
Newton: A Language for Describing Physics

by

Jonathan Lim

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

4tttie 291 q jsey~tber A01 -+]

Massachusetts Institute of Technology 2017. All rights reserved.

Signature redacted
A uthor.......... ....................

Dep yKent of Electrical Engineering and Computer Science
May 26, 2017

Certified by
S ignature redacted)

Martin Rinard
Professor

Thesis Supervisor

Accepted by..

MASSACHUSETTS I
OF TECHNOLC

JUL 17 2018

LIBRARIES
ARCHIVES

Signature redacted...................
NSTITUTE Christopher Terman
GY - Chairman, Master of Engineering Thesis Committee

k-1 (j



Abstract

Sensors embedded within hardware platforms such as smart-watches and cars read in streams
of data. These sensor data may be related to each other by invariants or may have other
value constraints, but computing in sensor platforms currently ignores these invariants
between sensor data. If the programmer wanted to exploit these invariants to perform
safety checks or optimize performance, she has to hard-code the invariants in the program.
To exploit invariants in software automatically, each compiler of the language used for
every sensor platform could be modified to be aware of different sets of invariants in the
programs it compiles, or the compilers could take in a configuration file that describes these
invariants. This MEng thesis introduces Newton, a language in which the configuration files
can be written, as well as a compile-time library and a runtime library that can be used by
other compilers to make compile-time transformations to their source code and exploit the
invariants in a Newton description at runtime. We introduce two compile-time algorithms
that transform intermediate representations of other compilers. The first transformation adds
reliability by checking invariants on program variable values at runtime and by running
an error handler function if invariants are violated. The second transformation trades off
reliability gained from sensor redundancy for performance by removing code that deals with
redundant sensors. This thesis describes twelve examples of realistic physical systems that
may benefit from using Newton.

2



Acknowledgments

First, I want to thank Phillip Stanley-Marbell for giving me guidance throughout this project.

He has always been incredibly helpful through all parts of designing Newton and has taught

me how to think about research. He is an amazing mentor, and this work would not have

been possible without him.

I also want to thank Professor Martin Rinard for being supportive and giving me the

opportunity to work on this project.

Last but not least, I want to thank my parents who made my education possible and were

always there for me when I needed them.

3



4



Contents

1 Introduction 9

2 Background 19

3 Research Questions and Aims 21

4 Newton Language by Examples 23

5 Newton Design 37

5.1 The Newton Description File . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Physics Types in Newton . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.2 Syntax of the Newton Description . . . . . . . . . . . . . . . . . . 39

5.2 The Newton AST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 Building Newton AST's for Newton Descriptions and for Host

Language Expression and Statements . . . . . . . . . . . . . . . . 43

5.2.2 Building the Newton AST: Creating Newton AST Nodes . . . . . . 43

5.2.3 Building the Newton AST: Setting Physics Types of Identifiers . . . 44

5.2.4 Building the Newton AST: Inserting a node into the Newton AST . 46

5.2.5 Newton AST Sample Tree . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Newton AST W alk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Newton AST Walk in newtonApiDimensionCheckTree: Determin-

ing Dimensional Consistency . . . . . . . . . . . . . . . . . . . . 50

5.3.2 Newton AST Walk in newtonApiSatisfiesConstraints: Value Con-

straint Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5



5.4 List of API Methods

5.5 Sample Newton Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5.1 Pedometer Step Counter . . . . . . . . . . . . . . . . . . . . . . . 60

5.5.2 Activity Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5.3 Maintaining Vehicle Distance . . . . . . . . . . . . . . . . . . . . 64

5.5.4 Weather Balloon . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5.5 GPS Walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.6 Sensor Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5.7 Ball Dropped from a Height . . . . . . . . . . . . . . . . . . . . . 70

5.5.8 Jet Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5.9 Reactor Rod Cooling . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5.10 Airplane Altitude and Speed . . . . . . . . . . . . . . . . . . . . . 74

5.5.11 Motorized Wheel Chair . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5.12 Car Tire Pressure and Acceleration Range . . . . . . . . . . . . . . 77

6 Applications 79

6.1 Compile-Time Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Type Inference . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 82

6.2 Transformation To Check Invariants . . . . . . . . . . . . . . . . . . . . . 85

6.2.1 Suggestions for Dynamic Tagging . . . . . . . . . . . . . . . . . . 88

6.2.2 Suggestions for Static Tagging: Alternative to Dynamic Tagging . 91

6.2.3 Constructing a Parameter Tree and Finding a Matching Invariant . 93

6.2.4 Mapping Host Language Variables to Invariant Parameters . . . . . 94

6.2.5 Transforming the Host Language Compiler's IR . . . . . . . . . . . 94

6.2.6 Computation Cost . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Transformation to Reduce Sensor Redundancy . . . . . . . . . . . . . . . . 100

7 Evaluation 105

8 Future Work and Challenges 109

6

59



9 Summary

A Appendix: Transformed Examples

A. 1 Pedometer Step Counter ............

A.2 Activity Classifier . . . . . . . . . . . . . .

A.3 Maintaining Vehicle Distance . . . . . . . .

A.4 Weather Balloon . . . . . . . . . . . . . .

A.5 GPS Walking . . . . . . . . . . . . . . . .

A.6 SensorLife . . . . . . . . . . . . . . . . . .

A.7 Ball Dropped from a Height . . . . . . . .

A.8 Jet Engine . . . . . . . . . . . . . . . . . .

A.9 Reactor Rod Cooling . . . . . . . . . . . .

A. 10 Airplane Altitude and Speed . . . . . . . .

A. 11 Motorized Wheel Chair . . . . . . . . . . .

A. 12 Car Tire Pressure And Acceleration Range .

113

. . . . . . . . . . . . . . . . . 1 1 3

. ................12 1

. . . . . . . . . . . . . . . . . 1 2 5

. . . . . . . . . . . . . . . . . 1 2 8

. . . . . . . . . . . . . . . . . 1 3 0

. . . . . . . . . . . . . . . . . 1 3 3

. . . . . . . . . . . . . . . . . 1 3 6

. . . . . . . . . . . . . . . . . 1 3 7

. . . . . . . . . . . . . . . . . 1 3 8

. . . . . . . . . . . . . . . . . 140

. . . . . . . . . . . . . . . . . 14 1

. . . . . . . . . . . . . . . . . 1 4 2

B Appendix: Formal Grammar for the Newton Description File

C Appendix: Data Structures Used

D Appendix: The Header File for the Newton API

7

145

147

155

III



8



Chapter 1

Introduction

Sensor data of embedded physical systems follow certain invariants governed by constraints

on hardware or natural laws of physics. The invariants represent the relationships between the

values of sensor readings and the constraints on those values on a given hardware platform.

A sensor platform is a hardware environment that contains individual sensors made by

component suppliers - examples include smart-watches, automobiles, and smartphones

(see Figure 1-1). Since different sensor platforms have their own use cases, the constraints

that apply to sensor data of those platforms are different as well. For example, accelerometer

data of an airplane are constrained by its motion, and hardware specs of automobile engines

have maximum and minimum temperatures that they can tolerate. Tangential velocity and

angular velocity sensor data of a rotating robotic arm are related by radius, and thermometer

readings and barometer readings of a gas in a weather balloon are related to each other by

the ideal gas law.

software step counters, autopilots,
location tracker, ...

sensor platforms smart watch, automobiles,
airplanes, smartphones, etc...

sensors accelerometer, gyro, thermometer, sonar radar,
pressure sensor, etc...

Figure 1-1: Sensor suppliers provide boards with sensors to hardware manufacturers who
construct different sensor platforms that use those sensors. Those sensor platforms are often
operated by software that use data read from sensors.

9



When sensors on embedded physical systems report anomalous data that violate these

invariants due to unexpected noise or hardware failures, it can compromise the correctness

of the systems built on top of those sensor readings. In fact, almost half of the accidents

related to industrial chemical processes in France examined in one study have been due

to errors in temperature and pressure sensor readings [18]. There are also examples in the

aviation industry where aircrafts have crashed due to erroneous readings of pressure sensors

[1].

Existing approaches to detecting anomalous sensor data in safety-critical applications

involve selecting sensor data that is least likely to be corrupted, such as doing a majority

vote from redundant sensors [22]. However, these approaches work for correcting failures of

each sensor independently at the hardware level and ignores relationships between different

sensors on a physical structure. As a result, if there is nothing wrong with the sensor

hardware but the sensor readings violate the invariants that exist between sensor data or the

constraints on sensor data values, simply correcting noisy sensor values is insufficient to

guarantee robustness of the system. Often in an industrial setting dealing with hazardous

chemicals, there is nothing wrong with sensor hardware themselves, but sensors report

incorrect data because of poor installation, deficient maintenance, and poor cleaning [18].

Even when the sensors are reporting correct data that need special handling at the application

level, if the software developer failed to handle the invariant violation, it could compromise

safety of the system.

On the other side of the token, using unnecessary redundant sensors in non-safety critical

applications can restrict the performance of the system by draining battery power and

by taking up extra registers, memory, and CPU [8] [26] [27]. Especially on low power

embedded systems with sensors, having to perform extra computations with redundant

sensor data can create performance bottlenecks. If the sensor platform has, for example,

two redundant accelerometers that are attached to the same physical body of the platform

and constantly read a stream of correlated acceleration data, the hardware manufacturer can

eliminate the usage of one of the accelerometers in order to trade off the reliability gained

from using an additional set of accelerometers for the extra performance gained by freeing

up resources used to read in another stream of data.

10



If there is a way to describe these invariants and make them available to a program

written for computing on embedded physical structures with sensors, then the invariants

could be exploited by the compiler of a sensor programming language in two ways. The

first way is to generate code that provides implicit runtime assertions on the sensor data,

effectively imposing constraints on what the sensor values could be at the software level,

increasing the load on the CPU and other resources of the system for extra reliability

(see Chapter 6.3). This approach is similar to how probabilistic asserts in [24] and how

domain-specific languages like Matlab provide runtime assertions on numeric value ranges

for certain mathematical operations. The benefit of having these assertions is reducing

the burden on the programmer to catch silent errors of embedded system programs when

some anomalous sensor data violate the invariants and the constraints on the hardware.

Being able to catch these failures automatically enables the systems to fail fast and allows

the programmer to focus their efforts elsewhere and develop more robust systems. It also

gives more power to the programmer of the embedded systems to be able to handle those

errors appropriately when the failures occur. The second way is to substitute code that does

read/writes to redundant sensors with code that does reads/writes to only from one of the

sensors by finding out, through the Newton description and another method of simulating

program variable values (see Section 6.2.1), which of the variables hold values of redundant

sensor readings. The benefit of this approach is reducing the overall code size and freeing up

resources that would have been used to perform computation from all the redundant sensors.

To be able to describe the invariants that exist between sensor data on each embedded

sensor system, the compilers of the embedded programming languages need to be able

to take in an input configuration for each sensor platform that describe those invariants.

Otherwise, the compilers have to be rewritten for each sensor platform to contain hard-

coded information about those invariants. See Figure 1-2. This would mean that hardware

manufacturers of the sensor platforms would need to delve into the compiler implementations

of the programming languages dealing with the sensor platforms and then rewrite the portions

of the compiler in order to hard-code each Physics data types needed for that sensor platform

and the relationships between sensor data. In other words, if different sensor platforms use

sensors that abide by different physical constraints, then multiple compilers of the same

11



Sensor Invariants A -- Compiler compiled_ C Program
Platform A InainsA -coded in A by A

Sensor hd Compiler copie C Program
Platform B nvariants B -e B B

Sensor - - Compiler comped C Program
Platform C nvras coded in CYc

Figure 1-2: If C compilers wanted to generate code that takes advantage of the invariants
that apply to each sensor platform, the compiler code that enforces the invariants would
need to be changed for each sensor platform used.

programming language may be needed to accommodate those different situations. If there

is a new language for the input configurations that describe the invariants for each sensor

platform, embedded system programming language compilers can then use that information

to be able to make transformations on their intermediate representations that take advantage

of the invariants, without making significant changes to their own compiler implementations.

See Figure 1-3.

Note that in Figure 1-1, the hardware manufacturers, represented by the middle layer of

sensor platforms, are absent in situations where an independent programmer is developing

software directly on top of the sensor layer. In this case, the programmer needs to write the

Newton descriptions that contain the invariants appropriate for the use case of the sensors

involved.

This MEng thesis introduces Newton, a language that describes constraints and invariants

on values obtained from sensors embedded in physical structures and helps any compiler

of another language generate code that enforces those invariants at runtime. The key

contribution of Newton is that a description of a physical system written in Newton is able

to describe invariants between sensor data. Once this file is parsed by the Newton compiler,

that information is exposed through the Newton API, which consists of a compile-time

library and a runtime library implemented as a part of this thesis. An application of the

Newton libraries not implemented in this thesis involves another language compiler ("host

language compiler") making calls to the Newton compile-time library. By using Newton,

12



Senor A Invariants A "'. - description C ProgramPlatform A An

bySensor Invariants B - "" descr ion comp r C Compiler C Prgram

Platform C esBcaiptiPn C

Pensor C - -- Invariants C - "i" - dewtonCPrg m

Figure 1-3: In contrast to Figure 1-2, the invariants that apply to each sensor platform are
encoded in Newton descriptions which are input configurations to a C compiler. The C
compiler code does not need to be changed to accommodate invariants in different sensor
platforms because the Newton runtime library can be used at runtime with different Newton
descriptions provide implicit assertions.

a host language compiler can verify that its variables have correct dimensional types and

alter the code path in cases where the constraints described in the Newton description file

are found to be violated at runtime by the Newton runtime library.

A Newton description file is written in a way that a simple physics formula sheet would

be written (see Section 5.1). It is encapsulated by the Newton API and hidden from a host

language compiler and, consequently, from the programmer of the host language. It should

be noted here that the information gained from querying the Newton API does not benefit the

programmer directly. The only agent calling the Newton API is a host language compiler.

To illustrate a violation of an invariant by anomalous sensor data, consider the following

scenario. There is a weather balloon with pressure sensors, temperature sensors, a simple

processor, and a small storage. The hardware manufacturer of this weather balloon intends

this balloon to be only used in clear sky in an atmosphere that roughly follows Gay-Lussac's

law of an ideal gas, pressure = constant * temperature, with some margin for tolerable

noise in the sensors. Now, the invariant that the hardware manufacturer writes in the Newton

description file would have the constraints of pressure > constant * pressure - E

and pressure < constant * pressure + E, where E is some small number representing

the margin for tolerable sensor noise. A programmer wants to write a software for the

weather balloon that simply records readings from the pressure and temperature sensors

as it floats in the sky. In the software, there exist variables myPressure, myConstant, and

13



myTemperature, where myPressure and myTemperature hold values of sensor readings

from the pressure sensor and the temperature sensor, respectively, and myConstant is a

constant. The values of these variables are to be written to the storage of the weather

balloon. The data types of myPressure, myConstant, and myTemperature are floating

point numbers. The hardware manufacturer of the weather balloon expects the values

read from the sensors to match the theoretical description of Gay-Lussac's law throughout

the runtime of the program. Initially, myTemperature is set to 2 after reading from a

temperature sensor, and constant is set to 3. As a result, myPressure is assigned 6. Later,

due to an unexpected noise in a pressure sensor, myPressure is set to 10, and no other

variables changes their values. The compiler of a general-purpose programming language

would not generate code that would raise an error at runtime because it does not understand

that the variables in the code are supposed to be related to each other by Gay-Lussac's law.

However, if the compiler of the above code understood that the variables are supposed to

describe the weather balloon constrained by Gay-Lussac law, then the generated code should

be able to catch the violation of this constraint at runtime when the value of myPressure

was set to 10.

To be precise, we will say that a piece of code is completely mapped to Gay-Lussac's

law (or any invariant) if at least the following four requirements are true:

1. The compiler of that program's language is able to pick Gay-Lussac's law as the invari-

ant that describes the relationship between the variables myPressure, myConst ant,

and myTemperature out of all the invariants available to the compiler. Newton allows

the hardware manufacturer to write an input configuration file of invariants for a

particular sensor platform and to enable other compilers to be able to pick the invari-

ant relevant to a set of variables in the program. See Figure 1-4. The invariants in

Newton will involve the typical sensors available on commercial hardware platforms

that measure the following quantities: acceleration, humidity, temperature, pressure,

gyroscopes, luminosity, and magnetic flux. See Section 6.2.3 for details of how

Newton accomplishes this requirement.

