

solutions and where they lie in the field F, consisting of the rational numbers adjoined

with the real coordinates of our points. Note that 𝑐𝑖, 𝑟
2
𝑖 for all 𝑖 actually belong in

this field as 𝑐𝑖 = (𝑥𝑖 + 𝑦𝑖)/2 and 4𝑟2𝑖 = ‖𝑥𝑖 − 𝑦𝑖‖2.

Obviously 𝑥*
2 lies in the field. There is another solution which is 𝑥*

2 reflected over

the line from 𝑐1 to 𝑐2. This other solution can then be written as simply (𝑥*
2 − 𝑐2)−

2((𝑥*
2 − 𝑐2) · 𝑝) · 𝑝 where 𝑝 is simply 𝑐1 − 𝑐2 rotated 90 degrees (e.g. by swapping the

𝑥 and 𝑦 coordinates) which belongs in F.

The other two solutions are slightly more complex. We reflect 𝑥2 − 𝑥1 over the

line from 𝑐1 to 𝑐2 to get a new vector 𝑣. We then translate the circle centered at 𝑐1

by 𝑣 and intersect it with the circle centered at 𝑐2. This leads to two solutions, whose
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coordinates can be written as the solutions to a quadratic with coefficients in F. To

see why it is a quadratic, note that if we subtract the equations governing the two

circles, we get a linear equation, so the problem reduces to the case of intersecting

a circle and a line. It follows that the four solutions consist of 𝑥*
2, a reflection point

which is some rational function in F, and two points which lie in a quadratic extension

of F. We can extend this argument to deduce there are at most four solutions for

(𝑥2, 𝑥3) and so on, implying there are finitely many solutions overall.

4.2 Unique solution in 2D

Now, in the previous section we have done some work on pinning down the exact

nature of the solutions. We can apply an identical argument to derive four solutions

for 𝑥2 but instead by solving various equations using the constraints describing 𝑥2

and 𝑥3. Again there are four solutions consisting of 𝑥*
2, a reflection lying in F, and

two points lying in a quadratic extension.

We show that given certain rational functions not vanishing everywhere, for a

generic configuration these four solutions intersect the earlier set of four solutions at

only 𝑥*
2. This would in turn imply 𝑥2 has a unique solution of 𝑥*

2. Suppose otherwise,

so two solutions were equal at a point not 𝑥*
2. If they are both reflection points, this

implies two rational functions in F are equal, so their difference is equal to 0. If one

is a reflection point and one is a root of a quadratic, by plugging in the reflection

point into the quadratic we get a rational function in F evaluates to 0. Finally, if the

equal solutions are roots of the quadratics, we can equate the two solutions by using

the quadratic formula and by using squaring to get rid of square roots arrive at some

rational function in F must be equal to zero.

We can show that these various rational functions relations cannot be identically

zero by simply presenting an example where they do not vanish, e.g. there are 7 total
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Figure 4-1: An example of 7 distinct solutions.

solutions for 𝑥2 when we combine the two sets. With such an example our rational

functions are not identically equal to 0, so under a generic configuration they will

be nonzero and thus we will have a unique solution. Such an example is depicted in

Figure 4-1.

𝑐1, 𝑐2, 𝑐3, 𝑥1, 𝑥2, 𝑥3 are defined as the centers of the three circles and the true loca-

tions of the first three chromosomes. Point 𝑐′1 is 𝑐1 translated by 𝑥2 − 𝑥1 and is the

center of a circle with radius 𝑟1. This circle’s intersections with the circle centered at

𝑐2 are 𝑥2 and 𝑥3
𝑥. Point 𝑥2

2 is the reflection of 𝑥2 across the line from 𝑐1 to 𝑐2 and 𝑥4
2

is the reflection of 𝑥3
2 across the same line. The three points 𝑥2

2, 𝑥
3
2, 𝑥

4
2 are the three

alternative solutions derived using the constraints on 𝑥1 and 𝑥2.

Point 𝑐′2 is 𝑐2 translated by 𝑥2 − 𝑥3 and is the center of a circle with radius 𝑟3.

This circle intersects the circle centered at 𝑐2 at 𝑥2 and 𝑥6
2. Point 𝑥5

2 is the reflection

of 𝑥2 across the line from 𝑐3 to 𝑐2 and 𝑥7
2 is the reflection of 𝑥6

2 across the same line.

Again, 𝑥5
2, 𝑥

6
2, 𝑥

7
2 are the three alternative solutions derived using the constraints on

𝑥2 and 𝑥3.

The figure shows 7 distinct solutions because none of the alternative solutions are

the same point. This implies the certain rational functions specified above are non-

vanishing. It follows that 𝑥2 has a unique solution as desired, because the candidate

solution sets derived from each side have an intersection of only 𝑥2. This argument
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generalizes to show every value except for 𝑥1 and 𝑥𝑛, the ends of the chain, are

uniquely determined. Note that the above diagram shows that the four solutions

for 𝑥2 derived from either side are unique for a generic configuration (because by an

identical argument to above, if two solutions were equal certain rational functions

would need to be equal). This means once the value of 𝑥2 has been fixed, there is a

unique solution for 𝑥1. The same argument then yields 𝑥𝑛 is uniquely determined.

We therefore have that all values in the chain are uniquely determined as long as

there are at least 3 beads on the chain.

With uniqueness proved using the constraints within one chain, we can apply the

same argument to every chain. Thus as long as each chromosome is composed of at

least 3 beads and we have at least 2𝑑 + 3 = 7 chromosomes total, we have a unique

solution in 2D.

4.3 3 Dimensions

Despite having uniqueness in 2D, we do not have uniqueness in 3D. We can argue

this by counting the number of constraints. We have 6𝑛 total variables, 3 for each

genomic region. However, we only have 6𝑛 − 2 constraints: we have 4𝑛 constraints

based on 𝑥𝑖, 𝑦𝑖 lying on various spheres and then 2𝑛 − 2 constraints based on the

inter-domain distances. Thus there are at least two remaining degrees of freedom,

making it impossible for there to be a unique solution.
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Chapter 5

Extra Constraints for 3D

In the previous chapter we saw the inter-domain distances were sufficient to prove

uniqueness in 2D. However, they are not sufficient for 3D. In this chapter we ex-

plore two potential candidates for extra constraints. The first is based on Lamina-

Associated Domains [7] while the second is based on higher order contact frequencies

[5].

We omit most of the proofs in this section and present them in the appendix due

to their length. Within this chapter we present the results and a high level overview

of the proof flow.

5.1 Distances to the origin

In this section we assume that in addition to the information in the previous sections,

we also know distances to the origin for the genomic regions 𝑥*
1 and 𝑥*

𝑛, i.e. ‖𝑥*
1‖ = 𝑔*1

and ‖𝑥*
𝑛‖ = 𝑔*𝑛. Biologically this would arise because Lamina-Associated Domains

(LADs) are located near the nuclear membrane in a cell’s nucleus. We can estimate

the size of the nucleus to get an estimate of the distance of an LAD from the origin,

which is the center of the nucleus.

The main result of this section is the following proposition.
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Proposition 5.1.1. Let 𝑥𝑖, 𝑦𝑖 be any set of points satisfying for all 𝑖 ̸= 𝑗:

‖𝑥𝑖 − 𝑥𝑗‖2 + ‖𝑥𝑖 − 𝑦𝑗‖2 + ‖𝑦𝑖 − 𝑥𝑗‖2 + ‖𝑦𝑖 − 𝑦𝑗‖2 = 𝐷*
𝑖𝑗, (5.1)

‖𝑥𝑖 − 𝑥𝑖+1‖ = 𝑎*𝑖 , ‖𝑦𝑖 − 𝑦𝑖+1‖ = 𝑏*𝑖 , (5.2)

‖𝑥1‖ = 𝑔*1 and ‖𝑥𝑛‖ = 𝑔*𝑛. (5.3)

If 𝑛 ≥ 2, then generically the above system has finitely many solutions for 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛.

We recall from Section 3.1 that for each 𝑖, (𝑥𝑖, 𝑦𝑖) are diametrically opposite points

on the sphere 𝑆𝑖 with center 𝑐𝑖 and radius 𝑟𝑖.

The goal of the rest of this section is to prove Proposition 5.1.1. The main

components of this proof are Lemma 5.1.5 and Lemma 5.1.6. Roughly speaking,

Lemma 5.1.5 studies the above system of polynomial equations restricted to spheres

𝑆1, . . . , 𝑆𝑛−1 and Lemma 5.1.6 studies the same system restricted to spheres 𝑆𝑛−1 and

𝑆𝑛. Corollary 5.1.4 to Lemma 5.1.3 is used in the proof of Lemma 5.1.5. Theorem

on the Dimension of Fibers (Theorem 5.1.2) will be an ingredient in the proofs of

Lemmas 5.1.3, 5.1.5 and 5.1.6.

Theorem 5.1.2 (Theorem on the Dimension of Fibers, Theorem 1.25 in [6]). If

𝑓 : 𝑉1 → 𝑉2 is a regular map between irreducible varieties that is surjective, then

(i) any irreducible component of any fiber has dimension at least dim(𝑉1)−dim(𝑉2),

and

(ii) in an open subset of 𝑉2, the dimension of fibers is dim(𝑉1)− dim(𝑉2).

Essentially this theorem allows us to show that the computation of the dimension

of a random configuration bounds the dimensions in a generic configuration. For

example, if compute a random configuration has a fiber with dimension 0, this implies

dim(𝑉1)− dim(𝑉2) ≤ 0. This bound will also hold for fibers of generic configurations

which is vital for our arguments.
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Lemma 5.1.3. Let (𝑥*
1, 𝑦

*
1) and (𝑥*

2, 𝑦
*
2) be antipodal pairs on spheres 𝑆1 and 𝑆2,

respectively. Generically, there are finitely many antipodal pairs (𝑥2, 𝑦2) on the sphere

𝑆2 satisfying

‖𝑥*
1 − 𝑥2‖ = ‖𝑥*

1 − 𝑥*
2‖ and ‖𝑦*1 − 𝑦2‖ = ‖𝑦*1 − 𝑦*2‖. (5.4)

Corollary 5.1.4. Let (𝑥*
1, 𝑦

*
1), (𝑥

*
2, 𝑦

*
2), . . . , (𝑥

*
𝑛, 𝑦

*
𝑛) be antipodal pairs on spheres 𝑆1, 𝑆2, . . . , 𝑆𝑛,

respectively. Let (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛) be any antipodal pairs on spheres 𝑆2, . . . , 𝑆𝑛 sat-

isfying for all 1 < 𝑖 < 𝑛:

‖𝑥*
1 − 𝑥2‖ = ‖𝑥*

1 − 𝑥*
2‖, ‖𝑦*1 − 𝑦2‖ = ‖𝑦*1 − 𝑦*2‖,

‖𝑥𝑖 − 𝑥𝑖+1‖ = ‖𝑥*
𝑖 − 𝑥*

𝑖+1‖, ‖𝑦𝑖 − 𝑦𝑖+1‖ = ‖𝑦*𝑖 − 𝑦*𝑖+1‖.

