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Abstract

This thesis presents a registration method for mammogram images with extended
flexibility for manual inputs from medical specialists. The algorithm was developed as
part of the Mammography project led by Professor. Regina Barzilay at MIT CSAIL.
Given a sequence of mammogram images, the algorithm finds an optimal registration
by considering both the global and local constraints as well as user-defined constraints
such as manually selected matching points. This allows the registration process to be
guided by both the algorithm itself and human experts. The second half of the thesis
focuses on evaluating well-known optical flow and medical registration algorithms on
mammogram images. It provides insights into how they perform when encountered
by challenges and constraints that are unique in mammogram images.
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Chapter 1

Introduction

Fast and accurate image registration is essential in both medical practices and re-

searches. Its main medical applications include: an early detection of abnormalities,

studies of disease progressions by monitoring changes in size and shape over time, im-

age guided surgery or radiotherapy, and development of a statistical model of variation

associated with a disease [5]. In this thesis, we focus on the problem of registering

mammogram images taken 6 months to a year apart. Our algorithm closely follows

the variational framework developed in Brox’s Large Displacement Optical Flow [8],

and adds extra functionality to intake manual correspondences and regions to be pre-

served throughout the aligning process. Unlike the original work which was evaluated

on the Middlebury dataset [6], we test our modified algorithm on the mammogram

images. Even though LDOF reported successful results on estimating motions in the

natural images, its success on mammograms bares significance as medical images are

different from natural images in the way they are captured, and pose new challenges

and constraints. One major difficulty is that the light sources used in medical de-

vices, such as ultrasound or X-ray, go through an obstacle unlike natural lights. The

resulting image then becomes a superimposition of multiple objects encountered by

light, and there is an added ambiguity as to which objects and to what degree they

contribute to the measured intensity value. Natural images, on the other hand, rarely

face this problem. Other unique challenges in medical images include the lack of color

and shade information, and the long time interval between screenings.
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The first portion of this thesis focuses on introducing the problem of non-rigid

registration and explaining how we modified LDOF algorithm to allow the registration

to be guided by both the algorithm itself and human experts. The second portion

focuses on evaluating the modified LDOF and four baseline models (Multi-scale Horn-

Schunck, Thirion’s Demon, Symmetric Demon and BSpline-based registration) on

mammogram images.

Chapter two provides minimal background on non-rigid registration and the vari-

ational approach to the problem. Three seminal works are chosen as examples to

demonstrate how the variational framework work in image registration.

Chapter three states the mammogram registration problem, as well as its chal-

lenges and opportunities. This section directly answers what problem this thesis is

tackling and its potential contributions.

Chapter four describes how we modified the original LDOF algorithm [8], and the

implementations.

Chapter five demonstrates the registration results from the aforementioned base-

line models and our modified LDOF algorithm on mammograms. Quantitative errors

from four commonly used metrics are also presented.
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Chapter 2

Background

This section provides key background information in image registration with a focus

on the non-rigid registration. We first define what is the non-rigid image registration

and outline its three main components. Among many approaches to solve this prob-

lem, we focus on the variational approach and provide a concise background on the

variational calculus and Euler-Lagrange equation. We then present three algorithms

(Horn-Schunck [13], Thirion’s Demon [21] and BSpline [19]) that are considered foun-

dational in the variational framework. We discuss main assumptions and subsequent

limits of the algorithms and follow up with three new concepts that help overcome the

shortcomings. We end this section by introducing commonly used evaluation metrics

for image registration.

2.1 Non-rigid Image Registration

Image registration is an image processing technique that aligns multiple scenes into

a single integrated image [2]. It means to find a mapping between the coordinates in

one space and those in another, such that points in the two spaces that correspond

to the same 3-dimensional point are mapped to each other. In medical images, an

ideal registration establishes the correct mapping between points that correspond to

the same anatomical structure. It undoes the effects of different camera perspectives

such as scale, rotation and skew, or the change in the physical object’s size or po-
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sition. Image registration has been studied rigorously in both computer vision and

medical imaging communities, and still remains one of the key problems. Its spa-

tial transformation can be categorized into rigid, affine, or non-rigid (or deformable)

motion, depending on the space of the parameters it allows. Rigid transformation

allows translations and rotations, affine transformation allows skew and scaling in

addition to the rigid transformation’s parameters, and non-rigid transformation al-

lows free-form mapping. The free-form mapping means that the transformation is

not parametrized, and thus each pixel location needs to be assigned a displacement

that maps it to the corresponding point on the other image. Naturally, this gives rise

to the concept of "displacement field" 1.