2. There is a mapping between the variables in the host language program and the pa-

14



Newton's First
Law

myPressure
myConstant * match Gay Lussac's Law

myTemperature

Newton's Second
Law

Figure 1-4: The first step is to pick the invariant that describes a given program from
all invariants available to the compiler of the embedded programming language. These
invariants can be written in a Newton description.

rameters of an invariant. Specifically, myPressure in the program needs to describe

pressure; myConstant, constant; and myTemperature, temperature. See Fig-

ure 1-5. This step is achieved in two ways. The first way is to provide additional

type information in Newton descriptions (see Section 5.1.1) and to infer the mappings

between variables and parameters by simulating sensor values and variable values

(see Section 6.2.1). The alternative approach is for the host language to provide an

annotation syntax that marks a particular function as a routine that returns values to

be checked for an invariant. The two approaches and their advantages are discussed

in Sections 6.2.1 and 6.2.2.

3. The compiler of the embedded programming language uses separate data types for

myPressure, myConstant, and myTemperature to accurately reflect their physi-

cal types. See Figure 1-6. A description written in Newton provides information

about the physical types that can be used by the compiler of the embedded pro-

gramming language. After satisfying requirement 2, myPressure, myConstant, and

myTemperature are all floating point numbers, but pressure, k, and temperature

are different physical types. One way to meet this requirement is to identify the

dimension type of each variable. For example, myPressure would be of data type

pressure with units of Pascal. This step has been the topic of research in the past

[21] [14], as will be discussed in Chapter 2. Although satisfying requirements 1 and 2

15



myPressure match Pressure

equals

myConstant match k

multiply

myTemperature match Temperature

Program Variables Physics Law Parameters

Figure 1-5: The variables of a program need to be matched with the parameters of an
invariant. The black arrows indicate constraints between the parameters of the invariant,
and the white arrows indicate the mapping between the variables of the program and the
parameters of the invariant. The uniform shapes on the left hand side show that the program
variables are represented by a single data type (float) while the different shapes on the right
hand side show that the parameters are of different physical types.

is sufficient to calculate the numerical value of myPressure, but without satisfying

requirement 3, the program variables would lack the descriptions of the physical

types of Gay-Lussac's law parameters. See Section 5.1.1 for details of how Newton

accomplishes this requirement.

4. The numerical values of myPressure, myConstant, and myTemperature should

satisfy the invariant with constraints pressure > constant * pressure - c and

pressure < constant * pressure + c throughout the runtime of the program. If,

at a later runtime of the program, the numerical value of myPressure changes but

the numerical values of myConstant and myTemperature do not, then the constraint

described by Gay-Lussac's law is then violated, and this program can no longer be

said to satisfy this invariant. See Figure 1-7. Information provided by the Newton

API can then be used by a host language compiler to transform the original source

code AST in a way that improves reliability or performance of the source code. See

Sections 6.2 and 6.3 for details about the transformations.

16



myPressure match Pressure

equ

myConstant match k

myTemperat
ure

Program Variables

multiply

Temperature

Physics Law Parameters

Figure 1-6: The data types of the variables need to reflect the physical types of the parameters
of the invariant. In Figure 1-5, the data types of the variables in the program are identical
when in reality they represent inherently distinct physical concepts. This step provides
different data types for variables that represent different physical quantities.

MyPressure match Pressure

eq ls equ

miyConstant match k

multiply multiply

myTemperat Temperature
ure N

Program Variables

als

Physics Law Parameters

Figure 1-7: The values of the variables need to constrained to each other in the same way
the parameters of the invariant are.

17

als



The research contributions of Newton are on requirements 1, 2, and 4 stated above,

and they are described in Chapters 5 and 6 of this thesis. The Newton API allows another

compiler to bind variables of a host language to a constraint and its parameters. As a part

of this MEng thesis, the Newton compiler and the Newton API are implemented, but a

host language compiler that would use the Newton API is not. We present algorithms of

how a host language compiler should interact with the Newton API to make necessary

transformations to its source code and example scenarios in the appendix that benefit from

using the Newton API.

18



Chapter 2

Background

In the theoretical domain, much work has been done in dimensional analysis by

Buckingham[17], Brand[16], and Kurth[23], who made contributions to the Buckingham

Pi Theorem, which states that any constraint between n physical quantities subsisting k

independent basic physical quantities can be represented by a system of n - k linearly

independent equations. One of the advantages of using the Buckingham Pi Theorem was

that fewer parameters could be considered for numerical analysis or experimentation to

investigate a relationship between them. In fact, Stoutemeyer developed a program imple-

mented in MACSYMA that check dimensions of other programs by using the results from

the Buckingham Pi Theorem [28].

In programming languages, introducing dimension types has been explored through

built-in types and library calls. For example, House has proposed extending the Pascal

language with units and dimensions[ 19], and F# includes ways for the programmer to declare

any dimensions of physical quantities and use them in code [21]. F# provides support for

type checking and type inference based on the dimension unification algorithm described

in [20]. XeLda provides type checking for data in Excel spreadsheet programming and

automatically generates constraints if there are circular references [14].

Newton is the only system to our knowledge that allows a host language compiler to

bind programming variables to invariants. A host language compiler can accomplish this

binding by inserting new code into the intermediate representation that would query the

Newton API with its variables. With the information gained from the Newton API, a host

19



language compiler is able to modify its intermediate representation in a way that makes the

original code more robust to errors or improve its performance (see Sections 6.2 and 6.3).

Newton is different from F#, XeLda, Pascal, and other languages' dimension type

systems in that it provides another programming language a capability to do more than

dimension type checking. Newton can check whether invariants between sensor values are

preserved. On the other hand, Newton is more restricted than languages like F# and Pascal

because Newton is only meant to describe sensor platforms. Refer to Section 6.2.1 to see

how Newton binds variables that are only directly correlated with sensor types and therefore

is most suitable for describing sensor platforms.

20



Chapter 3

Research Questions and Aims

The goals of this MEng thesis are:

1. To implement a Newton compiler that correctly parses physics constraints and an API

that returns correct units of various Physics types. See Section 6.1 to see how Newton

meets this goal.

2. To implement a Newton API that can be queried by a host language compiler and can

perform type checking on an expression made of Physics types. See Section 6.1 to

see how Newton meets this goal.

3. To investigate if it is possible to describe real-world physical systems with Newton.

See Appendix A for example systems that might benefit from Newton.

4. To describe an algorithm that a host language compiler can follow to perform dimen-

sional type checking using the Newton API. See Section 6.1

5. To describe algorithms that a host language compiler can follow to make transforma-

tions to its IR using the Newton API, in order to make the original source code more

reliable or improve its performance. See Sections 6.2 and 6.3.

6. To describe how programs on real-world physical systems may use the transformations.

See Appendix A.

21



The above goals are completed at the writing of this thesis. To see items that have yet to

be completed for this project, see Chapter 8.

22



Chapter 4

Newton Language by Examples

Information within a Newton description is accessible by a collection of methods, the

Newton API, consisting of a compile-time library used by a host language compiler and a

runtime library which is linked against the host language program.

A host language compiler makes a call to methods in the Newton compile-time library

to make sure that its variables abide by dimension constraints. In addition, the host language

compiler can inject code into its IR so that the generated code would call the Newton API at

runtime to check certain variables abide by value invariants.

The purpose of the Newton compile-time library is to check if an expression or an assign-

ment statement in a host language program is dimensionally consistent and to transform the

host language program in a way that takes advantage of the invariants written in the Newton

description. the purpose of the Newton runtime library is to check if a set of variables in a

host language program abide by value invariants. The transformed host language program

would then make a call to the Newton runtime library to check its variable values against

Newton invariants at runtime. See Figure 4-1 for an overview of how Newton interacts with

a host language compiler.

In this section of the thesis, we take a look at an example as an overview of how the New-

ton compile-time library may be used by a host language compiler to perform dimensional

type checking and an IR transformation that result in a code that checks invariants on host

language variables at runtime, using the Newton runtime library. Later parts of the thesis

describe more details and another IR transformation that reduces sensor redundancy in a host

23



des wtpon mie - -- + Newton Compiler Newton AST

Newton Binary +--- used to make

provides

Newton API Calls

Host Language Compiler Newton-like

Figure 4-1: A Newton description file is used by the Newton compiler to generate an AST,
and a host language compiler also generates a Newton-like AST of its own code. The
Newton API is then used to make sure that the host language compiler's AST matches the
constraints embedded in the Newton compiler's AST.

language program. Suppose we have a small device with an accelerometer sensor attached

to a simple pendulum and a program that reads values from the device to perform some

computation. In addition, suppose that the hardware manufacturer specified in a Newton

description the following constraints on acceleration values.

SimplePendulum invariant(a: acceleration) = {
2 a >= 3 *m s **2,

a <= 9 *m s **2

This code describes an invariant which is a collection of constraints that apply to the

parameters given by the caller of the Newton runtime library, in this case, a variable named

a of Physics type acceleration. The constraint states that the numeric value bound to

the variable of type acceleration must be between 3 and 9 and that the dimension value

bound to the Physics type acceleration of the variable a must equal M/s 2 .

Now, consider the following code written in C that assumes a compiler which interacts

with Newton. The code was written to count the swings of a pendulum with accelerometers

by detecting sign changes in the accelerometer data and has an additional syntax to C in

24



L

acceleration

Figure 4-2: A simple pendulum

order to define Physics types.

acceleration@O prevXacceleration = readFromXAccelerometero;
2 time durationInSeconds = 1000 * 30; // thirty seconds
time startTime = readFromSystemClock();

int swingCount = 0;

7 while (readFromSystemClock() < startTime + durationInSeconds)

acceleration@0 xAcceleration = readFromXAccelerometero;

if (prevXacceleration * xAcceleration < 0) {
swingCount++;

I' }

if (xAcceleration != 0) { // do not double count the change
prevXacceleration = xAcceleration;

}
~s }

printf ("detected %d swings in the pendulum\n". swingCount) ;

Notice that in the places where primitive type identifiers belong, we instead have the

strings "acceleration" and "time". These strings "acceleration" and "time" represent a new

kind of data types not present in the original set of C data types. They represent the physical

concepts of acceleration and time as new data types ("Physics types") as defined in a Newton

description that the C compiler takes in as an input. The "@" indicates that the acceleration

type is in the first sub-dimension, which is the x axis in this context. Having these new

25



data types is enabled by a language extension or a pragma directive that would indicate to

the C compiler that "acceleration@O" means an additional data type. Having these data

types satisfies the requirement 3 mentioned in Section 1. Before the C runtime can call the

Newton runtime library method newtonApiSatisf iesConstraints to check invariants

are satisfied for its variables, the C compiler needs the following actions performed, using

methods in the Newton compile-time library.

1. Compile the Newton description given by the sensor platform manufacturer.

2. Perform compile-time dimensional type checking. This step requires building a

Newton AST of the C program that would be passed into by the Newton libraries to

perform dimensional type checking at compile-time or to check invariants at runtime.

If the Newton library methods operated on host language compiler IR's, building a

Newton AST would not be necessary, but having a standard Newton AST is what

enables the Newton libraries to interact with different host language compilers.

3. Select variables declared or used in a block, where a block is a function scope or a

loop scope, that are parameters of invariants in the Newton description. This step

involves requirements 1 and 2 mentioned in Chapter 1.

4. Transform the C source code (i.e. C compiler's IR) to call

newtonApiSatisfiesConstraints for appropriately selected variables for

every block.

The first step initializes the Newton API with the relevant Newton description. The

second step of dimensional type checking ensures type safety at compile-time before

values of host language programs are checked at runtime. The third step selects pa-

rameters out of the host language program variables to pass into the API method

newtonApiSatisf iesConstraints. The fourth step enables the host language compiler to

produce code that calls newtonApiSatisf iesConstraints at runtime. Now, we examine

the above steps more closely.

The first API call made, newtonApiInit, is a call to the Newton lexer and parser to

read the given Newton description file. This call stores all information about Physics types

26



and invariants of the given Newton description in memory so that the C compiler can call

methods of the Newton API.

State * newton = newtonApiInit("/file/path/to/invariants.nt");

The next action that needs to be performed is compile-time dimensional type checking,

and the C compiler needs to construct the Newton's version of its AST before it can perform

dimensional type checking because dimensional type checking at compile-time and invariant

checking at runtime in Newton operate on their input Newton AST's. Requiring Newton

library methods' inputs as Newton AST's enables Newton to work with different host

language compilers.

The Physics types remain in the background as a numeric type in the C compiler's

intermediate representation, but at compile-time the Newton version of the C compiler's

intermediate representation is used to perform dimensional type checking (see Section 5.2

for more detail). A numeric type could be int, float, double, or whatever data type that a host

language has available in its built-in types to represent the numeric values of sensor data.

As such, all data types not recognized by the original C syntax but defined in the Newton

description will be treated as a Physics type only for the purpose of calling the Newton API

methods, but the original C intermediate representation will keep those variables as numeric

types. As mentioned in Chapter 1, having these data types is enabled by language extensions

or pragma directives that would indicate to the host language compiler that the tokens not

recognized in the original syntax of the host language represent Physics types.

Now we need to construct a Newton AST of the C program. The Newton AST of a host

language program would comprise Newton nodes that represent host language constructs,

just in the format of the Newton AST. For example, an identifier in C is represented by

kNewtonIrNodeTypeTidentif ier in Newton, and an add operation + is represented by

kNewtonIrNodeTypeTplus. The code below shows how to initialize Newton identifier

nodes for the pendulum program variables prevXacceleration and xAcceleration.

These identifier nodes are one of the node types that constitute the leaf nodes of the Newton

AST, and other nodes are initialized in the same way. To see how expression trees and

statement trees are constructed out of identifier nodes, other factors, and term nodes, refer to

Section 5.2.1.

27



S/*
2 * Makes a Newton identifier node of type "acceleration"

* with value 5.
4 */
NoisyIrNode * accelerationNode = makeNoisyIrNodeSetToken(

6 noisy,
7 kNewtonIrNodeTypeTidentifie r,

"acceleration",
9 5.0
In ) ;

For every Physics type token in the C program, such as acceleration, the C com-

piler needs to look up the type using the Newton compile-time library. The call to

newtonApiGetPhysicsTypeByName with the given string "acceleration" and the New-

ton state returns a Physics struct with identifier acceleration that the caller uses to set

the physics field of the struct IrNode, which is used to build a Newton's parallel of the

C compiler's AST. The physics fields of IrNodes are compared during dimensional type

checking. The same set of calls happen for the string "time." See Section 5.2.1 for more

details.

accelerationNode->physics = newtonApiGetPhysicsTypeByName(newton,
acceleration");

Some Physics types may exist in more than one dimension. For example, acceleration

can exist along x, y, and z dimensions, and there might be more than one temperature

sensor in a sensor platform. This is denoted by the symbol "@" as in "acceleration@0"

which indicates that this Physics type exists in the first dimension, in this case the x axis. If a

sensor platform had 2 different temperature sensors, the Newton description would specify 2

different temperature types of "temperature@0" and "temperature@ 1". The C compiler can

then make a call to newtonApiGetPhysicsTypeByNameAndSubindex with a particular

subindex to set the type to the Physics struct of accelerationNode to an acceleration

in the x axis.

accelerationNode->physics = newtonApiGetPhysicsTypeByNameAndSubindex(newton,
distanceNode->token->identifier, 0);

2 newtonApiAddLeafWithChainingSeqNoLexer(newton, root, accelerationNode);

After these calls on type expressions of variables, the C compiler needs to make some

more API calls to perform type checking on assignment statements and expressions. If the

following properties are maintained throughout the statement or expression tree, then the

28



Newton API call newtonApiDimensionCheckTree will tell the caller that the entire tree is

dimensionally consistent by returning a Boolean.

1. Binary operations of multiply and divide can operate have operands of different

Physics types.

2. Binary operations of add and subtract must have operands of same Physics types.

3. The exponent of an exponential expression must be dimensionless.

4. Compare operations such as >, <, <=, >= must have operands of same Physics

types.

5. Assign operations such as = must have operands of same Physics types.

The code below shows a Newton compile-time library call that takes in a statement or

an expression Newton AST and checks if the properties above are maintained in this tree.

newtonApiDimensionCheckTree(newton, root);

For more information about the rules of dimensional consistency, see Section 5.3.1. We

also describe the algorithm to check dimensional consistency of the entire C program more

in detail in Section 5.3.1.

At this point, suppose that the Newton AST of the C program is constructed, and all

statements and expressions in the program are dimensionally consistent.