Generically, the above system has finitely many solutions for 𝑥2, . . . , 𝑥𝑛, 𝑦2, . . . , 𝑦𝑛.

Proof. By Lemma 5.1.3, there are finitely many antipodal pairs (𝑥2, 𝑦2) on 𝑆2 such

that ‖𝑥*
1−𝑥2‖ = ‖𝑥*

1−𝑥*
2‖ and ‖𝑦*1−𝑦2‖ = ‖𝑦*1−𝑦*2‖. Similarly, for each of these points

𝑥2 on 𝑆2, there are finitely many points 𝑥3 on 𝑆3 satisfying ‖𝑥2 − 𝑥3‖ = ‖𝑥*
2 − 𝑥*

3‖

and ‖𝑦2 − 𝑦3‖ = ‖𝑦*2 − 𝑦*3‖ etc.

These two results show that starting from a single solution on the first sphere

𝑆1, the set of solutions grows to at most a finite amount when considering the set

of solutions lying on any other sphere. This is important because it tells us if we

have a solution set of dimension 1 lying on the first sphere, the solution set will have

dimension 1 on any other sphere due to it multiplying by a finite number. This is

formally stated in the following result:
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Lemma 5.1.5. Let 𝑉 ⊆ C3×2𝑛 be the set of points satisfying for all 𝑖 ̸= 𝑗:

‖𝑥𝑖 − 𝑥𝑗‖2 + ‖𝑥𝑖 − 𝑦𝑗‖2 + ‖𝑦𝑖 − 𝑥𝑗‖2 + ‖𝑦𝑖 − 𝑦𝑗‖2 = 𝐷*
𝑖𝑗,

‖𝑥𝑖 − 𝑥𝑖+1‖ = 𝑎*𝑖 , ‖𝑦𝑖 − 𝑦𝑖+1‖ = 𝑏*𝑖 and ‖𝑥1‖ = 𝑔*1.

The projection 𝜋𝑘 : 𝑉 → C3 which sends a solution in 𝑉 to the coordinates 𝑥𝑘 lying

on sphere 𝑆𝑘 ⊆ C3 can be written as

𝜋𝑘(𝑉 ) =

𝑙𝑘⋃︁
𝑗=1

(𝑊 𝑘
𝑗 ∖𝑍𝑘

𝑗 ),

where 𝑍𝑘
𝑗 ⊂ 𝑊 𝑘

𝑗 ⊂ C3 are affine varieties. Furthermore, we can assume that 𝑊 𝑘
𝑗 are

irreducible and at most 1-dimensional, and 𝑍𝑘
𝑗 are at most 0-dimensional.

It is important to note that this lemma is correct only over the complex numbers

and not over the real numbers.

Lemma 5.1.6. Let 𝑆𝑛−1, 𝑆𝑛 ⊆ C3 be two spheres, let 𝑥*
𝑛−1 be a point on 𝑆𝑛−1 and let

(𝑥*
𝑛)

(1), (𝑥*
𝑛)

(2) be two points on 𝑆𝑛. For 𝑖 = 1, 2, let 𝑇 (𝑖) be the set of points 𝑥𝑛−1 on

𝑆𝑛−1 such that there exists 𝑥𝑛 on 𝑆𝑛 satisfying

‖𝑥𝑛−1 − 𝑥𝑛‖ = ‖𝑥*
𝑛−1 − (𝑥*

𝑛)
(𝑖)‖, ‖𝑦𝑛−1 − 𝑦𝑛‖ = ‖𝑦*𝑛−1 − (𝑦*𝑛)

(𝑖)‖ and ‖𝑥𝑛‖ = ‖(𝑥*
𝑛)

(𝑖)‖.

(5.5)

Generically, the intersection of the sets 𝑇 (1) and 𝑇 (2) is finite or empty.

Intuitively this lemma discusses the scenario where we fix a gene’s location on

𝑆𝑛−1 and then consider two different constraint sets generated by different locations

of the gene on 𝑆𝑛, where we know the distance from the origin on sphere 𝑆𝑛. We

then compute the sets 𝑇 (1), 𝑇 (2) which are the alternative solutions for the gene on

𝑆𝑛−1 given the respective constraint systems. The lemma then states these two sets

in general have finite intersection.
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With these results proven, we can finally prove our main result of the section. The

full proof can be found in the appendix. At a high level, the solution first sets up

the 1 dimensional solution spaces on spheres 𝑆1 and 𝑆𝑛 derived in 5.1.5. Then using

5.1.4 we can determine the solution set on 𝑆𝑛−1 is the intersection of one-dimensional

sets. Finally by using 5.1.6, we can show this intersection has finite size, concluding

the result.

First of all, note that we proved finiteness over the complex numbers. Of course,

any real solution is also a complex solution, so in general we have finitely many

solutions. Note furthermore that we assumed we knew the distances from the origin

for 𝑥1 and 𝑥𝑛. However, our proof adapts to more general settings. First of all, it does

not matter if we instead knew 𝑦1 rather than 𝑥1 or 𝑦𝑛 instead of 𝑥𝑛. This is because

the solution set of 𝑦𝑖 lying on a 1-dimensional set implies 𝑥𝑖 does as well, and then our

arguments still apply. Furthermore, it is not strictly necessary to know the distances

from the origin of the endpoints of the chain. In fact, any two beads will suffice. Our

argument will show there are finitely many solutions for the genes inbetween the two

beads where we know the distance from the origin. This generalizes to finitely many

solutions for all beads by 5.1.4.

We conjecture that knowing the distance from the origin for the two endpoint

beads plus one bead anywhere else is sufficient for uniqueness. However, we so far

have been unable to prove this.

5.2 Tensor constraints

A newly developed technology allows us to measure higher order interaction frequen-

cies, which we term tensor frequencies due to being represented in a tensor rather

than a matrix [5]. This section is very similar to the previous one where we prove

finiteness of solutions and conjecture we also have uniqueness. The proofs techniques
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used are very similar as well.

Let 𝑓 ∈ R𝑚×𝑚×···×𝑚 be a Hi-C tensor, where 𝑓𝑥𝑖1
,𝑥𝑖2

,...,𝑥𝑖𝑘
measures the interaction

strength between genomic regions with coordinates 𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘 . In practice, we

can only measure a combination of interaction strengths for vectors in {𝑥𝑖1 , 𝑦𝑖1} ×

{𝑥𝑖2 , 𝑦𝑖2}× . . .×{𝑥𝑖𝑘 , 𝑦𝑖𝑘}, which we will denote by 𝐹𝑖1𝑖2...𝑖𝑘 . We will define 𝐷𝑖1𝑖2...𝑖𝑘 :=

1/𝐹𝑖1𝑖2...𝑖𝑘 and assume

𝐷𝑖1𝑖2...𝑖𝑘 = min
𝑧𝑖𝑗∈{𝑥𝑖𝑗

,𝑦𝑖𝑗 }
(

𝑘∑︁
𝑗=1

(𝑧𝑖𝑗 − (𝑧𝑖1 + . . .+ 𝑧𝑖𝑘)/𝑘)
2).

Proposition 5.2.1. Let 𝑥𝑖, 𝑦𝑖 ∈ R3 be any set of points satisfying for all 𝑖, 𝑗:

‖𝑥𝑖 − 𝑥𝑗‖2 + ‖𝑥𝑖 − 𝑦𝑗‖2 + ‖𝑦𝑖 − 𝑥𝑗‖2 + ‖𝑦𝑖 − 𝑦𝑗‖2 = 𝐷*
𝑖𝑗, (5.6)

‖𝑥𝑖 − 𝑥𝑖+1‖ = ‖𝑥*
𝑖 − 𝑥*

𝑖+1‖ and ‖𝑦𝑖 − 𝑦𝑖+1‖ = ‖𝑦*𝑖 − 𝑦*𝑖+1, ‖ (5.7)

min𝑧𝑖∈{𝑥𝑖,𝑦𝑖} for 𝑖=1,2,3(
∑︀

𝑗∈{1,2,3}(𝑧𝑗 − (𝑧1 + 𝑧2 + 𝑧3)/3)
2) = 𝐷*

123, (5.8)

min𝑧𝑖∈{𝑥𝑖,𝑦𝑖} for 𝑖=𝑛−2,𝑛−1,𝑛(
∑︀

𝑗∈{𝑛−2,𝑛−1,𝑛}(𝑧𝑗 − (𝑧1 + 𝑧2 + 𝑧3)/3)
2) = 𝐷*

𝑛−2,𝑛−1,𝑛.(5.9)

If 𝑛 ≥ 4, then generically the above system has finitely many solutions for 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛.

The aim of the rest of this section is to prove Proposition 5.2.1. Proofs in

this section will be similar to the proofs in Section 5.1. Lemmas 5.2.3 and 5.2.4

will be the main components of the proof of Proposition 5.2.1. Roughly speak-

ing, Lemma 5.2.3 studies the above system of polynomial equations restricted to

spheres 𝑆1, . . . , 𝑆𝑛−1 and Lemma 5.2.4 studies the same system restricted to spheres

𝑆𝑛−2, 𝑆𝑛−1, 𝑆𝑛. Lemma 5.2.2 is used to prove Lemma 5.2.3.

Lemma 5.2.2. Let (𝑥*
1, 𝑦

*
1), (𝑥

*
2, 𝑦

*
2), (𝑥

*
3, 𝑦

*
3) be antipodal pairs on spheres 𝑆1, 𝑆2, 𝑆3.