Consider an image 𝐼 as a function of two dimensional pixel location and time,

𝐼(𝑥, 𝑦, 𝑡). 𝐼1 and 𝐼2 are the two images that are taken at time 𝑡 and 𝑡 + 1 so that:

𝐼1(𝑥, 𝑦) = 𝐼(𝑥, 𝑦, 𝑡)

𝐼2(𝑥, 𝑦) = 𝐼(𝑥, 𝑦, 𝑡 + 1)

Let 𝐼1 be the target (or the fixed) image and 𝐼2 the source (or the moving) image. A

displacement field 𝑤⃗(𝑥, 𝑦) = [𝑢, 𝑣]𝑇 is a function on 𝐼1 that maps each location in 𝐼1

to its corresponding location in 𝐼2:

𝐼1(𝑥, 𝑦, 𝑡) = 𝐼2(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 1), ∀𝑥, 𝑦 ∈ Ω

where Ω is the image domain, and 𝑢 and 𝑣 are functions of 𝑥, 𝑦: 𝑢 = 𝑢(𝑥, 𝑦), 𝑣 =

𝑣(𝑥, 𝑦).

Image registration is often referred to as optical flow estimation in computer vision.

We will use the two terms interchangeable throughout the thesis.

1We use displacement field, velocity field and flow field interchangeably
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Figure 2-1: Image registration is a spatial transformation that maps points from one
image to corresponding points in another. Non-rigid registration defines a free-form
mapping between the source (or "moving") and the target (or "fixed") images via a
displacement field.

2.1.1 Variational approach

Among many approaches to solve the image registration problem, we focus on the

variational approach, which defines an energy function between the source and the

target and views the registration as an optimization of the energy function. Horn and

Schunck first proposed this approach to optical flow estimation in 1981 [13], and it

still remains the choice of most advanced optical flow algorithms. It has an advantage

that the objective function is well-defined and thus the solution is interpretable. In

addition, a plethora of optimization methods become available as a tool to solve the

optimization problem. The variational framework can be broadly decomposed into the

following three components: deformation model, matching criteria and optimization

method [9].

A deformation model specifies the way in which the source image can be changed

to match the target. In non-rigid registration, physic-based models (such as elastic,

fluid and optical flow) and models using basis functions or splines exist [5].

The matching criteria measures how similar two images are and is used to define

15



Figure 2-2: Non-rigid registration demonstration. The registration process finds a
displacement field that maps each location in the moving image 𝐼2 to the correspond-
ing location in the fixed image 𝐼1. Ideally, the location pair corresponds to the same
anatomical structure [3]
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the objective function for the optimization process. We may categorize the metrics

into the following four categories. First, landmark-based metrics compute the distance

between the sets of keypoints extracted from each image. Surface-based metrics

extract corresponding surfaces between the two images and use their distances as

a similarity measure. Intensity-based metrics are computed directly from the pixel

values in the images, and commonly used metrics such as Sum of Squared Difference

(SSD), Sum of Absolute Difference (SAD), Normalized Cross-Correlation (NCC) and

mutual information (MI) all belong to this category. Feature-based metrics are based

on the correspondence between image features such as points, lines, and contours.

Similarity metric between feature values such as curvature can be used.

The optimization process varies the parameters of the deformation model to max-

imizing the matching criterion. Many registration algorithms require an iterative

approach to reach an optimal solution. The process starts with an initial estimate for

the displacement field 𝑤0, and gradually refine the estimate. At each iteration, the

current estimate is used to calculate a similar the target and the current deformed

model are. Next estimate of 𝑤⃗ is made based on this similarity measure until the

algorithm converges or reaches a termination condition [5]. Optimization methods

vary in their choice of the update step for the next 𝑤. The algorithms discussed in

the thesis are based on gradient-descent methods such as the Steepest Descent, Reg-

ular step gradient descent (RSGD) [22], and quasi-Newton method (LBFGS [16]).

More in-depth discussion on the non-rigid registration can be found in [9]. Now, we

present two seminal works that are formulated in the variational framework and high-

light each of their three components. The first algorithm by Horn-Schunk is the first

variational method for optical flow estimation, and the second algorithm by Thirion

is one of the pioneering work in deformable registration of medical images.
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2.2 Horn-Schunck

Horn-Schunck’s optical flow [?] views the optical flow as the solution of a mini-

mization problem. Its main assumption, often referred to as “brightness consistency"

assumption, is that pixels intensities do not change over time. Therefore, the cor-

responding points in 𝐼1 and 𝐼2 will have the same intensity value. Using the first

order Taylor expansion for the intensity function, Horn-Schunck derives the optical

flow constraint from this assumption:

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡 + ∆𝑡)

= 𝐼(𝑥, 𝑦, 𝑡) +
𝜕𝐼

𝜕𝑥
∆𝑥 +

𝜕𝐼

𝜕𝑦
∆𝑦 +

𝜕𝐼

𝜕𝑡
∆𝑡 + 𝜖

where the linerization using the first-order Taylor expansion occurs in the second line.