The next step is to select the variables that are parameters of the invariant SimplePendu-

lum reproduced here.

SimplePendulum invariant(a: acceleration) =

a >= 3 *m /s **2,
a <= 9 * m / s ** 2

The C compiler needs to select variables from its previously constructed Newton AST of

its program (see Section 6.2.3). As mentioned in Chapter 1, this step can be achieved in two

ways. The first way is to match the types of the parameters of the invariants to the the types

of the variables and to infer the mappings between simulated values of the variables and the

sensor readings (see Sections 6.2.1 and 6.2.2). The second way is for the host language to

29



provide a syntax where the programmer can annotate functions that return values that should

be checked by an invariant. Host language program variables whose values are assigned

from calling these annotated functions are marked as a potential parameter to be passed into

a Newton invariant (see Section 6.2.2).

In the C program we are considering, there are only two variables of type acceleration,

prevXacceleration and xAcceleration, and the invariant SimplePendulum takes in a

single parameter of type acceleration. Thus, those two variables are independently

selected as parameters of SimplePendulum.

The caller then needs to number their parameters from 0 to n - 1, where n is the number

of parameters passed into the Newton API call. Numbering the parameters sets the order of

the parameters as defined in the invariant scope of the Newton description and effectively

allows the Newton API to distinguish between two variables of identical Physics type (see

Section 6.2.4).

IrNode * root = genIrNode(newton, kNewtonIrNodeTypePparameterTuple,
2 NULL /* left child */,
3 NULL /* right child */,
4 NULL /* source info */);
5 IrNode* parameter = deepCopyNode(accelerationNode);
6 parameter->type = kNewtonIrNodeTypePparameter;
7 newtonApiAddLeaf(newton, root, accelerationNode);

newtonApiNumberParametersZeroToN(newton, root);

Finally, the Newton runtime library call newtonApiSatisf iesConstraints can be

inserted into the C compiler's intermediate representation with the parameter trees we

constructed so that the generated code will call newtonApiSatisf iesConstraints that

performs value checking at runtime. The Newton runtime library must be linked against the

C program before it is run. Changing the C compiler's intermediate representation is not

part of the Newton API, but an application of the Newton API (see Figure 5-1).

At runtime, the result of the call newtonApiSatisfiesConstraints, the

NewtonAPIReport struct, will show that the the constraints passed value constraints since

5 is between 3 and 9.

NewtonAPIReport* newtonReport = newtonApiSatisfiesConstraints(
newton,

3 parameterRoot
4 )

30



The runtime call newtonApiSatisf iesConstraints also checks for dimensional con-

sistency to evaluate the dimension of exponential expressions (see Section 5.3.2), and

it satisfies since acceleration defined in the Newton description invariants.nt has

dimensions m/s2

Now that the code to check if invariants are satisfied is included in the C program (C

intermediate representation), the C compiler can perform transformations to its program.

One transformation that a host language compiler can perform, covered in Section 6.2,

executes a global error handler if the invariant was found to be violated at runtime.

The transformation is the following. For every set of variables that matched

any Newton invariant, the C runtime calls the Newton runtime library routine

newtonApiSatisfiesConstraints before first usage of any of the matched variables

but after all of the matched variables have been defined and assigned a value, and then

executes a block of code annotated by the programmer to be the global error handler function.

The transformation repeats the steps above for every variable set that matches any Newton

invariants in the Newton description. Calling the Newton API before the first usage of

matched variables after they have been defined checks if those variable values satisfy the

Newton invariant.

A precondition of this transformation is that the C intermediate representation should

be in the Single Static Assignment form, in which every variable of the C intermediate

representation is assigned a value exactly once and is defined before used. Using the

Single Static Assignment form simplifies the problem of finding every usage of the matched

variables after they are assigned a value, otherwise done via use-def chain analysis. This

requirement is useful for being able to insert the call to a global error handler before the

matched variables are used. In addition, requiring the SSA form forces the host language

compiler to declare variables that directly represent sensors but are only used to define

other variables. For example, in the code "f oo = read_from accelerationx * 5",

read_f romaccelerationx would be declared in another variable bar before being used

to define f oo. This way, even though a host language program may not directly use the

variables that contain sensor data, the host language compiler can still check invariants on

sensor data at runtime if any variable is assigned a value computed from sensor data.

31



Shown below is the transformed version of the pendulum swing counting code, where

every variable is assigned a value exactly once and defined before used. Note that the sensor

platform used in this code has an accelerometer, and the code shown below is the body of

the main function. To facilitate presentation, only the variables that would be passed into

the Newton runtime library routine are shown to be declared.

// custom-made Boolean that contains invariant checking result for this block
2 bool VALID = true;

4 // matches SimplePendulum invariant
5 acceleration@O prevXaccelerationl = readFromXAccelerometero;

7 time durationInSeconds = 1000 * 30; // thirty seconds
e time startTime = readFromSystemClocko;
9 int swingCount = 0;

113

H while (readFromSystemClock() < startTime + durationInSeconds) {
2 // custom-made Boolean that contains invariant checking result for this

block
bool VALID = true;

14

15 / matches SimplePendulum invariant
16 acceleration@0 xAcceleration = readFromXAccelerometero;
17

1s prevXacceleration2 = PHI(prevXaccelerationl, prevXacceleration3);
19
20 / Call Newton API before the first usage of prevXacceleration2.

NewtonAPIReport* report = newtonApiSatisfiesConstraints(newton, /*
parameter tree made of prevXaccelerationi */);

22 VALID = VALID && report->satisfiesValueConstraint;
23

24 // if invariant violated.
25 if (!VALID)
26 globalE rro rHandle r ( report);
.7

28 / Call Newton API before the first usage of xAcceleration.
29 VALID = VALID && newtonApiSatisfiesConstraints(newton, /* parameter tree

made of xAcceleration */)->satisfiesValueConstraint;
30

31/ invariant violated
32 if (!VALID)
33 globalErrorHandler(report);

// first usage of prevXacceleration2 and xAcceleration
316 if (prevXacceleration2 * xAcceleration < 0) {
37 swingCount++;

as}

40 if (xAcceleration != 0) { // do not double count the change
14 prevXacceleration3 = xAcceleration;
4 }
44 }

32



. printf("detected %d swings in the pendulum\n, swingCount);

Now, we explain how the pendulum code was transformed line by line. Line 2 and 13 intro-

duce a custom Boolean variable for the function block and the loop block. These Booleans

will store the result of the runtime library call newtonApiSatisfiesConstraints.

Line 5 has a variable named prevXaccelerationl which holds the numeric value of

the x-axis accelerometer and thus will be considered a parameter to be passed into

newtonApiSatisf iesConstraints. Variables in line 7 and 8, durationInSeconds and

startTime do not hold direct sensor values throughout the runtime of the program, as

determined by the method called dynamic tagging we describe in Section 6.2.1, and will

not be a parameter to the runtime call. Line 16 has a variable named xAcceleration

which would also hold the numeric value of the x-axis accelerometer and thus will be a

parameter to the Newton runtime call. Line 18 uses an operation PHI to initialize the variable

prevXacceleration2 from prevXaccelerationl or prevXacceleration3, depending

on whether the control flow came from outside the loop or from the previous iteration of the

for loop.

Line 36 is the first time inside the for loop that the variables prevXacceleration2

and xAcceleration are used, so before Line 36, this transformation inserts code that

does 3 things. First, not explicitly shown in this code, it selects out of the variables

that are declared or used in the current loop - xAcceleration, prevXacceleration2,

durationInSeconds, startTime, and swingCount - parameters that should be passed

into the Newton runtime call newtonApiSatisf iesConstraints by running dynamic tag-

ging and matching types, which are prevXacceleration2 and xAcceleration. Second,

also not explicitly shown in this code, it constructs Newton parameter trees as illustrated

previously. Third, Lines 21 and 29 introduce a call to newtonApiSatisf iesConstraints

with the parameter trees created. Lines 25 and 32 execute the global error handler if the

invariant was violated any point so far. Note that the global error handler is not related

to Newton in any way - the host language must provide a syntax for the programmer to

designate a function as the handler, either through annotations or reserving a particular

function identifier as a keyword that denotes the global error handler. The error handler

function can take in a NewtonAPIReport struct to provide better error messages. This

33



approach is similar to how exceptions are thrown in Java.

The following code shows a hypothetical annotation syntax and a global error handler.

@@error
2 void globalErrorHandler(NewtonAPIReport* report) {

ConstraintReport* currentConstraint = report->firstConstraintReport;
4 while (currentConstraint != NULL) {

/* log errors in some file */
currentConstraint = firstConstraint->next;

7 }

Calling the Newton API before the usage of sensor variables after every assignment

statement ensures that invariants are checked on those invariants before those variables are

used in further computation. Because of the fact that there may be multiple variables of the

same Physics type that can match invariants, there are limitations to this method, which we

discuss in Section 6.2.7.

The overhead of using Newton is extra runtime required at compile-time and at

runtime to call the library methods. The below table summarizes the averages run-

times (in nanoseconds) of the two most complex Newton API calls newtonApiInit and

newtonApiSatisf iesConstraints. For each Newton description, the methods are run

40 times.

34



Newton Description newtonApilnit newtonApiSatisfiesConstraints

Step Counter 1503298 139392

Activity Classifier 1339013 156423

Vehicle Distance 675434 38847

Weather Balloon 1032082 89110

Airplane Pressure 684599 51114

Ball Dropped 1027406 77935

GPS Walking 786148 60469

Jet Engine 1010725 109836

Motor Wheel Chair 972281 63757

Reactor Rod 68395 62814

Sensor Life 1006878 88640

Tire Pressure 1621634 142686

The rest of this thesis explores the implementation of the methods in the Newton

compile-time library and the Newton runtime library as well as their applications.

35



36



Chapter 5

Newton Design

In this chapter of the thesis, we examine different components of the Newton API implemen-

tation: Physics data types, the syntax of the Newton description, constructing the Newton

parallel of the host language compiler's AST, and walking those trees for type checking and

value comparison. The next chapter builds on the content of this chapter and covers how to

use the Newton AST in order to perform dimension type checking and value checking, and

finally, how to transform the source code by inserting the call to the Newton runtime library

routine newtonApiSatisf iesConstraints into the host language compiler's AST.

5.1 The Newton Description File

One of the core ideas behind the design of Newton is that a designer of hardware can plug

a Newton description file into the host language compilation process in order to specify

custom laws of physics as we saw in Section 4. See Figure 1-3 and Figure 1-2.

As explained in Chapter 4, Physics data types are additional data types to the original

set of data types in a host language, enabled by language extensions or pragma directives.

Having these Physics data types allows the programmer to declare variables or functions in

terms of those data types.

For example, the programmer can declare a variable as an acceleration type with a

numerical value 5.

acceleration foo = 5;

37



A Newton description contains all the Physics data types available to a host language

program and invariants between sensor data during the host language compilation process.

Thus, a host language compiler can use a different Newton description to make a different

set of Physics data types and invariants available for a host language program.

The following two sections describe Physics data types and the structure of the Newton

description. The formal grammar of the Newton description is described in Appendix

Section B.

5.1.1 Physics Types in Newton

As mentioned in Chapter 2, being able to create types that represent quantities in Physics is

not a novel feature. Newton implements basic type checking of expressions and statements

of a host language program at compile-time similar to F# [21]. In F#, a programmer can

declare a custom type and declare variables in that type.

[<Measure>] type m (* meter *)
2 [<Measure>] type s (* time *)
2 let distance = 100.0<m>
4 let time = 5.0<s>
let speed = distance / time

Note that the type for speed is statically derived to be m/s by F# compiler. In F#, static type

checking uses these custom types defined by the programmer, but during runtime the types

of variables in F# are set to a numeric type.

Type checking in Newton is similar to F# in that custom types can be declared that

represent Physics quantities, but it is different from F# in that the hardware manufacturer,

not the programmer (of a language whose compiler interacts with Newton), declares custom

data types available to a host language program by writing a Newton description as an input

to the host language compiler (see Figure 4-1). In F#, the programmer writes additional code

to define custom types in that program, but in Newton, custom types are already defined in

a Newton description, which is used in a host language compilation process. Having this

capability to define custom types allows type-checking of statements and expressions of a

host language program through the Newton API. The following describes how these custom

Physics types are declared in a Newton description.

38



1. Newton allows assigning dimensions to "base" Physics types. The base Physics types

in Newton are the simplest building blocks that make up other derived Physics types.

For example, the unit of seconds "s" describes the dimension of time.

time : signal = {
name = "second" English

3 symbol = "s";
4 derivation = none;
5}

7 distance signal(i: 0 to 2) = {
8 name = "meter" English
9 symbol = "m";
10 derivation = none;
ji }

2. In Newton, "derived" Physics types can be defined in terms of base Physics types

or other derived Physics types, thereby assigning dimensions to the derived Physics

types. For example, speed is distance divided by time. The Newton compiler

computes the dimension of speed based on the base Physics types defined or on the

previously defined derived Physics types.

speed : signal(i: 0 to 2) = {
2 derivation = distance@i / time;

This feature also allows definition of physics constants.

speedLimit: constant = 100 * m / s;

3. For some Physics types defined, Newton can define the axes at which they occur. For

example, distance, speed, and acceleration have 0, 1, and 2 axes which can be

interpreted as x, y, and z axes.

5.1.2 Syntax of the Newton Description

This section explains where these Physics types are defined in the Newton description

and how they are used to define invariants. There are the three components of a Newton

description file: signal scopes, constant statements, and invariant scopes.

1. Signal scopes define either base or derived Physics types and their units. Base Physics

types have none as their derivation, and derived Physics types have expressions of

39



base Physics types or other previously defined derived Physics types. These Physics

types represent the signals read from sensors on a hardware platform. Some base

Physics types exist primarily to be able to define derived Physics types of typical

sensors on a commercial hardware, such as acceleration, magnetic flux, and gyro,

where other base Physics types directly represent the signals of sensors, such as the

temperature sensor.

2. Invariant scopes define a set of constraints that must be preserved for a set of parame-

ters..A parameter is a host language program variable with the specified Physics type

in the Newton invariant signature. All constraints defined in an invariant scope must

hold true for all of the parameters in that scope. Note that the Newton libraries do not

select which host language program variables should be described by Newton invari-

ants, but the host language compiler does. Invariant scopes are similar to functions in

a way that they take in a list of parameters with designated types and specifies some

logic that applies to the parameters. See the next subsection and Section 5.3.2 for

more details.

3. The constant statements define physics constants, such as Newton's gravitation con-

stant, with their corresponding dimensions expressed in terms of the base dimensions.

The constants can also be dimensionless, such as the mathematical constant 7r.

4. In derived Physics types, name and symbol can be aliases for the SI units. For

example, Force can have either kg * m/s 2 or N, where kg * m/s2 comes from

Newton compiler derivation and N is the symbol of the name Newton. This approach

is similar to aliasing in F# [21].

The following is an example Newton description that illustrates the three components

described above.

time : signal = {
2 name = "second" English
3 symbol = "s";
4 derivation = none;
5 }

6

distance signal(i: 0 to 2) = {
name = "meter" English

40



symbol = "m";
derivation = none;

2 }

o mass : signal = {
I. name = "kilogram" English
15 symbol = "kg";
16 derivation = none;
7 }

speed : signal(i: 0 to 2) = {
derivation = distance@i / time;

22 }

acceleration : signal(i: 0 to 2) = {
24 derivation = speed@i / time;

2, }

- Pi constant = 3.14159;
2 g constant = 9.8 * meter ** 2 * second ** -2;
9 pendulumLength : constant = 3 * m;

1i PendulumInvariant : invariant(
32 a: acceleration@0,

period: time
34) ={

a >= 2.2 * m /s **2,
36 a <= 10 * m /s **2,
- period - (4 * Pi * Pi * pendulumLength / g) ** 0.5,
38 period >= 3 * second,
39 period <= 9 * second
4( }

This Newton description defines base Physics types of distance and time and derived

Physics types of speed and acceleration. PendulumInvariant is an invariant that takes

in an x axis acceleration and a variable whose value is the period of the pendulum, and this

invariant asserts some simple properties that must be preserved for this particular sensor

platform.