Let 𝑉 consist of all antipodal pairs (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3) on spheres 𝑆1, 𝑆2, 𝑆3 sat-
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isfying

‖𝑥1 − 𝑥2‖ = ‖𝑥*
1 − 𝑥*

2‖, ‖𝑥2 − 𝑥3‖ = ‖𝑥*
2 − 𝑥*

3‖, (5.10)

‖𝑦1 − 𝑦2‖ = ‖𝑦*1 − 𝑦*2‖, ‖𝑦2 − 𝑦3‖ = ‖𝑦*2 − 𝑦*3‖,

min𝑧𝑖∈{𝑥𝑖,𝑦𝑖} for 𝑖=1,2,3(
∑︀

𝑗∈{1,2,3}(𝑧𝑗 − (𝑧1 + 𝑧2 + 𝑧3)/3)
2) = 𝐷*

123.

Generically, we have dim(𝑉 ) = 1.

Lemma 5.2.3. Let 𝑉 ⊆ C3×2𝑛 be the set of points satisfying for all 𝑖 ̸= 𝑗:

‖𝑥𝑖 − 𝑥𝑗‖2 + ‖𝑥𝑖 − 𝑦𝑗‖2 + ‖𝑦𝑖 − 𝑥𝑗‖2 + ‖𝑦𝑖 − 𝑦𝑗‖2 = 𝐷*
𝑖𝑗,

‖𝑥𝑖 − 𝑥𝑖+1‖ = ‖𝑥*
𝑖 − 𝑥*

𝑖+1‖, ‖𝑦𝑖 − 𝑦𝑖+1‖ = ‖𝑦*𝑖 − 𝑦*𝑖+1‖,

min𝑧𝑖∈{𝑥𝑖,𝑦𝑖} for 𝑖=1,2,3(
∑︀

𝑗∈{1,2,3}(𝑧𝑗 − (𝑧1 + 𝑧2 + 𝑧3)/3)
2) = 𝐷*

123.

Then the projection 𝜋𝑘 : 𝑉 → C3 which sends a solution in 𝑉 to the coordinates 𝑥𝑘

lying on sphere 𝑆𝑘 ⊆ C3 can be written as

𝜋𝑘(𝑉 ) =

𝑙𝑘⋃︁
𝑗=1

(𝑊 𝑘
𝑗 ∖𝑍𝑘

𝑗 ),

where 𝑍𝑘
𝑗 ⊂ 𝑊 𝑘

𝑗 ⊂ C3 are affine varieties. Furthermore, we can assume that 𝑊 𝑘
𝑗 are

irreducible and at most 1-dimensional and 𝑍𝑘
𝑗 are at most 0-dimensional.

These two results mimic 5.1.5 in the prior section. We show that one tensor

constraint is sufficient to turn the solution set into a one-dimensional constructible

set, just as one distance from the origin was able to accomplish.

Lemma 5.2.4. Let 𝑆𝑛−2, 𝑆𝑛−1, 𝑆𝑛 ⊆ C3 be three spheres, let 𝑥*
𝑛−2 be a point on 𝑆𝑛−2,

let 𝑥*
𝑛−1 be a point on 𝑆𝑛−1 and let (𝑥*

𝑛)
(1), (𝑥*

𝑛)
(2) be points on 𝑆𝑛. For 𝑖 = 1, 2, let

𝑇 (𝑖) be the be the set of points 𝑥𝑛−2, 𝑥𝑛−1 on 𝑆𝑛−2 × 𝑆𝑛−1 such that there exists 𝑥𝑛 on
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𝑆𝑛 satisfying

‖𝑥𝑛−2 − 𝑥𝑛−1‖ = ‖𝑥*
𝑛−2 − 𝑥*

𝑛−1‖, ‖𝑦𝑛−2 − 𝑦𝑛−1‖ = ‖𝑦*𝑛−2 − 𝑦*𝑛−1‖,

‖𝑥𝑛−1 − 𝑥𝑛‖ = ‖𝑥*
𝑛−1 − (𝑥*

𝑛)
(𝑖)‖, ‖𝑦𝑛−1 − 𝑦𝑛‖ = ‖𝑦*𝑛−1 − (𝑦*𝑛)

(𝑖)‖,

min𝑧𝑖∈{𝑥𝑖,𝑦𝑖} for 𝑖=𝑛−2,𝑛−1,𝑛(
∑︀

𝑗∈{𝑛−2,𝑛−1,𝑛}(𝑧𝑗 − (𝑧1 + 𝑧2 + 𝑧3)/3)
2) = (𝐷*

𝑛−2,𝑛−1,𝑛)
(𝑖),

where (𝐷*
𝑛−2,𝑛−1,𝑛)

(𝑖) is the distance for 𝑥*
𝑛−2, 𝑥

*
𝑛−1, (𝑥

*
𝑛)

(𝑖). Generically, the intersec-

tion of sets 𝑇 (1) and 𝑇 (2) is finite or empty.

This lemma is the variant of 5.1.6 except we have access to a tensor constraint

instead of a distance from the origin.

Then as before, with these results established we can prove the main result of 5.2.1

in the same manner as we proved the main result in the previous section. Therefore

we have finitely many solutions in the case of tensor constraints. We conjecture that

with at least 3 tensor constraints per chain, we will have uniqueness.

In general we are more optimistic about using tensor frequencies than LADs.

There are not strong guarantees on which genes are LADs and how many there are

in each chromosome. However, we have access to contact frequency tensors of the

whole genome. Because of this, for our numerical studies we use make use of tensor

constraints rather than distances from the origin.
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Chapter 6

Algorithms

We derived the theoretical framework to establish when we should have unique iden-

tifiability of the solution (note we have not proved it, but we strongly believe there

is a unique solution). However, a unique solution does not necessarily we can find

it efficiently, as in many cases finding the solution may be NP-hard or we may have

noise.

6.1 Noiseless Case

We first deal with the noiseless case on simulated data. We make use of a very similar

approach to the one used in ChromSDE [10]. We form a 2𝑚 × 2𝑚 Gram matrix 𝐺

which tracks the dot products between our 2𝑚 chromosomes and seek to determine

𝐺. The convention we use throughout this paper is for 1 ≤ 𝑖 ≤ 𝑚 column/row 𝑖

correspond to 𝑥𝑖 and column/row 𝑚 + 𝑖 correspond to 𝑦𝑖. So for example, 𝐺1,𝑚+3

would be the dot product between 𝑥1 and 𝑦3. 𝐺 is easier to determine than the true

solutions, because it is rotation invariant and by imposing a constraint on the sum of

the entries in 𝐺 we can also fix the translational axis.

We re-phrase our various constraints in terms of the Gram matrix. In general this

is possible because distances can be re-written in terms of the Gram matrix:
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1. ‖𝑥𝑖 − 𝑥𝑗‖2 = 𝐺𝑖𝑖 +𝐺𝑗𝑗 − 2𝐺𝑖𝑗

2. ‖𝑥𝑖 − 𝑦𝑗‖2 = 𝐺𝑖𝑖 +𝐺(𝑗+𝑚)(𝑗+𝑚) − 2𝐺𝑖(𝑗+𝑚)

3. ‖𝑦𝑖 − 𝑦𝑗‖2 = 𝐺(𝑖+𝑚)(𝑖+𝑚) +𝐺(𝑗+𝑚)(𝑗+𝑚) − 2𝐺(𝑖+𝑚)(𝑗+𝑚)

and all of the constraints we have make use of the three quantities above. It follows

that once we translate the constraints to using the entries of the Gram matrix, the

constraints will become linear expressions. Because the expressions become quite

long, here we omit the derivations, because translating them into using the Gram

matrix instead of the distances between chromosomes is straightforward but tedious.

Once our constraints have been translated, we add an extra constraint of
∑︀

𝑖,𝑗 𝐺𝑖𝑗 =

0 and also the values of distances between homologue pairs. The work done in Sec-

tion 3.2 allows us to compute the distance between homologue pairs using the fre-

quency data. Our objective function is then to minimize tr𝐺. We would rather

minimize the rank of 𝐺, as then the minimum would be guaranteed to align with

the true solution by our theoretical work from earlier. However, then our optimiza-

tion problem would not be convex and thus very difficult to optimize. tr is a good

proxy for minimizing rank so we use it instead [3]. Our resulting convex optimization

problem then resembles:

minimize tr𝐺

subject to 𝐺𝑖,𝑖 − 2𝐺𝑖,𝑗 +𝐺𝑖+𝑚,𝑖+𝑚 = 𝑑2𝑥𝑖,𝑥𝑖+𝑚
∀1 ≤ 𝑖 ≤ 𝑚

𝐺𝑖,𝑖 +𝐺𝑗,𝑗 +𝐺𝑖+𝑚,𝑖+𝑚 +𝐺𝑗+𝑚,𝑗+𝑚−
𝐺𝑖,𝑗 −𝐺𝑖+𝑚,𝑗 −𝐺𝑖,𝑗+𝑚 −𝐺𝑖+𝑚,𝑗+𝑚 = 𝐷𝑖𝑗/2 ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑚

Constraints on inter-domain distances and tensors go here∑︁
𝑖,𝑗

𝐺𝑖,𝑗 = 0

𝐺 positive semidefinite

where again 𝑑𝑥𝑖,𝑥𝑖+𝑚
denotes the distance between 𝑥𝑖 and 𝑥𝑖+𝑚 which we derive in
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3.2, and 𝐷𝑖𝑗 is the sum of the squares of the four distances between chromosomes 𝑖

and 𝑗.

To solve the convex optimization problem, we made use of the solvers SDPT3 and

SeDuMi implemented in cvx within MATLAB. After that, we mimic the approach in

[10] to re-construct the coordinates of the genes. To assess the accuracy of a solution

we then compare the pair-wise distances between genes.

For the dimension one case, we deduced the Hi-C constraints by themselves were

sufficient when 𝑚 ≥ 3 to re-construct the original solution and in this case the convex

optmization problem leads to the correct solution. For the dimension two case we

proved knowing the inter-domain distances lead to uniqueness. Indeed, in dimension

two when we set the number of chromosomes to 1 and the number of domains per

chromosome to at least 15 the output solution matches the true values. For dimension

3, when there are 2 chromosomes with over 40 domains each we can find the original

solution, but when 3 chromosomes are present we require only 12. As the number of

chromosomes increases, the number of required domains further decreases.