Subtracting 𝐼(𝑥, 𝑦, 𝑡) from both sides and dividing by ∆𝑡 gives,

0 =
𝜕𝐼

𝜕𝑥
∆𝑥 +

𝜕𝐼

𝜕𝑦
∆𝑦 +

𝜕𝐼

𝜕𝑡
∆𝑡

=
𝜕𝐼

𝜕𝑥

∆𝑥

∆𝑡
+

𝜕𝐼

𝜕𝑦

∆𝑦

∆𝑡
+

𝜕𝐼

𝜕𝑡

∆𝑡

∆𝑡

As ∆𝑡 → 0,

0 =
𝜕𝐼

𝜕𝑥
𝑢 +

𝜕𝐼

𝜕𝑦
𝑣 +

𝜕𝐼

𝜕𝑡
(2.1)

where 𝑢 and 𝑣 can be the velocity of the motion in 𝑥 and 𝑦 direction, respectively.

However, the optical flow constraint leads to an ill-posed problem as we have two

unknowns (𝑢, 𝑣) at each pixel location with a single constraint 2.1. To overcome this

problem and achieve a unique solution, Horn-Schunk adds an additional regularity

term that measures the smoothness of the flow field. The smoothness is measured by

the magnitude of the flow’s spatial gradient. The final energy function thus is defined

as follows: ∫︁
Ω

(𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡)
2 + 𝛼2(‖∇𝑢‖2 + ‖∇𝑣‖2) (2.2)

where 𝛼 is the parameter that controls the relative weight of the brightness consistency
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Figure 2-3: Linear system for Horn-Schunck optical flow. Since each pixel has two
equations to solve, this sparse matrix is of size 2𝑛 by 2𝑛 where 𝑛 is the number of
pixels. An iterative method such as Gauss-Seidel or Jacobi method is used in practice.
Reprinted from [17]

condition and the smoothness.

The minimization of the above functional results in the following Euler-Lagrange

equations:

𝐼2𝑥𝑢 + 𝐼𝑥𝐼𝑦𝑣 = 𝛼2div(∇𝑢) − 𝐼𝑥𝐼𝑡 (2.3)

𝐼𝑥𝐼𝑦𝑢 + 𝐼2𝑦𝑣 = 𝛼2div(∇𝑣) − 𝐼𝑦𝐼𝑡 (2.4)

By solving Equation 2.3 for each (𝑥, 𝑦) ∈ Ω, we achieve a dense optical flow over

the entire image domain. It amounts to solving the following 2𝑛 by 2𝑛 (where 𝑛 is

the number of pixels) linear system of equations:

The size of this matrix is however too large to store and directly solve in practice.

For instance, if an image is of size 128 by 128 (𝑛 = 1282 = 16384), the size of the

matrix becomes larger than 1 billion: 2𝑛 × 2𝑛 = 1, 073, 741, 824. Nevertheless since
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the matrix is sparse, the solution can be iteratively achieved via Gauss-Seidel or

Jacobi methods.

The main advantages of Horn-Schunck optical flow is that it gives a dense flow

estimation even in the area where the gradient is zero such as textureless or homo-

geneous surfaces. On the other hand, it is sensitive to noise and outliers due to the

choice of 𝐿2 norm to measure the intensity difference. The two assumptions men-

tioned above also make a compromise with the algorithm’s capability. Because the

brightness consistency assumption depends on the exact intensity value (rather than

a relative one), it cannot intelligently compensate a global change in the lightening.

The linearization by the first-order Taylor expansion makes the estimation exclusively

valid for a “small"(< 1 pixel) motion. In later section (Section ??), we will introduce

some methods that can handle these limitations.

2.3 Demon’s method

Demons method was first introduced by Thirion in 1998 [21] and extended by Cachier

1999 and He Wang 2005, to name a few. Demons-based methods view the image

registration as a diffusion process during which the object boundaries in the fixed

image acts as semi-permeable membranes through which the moving image diffuse.

Each pixel in the fixed image act as local forces (as if applied by "demons" in Maxwell’s

equation [21]) that can move the pixels in the source to match the intensities in the

target.