5.2 The Newton AST

The main two applications of Newton API are contributing to compile-time checks per-

formed by the host language compiler and modifying the host language source code using

information from the Newton API in a way that makes the original source code written

in the host language more robust or improve its performance. The Newton AST is the

41



Source Code

Source CodeNsewto

tranform

AST Newton AST dknerision checks Errors

Newton API
parsese Neto

Newton Description tranr

Newto dsrption

(used in all Newton
API cals)

Figure 5-1: Two different Newton AST's are created from source code and the Newton
description. The Newton AST of the Newton description is used built in the Newton API call
newt onApiInit and helps build the Newton AST of the source code as well as type-check

it. The source code Newton AST is then used to construct parameters that would be passed
into the invariant checking API, which reads invariant subtrees of the Newton AST of the
Newton description. The code to perform this checking and optimization is incorporated

into the host language compiler's AST.

main interface through which type checking of the source code and its transformation are

achieved. See Figure 5-1. There are two different Newton AST's involved, one representing

the Newton description and the other representing information about portions the host

language program which are passed to the Newton compile-time library for validation.

From the API caller's perspective, the host language compiler builds Newton AST's,

in addition to its own intermediate representation for portions of its programs that need

to be validated by the Newton libraries. Specifically, the Newton AST's are used to call

newt onApiDimensionCheckTree which walks the input Newton tree of a statement or an

expression to perform dimension type checking, and they are also scanned to build lists of

parameters to pass into newtonApiSatisf iesConstraints as discussed in Section 6.2.3.

The Newton API then validates the input from the host language compiler, which

is given in the form of a Newton tree, with information contained in the Newton

description, which is encoded in the form of Newton AST's and other symbol ta-

bles. In newtonApiDimensionCheckTree (dimension type checking), the Newton

API simply walks the host language compiler's Newton AST (built by calling meth-

42



ods in the Newton compile-time library as we will see in the next section), and in

newt onApiSatisf iesConstraints (runtime value checking and type checking), the New-

ton API walks subtrees in its own Newton AST (more specifically, a single invariant scope

subtree) of the Newton description and looks up parameters passed in from the host language

runtime. Requiring the input trees to be in the form of Newton AST unifies the interface

between the Newton API and many different host language compilers.

As of the current implementation, the Newton language only has simplest language

constructs to enable a host language compiler to build its Newton AST of only simple blocks

(in this thesis, function scopes and loop scopes) containing statements and expressions,

that is programs without branches. However, even for a complex program, a host language

compiler can still build small separate trees of its statements and expressions for dimension

type checking since the Newton API takes in a statement or an expression Newton tree. This

way, the host language can have language constructs not defined in Newton and still utilize

the Newton API to perform checks on its source code.

5.2.1 Building Newton AST's for Newton Descriptions and for Host

Language Expression and Statements

To see the node types currently supported by the Newton API, refer to Appendix Section

D. Building the Newton AST for the Newton parser and for the host language compiler is

identical except for how to set the Physics types of the identifier nodes.

5.2.2 Building the Newton AST: Creating Newton AST Nodes

Creating a node for the Newton AST is done by identifying which Newton node type that a

host language program's node type maps to and then by calling the Newton API method

make IrNodeSetValue with the appropriate node type. For example a + node type in C

would map to the Newton node type kNewtonIrNodeTypeTplus.

IrNode * plus = makeIrNodeSetValue(
2 newton,

kNewtonIrNodeType-Tplus,
NULL,
e

43



The third and the fourth parameters to make IrNodeSetValue are the string value of the

node and the numeric value of the node in case the nodes are strings or numbers.

Identifier nodes, however, require an additional treatment after making the nodes before

they can be added to the Newton AST.

5.2.3 Building the Newton AST: Setting Physics Types of Identifiers

For the Newton parser, all of the signal scopes (see Section 5.1) define a Physics type. Every

signal scope is noted by the Newton keyword "signal" and is preceded by an identifier which

is the name of that Physics type. The Newton parser (written in C) stores the information

about the signal scopes in a table of Physics struct's in memory. Now consider the Newton

invariant scope shown below.

PendulumInvariant : invariant(a: acceleration@0, period: time) =

a >= 2.2 *m /s **2,
a <= 10* m /s **2,
period - (4 * Pi * Pi * pendulumLength / g) ** 0.5,

6 period >= 3 * second,
period <= 9 * second

When the Newton parser sees an identifier a associated with a

Physics type acceleration in this scope, it creates a node with type

kNewtonIrNodeTypeTidentifier with Physics type acceleration by looking it

up in the table in memory (the Newton parser must have seen a base signal declaring

acceleration before parsing this invariant scope).

Constructing a Newton identifier for the host language compiler is slightly different.

Consider the C code below with language extension that allows using Physics types in

Newton.

acceleration@0 foo = 4;

The host language compiler does not have the information about Physics types in

memory like the Newton parser when it is translating its AST to a Newton AST (or build-

ing the Newton AST during the parsing phase). The host language compiler must call

newtonApiInit with a file path to a Newton description to run the Newton lexer/parser

44



so that the Physics types are in memory and then call newt onApiGetPhysicsTypeByName

on the string "acceleration" to ask the Newton API what Physics struct corresponds to the

string "acceleration".

In general, having to create Newton identifier nodes for making Newton AST's will

modify the type expression parsing step of the host language compiler as follows.

Algorithm 1: Parsing Type Expressions with Newton API
input :list of tokens

output :a type is set for the identifier node

type = next token in the list;

if type is a data type in host language then
I parse type as before.

else if newtonApiGetPhysicsTypeByName(type) returns non-null then

set the type of the identifier related to this type in host IR as float;

set the type of the identifier related to this type in Newton IR as the returned

Physics struct;

else

Unknown type. Add to compile errors;

end

Note that the above method assumes that the host language parser is building the Newton

AST at the same time as it is building its own AST, but the same logic can be applied to the

case where the host language compiler already built its AST and translating it to a Newton

AST.

For languages that do not have static typing like Python,

newtonApiGetPhysicsTypeByNameAndSubindex cannot be called at compile time.

Therefore, the method should be called at runtime along with other Python type errors

and syntax errors, just like how "'abc' + 8" throws an error at runtime. For example, in

"myAcceleration = readfromaccelerometerO" written in Python, the type of the

method readf romaccelerometer is not known at compile-time. For languages without

static type checking, the steps just described above have to be performed at runtime.

In addition, for languages like Python that do not have declaring type expressions in

assignment statements such as in C, there needs to be an additional syntax that allows the

45



programmer to specify the type of variables such as

foobar = acceleration@0(7)

which would mean "foobar" is an acceleration object in the x axis with value of 7. This is

similar to how objects are instantiated in Python, and it does not require significant changes

from the original Python syntax except recognizing the sub-dimension notation "@". The

algorithm then would apply to recognizing object instantiation expressions instead of type

expressions, like the following.

Algorithm 2: Parsing Object Instantiation Expressions with Newton API

input :list of tokens

output a type is set for the identifier node

type = next token in the list;

if type is a name of a built-in type or defined type in host language then

I parse type as before.

else if newtonApiGetPhysicsTypeByName(type) returns non-null then

set the type of the identifier related to this type in host IR as a numeric type;

set the type of the identifier related to this type in Newton IR as the returned

Physics struct;

else

Unknown type. Add to compile errors;

end

5.2.4 Building the Newton AST: Inserting a node into the Newton AST

Nodes in the Newton AST are inserted in depth-first manner. The Newton AST has the

property that all nodes have only two child nodes, and the first vacant spot found is filled

with the new node.

46



expression: 4 / 5

left ter

4 5

Figure 5-2: Comparison of AST's with and w
than two children

left term
4/5

4 Xseq

5

ithout a dummy Xseq for nodes with more

Algorithm 3: Adding node without Xseq
input :a parent node, a node to be added

output : child is added to the tree

if parent has a left child and a right child then

recurse on the right child;

return;

end

if parent has no child then

attach the input node to the parent as a left child;

return;

end

if parent has a left child then

attach the input node to the parent as a right child;

return;

end

If a node has a type that should have more than two children, such as an expression having

47



two operands and a binary operation, then newtonApiAddLeaf WithChainingSeqNoLexer

method is used, which adds a dummy node of type Xseq before attaching a node to the tree.

Using an Xseq node has the advantage of simplifying tree traversals because all node

types have the equal number of children. However, it is completely a matter of preference.

Algorithm 4: Adding node with Xseq
input : a parent node, a node to be added

output child is added to the tree

if parent has a left child and a right child then

recurse on the right child;

return;

end

if parent has no child then

attach to the parent as a left child;

return;

end

if parent has a left child then

attach Xseq to the parent as a right child;

recurse on Xseq;

return;

end

5.2.5 Newton AST Sample Tree

The following is a very simple Newton description and its corresponding Newton AST.

time : signal =

2 {

3 name = "second" English
4 symbol = "s";
5 derivation = none;
6 }

7

8

9 Sample: invariant(t: time) =
0 {
I t < 1 * s
2

48



Figure 5-3: This picture has the Newton AST and the symbol tables of a simple Newton
description. This image is automatically generated by one of the Newton compiler's
backends.

The following is the Newton AST of the Newton description above. It may be necessary

to zoom in to see the details more clearly.

The graph has been generated by the Dot visualization backend that is shared between

the Newton compiler and the Noisy compiler, a compiler of another language. Using Dot

backend is useful for visualizing the intermediate representation as well as for debugging

any errors.

49



5.3 Newton AST Walk

The following two sections describe how to walk the Newton AST during the Newton

API calls newt onApiDimensionCheckTree and newtonApiSatisf iesConstraints, re-

spectively. The first method newtonApiDimensionCheckTree is used in contributing

to compile-time errors for host language compilers as described in Section 6.1. The

second method newtonApiSatisf iesConstraints is called at runtime after a host lan-

guage compiler has transformed its intermediate representation to include the calls to

newtonApiSatisfiesConstraints.

5.3.1 Newton AST Walk in newtonApiDimensionCheckTree: Deter-

mining Dimensional Consistency

The algorithm in this section describes a simple walk to perform type-checking of a binary

operator expression subtree of a Newton AST according to the rules described below.

1. Binary operations multiply and divide can have two operands of different Physics

types. The resulting expression will have a Physics type whose dimensions' exponents

are the sum or the difference of the dimensions' exponents in the two operands. For

example, in the following code

distance foo = 1;
- time bar = 2;

velocity foobar = foo / bar;

The variable f oo has a Physics struct which contains the dimension meter of exponent

1 and the dimension second of exponent 0, and the variable bar has corresponding

exponents set to 0 and 1. Then the exponents of variable f oobar will be the exponents

of bar subtracted from the exponents of f oo.

2. The binary operation of exponentiation can also have two operands of different Physics

types. The resulting expression will have a Physics type whose dimensions' exponents

are the product of the exponents in the base expression node and the scalar value of

the exponential expression node. The exponential expression node must have the

50



exponents of all dimensions equal 0. For example, the first code is allowed, but the

second code isn't.

distance foo = 2;
2 area bar = foo ** 2;

distance foo = 2;
2 time bar = 3;
3 wrongType bar = foo ** bar;

3. Binary operations, add and subtract, must have two operands of same Physics types.

The resulting expression will have a Physics type whose dimensions' exponents are

the same as the exponents of either operands. Again with the same example, the first

code is allowed, but the second code isn't.

distance foo = 1;
distance bar = 2;
distance foobar = foo + bar;

distance foo = 1;
2 time bar = 2;

wrongType foobar = foo + bar;

4. Compare operations of >, <, >=, >=, and follow the same rules as add and

subtract.

5. The assign operation of = follows the same rules as add and subtract.

The algorithm we describe next happens inside the compile-time Newton API call

newtonApiDimensionCheckTree as it walks through the input Newton AST provided by

a host language compiler. The symbol table of base and derived Physics types from the

Newton API are used to look up the types of the leaf nodes, but the rest of this tree walk

only involves the Newton AST that represents the host language program. This method is

51



used by host language compilers to build compile-time errors in Section 6.1. Type-checking

of statements can be performed in a similar manner.

Algorithm 5: Tree Walk with Counting Children Nodes: Part 1 of 5
input :Newton AST representing an expression in a host language program

output: A compile-time error report

Procedure checkExp ression (currentNode)

1 int expressionIndex = 1, termIndex = 0, factorIndex = 0;

2 int lowBinOpIndex = 0, midBinOpIndex = 0, highBinOpIndex = 0;

3 left = findNthNodeofType(currentNode, term Type, termIndex);

4 lowBinOpIndex, midBinOpIndex, highBinOpIndex, expressionIndex, termIndex,

factorIndex += checkTe rm (left);

s plusOrMinusNode = f indNthNodeOf Type (currentNode, plusOrMinusType,

lowBinOpIndex);

6 while plusOrMinusNode is not null do

7 lowBinOpIndex ++;

8 right = f indNthNodeOf Type (currentNode, termType, termIndex);

9 lowBinOpIndex, midBinOpIndex, highBinOpIndex, expressionlndex,

termIndex, factorIndex += checkTe rm (right);

10 check left term and right term have same Physics types. if not, add to compile

errors and exit;

11 left = right;

12 plusOrMinusNode = f indNt hNode0 f Type (currentNode, plusOrMinusType,

lowBinOpIndex);

end

13 return all the indices;

52



The algorithm is continued below.

Algorithm 6: Tree Walk with Counting Children Nodes: Part 2 of 5

input :Newton AST representing an expression in a host language program

output A compile-time error report

Procedure checkTe rm(currentNode)

1 int expressionIndex = 0, termlndex = 1, factorIndex = 0;

2 int lowBinOpIndex = 0, midBinOpIndex = 0, highBinOpIndex = 0;

3 left = f ind NthNode Of Type (currentNode, factorType, factorIndex);

4 lowBinOpIndex, midBinOpIndex, highBinOpIndex, expressionIndex, termIndex,

factorIndex += checkFactor (left);

5 initialize exponents of currentNode to be exponents of left;

6 mulOrDivNode = f indNthNodeOf Type (currentNode, mulOrDivType,

midBinOpIndex);

7 while mulOrDivNode is not null do

8 midBinOpIndex++;

9 right = checkFactor (findNthNodeOfType (currentNode, factorType,

factorIndex));

10 lowBinOpIndex, midBinOpIndex, highBinOpIndex, expressionIndex,

termIndex, factorIndex += chec kFacto r (right);

11 add or subtract exponents of right from termNode;

12 mulOrDivNode = f indNthNodeOf Type (currentNode, mulOrDivType,

midBinOpIndex);

end

13 return all the indices;

53



Continued.

Algorithm 7: Tree Walk with Counting Children Nodes: Part 3 of 4

input :Newton AST representing an expression in a host language program

output: A compile-time error report

Procedure checkFacto r (currentNode)

1 int expressionIndex = 0, termlndex = 0, factorIndex = 1;

2 int lowBinOpIndex = 0, midBinOpIndex = 0, highBinOpIndex = 0;

3 expressionNode = findNthNodeOf Type (currentNode, expressionType,

expressionIndex);

4 if expressionNode is not null then

5 lowBinOpIndex, midBinOpIndex, highBinOpIndex, expressionIndex,

termIndex, factorIndex += chec kExp res s ion (expressionNode);

6 left = expressionNode;

7

else

8 left = currentNode;

9

end

10 exponentialNode = f indNthNodeOf Type (currentNode, exponentType,

highBinOpIndex);

11 while exponentialNode is not null do

12 highBinOpIndex++;

13 right = f indNthNodeOf Type (currentNode, expression Type,

expressionIndex);

14 lowBinOpIndex, midBinOpIndex, highBinOpIndex, expressionIndex,

termIndex, factorIndex += checkExp ression (right);

is Check that right is dimensionless;

16 combine Physics types of left and right by multiplying or dividing exponents;

17 left = combined;

18 exponentialNode = f indNthNodeOf Type (currentNode, exponentType,

highBinOpIndex);

end 54

19 return all the indices;



The above methods walk through a given Newton AST performs checking on two

operands. When performing a check with operands multiply or divide, it is necessary to

add or subtract exponents of the base dimensions as mentioned above. When performing a

check with operands add or subtract, no such operations are needed, but a check needs to be

in place to make sure that left and right are of the same dimensional type. In the current

implementation, this is achieved by having the Newton API keep track of a list of base

dimensions per node, such as distance, time, temperature, and electricalcharge,

and incrementing or decrementing those exponents as necessary.

Performing type-checking on factors requires multiplying or dividing the exponents of

the base expression by the value of the exponential expression. We also ensure that the

55



exponents of the base dimensions in the exponential expression (if there is one) are all zeros.