6.2 Adding Noise

In true biological data we cannot expect measurements to always return the true

values, especially in this case of contact frequencies where variance comes from that

fact that we are measuring a random variable. Due to this, strict constraints such as

the ones we use before become highly ineffective.

To combat this, we make use of two common techniques. The first is translating a

constraint of the form 𝑓(𝑥) = 𝑦 to adding (𝑓(𝑥)− 𝑦)2 to the objective function. This

way, the optimizer will be incentivized to set 𝑓(𝑥) = 𝑦, but if this is impossible (i.e.

there is measurement error in 𝑦), it is fine allowing the equality to be slightly off at

some penalty.
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The second is through the use of slack variables. Our tensor constraints are of the

form 𝑓(𝑥) ≤ 𝑦. If there is error in 𝑦, it may be the true solution satisfies 𝑓(𝑥) > 𝑦.

Because of this, we add slack variables 𝜖+ and 𝜖−, one for each inequality constraint,

and change the constraint to 𝑓(𝑥)+ 𝜖+− 𝜖− = 𝑦. We then specify 𝜖+, 𝜖− ≥ 0 and add

𝜖− to the objective function. 𝜖− in this case captures how much 𝑓(𝑥) exceeds 𝑦, so

minimizing it encourages the solution to follow our constraint but it is not mandatory.

We can apply these two techniques to make our optimization problem more noise

resilient. But there are two issues remaining. The first one is our computation of the

distance between homologue pairs. Previously in this thesis we perform a complex

computation to compute the homologue pairs, one step of which involves inverting a

matrix. Even if the error in our measurements is very small, noise can propagate very

strongly through this so we need a more numerically robust method of computation.

Luckily this ends up being straightforward. Recall that we needed to compute a

‖𝑣‖2 such that

det(𝑇 ′ − 8𝐽‖𝑣‖2) = 0

where 𝑇 ′ is an invertible matrix. Our work showed that this is a linear equation in

‖𝑣‖2, so we can simply empirically compute the slope and intercept of this linear

equation rather than inverting a matrix to figure it out. For example, one can simply

input ‖𝑣‖2 = 0, 1 and compute the determinants to determine the slope and intercept.

This allows us to compute the unique solution to ‖𝑣‖2 using only determinants.

Furthermore, to smooth out the end result even further, recall that 𝑇 ′ was formed

by selecting a set of 2𝑑 + 2 indices. One can perform the same process but selecting

another set of indices and then averaging the resulting solutions to ‖𝑣‖2 for both sets.

Performing this many times will drastically decrease the variance on our estimate of

the distance.

The other issues is more subtle. While now our optimization problem is quite

resilient to noise, it is very difficult to solve. Most general convex optimization pro-
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grams can handle problems with relatively few variables but an enormous number

of constraints. Our problem has an extremely large number of variables and con-

straints, so solvers such as SDPT3 run into memory errors extremely quickly (even

around 15 genes total overwhelms them). Because of this, we implement a system

of sharing slack variables. For example, we define a global parameter 𝜖 and specify

that 𝑓(𝑥) ≤ 𝑦 + 𝜖 for all of our inequality constraints. We then add 𝜖 ≥ 0 as another

constraint and put 𝜖 into the objective function. If the errors in our measurements are

uniformly random, this is mostly equivalent to the formulation of one slack variable

per inequality constraint. For more accuracy more slack variables can be used, but

for our small configurations we found 1 was sufficient.

After these transformations, our optimization problem will resemble:

minimize tr𝐺+

𝑠1∑︁
𝑖=1

(𝑓𝑖(𝐺)− 𝑏𝑖)
2 + 𝜖

subject to 𝑔𝑗(𝐺) ≤ 𝑑𝑗 + 𝜖 ∀1 ≤ 𝑗 ≤ 𝑠2

𝜖 ≥ 0∑︁
𝑖,𝑗

𝐺𝑖,𝑗 = 0

𝐺 positive semidefinite

where we have 𝑠1 constraints of the form 𝑓𝑖(𝐺) = 𝑏𝑖 and 𝑠2 constraints of the form

𝑔𝑗(𝐺) ≤ 𝑑𝑗.

In order to still get good results, we must attach constants to balance the priorities

of minimizing either the trace or aligning with the constraints. In our numerical

experiments we found attaching a constant 𝜌 in front of tr𝐺 is sufficient, however one

must carefully choose the value of this constant.

In general, the accuracy of the solution is extremely dependent on 𝜌. Through

numerical experiments we find for any given configuration there is a small range

of 𝜌 values which will yield a correct solution. Fortunately, there is a simple way to
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determine whether a given 𝜌 value succeeded or not without knowing the true solution

beforehand. When a solution is output, we compute the eigenvalues of the output

Gram matrix. The quality of the solution generally scales directly with the (𝑑+ 1)𝑡ℎ

eigenvalue of the matrix, where we are working in dimension 𝑑. If the eigenvalue is

large, the solution will be very poor, but the closer it is to 0, the higher quality the

solution is. Therefore something simple such as a binary search should be sufficient to

determine the optimal value of 𝜌 quickly. For 2D 𝜌 ≈ 10−2 and for 3D 𝜌 ≈ 10−5 lead

to fairly accurate solutions most of the time for the minimal configurations specified

in the previous section. For larger configurations we expect 𝜌 needs to be re-tuned

using a binary search.

We have also experimented with injecting artificial noise. When we add noise

drawn from a small uniform distribution to every observation, we find that we can

still re-construct the configuration of genes with high accuracy. This is to be expected

due to the nature of how we constructed our optimization problem, but it is re-assuring

to check the numerical results agree with the theoretical ones.

For smaller configurations such as ones we have discussed, general solvers are

sufficient. However, very large systems will often cause memory issues or too slow

convergence for these algorithms. Because of this a specialized solver such as the one

detailed in [3] can be used to retain high performance.

46



Chapter 7

Conclusion and Future Work

7.1 Future Work

Moving forward the goals are quite clear. On the theoretical side, we would like to

show we have a unique solution when in possession of either 3 distances from the

origin or 3 tensor constraints per chromosome. Based on computational results, we

are strongly confident this is true. One idea we had involved computing mixed volume

and applying the Bernstein-Kushnirenko theorem. However, we did not have much

success in completing this approach.

In terms of the algorithmic side, there are two extensions. The first is more

straightforward, where we implement our constraint system into the PPA Smoothing

algorithm to demonstrate our approach can generalize to larger configurations. On

top of this, we would like to obtain real data sets (in particular, the tensor frequencies)

to test how our approach handles real scenarios.

7.2 Conclusion

In this thesis, we have presented an algorithm to infer the 3D structure of diploid

chromosomes. We make use of Hi-C contact frequencies, inter-domain distances be-
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tween beads within chromosomes and tensor contact frequencies to achieve this. We

have proven this data is sufficient to narrow the solution down to finitely many possi-

bilities and conjecture we in fact have uniqueness. This is supported by our numerical

experiments, where even in the presence of noise we can accurately solve for the true

configuration of genes.
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Appendix A

Proofs of Chapter 5

Here we present the previously omitted proofs of results in Chapter 5. Most of these

proofs were developed in large part by Kaie Kubjas.

A.1 Proofs for 5.1

Proof of 5.1.3. We will first show by a Macaulay2 computation that the statement

of the lemma holds for randomly chosen (𝑥*
1, 𝑦

*
1) and (𝑥*

2, 𝑦
*
2). Then we will use

Theorem 5.1.2 to prove it for generic values.

The statement can be shown for randomly chosen values by the following Macaulay2

code.

R = QQ[ x1s1 , x1s2 , x1s3 , x2s1 , x2s2 , x2s3 , c11 , c12 , c13 , c21 , c22 , c23 , x21 , x22 , x23 ]
2 −− f i r s t polynomial : x2 and x2s l i e on the same sphere
−−second polynomial : d ( x1s , x2 )=d( x1s , x2s )

4 −−th i rd polynomial : d ( ys1 , y2 )=d( ys1 , ys2 ) ( expres sed through x ’ s and c ’ s )
I = i d e a l (

6 ( x21−c21 )^2+(x22−c22 )^2+(x23−c23 )^2−((x2s1−c21 )^2+(x2s2−c22 )^2+(x2s3−c23 ) ^2) ,
( x1s1−x21 )^2+(x1s2−x22 )^2+(x1s3−x23 )^2−((x1s1−x2s1 )^2+(x1s2−x2s2 )^2+(x1s3−x2s3 )
^2) ,

8 (−x1s1+2*c11+x21−2*c21 )^2+(−x1s2+2*c12+x22−2*c22 )^2+(−x1s3+2*c13+x23−2*c23 )^2−
((−x1s1+2*c11+x2s1−2*c21 )^2+(−x1s2+2*c12+x2s2−2*c22 )^2+(−x1s3+2*c13+x2s3−2*c23 )
^2) ) ;

10 −−s ub s t i t u t e parameter v a r i a b l e s with random va lue s
C11 = random (1 ,10 ) ;

12 C12 = random (1 ,10 ) ;
C13 = random (1 ,10 ) ;

14 C21 = random (1 ,10 ) ;
C22 = random (1 ,10 ) ;

16 C23 = random (1 ,10 ) ;
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X1S1 = random (1 ,10 ) ;
18 X1S2 = random (1 ,10 ) ;

X1S3 = random (1 ,10 ) ;
20 X2S1 = random (1 ,10 ) ;

X2S2 = random (1 ,10 ) ;
22 X2S3 = random (1 ,10 ) ;

J = sub ( I , { x1s1=>X1S1 , x1s2=>X1S2 , x1s3=>X1S3 ,
24 x2s1=>X2S1 , x2s2=>X2S2 , x2s3=>X2S3 ,

c11=>C11 , c12=>C12 , c13=>C13 ,
26 c21=>C21 , c22=>C22 , c23=>C23})

J2=sub (J ,QQ[ x21 , x22 , x23 ] )
28 −−c o r r e c t n e s s check : x2s should be in the i d e a l

sub ( J2 , { x21=>X2S1 , x22=>X2S2 , x23=>X2S3})
30 dim J2

Let 𝑉1 ⊆ C15 be the variety defined by the ideal 𝐼 in the code above. Let 𝑉2 = C12,

the space of values for 𝑥*
1, 𝑥*

2, and centers of 𝑆1 and 𝑆2. Let 𝑓 be the coordinate

projection from 𝑉1 to 𝑉2. By the Macaulay2 computation, there exists a fiber of

dimension zero. By the first part of Theorem 5.1.2, we have dim(𝑉1)−dim(𝑉2) ≤ 0. In

fact dim(𝑉1)−dim(𝑉2) = 0, because the ideal of 𝑉1 is generated by three polynomials.