This displacement field is smoothed by an Gaussian filter at each step. Thirion

used the following update step to compute the incremental displacement field:

𝑑𝑤⃗(𝑛+1) =
𝐼
(𝑛)
2 − 𝐼

(0)
1

(𝐼
(𝑛)
2 − 𝐼

(0)
1 )2 + ‖∇𝐼

(0)
𝑠 ‖2

∇⃗𝐼(0)𝑠 (2.5)

As in Horn-Schunck’s optical flow equation, Equation 2.5 is under-determined.

To find a unique solution, Thirion proposed to filter the displacement field at each

iteration with a Gaussian filter.
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Figure 2-4: Diffusion model in Demon’s method. The moving image diffuses through
the boundaries of the objects in the fixed image, controlled by the forces of effectors
called “demons". Reprinted from [21]

Better theoretical understandings on the demon’s method came from Pennec’s

work in the following year [18]. In this work, Pennec showed that the forces proposed

by Thirion correspond to a second order gradient descent on the sum of square of

intensity differences (SSD) criterion. He also discussed that the Gaussian smoothing

acts as a greedy optimization of the regularized criterion.

Note the displacement field is derived from the source image alone in Thirion’s

original demons. Many variants of demons have been developed by modifying how

to compute this force. One of the baseline models used in Section 5.1 is Symmetric

Demons by Vercauteren [23] which uses both the source and the target images to

derive the deformation force.

2.4 BSpline

A BSpline-based method is another approach to non-rigid registration based on the

deformations on the control points and bpline interpolation. First, a grid of control

points is constructed at the selection resolution which controls the transformation

of the source image. The similarity metric is used to measure the registration error

between the current moving and static image, and the quasi newton optimizer such

as LBFGS [16] is used to move the control points to achieve the optimal registration

with minimal registration error. B-spline registration is slower and more complex than

Thirion’s Demond. However, it is still used because the resulting displacement field

21



corresponds to a better real-live deformation that the one from fluid-based methods

like Demon’s algorithm [15].
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Chapter 3

Mammogram registration problem

This thesis tackles non-rigid registration of medical images by focusing on the mam-

mogram images taken certain time intervals apart. Given a sequence of mammogram

images of either 1) different patients ("intrapatient") or 2) the same patient over time

("interpatient"), we aim to align the images without losing key structures and impor-

tant information for medical diagnosis. In addition, we evaluate both traditional and

recent registration algorithms on mammogram images and compare their strengths

and weaknesses. The five registration methods we compare are 1) Multiscale Horn-

Schunck (MSHS), 2) Demon’s method [21], 3) Symmetric Demon’s method [23], 4)

BSpline [19, 20], and 5) Large Displacement Optical Flow (LDOF) [8].

As discussed in Section ??, the problem of image registration has been studied

by both computer science and medical imaging communities over decades. More ad-

vanced techniques have complemented drawbacks of traditional approaches such as

Horn-Schunck’s optical flow [13], yet registering medical images is still an unsolved

problem. One of the major difficulties lie in the validation. Optical flow is inherently

an ill-posed problem [?], which means there are many deformation fields that result in

reasonable registrations. However, there is no established way to objectively evaluate

these fields and choose the "right" one for a particular application [9]. Currently,

most algorithms are evaluated on the standard benchmark image data sets such as

Middlebury data [6] and KITTI data [10], which are limited to natural scenes and do

not include any medical images. Consequently, their performances on medical images
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hasn’t been rigorously tested. Therefore, this thesis consists of two parts. First, it

extends Large Displacement Optical Flow [8] – an algorithm that incorporates au-

tomatic feature extraction and descriptor matching to the conventional variational

framework – so that it considers manual inputs from medical specialists during the

registration process. The second part focuses on evaluating the four algorithms men-

tioned above on mammogram images. They are chosen based on their significance

and popularity in computer vision and medical imaging applications.

Surprisingly, only a limited amount of optical flow algorithms have been used in

the medical applications. The first portion of this thesis reports the success of Large

Displacement Optical Flow on mammogram registration, and discusses how we extend

it to also consider direct inputs from medical specialists to adjust the registration. The

success of the LDOF on mammogram registration is not an obvious result, even with

its previous success with natural images, because medical images impose constraints

and requirements that are different from natural images. One major difference is

that light sources such as ultrasound or X-ray go through an obstacle unlike natural

lights. Thus a medical image is a superimposition of multiple objects encountered by

the light as it travels, and there is an added ambiguity on which objects and to which

degree they contribute to a pixel value. Natural images, on the other hand, rarely face

this problem. More efforts are put into accurate estimations on the boundary where

occlusions occur. Another unique challenge in medical images is the lack of color

and shade information. Color and shading from natural images have been shown

beneficial in estimating shapes and motions [12],[11]. Most of the current medical

devices are not able to capture those information.