Algorithm 8: Tree Walk with Counting Children Nodes: Part 4 of 4
input :Newton AST representing an expression in a host language program

output A compile-time error report

Procedure findNthNodeOf Type (currentNode, targetType, index)

1 if node->type is the targetType then

2 if index is 0 then

3 return this node;

else

4 decrease index by 1;

end

5

end

6 targetNode;

7 if targetNode = f indNt hNode0f Type ( currentNode->eftChild, targetType,

index) is not null then

8 return targetNode;

9

end

10 if targetNode = f indNthNodeOf Type ( currentNode->rightChild, targetType,

index) is not null then

11 return targetNode;

12

end

13 return null;

Finally, f indNthNodeOf Type is a simple depth-first search of the given Newton

AST that looks for the next node of a given type by keeping a counter of what we have

seen so far in the given tree. This method essentially accomplishes what a parser would

do with a stream of tokens to find out if the next token is in the first set of some type,

but in this case, the input is an AST. The node passed to f indNthNodeOf Type and the

56



counter index represent the current position in the tree. A minor detail assumed about the

input AST in the above algorithm is that kNewtonIrNodeType-quantityExpression,

kNewtonIrNodeType-quantityTerm, and kNewtonIrNodeType-quantityFactor

nodes are explicitly in the AST before the nodes whose types are subtypes of these three

types are inserted into the AST. For example, before an identifier node is inserted into the

Newton AST, kNewtonIrNodeType-quantityFactor is inserted first. Similarly, when

the Newton parser encounters a parenthesis, kNewtonIrNodeType-quantityFactor is

inserted before kNewtonIrNodeType-quantityExpression.

5.3.2 Newton AST Walk in newtonApiSatisfiesConstraints: Value

Constraint Checking

The method newtonApiSatisfiesConstraints performs a Newton AST walk and is

used at runtime as a result of the transformation described in Section 6.2. Note that this

runtime library call happens at runtime after the transformation in Section 6.2 is performed

at compile-time. In contrast to the method described in the previous section, which walks the

host language program Newton AST at compile time, this method walks the Newton AST

that represents the Newton description at runtime, except when looking up identifier leaf

nodes in the parameter trees passed in from the host language runtime. Section 6.2 explains

how the host language compiler selects variables from its program to form parameter trees

and how the host language compiler intermediate representation is transformed.

The implementation for the invariant checking is essentially walking the Newton AST,

setting values of the leaf nodes that correspond to the parameters passed in, and then

propagating the values upward toward root of each constraint subtree. A constraint subtree

is in the form LHS compareOp RHS. The values propagated to LHS and RHS are compared

at the constraint subtree root, and if all of the constraints in the invariant passes, then

the Newton API method newtonApiSatisf iesConstraints returns a NewtonAPIReport

struct whose satisf iesValueConstraints field is set to true, and false otherwise.

Recall the first example of a Newton invariant in the beginning of last section. Each of

the listed constraints, such as

a >= 3 * meter ** 2 / s

57



kMewtonfrNodeTyp
e _Pinvariant

kewtonrNodeTyp kNewtonlrNodeTyp kNewtonlrNodeTyp kNewtonlrNodeTyp kNewtonlrNodeTyp

"Si pl Pendlum" ePconstraint e_Pconstraint ePconstraint ePparameterTuple

kNtonlrlodeTyp MekNewtonlrNodeTyp
e_PquanttyExpres kNeonlrpadeTyp ePquantityExpres

slon - sion
"a" > "2.2 rn / s^2"

Figure 5-4: A sample invariant Newton subtree

are the nodes of type kNewtonIrNodeTypePconstraint, whose chil-

dren nodes are of types kNewtonIrNodeTypePquantityExpression,

kNewtonIrNodeType_Pcompare0p, and another kNewtonIrNodeTypePquantityExpress ion

as we can see in Figure 5-4.

Walking each expression tree consists of finding all the factors that comprise each term

and then applying appropriate binary operations between the two nodes at a time. After the

values are propagated up to both expression tree roots of an invariant node, the Newton API

compares the values in the two tree expression nodes.

Newton AST Walk in newtonApiSatisfiesConstraints: Runtime Dimensional Type

Checking

Dimension constraints can fail at runtime if dimensions of the left expression and the right

expression do not match. Because dimension type checking already happens at compile-time,

runtime dimension checking is only necessary if runtime values would somehow result in

different Physics types of the expressions inside the Newton description, which happens

when a runtime numeric value is used inside an exponential expression of a base that has a

Physics type. An exponential expression as a whole must be dimensionless, but parameters

that go into it does not have to be. For example, suppose our invariant was

58



SimplePendulum invariant(a: acceleration) =

{-
4 * m ** 2 ~ 4 * m ** (a / (2 * m / s ** 2)),

}

The invariant above is the same invariant as

SimplePendulum : invariant(a: acceleration) =

{
a - 2 * m / s ** 2

}

The exponential expression itself must evaluate to be 2, or the dimensions of the LHS

4 * m2 and the RHS 4 * ma/(2*m/s 2) wouldn't match. This example is the reason that

dimensions are still checked at runtime because the values can change the dimension types

if it is included in an exponential expression.

5.4 List of API Methods

These API methods are the interface between a host language compiler and New-

ton. The details of how two API methods newtonApiDimensionCheckTree and

newtonApiSatisfiesConstraints are used and in what context are described in the

next chapter 6 where we show how these two methods help host language program's

compile-time dimensional type checking and runtime invariant checking.

The methods of the Newton compile-time library are listed below. For a complete

description of the methods, see Appendix Section D.

Method Name Returns Parameter

newtonApilnit struct State* char* fileName

getPhysicsTypeByName struct Physics* struct State* newton, char* nameOfrype

getPhysicsTypeByNameAndSubindex struct Physics* struct State* newton, char* nameOfType, int subindex

newtonApiDimensionCheckTree struct ConstraintReport* struct State* newton, struct IrNode* tree

newtonApiAddLeaf void struct State* newton, struct IrNode* parent, struct IrNode* newNode

newtonApiAddLeafWithChainingSeqNoLexer void struct State* newton, struct IrNode* parent, stnict IrNode* newNode

newtonApiNumberParanetersZeroToN void struct State* newton, struct IrNode* parameterTreeRoot

The Newton runtime library just consists of one method, shown below.

Method Name Returns Parameter

59

newtonApiSatisfiesConstraints struct NewtonAPIReport* struct State* newton, struct IrNode* parameterTreeRoot



5.5 Sample Newton Descriptions

In this section, we describe twelve real-world systems with Newton.

5.5.1 Pedometer Step Counter

The sensor platform used is a pedometer that uses a 3 axes accelerometer, a 3 axes gyro,

and a processor. The application for the pedometer is a step counter which detects peaks in

accelerometer data. The application that implements the algorithms is described in [7], and

the transformation of the application code using the Newton API is described in Section

A.1.

The base Physics types defined in the Newton description - time, distance, speed,

and angular-displacement - only exist to be able to define the derived Physics types

to be used as parameters of the invariant accelerationAndGyro. Note that it is not

required to define the derived Physics types in terms of base Physics types: defining only

acceleration and angular-velocity as base Physics types will not cause errors if they

are treated as base Physics types by the host language program. However, having base

Physics types makes the Newton description a more realistic representation of the system.

There are 6 dimensions defined for many of the signals because there are 2 duplicate sensors

of 3 degrees of freedom in acceleration and angular velocity.

One invariant of this system is the range of possible acceleration values, which is capped

at 9.5m/s2 , Usain Bolt's maximum recorded acceleration [11]. Another invariant of this

system is that the tangential velocity is related to the angular velocity by the length of the

arm if the sensors are worn at the wrist. Thus, the magnitude of the tangential velocity

divided by the magnitude of the angular velocity or vice versa should equal the length of the

arm. In this Newton description, the length of the human arm is broadly bounded between

0.1 meters and 2 meters. The third invariant shows sensor redundancy for the accelerometer

and the gyro.

time : signal = {
name = "second" English
symbol = "s";
derivation = none;

60



distance signal(i: 0 to 5) = {
s name = "meter" English

symbol = "m";
w0 derivation = none;

H }
12

n speed : signal(i: 0 to 5) = {
14 derivation = distance@i / time;
15 }
16

t acceleration : signal(i: 0 to 5) = {
18 derivation = speed@i / time;
19 }
20

21 angular-displacement : signal(i: 0 to 5) = {
name = "radian" English

2-1 symbol =rad
24 derivation = none;
25 }
26

angular-velocity : signal(i: 0 to 5) = {
28 derivation = angular-displacement / time;
29 }
30

SamplingTime : constant = 5 * 10 ** -4 * s;

maximumAcceleration: invariant(
34 x: acceleration@0,
35 y: acceleration@1,
36 z: acceleration@2
37 ) = {
3k x < 9.5 * m / s ** 2,

9 x > - 9.5 * m / s ** 2,
40 y < 9.5 * m / s ** 2,

y > - 9.5 * m / s ** 2,
4, z < 9.5 * m / s ** 2,
43 z > - 9.5 * m / s ** 2
S}

45

accelerationAndGyro : invariant(
x: acceleration@0,

48 y: acceleration@1,
.49 z: acceleration@2,
10 row: angular-velocity@0,
51 pitch: angular-velocity@1,
52 yaw: angular-velocity@2
53 ) = {
54 # rectangular integration estimation
55 ((x * SamplingTime) ** 2 + (y * SamplingTime) ** 2 + (z * SamplingTime)

** 2) / (row ** 2 + pitch ** 2 + yaw ** 2) < (2 *m / rad) ** 2,
56 (row ** 2 + pitch ** 2 + yaw ** 2) / ((x * SamplingTime) ** 2 + (y *

SamplingTime) ** 2 + (z * SamplingTime) ** 2) > (0.1 * rad / m) ** 2

' -9 }

5s) accelerationRedundancy: invariant(

61



60 x1: acceleration@O,
61 yl: acceleration@1,
62 z1: acceleration@2,
63 x2: acceleration@3,

y2: acceleration@4,
65 z2: acceleration@5
66 ) = {
67 x1 - x2,
68 yl - y2,
69 zl - z2
70 }
71

72 gyroRedundancy: invariant (
73 x1: angular-velocity@O,
74 yl: angular-velocity@l,
75 z1: angular-velocity@2,
16 x2: angular-velocity@3,
7 y2: angular-velocity@4,

z2: angular-velocity@5
79 ) = {
.o x1 - x2,

yl - y2,
82 zl - z2
S3 }

5.5.2 Activity Classifier

The goal of this system is to collect sensor data of a smart-watch worn by a person doing

daily activities and to be able to label activities on each row of sensor data. Sensors used by

the activity classifier are accelerometers in three axes, gyro in three axes, pressure sensor,

and magnetic field sensor in three axes. In addition to the sensors, the smart-watch would

have a processor, a storage, and a network driver to be able transmit the sensor data to

another computer.

The first invariant used in this system is identical as in the pedometer step counter

example. The second invariant encodes an acceleration sensor redundancy.

While recording sensor data, if the invariants are violated, the smart-watch could log

errors to a file.

time : signal = {
2 name = "time" English
3 symbol = "s";
4 derivation = none;
5 }

6

distance signal(i: 0 to 5) = {
name = "meter" English

62



9 symbol = "m";
W derivation = none;
11 }
12
j. mass : signal = {
1.4 name = "kilogram" English
is symbol = "kg";
.16 derivation = none;
'7 }

is speed : signal(i: 0 to 5) = {
20 derivation = distance@i / time;
21 }
2 2

23 acceleration : signal(i: 0 to 5) = {
derivation = speed@i / time;

25 }
26

angular-displacement : signal(i: 0 to 2) = {
name = "radian" English

29 symbol = "rad";
derivation = none;

sl }

3 angular-velocity : signal(i: 0 to 2) = {
31 derivation = angular-displacement@i / time / 60;
35 }

magnetic-field : signal = {
name = "Tesla" English

.;9 symbol = "T";
40 derivation = none; # not a base SI unit, but can be defined as a Newton

base unit
4' }

43 TimeBetweenSensors: constant = 5 * 10 ** -6 * s;
4 SamplingTime : constant = 5 * 10 ** -4 * s;
45

46 accelerationAndGyro : invariant(
4 7 x: acceleration@0,
.8 y: acceleration@1,

z: acceleration@2,
so row: angular-velocity@0,
51 pitch: angular-velocity@1,
52 yaw: angular-velocity@2
53 ) = {
54 # rectangular integration estimation
55 ((x * SamplingTime) ** 2 + (y * SamplingTime) ** 2 + (z * SamplingTime)

** 2) / (row ** 2 + pitch ** 2 + yaw ** 2) < (2* m / rad) ** 2,
56 (row ** 2 + pitch ** 2 + yaw ** 2) / ((x * SamplingTime) ** 2 + (y *

SamplingTime) ** 2 + (z * SamplingTime) ** 2) > (0.1 * rad / m) ** 2
57 }
58

49 redundantAccelerometers : invariant(
60 x1: acceleration@0,
61 yl: acceleration@1,

63



62 z1: acceleration@2,
63 x2: acceleration@3,
(A y2: acceleration@4,
6. z2: acceleration@5
66 ) = {

67 x1 - x2,
S yl - y2,

09 zl - z2
7o }

5.5.3 Maintaining Vehicle Distance

This system is about maintaining a proper distance between a row of autonomous vehicles,

and it aims at stabilizing distances between the vehicles as well as quickly responding to

any disturbances while avoiding collisions between the vehicles [9].

Sensors used by each vehicle are accelerometers in three axes, gear shaft rotation sensor,

and a sonar radar sensor (gives distance from the previous vehicle). Each vehicle would also

carry a processor, a storage, and a network driver that allows the vehicle to communicate

with a remote server or with other vehicles. The Newton description specifies invariants for

sensors in each vehicle in order for this system to behave correctly, namely to maintain a

reference distance and a certain relative velocity from the previous vehicle.

i time : signal = {
2 name = "time" English
3 symbol = "s";
4 derivation = none;

5 }

- distance signal = {
name = "meter" English

9 symbol = "m";
10 derivation = none;
Ii }

3 speed : signal = {
jz derivation = distance / time;
'5 }
16

r7 acceleration : signal = {
derivation = speed / time;

In }
20

:1 angular-displacement : signal = {
name = "radian" English

21 symbol = "rad";
2.. derivation = none;

64



angular-velocity : signal = {
derivation = angular-displacement / time / 60;

29 }
30

TimeBetweenSensors: constant = 5 * 10 ** -6 * s;
2 ReferenceDistance: constant = 1.3 *m;

keepDistance: invariant(
35 x: distance
36 ) = {

x > ReferenceDistance
as}

4o velocityBound: invariant(
distance-to-prev-car: distance,

J2V current-speed: speed
43 ) = {
S distancetoprevcar - ReferenceDistance > current-speed *

TimeBetweenSensors
45 }

5.5.4 Weather Balloon

This system describes a weather balloon that collects atmospheric data. Sensors on a typical

weather balloon detect temperature, altitude, pressure, humidity, and more, but this Newton

description focuses on temperature and pressure sensors. The balloon would also contain

a processor and a storage device that contains recorded sensor information as well as any

error logs.

The invariants are the properties of the International Standard Atmosphere [10]. In the

ISA troposphere layer, the altitude, the air pressure, and the atmospheric temperature are

related to each other by the gas laws. If the invariants are violated, the software of the

device recording sensor data executes an error handler function that might do something

like recording to an error log.

i time : signal = {
2 name = "time" English
3 symbol = "s";

derivation = none;
5 }

7 distance: signal = {
name = "meter" English

o symbol = "m";
It derivation = none;

65



Ii }

13 mass : signal = {
I4 name = "kilogram" English

symbol = "kg";
is derivation = none;
'7 }
18

temperature : signal = {
name = "Kelvin" English

21 symbol = "K";
22 derivation = none;
23 }

area : signal = {
26 derivation = distance ** 2;
2 }
2S

29 speed : signal = {
-,f derivation = distance / time;
31}

33 acceleration : signal = {
34 derivation = speed / time;
3; }
36

n-; force : signal = {
38 name = "Newton" English
so symbol = "N"
40 derivation = mass * acceleration;
42 }

43 pressure: signal = {
name = "Pascal" English

45 symbol = "Pa" ;
46 derivation = force / area;
4-"}

47 groundpressure: constant = 101325 * Pa;
5o groundtemp: constant = 288.15 * K;
51
52 # http://home.anadolu.edu.tr/-mcavcar/common/ISAweb.pdf
5; altitudeAndPressureTroposphere: invariant(
5.1 altitude: distance,
5 1 airpressure: pressure
56 ) = {

airpressure > groundpressure * (1 - 0.0065 * (altitude * K) / (groundtemp
* m)) ** 5.2561 - 200 * Pa,

58 airpressure < groundpressure * (1 - 0.0065 * (altitude * K) / (groundtemp
* i)) ** 5.2561 + 200 * Pa

.9 }

61 # http://home.anadolu.edu.tr/-macaCr/common/ISAweb.pdf
02 altitudeAndTemperatureTroposphere: invariant(

altitude: distance,
airtemp: temperature

66



f5 ) = {
(16 airtemp > groundtemp - 6.5 * K * altitude / (1000 * m) - 8 * K, # 8 * K

== error tolerance
67 airtemp < groundtemp - 6.5 * K * altitude / (1000 * m) + 8 * K
{0s }

5.5.5 GPS Walking

This is example describes GPS-Walking from [15], where a person is walking with a smart-

watch containing a GPS, an accelerometer, a gyro, and a pressure sensor. The application

simply alerts the person to move faster if the speed detected is below a target speed. The

smart-watch, in addition to the sensors, contains a processor, a storage medium, and a

network driver. The invariant is that the difference in GPS location should roughly equal

the velocity of the person multiplied by the sampling time. There are 6 dimensions defined

for many of the signals because there are 2 duplicate sensors of 3 degrees of freedom in

distance and velocity.