By the second part of Theorem 5.1.2, there exists some open set where the dimension

of fibers is dim𝑉1 − dim𝑉2 = 0. The statement of the lemma follows, because open

sets are dense.

Proof of 5.1.5. The first statement follows from [1, Theorem 7 in §4.7]. We can

assume that 𝑊 𝑘
𝑗 are irreducible, because otherwise we can replace (𝑊 𝑘

𝑗 ∖𝑍𝑘
𝑗 ) with the

union over the irreducible components of 𝑊 𝑘
𝑗 . By [1, Proposition 10 in §9.4], we have

dim(𝑍𝑘
𝑗 ) < dim(𝑊 𝑘

𝑗 ).

To show that 𝑊 𝑘
𝑗 are at most 1-dimensional, we will show that 𝑉 is at most 1-

dimensional by applying Theorem 5.1.2. We take 𝑉1 ⊆ C3×2𝑛 to be an irreducible

component of 𝑉 , 𝑉2 ⊆ C3 to be the set of points on the sphere 𝑆1 satisfying ‖𝑥1‖ = 𝑔*1

and the map 𝑓 to be the projection to the 𝑥1 coordinates. The map 𝑓 is surjective

by definition and regular due to being a projection. The set of points on sphere

𝑆1 satisfying ‖𝑥1‖ = 𝑔*1 is a circle and hence dim(𝑉2) = 1. By Corollary 5.1.4, a

generic fiber of 𝑓 over a point in 𝑉2 is 0-dimensional. By Theorem 5.1.2, the variety

𝑉 is 1-dimensional. This in turn implies that the 𝑊 𝑘
𝑗 are at most 1-dimensional as
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desired.

Proof of 5.1.6. We will first show the statement of the lemma for randomly chosen

points 𝑥*
𝑛−1, (𝑥

*
𝑛)

(1), (𝑥*
𝑛)

(2) and centers 𝑐𝑛−1, 𝑐𝑛 of the spheres 𝑆𝑛−1, 𝑆𝑛 by a Macaulay2

computation. We will then apply Theorem 5.1.2 to deduce the statement for generic

values.

R = QQ[ x1s1 , x1s2 , x1s3 , x21s1 , x21s2 , x21s3 , x22s1 , x22s2 , x22s3 , c11 , c12 , c13 , c21 , c22 , c23 ,
2 x11 , x12 , x13 , x211 , x212 , x213 , x221 , x222 , x223 ]
−− f i r s t f our po lynomia ls : x1 and x1s l i e on the same sphere ; x21 and x21s l i e on the

same sphere ;
4 −−x22 and x22s l i e on the same sphere ; x21s and x22s l i e on the same sphere
−− f i f t h and s i x th polynomial : d ( x1 , x2 i )=d( x1s , x2 i s ) f o r i =1,2

6 −−seventh and e ighth polynomial : d ( y1 , y2 i )=d( y1s , y2 i s ) f o r i =1,2
−−ninth and tenth polynomial : d ( x2 i )=d( x2 i s ) f o r i =1,2

8 I = i d e a l ( ( x11−c11 )^2+(x12−c12 )^2+(x13−c13 )^2−((x1s1−c11 )^2+(x1s2−c12 )^2+(x1s3−c13 )
^2) ,
( x211−c21 )^2+(x212−c22 )^2+(x213−c23 )^2−((x21s1−c21 )^2+(x21s2−c22 )^2+(x21s3−c23 )
^2) ,

10 ( x221−c21 )^2+(x222−c22 )^2+(x223−c23 )^2−((x22s1−c21 )^2+(x22s2−c22 )^2+(x22s3−c23 )
^2) ,
( x21s1−c21 )^2+(x21s2−c22 )^2+(x21s3−c23 )^2−((x22s1−c21 )^2+(x22s2−c22 )^2+(x22s3−c23
) ^2) ,

12 ( x11−x211 )^2+(x12−x212 )^2+(x13−x213 )^2−((x1s1−x21s1 )^2+(x1s2−x21s2 )^2+(x1s3−x21s3
) ^2) ,
( x11−x221 )^2+(x12−x222 )^2+(x13−x223 )^2−((x1s1−x22s1 )^2+(x1s2−x22s2 )^2+(x1s3−x22s3
) ^2) ,

14 (−x11+2*c11+x211−2*c21 )^2+(−x12+2*c12+x212−2*c22 )^2+(−x13+2*c13+x213−2*c23 )^2−
((−x1s1+2*c11+x21s1−2*c21 )^2+(−x1s2+2*c12+x21s2−2*c22 )^2+(−x1s3+2*c13+x21s3−2*c23
) ^2) ,

16 (−x11+2*c11+x221−2*c21 )^2+(−x12+2*c12+x222−2*c22 )^2+(−x13+2*c13+x223−2*c23 )^2−
((−x1s1+2*c11+x22s1−2*c21 )^2+(−x1s2+2*c12+x22s2−2*c22 )^2+(−x1s3+2*c13+x22s3−2*c23
) ^2) ,

18 x211^2+x212^2+x213^2−(x21s1^2+x21s2^2+x21s3 ^2) , x221^2+x222^2+x223^2−(x22s1^2+
x22s2^2+x22s3 ^2) ) ;

−−s ub s t i t u t e parameter v a r i a b l e s with random va lue s
20 C11 = random (1 ,10 ) ;

C12 = random (1 ,10 ) ;
22 C13 = random (1 ,10 ) ;

C21 = random (1 ,10 ) ;
24 C22 = random (1 ,10 ) ;

C23 = random (1 ,10 ) ;
26 R2 = random (1 ,10 ) ;

X1S1 = random (1 ,10 ) ;
28 X1S2 = random (1 ,10 ) ;

X1S3 = random (1 ,10 ) ;
30 X21S1 = C21+R2 ;

X21S2 = C22 ;
32 X21S3 = C23 ;

X22S1 = C21 ;
34 X22S2 = C22+R2 ;

X22S3 = C23 ;
36 J = sub ( I , { x1s1=>X1S1 , x1s2=>X1S2 , x1s3=>X1S3 ,

x21s1=>X21S1 , x21s2=>X21S2 , x21s3=>X21S3 ,
38 x22s1=>X22S1 , x22s2=>X22S2 , x22s3=>X22S3 ,

c11=>C11 , c12=>C12 , c13=>C13 ,
40 c21=>C21 , c22=>C22 , c23=>C23})

J2=sub (J ,QQ[ x11 , x12 , x13 , x211 , x212 , x213 , x221 , x222 , x223 ] )
42 −−c o r r e c t n e s s check : ( x1s , x21s , x22s ) should be in the i d e a l

sub ( J2 , { x11=>X1S1 , x12=>X1S2 , x13=>X1S3 ,
44 x211=>X21S1 , x212=>X21S2 , x213=>X21S3 ,
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x221=>X22S1 , x222=>X22S2 , x223=>X22S3})
46 dim J2

Let 𝑉1 be the variety defined by the equations (5.5), where 𝑥*
𝑛−1, (𝑥

*
𝑛)

(1), (𝑥*
𝑛)

(2)

and centers 𝑐𝑛−1, 𝑐𝑛 of the spheres 𝑆𝑛−1, 𝑆𝑛 are considered as variables and antipodal

points are expressed using centers of spheres. Let 𝑉2 be the variety of feasible values

for 𝑥*
𝑛−1, (𝑥

*
𝑛)

(1), (𝑥*
𝑛)

(2) and centers 𝑐𝑛−1, 𝑐𝑛 of the spheres 𝑆𝑛−1, 𝑆𝑛, i.e. it is defined

by the equation that (𝑥*
𝑛)

(1), (𝑥*
𝑛)

(2) lie on the same sphere.

The coordinate projection from 𝑉1 to 𝑉2 is surjective, because an element of 𝑉2

always gives an element of 𝑉1. The code above shows that the fiber of a random

point of 𝑉2 is 0-dimensional. By the Theorem 5.1.2, the statement holds for generic

parameters.

Proof of Proposition 5.1.1. We want to show that for generic 𝑥*
1, . . . , 𝑥

*
𝑛, 𝑦

*
1, . . . , 𝑦

*
𝑛,

the solution set of (5.1) is finite. By contradiction, assume that this is not the case.

Fix generic 𝑥*
1, . . . , 𝑥

*
𝑛−1, 𝑦

*
1, . . . , 𝑦

*
𝑛−1. Let 𝑉 be the solution set of the following

equations for all 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛− 1:

‖𝑥𝑖 − 𝑥𝑗‖2 + ‖𝑥𝑖 − 𝑦𝑗‖2 + ‖𝑦𝑖 − 𝑥𝑗‖2 + ‖𝑦𝑖 − 𝑦𝑗‖2 = 𝐷*
𝑖𝑗,

‖𝑥𝑖 − 𝑥𝑖+1‖ = 𝑎*𝑖 , ‖𝑦𝑖 − 𝑦𝑖+1‖ = 𝑏*𝑖 and ‖𝑥1‖ = 𝑔*1.

We will consider 𝜋𝑛−1(𝑉 ), which by Lemma 5.1.5 is at most 1-dimensional con-

structible set. Let 𝑘 = 𝑙𝑛−1 be the number of irreducible components of 𝜋𝑛(𝑉 ).

We also fix generic (𝑥*
𝑛)

(1), . . . , (𝑥*
𝑛)

(𝑘+1), (𝑦*𝑛)
(1), . . . , (𝑦*𝑛)

(𝑘+1) on 𝑆𝑛. Let 𝑇 (𝑖) be

the set of points 𝑥𝑛−1 on 𝑆𝑛−1 such that there exists 𝑥𝑛 on 𝑆𝑛 satisfying

‖𝑥𝑛−1 − 𝑥𝑛‖ = ‖𝑥*
𝑛−1 − (𝑥*

𝑛)
(𝑖)‖, ‖𝑦𝑛−1 − 𝑦𝑛‖ = ‖𝑦*𝑛−1 − (𝑦*𝑛)

(𝑖)‖ and ‖𝑥𝑛‖ = ‖(𝑥*
𝑛)

(𝑖)‖.