Fast and accurate image registration is essential in both medical practices and

researches. Its main medical applications are: an early detection of abnormalities,

studies of disease progressions by monitoring changes in size and shape over time,

image guided surgery or radiotherapy, and development of a statistical model of vari-

ation associated with a disease [5]. The success of the original LDOF algorithm in

registering mammograms, which will be represented in Section 5.2, means a fast,

annotation-free registration. Our extension makes the original algorithm more usable
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and controllable by the radiologists. It gives the flexibility for them to manually spec-

ify corresponding pairs, or regions that need to be preserved during the registration.

This modification allows the registration to be guided by both the algorithm itself

and the human experts.

The second focus of the thesis bares its own significance in that it make a head-

to-head comparison among traditional optical flow algorithms and medical alignment

methods on the same type of images (i.e mammograms). Due to the difference in

their focus and applications, these methods are often not evaluated on the same type

of images. Therefore, we gain new insights on their strengths and weaknesses when

applied to medical images. Lastly, the evaluation section demonstrates how the com-

monly used metrics contradict each other and do not agree with human evaluation.

This brings attention to the outstanding problem of validation in non-rigid image

registration.
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Chapter 4

Methodology

4.1 Extented LDOF: Manual correspondences and

region preservation

Let 𝐼1, 𝐼2 ∈ R2 be the two images to be aligned. The first image is fixed (ie. target),

and we aim to register the second image (source) to the first image. An optimal dense

displacement field is the one that deforms the second as "close" to the first image

as possible. Let 𝑥⃗ = [𝑥, 𝑦]𝑇 denote a pixel location and 𝑤⃗ = [𝑢, 𝑣]𝑇 a displacement

field in the image domain Ω. Note 𝑤⃗ is a function of 𝑥 and 𝑦. First we assume that

a pixel’s intensity does not change at the corresponding locations in 𝐼1 and 𝐼2. To

compensate any global illumination change, we also assume the magnitude of (local)

change in the color remains constant at corresponding pixel locations. These two

assumptions are incorporated into the energy function as follows:

𝐸𝑑𝑎𝑡𝑎 =

∫︁ ∫︁
Ω

𝑝(𝐼1(𝑥⃗) − 𝐼2(𝑥⃗ + 𝑤⃗)) + 𝛼𝑞(∇𝐼1(𝑥⃗) −∇𝐼2(𝑥⃗ + 𝑤⃗))𝑑𝑥⃗ (4.1)

We choose 𝑝(𝑥) and 𝑞(𝑥) to be 𝜑(𝑥2) =
√
𝑥2 + 𝜖2 with 𝜖 = 0.001 as in [8] and [7].

In Horn-Schunk optical flow [13], 𝑝(𝑥) = 𝑥2, and many other algorithms that uses

TV-L1 as a similarity metric [24] use 𝑝(𝑥) = (𝑥). Our choice of 𝑝, 𝑞 allows us to

deal with occlusions and non-Gaussian deviations of the similarity criterion [8]. The
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extra 𝜖 term is fixed to 0.001 to maintain the energy function convex while voiding

potential division by zero failures in areas, for instance, with constant gradients or

few structural patterns. This choice of 𝜑 leads to a 𝐿1 norm minimization and convex

energy function [7]. We would also like to emphasize that the energy function defined

in 4.1 is non-linear with respect to 𝑤⃗ due to its dependency on the intensity functions.

Unlike Horn-Schunck algorithm which use the first-order Taylor approximation to

linearize the equation as discussed in Section 2.2 we embrace the non-linearity and

allows the algorithm to handle both small and large deformations. The parameter 𝛼

controls the weight on the gradient consistency constraint.

However, minimizing the difference measure in 4.1 with respect to 𝑤⃗ is an ill-

posed problem, because at each pixel we have two unknowns 𝑤⃗ = [𝑢, 𝑣]𝑇 but only

a single equation. In order to find a unique solution, we add a regularization term.

Specifically, we let the algorithm to prefer a globally smooth motion field by adding

the energy term that measures the deviation from a constant field:

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑤⃗) =

∫︁ ∫︁
Ω

𝜑(‖∇⃗𝑢‖2 + ‖∇⃗𝑣‖2)𝑑𝑥⃗ (4.2)

Note that 𝑢 = 𝑢(𝑥, 𝑦) and 𝑣 = 𝑣(𝑥, 𝑦).