When invariants are violated, the application may do something like alerting the person

wearing the smart-watch that either GPS or accelerometer may need to be re-calibrated.
time : signal = {

name = "second" English
3 symbol = "s";

derivation = none;

7 distance: signal(i: 0 to 5) = {
S name = "meter" English

symbol = "m";
derivation = none;

ii }
12

i, speed : signal(i: 0 to 5) = {
14 derivation = distance@i / time;
'5 }
16

17 acceleration : signal(i: 0 to 5) = {
18 derivation = speed / time;
1 }
20

2 mass : signal = {
2 name = "kilogram" English
213 symbol = "kg";
2 4 derivation = none;

2 }

2' SamplingTime: constant = 5 * 10 ** -5 * s;

67



GPSAndAccelerometerMatch : invariant
30 ds: distance@3,
'I v: speed
31 ) = {
33 # double rectangular integration estimation

ds > v * SamplingTime - 1 * m,
35 ds < v * SamplingTime + 1 * m
36 }

3s GPSRedundancy: invariant(
39 x1: distance@G,

Syl: distance@1,
x2: distance@3,

42 y2: distance@4
43 ) = {
4 x1 - x2,

45 yl - y2
46 }

5.5.6 Sensor Life

This example is a simulation of Conway's Game of Life except that the cells "turn on" if their

temperatures reach a certain temperature threshold and "turn off" if their temperatures fall

below the threshold. Each cell is a board with temperature sensors, a processor, a memory, a

cooling unit, and a heating unit. Sensors used for each cell are 9 temperature sensors, 8 to

sense the temperatures of their neighbors and 1 to sense its own temperature. The rules for

the Game of Life are reproduced here below [3]:

1. Any live cell with fewer than two live neighbors dies, as if caused by under-population.

2. Any live cell with two or three live neighbors lives on to the next generation.

3. Any live cell with more than three live neighbors dies, as if by overpopulation.

4. Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduc-

tion.

This example differs from the Conway's Game of Life in the initialization step. Cells

with temperature higher than a threshold are initialized as alive. When a cell receives a

signal to kill itself because it didn't meet the Conway rules for survival, it will cool itself to

68



below the threshold temperature. Likewise, when a cell receives a signal to be brought back

alive, it will heat itself to above the threshold temperature.

The invariants are simply that each cell has a maximum tolerable temperature and that

each of the 9 temperature sensors has a duplicate.

temperature: signal(i: 0 to 17) = {
name = "Celsius" English
symbol = "C";
derivation = none;

5}

6

maxTemp: constant = 120 * C;

tempInRange: invariant(
0 neighborTempNW: temperature@O,

neighborTempN: temperature@1,
i 2 neighborTempNE: temperature@2,

neighborTempE: temperature@3,
14 neighborTempW: temperature@4,
15 neighborTempSW: temperature@5,
i6 neighborTempS: temperature@6,

neighborTempSE: temperature@7,
selfTemp: temperature@8

1> ) = {
20 neighborTempNW < maxTemp,
22 neighborTempN < maxTemp,

neighborTempNE < maxTemp,
neighborTempE < maxTemp,
neighborTempW < maxTemp,

26 neighborTempSW < maxTemp,
neighborTempS < maxTemp,

SneighborrempSE < maxTemp,
23 selfTemp < maxTemp
29 }

temperatureRedundancy: invariant(
neighborTempNW1: temperature@0,
neighborTempNl: temperature@1,

,4 neighborTempNEl: temperature@2,
neighborTempEl: temperature@3,

36 neighborTempWl: temperature@4,
37 neighborTempSW1: temperature@5,
38 neighborTempSl: temperature@6,
39 neighborTempSEl: temperature@7,
4> selfTempl: temperature@8,
41 neighborTempNW2: temperature@9,
.42 neighborTempN2: temperature@10,
43 neighborTempNE2: temperature@11,
44 neighborTempE2: temperature@12,
45 neighborTempW2: temperature@13,
46 neighborTempSW2: temperature@14,
47 neighborTempS2: temperature@15,
48 neighborTempSE2: temperature@16,
49 selfTemp2: temperature@17

69



$3) ) = {
5i neighborTempNW1 - neighborTempNW2,
52 neighborTempN1 - neighborTempN2,
54 neighborTempNEl - neighborTempNE2,
5 neighborTempEl - neighborTempE2,
56 neighborTempW1 - neighborTempW2,
57 neighborTempSWl - neighborTempSW2,
57 neighborTempS1 - neighborTempS2,
sa neighborTempSEl ~ neighborrempSE2,
59 selfTempl - selfTemp2
35i }

5.5.7 Ball Dropped from a Height

This application is a simple Physics experiment recording gravitational potential energy and

kinetic energy of a bouncing ball. The ball contains a processor, a storage, a board with

3 axes accelerometers and a sensitive altitude sensor. The assumption is that the altitude

sensor can detect the change in height of the bouncing ball. If the altitude sensor is not

accurate enough, a sonar radar located at the bottom of the ball could also measure the

distance between the ball and the ground. Both altitude sensor and the sonar radar return the

height of the ball.

This is an example of not having a hardware manufacturer involved because the pro-

grammer sets up the experiment with sensors embedded in a ball and runs software on it.

Thus, the programmer can specify whatever invariant that is appropriate for the experiment.

The ball contains a processor and a storage that together read data from the sensors and

record them to a file.

The invariant here is that every time the ball hits the ground, it should lose some energy,

so the sum of the mechanical energy of the ball should be less than the initial gravitational

potential energy.

time : signal = {
2 name = "second" English
3 symbol = "s";

derivation = none;
5 }

6

7 mass : signal = {
8 name = "kilogram" English
9 symbol = "kg";
10 derivation = none;
11 }

70



12

I distance signal(i: 0 to 2) = {
name = "meter" English
symbol = "m";

Is derivation = none;
1' }

1q speed : signal(i: 0 to 2) = {
20 derivation = distance / time;
22 }

23 acceleration : signal(i: 0 to 2) = {
24 derivation = speed / time;
25 }

force : signal(i: 0 to 2) = {
2X name = "Newton" English
29 symbol = "N"
30 derivation = mass * acceleration@i;
3 }

n energy: signal(i: 0 to 2) = {
I4 name = "Joule" English
35 symbol = "J";
.6 derivation = force@i * distance;
3: }
3!!

*s g : constant = 9.8 * m * s ** -2;
40 SamplingTime: constant = 5 * 10 ** -3 * s;
41 initialHeight: constant = 10 * m;
42 myMass: constant = 1 * kg;

e mechanicalEnergyDecreasing: invariant (
54s h: distance@2,

46 x: acceleration@0,
47 y: acceleration@1,
.49 z: acceleration@2
4,) ) = {
so myMass * g * initialHeight / SamplingTime >= myMass * g * h /

SamplingTime + 0.5 * myMass * (x ** 2 + y ** 2 + z ** 2) * s - 10 * J /
SamplingTime

si }

5.5.8 Jet Engine

This application is a software running on top of a jet engine. Sensors used are the mass

flow rate sensor and a pressure sensor, and there is a small computer that reads those sensor

values and constantly monitors the state of the engine. The invariant is the Moore-Greitzer

Jet Engine Model as described in [12]. The invariant should be preserved while the jet

engine is performing other tasks such as taking inputs from the pilot.

71



When the invariant is violated, the application can do something like alerting the pilot

on the display or recording to an error log.

i time : signal = {
2 name = "second" English
3 symbol = "s";

derivation = none;
5 }

9

10

I I

mass : signal = {
name = "kilogram"
symbol = "kg";
derivation = none;

}

English

n mass-flow-rate: signal = {
1;. derivation = mass / time;
15 }

16

17 distance signal = {
19 name = "meter" English
is symbol = "m";
20 derivation = none;
22 }

23 area : signal = {
24 derivation = distance ** 2;
25 }
26

r speed : signal = {
24 derivation = distance / time;
29 }

3i acceleration : signal = {
.2 derivation = speed / time;
3 }

.5 force : signal = {
36 name = "Newton" English
37 symbol = "N" ;
39 derivation = mass * acceleration;
49 }

4i pressure: signal = {
42 name = "Pascal" English
43 symbol = "Pa" ;
44 derivation = force / area;
45 }
46

47 SamplingTime: constant = 5 * 10 ** -3 * s;
48

49 MooreGreitzerietEngineModel: invariant(
50 x: mass-flow-rate,

y: pressure
52 ) =

72



x * kg ** 2 * s ** 4 > -y * kg ** 3 * s ** 3 / Pa - 1.5 * (x *
SamplingTime) ** 2 * kg * s ** 3 - 0.5 * (x * SamplingTime) ** 3 * s ** 3

- 0.5 * kg ** 3 * s ** 3,
y / SamplingTime *kg -3 * x * Pa - y* kg/ s

5.5.9 Reactor Rod Cooling

The application is software that monitors the state of a reactor. The reactor has sensors,

a processor, a storage device, and a display for the human operator. Sensors used are

two temperature sensors, one observing the surface temperature of the rod and the other

measuring the temperature of the water used to cool the reactor rod. The invariant is based

on the Newton's Law of Cooling. Based on the rate of cooling possible observed in the

beginning and the maximum amount of time the reactor is allowed to cool, detects if the

cooling can take place within the maximum allocated amount of time. If the invariant is

violated, then the human operator would be alerted.

time : signal =

3 name = "second" English
symbol = "s";
derivation = none;

1. }

temperature : signal(i: 0 to 1) =
') {

name = "Celsius" English
symbol = "C";

L2 derivation = none;
'3 }

maxCoolingTime: constant = 50000 * s;
NewtonsLawConstant: constant = 0.5 / s;

7 targetCoolingTemperature: constant = 70 * C;
'S

> # if we can't cool in max amount of time, something has gone wrong.
20 RodCooling: invariant(

rodTemp: temperature@0,
waterTemp: temperature@1

23 ) =

24 {
2 5 rodTemp - NewtonsLawConstant * (rodTemp - waterTemp) * maxCoolingTime <=

targetCoolingTemperature

73



5.5.10 Airplane Altitude and Speed

The application is an autopilot that monitors the state of the aircraft as well as fly the aircraft.

Sensors used are two pressure sensors, one in an altimeter and the other in the pitot tube.

There is also a processor, a storage, and a display for the pilot.

The invariant is that the pressure measured in the altimeter should match the pressure

reading in the pitot tube. The two sensor readings can differ because the pitot tube can

have a tape blocking it or some dust may get stuck inside. If the two pressure readings

are contradictory, then the pilot will get erroneous altitude readings and velocity readings,

which may critically endanger the safety of the entire aircraft. There was an accident that

occurred due to the two pressure reading inconsistencies where the pilots were unaware of

the true altitude and the velocity that the aircraft should be going [1].

When the invariant is violated, the autopilot would simply alert the pilot on the display

that the sensor readings are inconsistent.

time : signal = {
2 name = "second" English
3 symbol = "s";

derivation = none;
5 }

6
7 mass : signal = {

name = "kilogram" English
symbol = "kg";

10 derivation = none;
ii }

, distance signal = {
1 name = "meter" English
is symbol = "m";
16 derivation = none;
P }
Is

m area : signal = {
20 derivation = distance ** 2;
21 }

23 speed : signal = {
24 derivation = distance / time;
25 }
26

27 acceleration : signal = {
28 derivation = speed / time;
23 }
30
31 force : signal = {

74



.2 name = "Newton" English
-a symbol = "N"

derivation = mass * acceleration;
.4- }
36

3- # 0 is the static pressure sensor for altimeter
Ns # 1 is the static pressure sensor for pitot tube

-; pressure: signal(i: 0 to 1) = {
40 name = "Pascal" English
4i symbol = "Pa" ;
42 derivation = force / area;
43 }

AltimeterPitotPressuresShouldMatch: invariant(
46 altimeter-pressure: pressure@0,
4-1 pitot-pressure: pressure@1
49 ) = {
,0 altimeter-pressure > pitot-pressure - 10 * Pa,

soaltimeter-pressure < pitotipressure + 10 * Pa
s1 }

5.5.11 Motorized Wheel Chair

The application is the software running a wheel chair, which contains various sensors, a

processor, a storage, a display for the passenger, and a motor. Sensors that we focus on

in this Newton description are 3 axes accelerometer, a pressure sensor in the seat, and a

temperature sensor.

The invariant is that when the wheel chair is turned on, there must be a passenger sitting

in the chair. That means the pressure sensor should be able to detect the passenger and that

the passenger's body temperature must be of a human being. In addition, there is a speed

limit to the wheel chair's movement.

When the invariant is violated, the wheel chair can alert through the display or slow

down to a stop for safety.

i time : signal = {
2 name = "second" English

symbol = "s";
4 derivation = none;

6

- temperature: signal = {
name = "Celsius" English

9 symbol = "C";
10 derivation = none;
2 }

75



, mass : signal = {
14 name = "kilogram" English
15 symbol = "kg";
16 derivation = none;
17 }
18

19 distance signal(i: 0 to 2) = {
20 name = "meter" English
21 symbol = "m";
22 derivation = none;
23 }
24

25 area : signal = {
26 derivation = distance ** 2;
27 }
28

:q speed : signal(i: 0 to 2) = {
7u derivation = distance / time;
31 }
32

33 acceleration : signal(i: 0 to 2) = {
34 derivation = speed / time;
a5 }
36

3- force : signal = {
38 name = "Newton" English
39 symbol = "N" ;
40 derivation = mass * acceleration;
41 }

134 pressure: signal = {
44 name = "Pascal" English
45 symbol = "Pa" ;
46 derivation = force / area;
47 }

49 SamplingTime: constant = 5 * 10 ** -3 * s;

si SafetyCheck: invariant(
52 seatPressure: pressure,
53 passengerTemp: temperature
54 ) = {
55 seatPressure > 0 * Pa,
56 passengerTemp > 34 * C,
57 passengerTemp < 39 * C
n6 }
59

u SpeedCheck: invariant(
61 x: acceleration@O,
62 y: acceleration@1,
33 z: acceleration@2
64 ) = {
65 x + y + z < 5 * m / s ** 2
S}

76



5.5.12 Car Tire Pressure and Acceleration Range

The application is the software monitoring the state of a car. The car would have various

types of sensors and a small computer with a processor, a storage, and a display. Sensors

discussed in this example are the pressure sensor for a car's tires and the accelerometer. The

invariant is simply that tire pressures of the car cannot get too low or too high.