By Lemma 5.1.5, the sets 𝑇 (𝑖) are constructible. Moreover, by our assumption that
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the solution set of (5.1) is infinite, the intersections of 𝜋𝑛−1(𝑉 ) and 𝑇 (𝑖) are infinite,

because they are equal to the projections of the solution set of (5.1) with 𝑥*
𝑛 = (𝑥*

𝑛)
(𝑖)

to 𝑆𝑛−1.

However, this is a contradiction to Lemma 5.1.6 that states that the Zariski clo-

sures of 𝑇 (1), . . . , 𝑇 (𝑘+1) intersect pairwise at finite number of points: The set 𝜋𝑛−1(𝑉 )

can be written as ∪𝑙𝑛−1

𝑗=1 (𝑊
𝑛−1
𝑗 ∖𝑍𝑛−1

𝑗 ) and 𝑇 (𝑖) can be written as ∪𝑙′
𝑗=1(𝑊

′
𝑗∖𝑍 ′

𝑗). By

the previous paragraph, there exist 𝑗 and 𝑗′ such that the intersection of 𝑊 𝑛−1
𝑗 ∖𝑍𝑛−1

𝑗

and 𝑊 ′
𝑗′∖𝑍 ′

𝑗′ is infinite. Hence 𝑊 𝑛−1
𝑗 = 𝑊 ′

𝑗′ , because otherwise 𝑊 𝑛−1
𝑗 ∩ 𝑊 ′

𝑗′ would

be 0-dimensional by [1, Proposition 10 in §9.4] and hence (𝑊 𝑛−1
𝑗 ∖𝑍𝑛−1

𝑗 ) ∩ (𝑊 ′
𝑗′∖𝑍 ′

𝑗′)

would be finite. Since there are more different 𝑇 (𝑖) than 𝑊 𝑛−1
𝑗 , then there exists

1-dimensional 𝑊 𝑛−1
𝑗 , a component 𝑊 ′∖𝑍 ′ of 𝑇 (𝑖′) and a component 𝑊 ′′∖𝑍 ′′ of 𝑇 (𝑖′′)

such that 𝑊 ′ = 𝑊 𝑛−1
𝑗 and 𝑊 ′′ = 𝑊 𝑛−1

𝑗 . The intersection of 𝑊 ′∖𝑍 ′ and 𝑊 ′′∖𝑍 ′′ is

𝑊 𝑛−1
𝑗 ∖(𝑍 ′∪𝑍 ′′) and hence it is 1-dimensional. This is a contradiction to Lemma 5.1.6,

so it follows the solution set of (5.1) is finite.

A.2 Proofs for 5.2

Proof of 5.2.2. To prove that dim(𝑉 ) = 1, we first show it with a Macaulay2 com-

putation for randomly chosen parameters and then apply Theorem 5.1.2 to prove

dim(𝑉 ) = 1 for generic parameters. The computation is for eight different cases,

each case corresponding to different triple (𝑧1, 𝑧2, 𝑧3) achieving the minimum in the

equation containing 𝐷*
123.

R = QQ[ x1s1 , x1s2 , x1s3 , x2s1 , x2s2 , x2s3 , x3s1 , x3s2 , x3s3 , c11 , c12 , c13 , c21 , c22 , c23 , c31 , c32 ,
c33 ,

2 x11 , x12 , x13 , x21 , x22 , x23 , x31 , x32 , x33 ]
−− f i r s t th ree po lynomia l s : x i and x i s l i e on the same sphere f o r i =1 ,2 ,3

4 −−next two polynomia ls : d ( x1 , x2 )=d( x1s , x2s ) and d(x2 , x3 )=d( x2s , x3s )
−− l a s t two polynomia l s : d ( y1 , y2 )=d( y1s , y2s ) and d(y2 , y3 )=d( y2s , y3s )

6 I0 = i d e a l ( ( x11−c11 )^2+(x12−c12 )^2+(x13−c13 )^2−((x1s1−c11 )^2+(x1s2−c12 )^2+(x1s3−c13 )
^2) ,
( x21−c21 )^2+(x22−c22 )^2+(x23−c23 )^2−((x2s1−c21 )^2+(x2s2−c22 )^2+(x2s3−c23 ) ^2) ,

8 ( x31−c31 )^2+(x32−c32 )^2+(x33−c33 )^2−((x3s1−c31 )^2+(x3s2−c32 )^2+(x3s3−c33 ) ^2) ,
( x11−x21 )^2+(x12−x22 )^2+(x13−x23 )^2−((x1s1−x2s1 )^2+(x1s2−x2s2 )^2+(x1s3−x2s3 ) ^2) ,

10 ( x21−x31 )^2+(x22−x32 )^2+(x23−x33 )^2−((x2s1−x3s1 )^2+(x2s2−x3s2 )^2+(x2s3−x3s3 ) ^2) ,
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(−x11+2*c11+x21−2*c21 )^2+(−x12+2*c12+x22−2*c22 )^2+(−x13+2*c13+x23−2*c23 )^2−
12 ((−x1s1+2*c11+x2s1−2*c21 )^2+(−x1s2+2*c12+x2s2−2*c22 )^2+(−x1s3+2*c13+x2s3−2*c23 )

^2) ,
(−x21+2*c21+x31−2*c31 )^2+(−x22+2*c22+x32−2*c32 )^2+(−x23+2*c23+x33−2*c33 )^2−

14 ((−x2s1+2*c21+x3s1−2*c31 )^2+(−x2s2+2*c22+x3s2−2*c32 )^2+(−x2s3+2*c23+x3s3−2*c33 )
^2) ) ;

16 −−the next part c on s t ru c t s an i d e a l f o r the t enso r c on s t r a i n t in each o f the e i gh t
d i f f e r e n t ca s e s

threeDimDistance = (p11 , p12 , p13 , p21 , p22 , p23 , p31 , p32 , p33 ) −> (
18 ( p11−1/3*(p11+p21+p31 ) )^2+(p12−1/3*(p12+p22+p32 ) )^2+(p13−1/3*(p13+p23+p33 ) )^2+

(p21−1/3*(p11+p21+p31 ) )^2+(p22−1/3*(p12+p22+p32 ) )^2+(p23−1/3*(p13+p23+p33 ) )^2+
20 ( p31−1/3*(p11+p21+p31 ) )^2+(p32−1/3*(p12+p22+p32 ) )^2+(p33−1/3*(p13+p23+p33 ) )^2

) ;
22 ant ipoda lPa i r s 1 = {

{x11 ,−x11+2*c11 } ,
24 {x12 ,−x12+2*c12 } ,

{x13 ,−x13+2*c13 } ,
26 {x21 ,−x21+2*c21 } ,

{x22 ,−x22+2*c22 } ,
28 {x23 ,−x23+2*c23 } ,

{x31 ,−x31+2*c31 } ,
30 {x32 ,−x32+2*c32 } ,

{x33 ,−x33+2*c33}
32 } ;

an t ipoda lPa i r s 2 = {
34 {x1s1 ,−x1s1+2*c11 } ,

{x1s2 ,−x1s2+2*c12 } ,
36 {x1s3 ,−x1s3+2*c13 } ,

{x2s1 ,−x2s1+2*c21 } ,
38 {x2s2 ,−x2s2+2*c22 } ,

{x2s3 ,−x2s3+2*c23 } ,
40 {x3s1 ,−x3s1+2*c31 } ,

{x3s2 ,−x3s2+2*c32 } ,
42 {x3s3 ,−x3s3+2*c33}

} ;
44 i d e a l s L i s t = f l a t t e n f l a t t e n f o r i to 1 l i s t f o r j to 1 l i s t f o r k to 1 l i s t i d e a l (

threeDimDistance ( ant ipoda lPa i r s 1#0#i , an t ipoda lPa i r s1#1#i , an t ipoda lPa i r s 1#2#i ,
an t ipoda lPa i r s 1#3#j , an t ipoda lPa i r s 1#4#j , an t ipoda lPa i r s 1#5#j , an t ipoda lPa i r s1#6#k ,
ant ipoda lPa i r s 1#7#k , ant ipoda lPa i r s 1#8#k) −

46 threeDimDistance ( ant ipoda lPa i r s 2#0#i , an t ipoda lPa i r s2#1#i , an t ipoda lPa i r s 2#2#i ,
an t ipoda lPa i r s 2#3#j , an t ipoda lPa i r s 2#4#j , an t ipoda lPa i r s 2#5#j , an t ipoda lPa i r s2#6#k ,
ant ipoda lPa i r s 2#7#k , ant ipoda lPa i r s 2#8#k) ) ;

48 −−loop that f i n d s dimensions in e i gh t d i f f e r e n t ca s e s
f o r i to #i d e a l s L i s t −1 do (

50 I = I0+i d e a l s L i s t#i ;
p r i n t ( i ) ;

52 −−s ub s t i t u t e parameters with random va lue s
C11 = random (1 ,10 ) ;

54 C12 = random (1 ,10 ) ;
C13 = random (1 ,10 ) ;

56 C21 = random (1 ,10 ) ;
C22 = random (1 ,10 ) ;

58 C23 = random (1 ,10 ) ;
C31 = random (1 ,10 ) ;

60 C32 = random (1 ,10 ) ;
C33 = random (1 ,10 ) ;

62 X1S1 = random (1 ,10 ) ;
X1S2 = random (1 ,10 ) ;

64 X1S3 = random (1 ,10 ) ;
X2S1 = random (1 ,10 ) ;

66 X2S2 = random (1 ,10 ) ;
X2S3 = random (1 ,10 ) ;

68 X3S1 = random (1 ,10 ) ;
X3S2 = random (1 ,10 ) ;

70 X3S3 = random (1 ,10 ) ;
J = sub ( I , { x1s1=>X1S1 , x1s2=>X1S2 , x1s3=>X1S3 ,
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72 x2s1=>X2S1 , x2s2=>X2S2 , x2s3=>X2S3 ,
x3s1=>X3S1 , x3s2=>X3S2 , x3s3=>X3S3 ,