Beyond that the regularization is necessary to find a unique solution 𝑤⃗, it allows

us to incorporate prior knowledge, for instance about underlying tissue properties

during deformation. Although we did not take advantage of such capability due to

the lack of an established model for breast tissue, future work can be extended to

incorporate relevant biological models. It also reduces the number of local minimum

[5] and makes the optimization methods better converge to the global minimum.

As in the original LDOF algorithm in [8], we incorporate the problem of corre-

spondence establishing and descriptor matching into the variational framework. First

we define the descriptor matching term 𝐸𝑑𝑒𝑠𝑐:

𝐸𝑑𝑒𝑠𝑐(𝑤⃗) =

∫︁ ∫︁
Ω

𝛿𝑑𝑒𝑠𝑐(𝑥⃗)𝑝𝑑𝑒𝑠𝑐(𝑥⃗)𝜑(‖𝑤⃗(𝑥⃗) − 𝑤⃗1(𝑥⃗)‖2)𝑑𝑥⃗ (4.3)

𝛿𝑥⃗ is the descriptor indicator function whose value if 1 if 𝑥⃗ is a feature point and 0
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otherwise. 𝑤⃗1(𝑥⃗) is the difference vector obtained by matching 𝑥⃗ in 𝐼1 to its corre-

sponding pair in 𝐼2, and 𝑝(𝑥) is the weight computed for the descriptor at 𝑥⃗ defined

as in [8]. This energy term assumes that 1) features (and descriptors) are extracted

from both 𝐼1 and 𝐼2, and 2) correspondences are established between the two sets

of features. The second part, of establishing the correspondences, is formulated as

another energy term 𝐸𝑐𝑜𝑟𝑟:

𝐸𝑐𝑜𝑟𝑟 (⃗(𝑤), 𝑤1) =

∫︁ ∫︁
Ω

𝛿𝑑𝑒𝑠𝑐‖(𝑓2(𝑥⃗ + 𝑤1(𝑥⃗)) − 𝑓1(𝑥⃗))‖2𝑑𝑥⃗ (4.4)

where 𝑓1(𝑥⃗) and 𝑓2(𝑥⃗) are sparse fields of feature vectors in 𝐼1 and 𝐼2. As an extension

to the LDOF, we collect two corresponding keypoints from 𝐼1 and 𝐼2 and define the

boundary of regions that should be preserved during the transformation. Using these

user inputs, we formulate the user-defined keypoint matching and region preservation

constraints as the two following terms, 𝐸𝑢𝑠𝑒𝑟 and 𝐸𝑟𝑒𝑔𝑖𝑜𝑛:

𝐸𝑢𝑠𝑒𝑟(𝑤⃗) =

∫︁ ∫︁
Ω

𝛿𝑢𝑠𝑒𝑟𝑞𝑢𝑠𝑒𝑟(𝑥⃗𝑝(‖(𝑤⃗(𝑥⃗) − 𝑘⃗(𝑥⃗)‖2)𝑑𝑥⃗ (4.5)

where 𝛿𝑢𝑠𝑒𝑟 is an indicator function for manually selected keypoints, and 𝑞𝑢𝑠𝑒𝑟 is a

weight function on each selected keypoint pair, corresponding to their significance or

confidence level.

𝐸𝑏𝑜𝑥(𝑤⃗ =

∫︁ ∫︁
Ω

𝛿𝑏𝑜𝑥𝑞𝑏𝑜𝑥(𝑥⃗)‖𝑤⃗(⃗(𝑥)‖2𝑑𝑥⃗ (4.6)

where 𝛿𝑟𝑒𝑔𝑖𝑜𝑛 is an indicator function, and 𝑞𝑟𝑒𝑔𝑖𝑜𝑛 is the weight mask for the pixels in

the region. We used Gaussian distribution with 𝜎 of 3 in our experiments. Putting
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together all energy terms gives the following final energy function:

𝐸(𝑤⃗) = 𝐸𝑐𝑜𝑙𝑜𝑟(𝑤⃗) + 𝛼𝐸𝑔𝑟𝑎𝑑(𝑤⃗) (4.7)

= 𝛾𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑤⃗) (4.8)

= 𝛽1𝐸𝑐𝑜𝑟𝑟(𝑤⃗, 𝑤1) + 𝐸𝑑𝑒𝑠𝑐(𝑤1) (4.9)

= 𝛽2𝐸𝑢𝑠𝑒𝑟(𝑤⃗, 𝑘⃗) (4.10)

= 𝛽3𝐸𝑏𝑜𝑥(𝑤⃗,B) (4.11)

where 𝑘⃗ and B are fixed inputs from the user, the manual keypoint correspondences

and the selected bounding box.