When the invariant is violated, there can be an alert on the display for the driver.

time : signal = {
2 name = "second" English

symbol = "s";
derivation = none;

7 mass : signal = {
S name = "kilogram" English

symbol = "kg";
derivation = none;

ii }
12

r distance signal = {
name = "meter" English
symbol = "m";
derivation = none;

17 }

m area : signal = {
derivation = distance ** 2;

2 }

23 speed : signal = {
derivation = distance / time;

25 }

7 acceleration : signal = {
derivation = speed / time;

2" }

force : signal = {
name = "Newton" English

13 symbol = "N"
-4 derivation = mass * acceleration;

35 }
36

3 pressure: signal = {
38 name = "Pascal" English
39 symbol = "Pa" ;
40 derivation = force / area;
4. }

43 TirePressureRange: invariant(
11I tire-pressure: pressure

77



45 ) = {
4. tire-pressure > 206843 * Pa,
41, tire-pressure < 241317 * Pa
4 }

78



Chapter 6

Applications

This chapter shows useful applications of Newton at compile-time and at runtime of a

host language program. A compiler that would perform the applications mentioned in this

chapter is not implemented as part of this thesis. The compile-time application uses the

Newton compile-time library call newtonApiDimensionCheckTree to contribute to host

language compiler error messages about Physics types. The runtime usage of the Newton

runtime library call newtonApiSatisf iesConstraints checks whether an invariant is

satisfied given a list of host language variables as seen in Section 5.3.2. This chapter

explores two compile-time transformations to a host language program that takes advantage

of invariants written in a Newton description - the first transformation trades off performance

for reliability by checking invariants with host language variable values at runtime, and

the second transformation trades off reliability for performance by exploiting equivalence

relations in Newton invariants in order to reduce sensor redundancy logic in the host language

program at compile-time.

6.1 Compile-Time Checks

The compile-time checks ensure that the program in a host language is dimensionally

consistent, which means the operands of expressions and statements have valid Physics types.

Section 5.3.1 described how the Newton library method newtonApiDimensionCheckTree

performs dimensional type checking on an expression or a statement Newton subtree and

79



how a host language compiler can use the method to generate compile-time errors about

dimensional types throughout its program. Now that we have the tools to check statements

and expressions, here is the algorithm that performs compile-time dimension checks on

statements and expressions using the Newton compile-time library, given any host language

80



program.

Algorithm 9: Algorithm for Dimensional Type Checking on Host Language Program

Expressions and Statements

input : a Newton AST representing a host language program with Physics types not

filled in yet

output : A compile-time error report

Initialize an error report struct;

Recurse left child if exists;

Recurse right child if exists;

if current node is an unknown token in a type declaration then

Physics* type = newtonApiGetPhysicsTypeByNameAndSubindex(...);

Find the identifier related to this type declaration;

Store Physics type in the type field in the Newton node of this identifier;

Update the type field of this identifier in a symbol table;

Mark the current node as "NewtonTyped";

end

if current node is a usage of an identifier then

if type in the symbol table is a Physics type then

Mark the current node as "NewtonTyped";

end

end

if the left child or the right child is marked "NewtonTyped" then

Mark the current node as "NewtonTyped";

end

if the current node is marked "NewtonTyped" and is an expression or a statement then

Call newtonApiDimensionCheckTree by passing in the current node;

Add any errors to compile-time errors;

end

The input to this algorithm is the Newton AST of a program written in a

host programming language. The above algorithm is called on all expression and

81



statement subtrees in the Newton AST. Whenever the host language compiler sees

an unknown token in a type declaration, it will call the Newton library method

newtonApiGetPhysicsTypeByNameAndSubindex to find out its Physics type. The host

language compiler can then mark any expression subtree in its AST that contains a New-

ton Physics type variable to be a candidate and pass into another Newton library method

newtonApiDimensionCheckTree, which will return information about whether the host

language expression is dimensionally consistent. If the Newton API call indicates that an

expression has a type dimension mismatch, then the host language compiler can add the

warning in the result of the method newtonApiDimensionCheckTree to its own list of

compile warnings.

Figure 6-1 shows a simple example code "distance foo = 4; time bar = 3; speed baz = 2;

speed foobar = foo / bar + baz;". The identifiers are foo, bar, baz, and foobar. In the type

expression "distance foo", the token "distance" is unknown, so the host language compiler

makes the Newton API call newtonApiGetPhysicsTypeByNameAndSubindex to find out

what Physics "distance" is. When this Newton API call happens, the compiler marks the

current Newton AST node. To find out if the current subtree contains any node that is

marked, the algorithm recursively checks if the left and the right child nodes are marked. At

the end of this algorithm, all expressions that have any leaf nodes that are marked will also

be marked. In the marked subtrees, only the leaf nodes that are marked will be the identifier

nodes that have Physics types defined in Newton. This fact can be used to find variables that

have Newton types in the AST in Section 5.3.2.

6.1.1 Type Inference

The Newton compile-time library supports a simple type inference on an expression or a

statement given a Newton AST. The type inference rule is that if a node does not have any

Physics type and is a numeric type, it will remain a wildcard Physics type unless a sibling

node in the AST has a Physics type, in which case the wildcard Physics type will infer the

Physics type from the sibling node. For example, "distance foo = 5;" does not violate type

checking rules because the left hand side will have the type distance, and the right hand

82



heckTreenewtonApiDimensionC

statement

left left
expression expression

foobar left term right term

foo bar baz

newtonApiGetPhysicsTypeByNameAndSubindexI

Figure 6-1: Dimensional type checking is performed in a bottom-up approach.

Given a Newton statement tree, the host language compiler needs to call
newtonApiGetPhysicsTypeByNameAndSubindex to find out the Physics types of the leaf

identifier nodes. Once the leaf identifier nodes' Physics types are set, the host language

compiler can check that expressions and statements built from those nodes have operands
with valid Physics types by calling newtonApiDimensionCheckTree.

83

distance foo = 4;
time bar = 3;

speed baz =2;
speed foobar = foo / bar + baz;



side will have the wildcard Physics type where both sides are the sibling nodes of an assign

statement. The right hand side 5 will assume the type distance. However, in "time bar =

2; distance foo = 2 + bar;" would not pass dimensional checks because the right hand side,

after 2 assumes the type time, would have the Physics type time where as the left hand side

would have distance. Because an assign statement requires the type of left hand side and the

right hand side to be the same, the dimensional type-checking would return a compile-time

error.

This way of doing type inference is similar to duck-typing in that for a numeric type

node we try a Physics type that works and if it doesn't fit within the context, the Newton

API reports a compile-error. We try a binary operation on the wildcard Physics type by

assigning it a Physics type inferred from a neighboring node, and if there is no error, the

numeric type becomes that Physics type. That is, if the numeric type behaves like a Physics

type, then it must be that Physics type [4]. The difference of this method from duck-typing

is that the type inference is not based on the type of the node itself but on the types of the

neighboring nodes. Duck-typing often occurs on dynamically typed languages like Python,

but this method happens at compile-time when newtonApiDimensionCheckTree is called.

Performing this type inference has an advantage that the syntax in the host language

using Newton becomes simple. A main purpose of Newton is to reduce the programmer's

burden by describing assumptions about hardware sensor values. This means enabling

the programmer to develop software without worrying about too much additional syntax.

Without this type inference, the programmer would have to write "time bar = 2 * s; distance

foo = 2 * s + bar;". While this syntax is reasonable, the programmer needs to know additional

information about the programming syntax of how to incorporate these units into every

expression and statements. In addition, the programmer need to know decide what the

units are from the Newton description, in which case the Newton description is no longer

hidden from the programmer's point of view. The host language compiler would also need

to reserve additional strings that appear inside Newton base signal scopes as reserved words.

The disadvantage of using this type inference method is that "distance foo = 5;" might not

appear dimensionally consistent to the programmer, but the approach taken in this thesis is

that the overall burden on the programmer will be reduced by this type inference.

84



Source Code: variables, Blocks and their Run dynamic tagging to
expressions, focus on variables of Physics narrow select variables that

statements, functions, types down by correlate to sensor
etc values

Get what to pass Get what to pass
into Newton API into Newton API

Get all possible

Insert code (in host lang sequences of variables

IR) that exits current IR) that pass all whose type sequence

block prematurely if the matched sequences of matches the type

result says invalid variables into Newton sequence of any
API and saves results Newton invariant's

parameters.

Figure 6-2: Overview of how a host language compiler interacts with Newton in the
premature exit transformation

6.2 Transformation To Check Invariants

The next two sections explain how to transform the host language compiler's AST at compile-

time in order to make the host language program more robust or improve its performance.

This thesis introduces two transformations, one that changes a host language program's code

path when values of variables violate any Newton invariants at runtime and another that

simplifies code by exploiting sensor redundancy encoded in Newton invariants.

One transformation that a host language compiler can make is inserting the call to

newt onApiSatisf iesConstraints with appropriately selected variables and execute an

error handler function when an invariant in the Newton description is found to be violated

by the host language program at runtime. We demonstrate that reasonable and useful

transformations of the source code can happen at the level of a block, which is a function

scope or a loop scope. See Figure 6-2 for an overview of this section. To see a sample code

that may benefit from this transformation, see Section A. 1 or the step-by-step example from

the end of Section 4.

The idea behind this transformation is that calling the Newton runtime library essentially

85



checks the assumptions of a host language program about its sensor signal values. If

those assumptions about low-level hardware sensor values are violated, then the high-level

application logic may not be valid. The approach of this transformation is that executing an

error handler instead of the current code allows a system to fail faster and thus make the

system safer [6]. The host language must create some syntax that allows the programmer to

write error handling code when invariant is assumed to have failed, similar to how exceptions

in Java are thrown and caught.

A core benefit of the Newton API is that the programmer does not need to know the

exact contents of the Newton description. The advantage of programming without knowing

the contents of the Newton description is reducing knowledge burden on the programmer so

that the programmer can focus on developing software. In case the programmer wants more

information, the programmer still has access to look at the Newton description file provided

by the hardware manufacturer on a sensor platform.

The explicit benefits to the programmer are the following:

1. The programmer does not have to say which set of variables can bind to which

invariants in the Newton description file.

2. The programmer does not have to know the names of the variables as defined in

the Newton description. For example, in the invariant of the previous section, the

programmer does not have to specify that a parameter corresponds to a variable named

a but just needs to set the type to acceleration. This feature is useful if more than

one acceleration type variables are passed into the Newton API.

3. Given two or more sets of variables of identical Physics types, the programmer does

not need to know which of the sets should be passed into the Newton API.

Note that at runtime the binary of the source code needs to be able to call Newton API.

Thus, the Newton runtime library needs to be linked against the host language program.

Each Newton runtime library is specific to the Newton description provided so that the

runtime library linked against the host language program has information about the Newton

AST and the symbol tables for that Newton description. This means that for each Newton

86



H-
Figure 6-3: A Newton description
the same set of Physics struct's.

cannot have two invariants with parameters containing

description, there will be a unique Newton runtime library that holds information specific

to that Newton description. At runtime, the host language program runtime can call the

Newton library routine newtonApiSatisf iesConstraints.

As mentioned in the Introduction Chapter 1, in order for a piece of code to map to an

invariant, it needs to meet the following four criteria.

1. The compiler of that program's language is able to pick an invariant out of all the

invariants available that applies to a set of variables.

2. There is a mapping between the variables in the host language program and the

parameters of an invariant.

3. Data types of the variables in the host language program reflect data types of invariant

parameters.

4. The numerical values of the host language program variables should abide by the

selected invariant.

The rest of this section describes how this transformation achieves each of the above

four steps and changes the control flow of the host language program when invariants are

violated at runtime.

87

Parameter
L:distance

id: 3

Parameter
period:time

id: 5

Invariant
SimplePendulum

id: 3*5 = 15

Parameter
d:distance

id: 3

Parameter
t:time

id 5

Invariant
ComplexPendulum

id: 3*5 = 15

--- I



6.2.1 Suggestions for Dynamic Tagging

In order to find the host language program variables whose values represent sensor signals,

we can simulate the values coming from the sensors and observe how the values of the

program variables are correlated with the simulated values. One framework that can be used

to simulate the sensor variable values is Sunflower which takes in a file of values (called a

trajectory file in Sunflower) that a particular sensor would return and a C program that reads

from that sensor. Sunflower doesn't simply read from the trajectory file to return simulated

sensor readings, but it interpolates what sensor data might be using the values written in

the trajectory and a pre-defined sampling rate of the sensor. The Sunflower framework

essentially allows us to simulate a sensor platform and a program reading from sensors on

that platform. A command in the Sunflower framework called valuest ats returns the value

traces of the variables in a program binary meant to run on the target architectures Hitachi

SH [25]. That is, if a host language program binary can run on Hitachi SH architecture, the

Sunflower framework can be used to infer which host language program variables represent

sensor signals.

Figure 6-4 demonstrates how trajectory files containing each sensor's hypothetical values

can be used to select variables in a host language program that hold those values through the

runtime of the program. We can define a file that contains arbitrary values for each sensor

on the hardware and observe how the values of a variable change when the reader function

of that sensor reads in the simulated values, which are interpolated values of the trajectory

file. The valuestats function of the Sunflower framework lists value traces of C program

variables so that we can compare them to the simulated values of a particular sensor. If all

values of a host language program variable match the simulated values of a sensor, then the

variable represents that sensor. See Figure 6-5.

Consider the pendulum swing count example from Chapter 4 reproduced here below.

1 acceleration@0 prevXacceleration = readFromXAccelerometer();
2 time durationInSeconds = 1000 * 30; // thirty seconds
3 time startTime = readFromSystemClocko;
4

5 int swingCount = 0;
6

while (readFromSystemClock() < startTime + durationInSeconds)

9 acceleration@0 xAcceleration = readFromXAccelerometero;

88



Host Language
Program

Formatted for
Sunflower

Sunflower valuestats
Framework

CSV-Like File
Containing
Values of a

Sensor "

simulated Value trace of

sensor signal variables in host

values language
program

V
Do values of a
variable match
all simulated
values of any

sensor?

Can use for Cannot use

invariant .for

checking invariant
checking

Figure 6-4: How the Sunflower Framework can be used to determine if a variable's values
represent a sensor's values

89



So

values used to simulate accelerometer X

0
of

variable foo 0

0 
0

0
values used to simulate pressure sensor

Figure 6-5: The graphs show the values of a variable in the output of the Sunflower
framework's valuest at s function. The first graph indicates a match between variable foo
and accelerometer X.

90



to

H if (prevXacceleration * xAcceleration < 0) {
2 swingCount++;
'o }

u if (xAcceleration != 0) { // do not double count the change
prevXacceleration = xAcceleration;

'7 }
mg }
19

20 printf("detected %d swings in the penduluM\n", swingCount);

The invariant SimplePendulum here takes in a variable of type acceleration, and

in this code there are multiple variables of type acceleration, xAcceleration and

prevXacceleration.

SimplePendulum : invariant(a: acceleration@0) =
2{

a >= 2.2* m /s **2,
a <= 10* m /s **2,

5 }

The acceleration type variables prevXacceleration and xAcceleration in this

code directly receive their values from the reader function readFromXAccelerometer, and

therefore would hold values directly correlated with signal values coming from hardware

sensor platform as indicated by dynamic tagging. As stated in the beginning of the thesis,

the Newton API is interested in performing checks on the variables that represent sensor

signals.

See the Sunflower framework manual for further information. This thesis has not

explored whether it is possible to automate the process of formatting a host language

program into a C program suitable as an input to the Sunflower framework. Dynamic

tagging has not been implemented or tested in this thesis.

6.2.2 Suggestions for Static Tagging: Alternative to Dynamic Tagging

A host language can provide some syntax that would allow the programmer to annotate

functions that would return values meant to be passed into a Newton invariant. All variables

whose values are set to the return values of the annotated functions would then be marked as a

potential parameter to the Newton runtime library call newtonApiSatisf iesConstraints.

For example, the code below is annotated with "@sensor", and the host language compiler

91



time: ID 2 distance: ID 3 acceleraton@O acceleration@1
time:1D2~ ditne13:D5 :1D7

Parameter p m s Invariant Myinvariant:Tree ( prime numberlINsmatc ) ID: 5 *2 =10
ID: 5 * 2 = 101 4 t9

var foo var bar Constraints Parameter Tuple
value 5 value = 2

acceleration@0 time: ID 2ID 5

acceleration@0 time : ID 2: ID 5

Figure 6-6: Every Physics type has a unique prime number ID associated with it. The

invariant ID's and the parameter tree ID's are calculated by multiplying those ID's together.

These ID's are used to find an invariant that should apply to a set of Physics type variables.

would recognize read_fromaccelerometer as a special function that returns sensor

signal values.

@sensor
2 acceleration read-from-accelerometer() {

All variables whose values are set by this function would then be a potential candidate

for Newton invariant checking.

This static tagging approach is meant to substitute dynamic tagging, but it comes at a

higher syntactic burden than using dynamic tagging. The programmer needs to worry about

additional syntax added to the original host language syntax. The advantage of this approach

is that it is simpler and less costly in terms of performance than dynamic tagging.

92



6.2.3 Constructing a Parameter Tree and Finding a Matching Invari-

ant

This section explains how to find the correct invariant Newton subtree to walk for value

checking, given a parameter tree comprising Physics variables. Section 5.3.2 explains how

the Newton API method newtonApiSatisf iesConstraints actually performs that walk

of the Newton tree.