74 c11=>C11 , c12=>C12 , c13=>C13 ,
c21=>C21 , c22=>C22 , c23=>C23 ,

76 c31=>C31 , c32=>C32 , c33=>C33}) ;
J2=sub (J ,QQ[ x11 , x12 , x13 , x21 , x22 , x23 , x31 , x32 , x33 ] ) ;

78 −−c o r r e c t n e s s check : ( x1s , x2s , x3s ) should l i e in the i d e a l
p r i n t ( sub ( J2 , { x11=>X1S1 , x12=>X1S2 , x13=>X1S3 ,

80 x21=>X2S1 , x22=>X2S2 , x23=>X2S3 ,
x31=>X3S1 , x32=>X3S2 , x33=>X3S3}) ) ;

82 pr in t (dim J2 ) ;
)

We get dim(𝑉 ) = 1 for generic parameters by Theorem 5.1.2. More precisely,

let 𝑉1 be the variety defined by the equations (5.10) where true points 𝑥*
1, 𝑥

*
2, 𝑥

*
3 and

the centers 𝑐1, 𝑐2, 𝑐3 of the spheres 𝑆1, 𝑆2, 𝑆3 are considered as variables and let 𝑉2 be

C3×6 corresponding to the space of values for the true points 𝑥*
1, 𝑥

*
2, 𝑥

*
3 and the centers

𝑐1, 𝑐2, 𝑐3 of the spheres 𝑆1, 𝑆2, 𝑆3. Let the map from 𝑉1 to 𝑉2 to be the coordinate

projection onto 𝑉2. Since a fiber of this map has dimension 1, a generic fiber has

dimension ≤ 1. By dimension count, the dimension of a generic fiber has to be equal

to 1.

Proof of 5.2.3. This proof is similar to the proof of 5.1.5. To show that 𝑊 𝑘
𝑗 are at

most 1-dimensional, we will show that 𝑉 is 1-dimensional by applying Theorem 5.1.2.

We take 𝑉1 ⊆ C3×2𝑛 to be an irreducible component of 𝑉 , we take 𝑉2 ⊆ C3×C3×C3 to

be the variety in the statement of Lemma 5.2.2, i.e. the projection of 𝑉 on 𝑆1×𝑆2×𝑆3,

and the map to be the projection to the 𝑥1, 𝑥2, 𝑥3 coordinates. By Lemma 5.2.2, we

have dim(𝑉2) = 1. By Corollary 5.1.4, a generic fiber of 𝑓 has dimension 0 and thus

dim(𝑉1) = 1 follows from Theorem 5.1.2.

Proof of 5.2.4. As in some earlier proofs, we will first show the statement of the lemma

for specific parameters using Macaulay2 and then prove it for generic parameters by

applying Theorem 5.1.2. Since the minimum for (𝐷*
𝑛−2,𝑛−1,𝑛)

(𝑖) can be achieved by

eight different configurations both for equations including (𝑥*
𝑛)

(1) and for equations

including (𝑥*
𝑛)

(2), we have to do the computation for 64 different cases.
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1 R = QQ[ x1s1 , x1s2 , x1s3 , x2s1 , x2s2 , x2s3 , x31s1 , x31s2 , x31s3 , x32s1 , x32s2 , x32s3 , c11 , c12 , c13 ,
c21 , c22 , c23 , c31 , c32 , c33 ,
x11 , x12 , x13 , x21 , x22 , x23 , x311 , x312 , x313 , x321 , x322 , x323 ]

3 −− f i r s t f our po lynomia ls : x1 and x1s l i e on the same sphere ; x2 and x2s l i e on the
same sphere ;

−−x3 i and x3 i s l i e on the same sphere f o r i =1,2
5 −−next three po lynomia l s : d ( x1 , x2 )=d( x1s , x2s ) and d(x2 , x3 i )=d( x2s , x3 i s ) f o r i =1,2
−− l a s t th ree po lynomia l s : d ( y1 , y2 )=d( y1s , y2s ) and d(y2 , y3 i )=d( y2s , y3 i s ) f o r i =1,2

7 I0 = i d e a l ( ( x11−c11 )^2+(x12−c12 )^2+(x13−c13 )^2−((x1s1−c11 )^2+(x1s2−c12 )^2+(x1s3−c13 )
^2) ,
( x21−c21 )^2+(x22−c22 )^2+(x23−c23 )^2−((x2s1−c21 )^2+(x2s2−c22 )^2+(x2s3−c23 ) ^2) ,

9 ( x311−c31 )^2+(x312−c32 )^2+(x313−c33 )^2−((x31s1−c31 )^2+(x31s2−c32 )^2+(x31s3−c33 )
^2) ,
( x321−c31 )^2+(x322−c32 )^2+(x323−c33 )^2−((x32s1−c31 )^2+(x32s2−c32 )^2+(x32s3−c33 )
^2) ,

11 ( x11−x21 )^2+(x12−x22 )^2+(x13−x23 )^2−((x1s1−x2s1 )^2+(x1s2−x2s2 )^2+(x1s3−x2s3 ) ^2) ,
( x21−x311 )^2+(x22−x312 )^2+(x23−x313 )^2−((x2s1−x31s1 )^2+(x2s2−x31s2 )^2+(x2s3−x31s3
) ^2) ,

13 ( x21−x321 )^2+(x22−x322 )^2+(x23−x323 )^2−((x2s1−x32s1 )^2+(x2s2−x32s2 )^2+(x2s3−x32s3
) ^2) ,
(−x11+2*c11+x21−2*c21 )^2+(−x12+2*c12+x22−2*c22 )^2+(−x13+2*c13+x23−2*c23 )^2−

15 ((−x1s1+2*c11+x2s1−2*c21 )^2+(−x1s2+2*c12+x2s2−2*c22 )^2+(−x1s3+2*c13+x2s3−2*c23 )
^2) ,
(−x21+2*c21+x311−2*c31 )^2+(−x22+2*c22+x312−2*c32 )^2+(−x23+2*c23+x313−2*c33 )^2−

17 ((−x2s1+2*c21+x31s1−2*c31 )^2+(−x2s2+2*c22+x31s2−2*c32 )^2+(−x2s3+2*c23+x31s3−2*c33
) ^2) ,
(−x21+2*c21+x321−2*c31 )^2+(−x22+2*c22+x322−2*c32 )^2+(−x23+2*c23+x323−2*c33 )^2−

19 ((−x2s1+2*c21+x32s1−2*c31 )^2+(−x2s2+2*c22+x32s2−2*c32 )^2+(−x2s3+2*c23+x32s3−2*c33
) ^2) ) ;

21 −−the next part c on s t ru c t s the t enso r c on s t r a i n t f o r e i gh t d i f f e r e n t ca s e s both f o r
x31 and x32

threeDimDistance = (p1x , p1y , p1z , p2x , p2y , p2z , p3x , p3y , p3z ) −> (
23 ( p1x−1/3*(p1x+p2x+p3x ) )^2+(p1y−1/3*(p1y+p2y+p3y ) )^2+(p1z−1/3*(p1z+p2z+p3z ) )^2+

(p2x−1/3*(p1x+p2x+p3x ) )^2+(p2y−1/3*(p1y+p2y+p3y ) )^2+(p2z−1/3*(p1z+p2z+p3z ) )^2+
25 ( p3x−1/3*(p1x+p2x+p3x ) )^2+(p3y−1/3*(p1y+p2y+p3y ) )^2+(p3z−1/3*(p1z+p2z+p3z ) )^2

) ;
27 ant ipoda lPa i r s 1 = {

{x11 ,−x11+2*c11 } ,
29 {x12 ,−x12+2*c12 } ,

{x13 ,−x13+2*c13 } ,
31 {x21 ,−x21+2*c21 } ,

{x22 ,−x22+2*c22 } ,
33 {x23 ,−x23+2*c23 } ,

{x311 ,−x311+2*c31 } ,
35 {x312 ,−x312+2*c32 } ,

{x313 ,−x313+2*c33 } ,
37 {x321 ,−x321+2*c31 } ,

{x322 ,−x322+2*c32 } ,
39 {x323 ,−x323+2*c33}

} ;
41 ant ipoda lPa i r s 2 = {

{x1s1 ,−x1s1+2*c11 } ,
43 {x1s2 ,−x1s2+2*c12 } ,

{x1s3 ,−x1s3+2*c13 } ,
45 {x2s1 ,−x2s1+2*c21 } ,

{x2s2 ,−x2s2+2*c22 } ,
47 {x2s3 ,−x2s3+2*c23 } ,

{x31s1 ,−x31s1+2*c31 } ,
49 {x31s2 ,−x31s2+2*c32 } ,

{x31s3 ,−x31s3+2*c33 } ,
51 {x32s1 ,−x32s1+2*c31 } ,

{x32s2 ,−x32s2+2*c32 } ,
53 {x32s3 ,−x32s3+2*c33}

} ;
55 i d e a l s L i s t 1 = f l a t t e n f l a t t e n f o r i to 1 l i s t f o r j to 1 l i s t f o r k to 1 l i s t i d e a l (

threeDimDistance ( ant ipoda lPa i r s 1#0#i , an t ipoda lPa i r s1#1#i , an t ipoda lPa i r s 1#2#i ,
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ant ipoda lPa i r s 1#3#j , an t ipoda lPa i r s 1#4#j , an t ipoda lPa i r s 1#5#j , an t ipoda lPa i r s1#6#k ,
ant ipoda lPa i r s 1#7#k , ant ipoda lPa i r s 1#8#k)−