4.2 Optimization

Since the two added energy terms are convex, the entire energy function remains

convex. As in the original paper [8], we use the continuation method to solve this

optimization problem. Specifically, we use the downsampling factor of 0.95(𝑘𝑚𝑎𝑥−𝑘)

to allow a very smooth transitions between consecutive pyramid levels, where 𝑘𝑚𝑎𝑥

is chosen for valid discrete derivative filters. We then derive a Euler-Lagrange equa-

tion for 𝑢, 𝑣 and use the nested fixed iterations to remove the nonlinearity from the

intensity functions.
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Chapter 5

Evaluation

5.1 Baseline models

In this section, we compare the registration result from LDOF algorithm [8] with five

baseline models. We compute the registration scores using four widely used metrics

to compare their performances on mammogram images. Our baseline models are 1)

Multi-scale Horn-Schunk (MSHS), 2) Demon’s method with four levels of resolution,

3) Symmetric demons with four levels of resolution, 4) 3 level BSpline with LBFGS

optimizer, and 5) 3 level BSpline with regular step gradient descent (RSGD) opti-

mizer. The demons- and BSpline-based baseline models were tested using ITK [14]

after minor modifications on the implementations in [1].

The result from Multi-scale Horn-Schunk (MSHS) in Figure 5-2a demonstrates

undesirable holes, and fails to preserve important features of the images. For medical

purposes, the key feature is the tumor, which is marked with the red bounding box

in the orignal 𝐼2 (Figure 5-1. MSHS’s result removes this distinctive feature during

registration since its objective function is defined globally. The output image resem-

bles a simple superposition of the 𝐼2 onto the original 𝐼1. Another limit of MSHS

is its lack of awareness on the anatomical structure. Since its objective function is

defined only with respect to intensity consistency and the smoothness of the defor-

mation field without any notion of partial structures, the result is not guaranteed to

establish reliable correspondences between anatomical structures.
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Figure 5-1: Original mammogram sequences

The result from Demon’s algorithm in Figure 5-3a does not show the same problem

of holes during the backward warping process as observed in Horn-Schunk. However,

the structure on the left end is lost, and the white tissues diffuse to the entire image.

This diffusion of the white tissues is the result of Thirion’s view on the non-rigid

registration as a diffusion process [21]. The diffusion model is however not shown

to truthfully reflect the anatomical displacements during the mammogram imaging.

In comparison, the Symmetric Demons method provides a result with better defined

tissue clusters as shown in Figure 5-4a. However, the algorithm has the same limit of

relying on the intensity alone (i.e. minimizing the SSD criterion via the second order

gradient descent and adding regularization [18]). As discussed in Section 4, LDOF

overcomes this drawback by explicitly defining the feature matching and descriptor

preservation scores and adding it to the objective function. More discussion on the

results of LDOF follows in Section 5.2. Figure 5-5a shows the result of multi-scale

BSpline registration with LBFGS optimization. The result shows a large warping on

the background which implies that the algorithm or the optimization process were
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(a) warped 𝐼2 (b) diff

Figure 5-2: Multi-resolution Horn-Schunck

(a) warped 𝐼2 (b) diff

Figure 5-3: Demons
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(a) warped 𝐼2 (b) diff

Figure 5-4: Symmetric Demons

(a) warped 𝐼2 (b) diff

Figure 5-5: BSpline with LBFGS
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(a) warped 𝐼2 (b) diff

Figure 5-6: BSpline with Regular Step Gradient Descent

strongely affected by noise. It is however worthwhile to note that the tumor region

is well-preserved.

The next figure (Figure 5-6a shows the result of the same multi-scale BSpline

registration but with regular step gradient descent optimizer. The result doesn’t

suffer from the incorrect deformations in the background which was prevalent in the

BSpline registration with LBFGS optimizer. Yet, a closer observation in Figure 5-7

reveals that the tumor regions are misaligned.
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Figure 5-7: 𝐼1 and registered image 𝐼2 using BSpline with Regular Step Gradient
Descent. The tumor marks in the red bounding box are misaligned.
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5.2 Registration using LDOF

(a) warped 𝐼2 (b) diff

Figure 5-8: LDOF

In comparison to the baseline models’ registrations, the result from LDOF achieves

both global and local alignments. Figure 5-9 shows the superposition of the original

𝐼1 and registered images of 𝐼2 and 𝐼3, respectively. The overall shape of the breasts

and the static structures on the left end are well-aligned. At the same time, the local

correspondences between matching key points are also preserved as highlighted in the

red bounding box. The tumor regions inside the boxes overlap with much smaller

displacement than what is achieved by baseline models. In particular, it finds a better

alignment than Symmetric Demon’s algorithm (Figure 5-7) which achieved the best

result among the baseline models. Compared to Demon’s algorithm (Figure 5-3a)

which leads to the diffusion of the white tissues driven by the intensity difference,
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(a) 𝐼1 and warped 𝐼2 (b) 𝐼1 and warped 𝐼3

Figure 5-9: The tumor marks in the red bounding boxes are well-aligned as well as the
overall shape of the breast. See Figure 5-7 to compare with the result from BSpline
registration.

LDOF restricts the degree of diffusion and optimize for more accurate feature match-

ing and more conservative descriptor preservation.
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Figure 5-10: LDOF: Registered sequence

5.3 Quantitative evaluation

This section provides quantitative evaluations on the baseline models and LDOF

registration. In Section 2, we discussed how each registration method optimizes a

different objective function. The goal of this section is to show how evaluation of

the registered image based on a single metric fails to correctly measure the quality,

and highlight the need for a more unified metric that is independent of the choice

of metric used in the registration process itself, which will allow to evaluate various

registration methods on the common basis. We evaluate the six registration methods

using four popular metrics: sum of squared (intensity) difference (SSD), sum of ab-

solute difference (SAD), normalized cross-correlation (Corr), and mutual information

(MI). SSD and SAD are computed on float images after scaling them to [0, 1]:

𝑆𝑆𝐷 =
1

𝑁

∑︁
𝑥,𝑦

(𝐼1(𝑥, 𝑦) − warpedI2(𝑥, 𝑦))2

𝑆𝐴𝐷 =
1

𝑁

∑︁
𝑥,𝑦

|𝐼1(𝑥, 𝑦) − warpedI2(𝑥, 𝑦)|
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Information theory based approach to image registration (as opposed to feature-based

or intensity-based, see Section 2) tries to maximize the amount of shared information

in two images. Mutual information (MI) is one of the metrics that measure the amount

of shared information between two signals (or random variables in general), or how

well one image explains the other. Information theory based approach postulates this

measure is maximized at the optimal alignment. It is defined as:

𝐼(𝑋;𝑌 ) =
∑︁
𝑦∈𝑌

∑︁
𝑥∈𝑋

𝑝(𝑥, 𝑦) log

(︂
𝑝(𝑥, 𝑦)

𝑝(𝑥) 𝑝(𝑦)

)︂

The metric is high when the signal is highly concentrated in few bins, and low when

the signal is spread across many bins. In practice, it is computed from the joint 2D

histogram of the images in the following way [4]:

de f mutual_information (hgram) :

# Mutual in fo rmat ion f o r j o i n t histogram

# Convert b ins counts to p r obab i l i t y va lue s

pxy = hgram / f l o a t (np . sum(hgram) )

px = np . sum(pxy , ax i s =1) # marginal f o r x over y

py = np . sum(pxy , ax i s =0) # marginal f o r y over x

px_py = px [ : , None ] * py [ None , : ] # Broadcast to mult ip ly marg ina ls

# Now we can do the c a l c u l a t i o n us ing the pxy , px_py 2D arrays

nzs = pxy > 0 # Only non−zero pxy va lues con t r i bu t e to the sum

return np . sum(pxy [ nzs ] * np . l og ( pxy [ nzs ] / px_py [ nzs ] ) )

The joint (log) 2D histograms in our baseline and LDOF results are shown in

Figure 5-11, and Figure 5-12 shows the evaluation of the baseline models and LDOF

according to the four metrics.
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(a) Multiscale Horn-Schunk (b) Demon

(c) Symmetric Demon (d) BSpline + LBFGS

(e) Bspline + RSGD (f) LDOF

Figure 5-11: Joint 2D (log) histogram of 𝐼1 and warped 𝐼2
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Figure 5-12: Evaluation using 4 metrics: SSD, SAD, Normalized cross-correlation,
Mutual Information. The scores are inconsistent due to its dependency on the choice
of metric used in objective functions.

This comparison using different metrics demonstrate their contrasting measure

of registration quality. One way to overcome such inconsistency is to manual label

correspondences between two images, and use them as the ground truth. However,

this method is time-consuming and requires a medical specialist’s annotation. More

automated way to validate and evaluate registrations is needed to compare the real

performances of the algorithms more accurately.
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