57 threeDimDistance ( ant ipoda lPa i r s 2#0#i , an t ipoda lPa i r s2#1#i , an t ipoda lPa i r s 2#2#i ,
an t ipoda lPa i r s 2#3#j , an t ipoda lPa i r s 2#4#j , an t ipoda lPa i r s 2#5#j , an t ipoda lPa i r s2#6#k ,
ant ipoda lPa i r s 2#7#k , ant ipoda lPa i r s 2#8#k) ) ;

i d e a l s L i s t 2 = f l a t t e n f l a t t e n f o r i to 1 l i s t f o r j to 1 l i s t f o r k to 1 l i s t i d e a l (
59 threeDimDistance ( ant ipoda lPa i r s 1#0#i , an t ipoda lPa i r s1#1#i , an t ipoda lPa i r s 1#2#i ,

an t ipoda lPa i r s 1#3#j , an t ipoda lPa i r s 1#4#j , an t ipoda lPa i r s 1#5#j , an t ipoda lPa i r s1#9#k ,
ant ipoda lPa i r s 1#10#k , ant ipoda lPa i r s 1#11#k)−
threeDimDistance ( ant ipoda lPa i r s 2#0#i , an t ipoda lPa i r s2#1#i , an t ipoda lPa i r s 2#2#i ,
an t ipoda lPa i r s 2#3#j , an t ipoda lPa i r s 2#4#j , an t ipoda lPa i r s 2#5#j , an t ipoda lPa i r s2#9#k ,
ant ipoda lPa i r s 2#10#k , ant ipoda lPa i r s 2#11#k) ) ;

61

−−a loop that f i n d s dimensions in 64 d i f f e r e n t ca s e s
63 f o r i to #id e a l sL i s t 1 −1 do f o r j to #id e a l sL i s t 2 −1 do (

p r i n t ( i *8+ j ) ;
65 I = I0+i d e a l s L i s t 1#i+i d e a l s L i s t 2#j ;

−−s ub s t i t u t e parameter v a r i a b l e s with random va lue s
67 C11 = random (1 ,10 ) ;

C12 = random (1 ,10 ) ;
69 C13 = random (1 ,10 ) ;

C21 = random (1 ,10 ) ;
71 C22 = random (1 ,10 ) ;

C23 = random (1 ,10 ) ;
73 C31 = random (1 ,10 ) ;

C32 = random (1 ,10 ) ;
75 C33 = random (1 ,10 ) ;

R3 = random (1 ,10 ) ;
77 X1S1 = random (1 ,10 ) ;

X1S2 = random (1 ,10 ) ;
79 X1S3 = random (1 ,10 ) ;

X2S1 = random (1 ,10 ) ;
81 X2S2 = random (1 ,10 ) ;

X2S3 = random (1 ,10 ) ;
83 X31S1 = C31+R3 ;

X31S2 = C32 ;
85 X31S3 = C33 ;

X32S1 = C31 ;
87 X32S2 = C32+R3 ;

X32S3 = C33 ;
89 J = sub ( I , { x1s1=>X1S1 , x1s2=>X1S2 , x1s3=>X1S3 ,

x2s1=>X2S1 , x2s2=>X2S2 , x2s3=>X2S3 ,
91 x31s1=>X31S1 , x31s2=>X31S2 , x31s3=>X31S3 ,

x32s1=>X32S1 , x32s2=>X32S2 , x32s3=>X32S3 ,
93 c11=>C11 , c12=>C12 , c13=>C13 ,

c21=>C21 , c22=>C22 , c23=>C23 ,
95 c31=>C31 , c32=>C32 , c33=>C33}) ;

J2 = sub (J ,QQ[ x11 , x12 , x13 , x21 , x22 , x23 , x311 , x312 , x313 , x321 , x322 , x323 ] ) ;
97 −−c o r r e c t n e s s check : the t rue po int should be in the i d e a l

p r i n t ( sub ( J2 , { x11=>X1S1 , x12=>X1S2 , x13=>X1S3 ,
99 x21=>X2S1 , x22=>X2S2 , x23=>X2S3 ,

x311=>X31S1 , x312=>X31S2 , x313=>X31S3 ,
101 x321=>X32S1 , x322=>X32S2 , x323=>X32S3}) ) ;

p r i n t (dim J2 ) ;
103 )

Let 𝑉1 be the variety in the code with 𝑥*
𝑛−2, 𝑥

*
𝑛−1, (𝑥

*
𝑛)

(1), (𝑥*
𝑛)

(2) and centers

𝑐𝑛−2, 𝑐𝑛−1, 𝑐𝑛 considered as variables. Let 𝑉2 ⊆ C7×3 be the variety where 𝑥*
𝑛−2, 𝑥

*
𝑛−1, (𝑥

*
𝑛)

(1), (𝑥*
𝑛)

(2)

and 𝑐𝑛−2, 𝑐𝑛−1, 𝑐𝑛 take values, i.e. it is defined by the constraint that (𝑥*
𝑛)

(1), (𝑥*
𝑛)

(2)

lie on the same sphere centered at 𝑐𝑛. Let 𝑓 be the projection from 𝑉1 to 𝑉2. The

57



Macaulay2 code shows that the fiber of a random point of 𝑉2 is 0-dimensional. By

Theorem 5.1.2, the statement of the lemma holds for a generic element of 𝑉2.

Proof of Proposition 5.2.1. We want to show that for generic 𝑥*
1, . . . , 𝑥

*
𝑛, 𝑦

*
1, . . . , 𝑦

*
𝑛,

the solution set of (5.6) is finite. By contradiction, assume that this is not the case.

Fix generic 𝑥*
1, . . . , 𝑥

*
𝑛−1, 𝑦

*
1, . . . , 𝑦

*
𝑛−1. Let 𝑉 be the solution set of the following

equations for all 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛− 1:

‖𝑥𝑖 − 𝑥𝑗‖2 + ‖𝑥𝑖 − 𝑦𝑗‖2 + ‖𝑦𝑖 − 𝑥𝑗‖2 + ‖𝑦𝑖 − 𝑦𝑗‖2 = 𝐷*
𝑖𝑗,

‖𝑥𝑖 − 𝑥𝑖+1‖ = ‖𝑥*
𝑖 − 𝑥*

𝑖+1‖, ‖𝑦𝑖 − 𝑦𝑖+1‖ = ‖𝑦*𝑖 − 𝑦*𝑖+1‖,

min𝑧𝑖∈{𝑥𝑖,𝑦𝑖} for 𝑖=1,2,3(
∑︀

𝑗∈{1,2,3}(𝑧𝑗 − (𝑧1 + 𝑧2 + 𝑧3)/3)
2) = 𝐷*

123.

We will consider 𝜋𝑛−1(𝑉 ), which by Lemma 5.2.3 is at most 1-dimensional con-

structible set. Let 𝑘 = 𝑙𝑛−1 be the number of irreducible components of 𝜋𝑛(𝑉 ).

We also fix generic (𝑥*
𝑛)

(1), . . . , (𝑥*
𝑛)

(𝑘+1), (𝑦*𝑛)
(1), . . . , (𝑦*𝑛)

(𝑘+1) on 𝑆𝑛. Let 𝑇 (𝑖) be

the set of points 𝑥𝑛−1 on 𝑆𝑛−1 such that there exists 𝑥𝑛 on 𝑆𝑛 satisfying

‖𝑥𝑛−2 − 𝑥𝑛−1‖ = ‖𝑥*
𝑛−2 − 𝑥*

𝑛−1‖, ‖𝑦𝑛−2 − 𝑦𝑛−1‖ = ‖𝑦*𝑛−2 − 𝑦*𝑛−1‖,

‖𝑥𝑛−1 − 𝑥𝑛‖ = ‖𝑥*
𝑛−1 − (𝑥*

𝑛)
(𝑖)‖, ‖𝑦𝑛−1 − 𝑦𝑛‖ = ‖𝑦*𝑛−1 − (𝑦*𝑛)

(𝑖)‖,

min𝑧𝑖∈{𝑥𝑖,𝑦𝑖} for 𝑖=𝑛−2,𝑛−1,𝑛(
∑︀

𝑗∈{𝑛−2,𝑛−1,𝑛}(𝑧𝑗 − (𝑧1 + 𝑧2 + 𝑧3)/3)
2) = 𝐷*

𝑛−2,𝑛−1,𝑛,

By Lemma 5.2.3, the sets 𝑇 (𝑖) are constructible. Moreover, by our assumption that

the solution set of (5.1) is infinite, the intersections of 𝜋𝑛−1(𝑉 ) and 𝑇 (𝑖) are infinite,

because they are equal to the projections of the solution set of (5.1) with 𝑥*
𝑛 = (𝑥*

𝑛)
(𝑖)

to 𝑆𝑛−1.

However, this is a contradiction to Lemma 5.2.4 that states that the Zariski clo-

sures of 𝑇 (1), . . . , 𝑇 (𝑘+1) intersect pairwise at finite number of points: The set 𝜋𝑛−1(𝑉 )

can be written as ∪𝑙𝑛−1

𝑗=1 (𝑊
𝑛−1
𝑗 ∖𝑍𝑛−1

𝑗 ) and 𝑇 (𝑖) can be written as ∪𝑙′
𝑗=1(𝑊

′
𝑗∖𝑍 ′

𝑗). By
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the previous paragraph, there exist 𝑗 and 𝑗′ such that the intersection of 𝑊 𝑛−1
𝑗 ∖𝑍𝑛−1

𝑗

and 𝑊 ′
𝑗′∖𝑍 ′

𝑗′ is infinite. Hence 𝑊 𝑛−1
𝑗 = 𝑊 ′

𝑗′ , because otherwise 𝑊 𝑛−1
𝑗 ∩ 𝑊 ′

𝑗′ would

be 0-dimensional by [1, Proposition 10 in §9.4] and hence (𝑊 𝑛−1
𝑗 ∖𝑍𝑛−1

𝑗 ) ∩ (𝑊 ′
𝑗′∖𝑍 ′

𝑗′)

would be finite. Since there are more different 𝑇 (𝑖) than 𝑊 𝑛−1
𝑗 , then there exists

1-dimensional 𝑊 𝑛−1
𝑗 , a component 𝑊 ′∖𝑍 ′ of 𝑇 (𝑖′) and a component 𝑊 ′′∖𝑍 ′′ of 𝑇 (𝑖′′)

such that 𝑊 ′ = 𝑊 𝑛−1
𝑗 and 𝑊 ′′ = 𝑊 𝑛−1

𝑗 . The intersection of 𝑊 ′∖𝑍 ′ and 𝑊 ′′∖𝑍 ′′ is

𝑊 𝑛−1
𝑗 ∖(𝑍 ′∪𝑍 ′′) and hence it is 1-dimensional. This is a contradiction to Lemma 5.2.4,

so it follows the solution set of (5.1) is finite.
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