To construct a mapping between a Newton invariant and a set of host language

program variables, the Newton parser assigns a unique prime number ID for each

of the base signals like time and acceleration, and it uses those prime num-

ber ID's to assign prime number ID's to the invariants in the Newton description.

When the host language compiler builds its Newton AST of the source code, it calls

newtonApiGetPhysicsTypeByNameAndSubindex, which returns a Physics struct contain-

ing a prime number ID associated with that Physics type. Therefore, the host language

compiler can scan its Newton AST to aggregate a set of Physics variables whose multiplica-

tive product of ID's match some invariant ID in the Newton description. This identification

scheme allows quick look up of invariants that match a set of parameters. As such, having

two different invariants which have parameters that have the same types is not allowed be-

cause they would map to the same ID number. For example, the host language compiler can

find out through the Newton API that SimplePendulum invariant contains two parameters of

types acceleration and time. See Figure 6-6 for an example.

In this thesis, the host language compiler only looks at the variables that can be accessed

by a block (in this thesis, a function scope or a loop scope) to aggregate as parameters

to Newton invariants. For example, if there are variables declared outside a particular

block but used in that block, then those variables as well as the variables whose lifetime

is inside the block are considered. Suppose that in a block, there are three variables of

type acceleration and two variables of type time. Then, the host language compiler will

aggregate 6 different sets of parameters to pass into newtonApiSatisf iesConstraints.

93



6.2.4 Mapping Host Language Variables to Invariant Parameters

In addition to mapping a set of parameters to an invariant, the Newton compile-time library

needs to map each parameter within the set to its corresponding parameter in the invariant.

An obvious way to achieve this mapping is to know what identifier is used in the Newton

description. For example, in the invariant shown below, the parameter of type acceleration

has an identifier a. However, this approach requires the programmer to look up the identifier

a in the Newton description.

PendulumInvariant : invariant(a: acceleration@0, period: time) =

3 a >= 2.2* m s **2,
a <= 10* m /s **2,
period - (4 * Pi * Pi * pendulumLength / g) ** 0.5,
period >= 3 * second,
period <= 9 * second

Compilers of popular programming languages resolve this problem with calling conven-

tion, where each parameter is stored in the stack in reverse order by the caller, and the callee

pops them off from the stack. This approach ensures that the parameters are in order.

The Newton library maintains the order of the parameters by simply numbering the

parameters from the caller's side from 0 to n - 1 where n is the number of parameters,

where the caller is a host language compiler and the callee is the Newton API. Similarly, the

invariants defined in a Newton description file have their parameters numbered from 0 to

n - 1. The mapping of the caller's parameter to the callee's parameter is then just matching

the parameter numbers. Although one can imagine implementing something like a calling

convention using a stack, the Newton API just involves the front end portion of the compiler,

so storing this information in the Intermediate Representation was much simpler.

6.2.5 Transforming the Host Language Compiler's IR

We introduce an algorithm that describes the series of calls that a host language compiler can

make to Newton in order to make that transformation in a given block. The two preconditions

to running this algorithm are that

1. The source code is dimensionally consistent and that leaf identifier nodes in the

94



Newton AST with Physics types are marked as "NewtonTyped" as described in the

Section 6.1.

2. Every variable in the source code IR are assigned exactly once and is defined before

used.

Meeting the first precondition ensures that dimension types of a host language program

are consistent. The second precondition makes use-def chain analysis to be done by a host

language compiler simple in the transformation algorithm. Requiring every variable to be

defined before used also serves another purpose. Consider the following code.

acceleration bar = read-from-accelerometer() * 5;

Suppose that a Newton invariant for this sensor platform takes in an acceleration as a

parameter. Using dynamic tagging or static tagging, bar would not be a potential parameter

to the Newton invariant even though the value it uses from read_f romaccelerometerO

should be checked by the Newton runtime library. If every variable is required to be defined

before used, the above code would turn into the following.

acceleration foo = read-from-accelerometero;
acceleration bar = foo * 5;

Then, the transformation algorithm would select f oo as a parameter for invariant check-

ing. Notice that f oo is a base variable of bar. Even though bar is not checked by the

Newton runtime library, f oo would be, and if f oo failed the invariant checking, then it

means any computation using bar would also be invalid.

Here is the algorithm. Suppose that a Variable is a data structure that represents a

95



variable in the host language IR.

Algorithm 10: Transforming Source Code AST Using Newton: Part 1 of 2

input :Newton AST A, a block subtree B in host language AST, array S of sensor

types

output Modified host language AST

Add to beginning of B an IR which encodes "valid = true;";

interestedVariables = {1;

newIR = empty tree;

For all marked identifiers of A used or declared in B, add the corresponding identifier

Variables in B to interestedVariables;

interestedVariables = runDynamicTagging(interestedVariables, S, B);

Continued.

Algorithm 11: Transforming Source Code AST Using Newton: Part 2 of 2

input : Newton AST A, a block subtree B in host language AST, array S of sensor

types

output : Modified host language AST

sets of (sequences, matching newton invariant)=

findAllSequencesThatMatchNewtonnvariants(interestedVariables);

Add to newIR a Boolean Variable valid = true;

for each sequence of variables and matching newton invariant do

newIR = empty tree;

Add to newIR that says "valid = valid && newtonApiSatisfiesConstraints(newton,

sequence)->satisfiesValueConstraint";

Add to newIR that says "if not valid, execute the global error handler";

Scan B for the point before the first usage of any of the variables in sequence but

also where all assignment statements to variables in sequence have been

completed. After this point, all accesses to variables in interestedVariables are

reads. If this point is not found, then don't add this IR.

Add newIR to the place found by scanning B;

end

First, the precondition of dimensional consistency needs to be met. At this point, the

96



host language compiler has a Newton AST of its source code.

Second, the host language compiler aggregates all variables used or declared in the block

that may be potential parameters to Newton invariants.

Third, the host language compiler runs dynamic tagging step (or static tagging) as

described in the previous section to all the variables in the current block. Despite the word

"dynamic", the dynamic tagging step occurs at compile time. It is merely a simulation to

help narrow down the set of variables that are candidates to be passed into the Newton API.

The dynamic tagging step selects variables whose values directly represent the sensors on

the sensor platform.

Fourth, the host language compiler finds every subsequence of the variables that match

invariant parameter signatures (subsequence because the order of parameters matters). The

cost of this step is analyzed in the next section. The order of the third and the fourth step,

dynamic tagging and finding variable subsequences for invariants, can be interchanged since

both steps together help narrow down the size of interestedVariables.

Fifth, find the point in the block where all of the variables in each subsequence are

assigned a value. After that point, scan for the spot where any of the variables are first

used, and then insert the Newton runtime library call newtonApiSatisf iesConstraints

with all the variables in the subsequence passed in. The return value of this call is stored in

another variable, which is also inserted during this transformation into the host language

compiler IR.

Sixth, the host language compiler takes those results and modifies its own AST, to

execute the global error handler before any of the variables that were passed in as an

invariant parameter could be used, if the results indicate that the invariant has been violated.

Whether the global error handler allows the program to return to the call site and continue

executing code is up to the programmer. The end of Chapter 4 shows a sample global error

handler that logs errors to a file. If the sensor platform has human operators, the global error

handler could also trigger alerts to the user interface.

Providing syntax for the global error handler is not part of the Newton implementation.

The host language must provide a way for the programmer to specify a handler function,

through annotation or reserving a function identifier as a keyword. A syntax for annotation

97



may look like

@@er ro r
2 void
3 globalErrorHandler(NewtonAPIReport* report) {

5 }

where the handler would take in the result of the Newton runtime library call

newtonApiSatisf iesConstraints by default so that it can be used for better error mes-

sages.

Reserving a keyword for the global error handler function is same as how the identifier

"main" in C is treated specially by typical C language runtimes.

To see the result of this transformation applied to the pendulum swing count code, see

the end of Chapter 4.

6.2.6 Computation Cost

The computation cost of transformation with Newton consists of putting Newton AST in

memory in the beginning of runtime (or serializing and deserializing Newton AST to call

the Newton runtime library), performing dynamic tagging step, and finding all permutations

of variables with Newton types that can match a Newton invariant signature. The dynamic

tagging step as mentioned in the Section 6.2.1 uses the Sunflower framework which needs to

perform 1/0 operations to trajectory files that list simulated sensor data. In addition, finding

all sequences of variables with Newton types that can match any Newton invariant signature

has a computation time that can grow exponentially with number of parameters per invariant

and the size of the interestedVariables set. This step in theory takes exponential time,

but the number of variables considered and the number of parameters in Newton invariants

(< 5) tend to be small. For example, suppose that on average, there are N variables in a

block that represent sensors, M Newton invariants, and L parameters per Newton invariant.

For each of the M Newton invariants, we need to try N variables for each parameter spot to

see if the type of the variable matches the type of the parameter. Finding the subsequences

naively this way, in the worst case, will take O(M(N/L)L) time to find all subsequences.

However, if N, M, and L are small, this step should take constant time in practice. If a short

98



compiling time is important, then transformation may not be ideal for programs with large

number of Newton Physics type variables and complicated Newton invariants. In addition,

this means the transformation must call the Newton API for all permutations of variables

available, which slows down runtime performance as well.

6.2.7 Limitations

There are two limitations to the transformation that checks invariants at runtime on a list of

variables. The limitations are primarily due to the way variables are selected to pass into the

Newton API newtonApiSatisf iesConstraints, and this is the reason Newton invariants

are meant to bind to variables that directly represent sensor values.

The first case occurs when dynamic tagging is unable to select a variable that is cor-

related with a single sensor signal because the variable is a combination of two or more

sensor signals or because the variable holds a sensor value modified in some way (e.g.

read_fromaccelerometer() + 5). For example, if a function block only had "velocity

foo = read_fromaccelerometerO * readcfrom-system clock(", the values of f oo

won't correspond to either acceleration or time signals. According to dynamic tagging

as described in Section 6.2.1, the variable won't be selected as a candidate to pass into a

Newton invariant because the values are not exact matches of simulated sensor values on

the Sunflower framework. Even if an invariant signature has a velocity as a parameter, the

dynamic tagging would not select it if a sensor on the hardware does not directly measure ve-

locity. There are too many possibilities of how two or more sensor signals can be combined

to make a new variable that needs to be checked using Newton. Suppose that a Newton

invariant takes in an acceleration sensor value, but the variable holds a value 2 times the

acceleration. As discussed in the previous section, dynamic tagging helps reduce the set of

variables to only those that are directly correlated with each of the sensors on the hardware

platform, but this means the transformation may have missed the set of variables that are

correlated with two or more sensor readings at the same time.

The second case occurs when a Newton invariant is unable to take in a parameter that

is a derivative of the Physics types of the sensor variables. In other words, if a sensor

99



platform has only accelerometers, the Newton invariant signature cannot have a velocity

as a parameter. Newton invariants, therefore, have to take parameters that are assumed to

hold direct sensor reading values. However, Newton invariants can be written in a way

that could put constraints on variables of Physics types that are time derivatives of sensor

variables if the system clock is available and taken in as one of the parameters of the Newton

invariants. For example, to impose constraints on velocity, a Newton invariant could take

in a : acceleration and t : time, which represent acceleration sensor and system clock

sensor respectively and then put constraints on a * t, like this 5 * m/s < a * t.

6.3 Transformation to Reduce Sensor Redundancy

The previous transformation resulted in a host language program that made a call to

newt onApiSatisf iesConstraints to check invariants at runtime. In contrast, this trans-

formation takes advantage of a specific type of invariants, ones that show sensor redundancy,

to remove redundant code in the host language program at compile-time. Removing repeti-

tive code that works with redundant sensors will eliminate the need to perform read/write

operations with duplicate sensors and thus decrease the number of registers needed at

runtime as well as decrease the number of memory operations. The benefit of this trans-

formation is reducing the code size and freeing up registers that were previously storing

values from redundant sensors. The disadvantage is precisely the cost of not having sensor

redundancy - lost reliability. For mission critical systems with low tolerance for errors,

removing sensor redundancy may not be desirable, but for systems where performance is

more important, this transformation can be helpful.

The preconditions for this algorithm are the same as those for the previous transforma-

tion.

1. The source code is dimensionally consistent and that leaf identifier nodes in the

Newton AST with Physics types are marked as "NewtonTyped" as described in the

Section 6.1.

2. Every variable in the source code IR are assigned exactly once and is defined before

100



used.

The algorithm for exploiting sensor redundancy is as follows:

Algorithm 12: Transforming Source Code AST Using Newton to Eliminate Sensor

Redundancy. Part 2 of 2
input :host language AST A, Newton AST of the host language program N, array T

of sensor types

output Modified host language AST

1. Ask the Newton compile-time library method newtonApiGetRedundantSensors

if there are any sets of redundant sensor types specified in the Newton description.

Specifically, let a set of redundant sensors be Si. The Newton API returns Us, a set

of all Si's. Each sj C Si returned from the call is a Physics type.

2. Find out which variables in the entire host language program match Physics types

sj in Si. Let this variable set be Vi. Each sj E Si is the Physics type token used in a

type expression of the assignment statement of variable Vk E Vi. We use subscript k

because the size of Vi and the size of Si may be different.

3. Run dynamic tagging with Sunflower framework (or static tagging) to find out if the

variables in the program that matched, Vk E %, actually represent readings of sensors

t E T. Match simulated sensor values to simulated variable values only if the values

match exactly. In other words, if none of the sensors in the array t E T can satisfy

vk.value = t.value for all simulated values of t on the Sunflower framework,

eliminate Vk from the set Vi.

101



Continued.

Algorithm 13: Transforming Source Code AST Using Newton to Eliminate Sensor

Redundancy. Part 2 of 2

input :host language AST A, Newton AST of host language program N, array T of

sensor types

output : Modified host language AST

3. Let the set of RHS expressions of assignment statements of variables in Vi be Ri,

where RHS of Vk assignment statement is rk. The size of R, and the size of V are

same because of the second precondition. Substitute ro into r1 through r, in the host

language AST A, where n is the size of R. This step is correct because all

Vk E V4, vk.value = rk.value and vk.value = tk.value so that all rk in R, have

same values.

4. Similarly, substitute so into si through s7, in N. After this step, so = si= ... =s

and ro = r, = ... = rn. This step won't affect type expressions in A because A just

uses floats for all Physics types.

5. Since the same expression is used for all rk in R, this will aid Common

Subexpression Elimination in the C compiler optimization phase.

6. Since all Vk in V4 are mapped to the same RHS, this will aid Global Value

Numbering in C compiler optimization phase.

7. Repeat steps above for all Si in Us.

The Newton compile-time library method called in the first step of this algorithm

newtonApiGetRedundantSensors is not currently implemented, but we present a possible

implementation of the method here.

Algorithm 14: Newton API: identifying Physics types that represent redundant sensors

input : a Newton AST built from parsing a Newton description

output: Set of all sets containing redundant sensor types

1. Initialize every invariant parameter type as its own set of equivalent sensor types.

2. For every constraint that says A - B, where A and B are invariant parameters, union

the set to which type of A belongs with the set to which type of B belongs.

3. Return all sets that has more than one element.

The equivalent parameter case in Step 2 can easily be implemented by checking recur-

102



sively that LHS and RHS expressions each have only only one invariant parameter as their

only factor.

Now, we show an example of this transformation along with the Newton description

used. Imagine that extra reliability gained through redundant sensors was not needed. The

following C code with Newton Physics type syntax is a simple sensor voting logic inside a

sensor reader function where each sensor "votes" by contributing to an average calculation.

pressure@1 first-pressure = read-from-pressure-sensorl();
pressure@2 second-pressure = read-from-pressure-sensor2();
pressure@3 third-pressure = read-from-pressure-sensor3();

pressure@O average-pressure = (first-pressure + second-pressure +
third-pressure) / 3;
return average-pressure;

Suppose the Newton description has an invariant that states the following.

PressureSensorRedundancy: invariant(
pressure@1 pressure-front-sensor,
pressure@2 pressure-back-sensor,
pressure@3 pressure-side-sensor

pressure-front-sensor - pressure-backsensor,
pressure-back-sensor - pressure-sidesensor

}

The Newton description tells us that three pressure sensors of types pressure 1,

pressure02, and pressure@3 are redundant. The Newton API method

newtonApiGetRedundantSensors would initialize three sets of Physics types,

each containing pressure@1, pressure 2, and pressure@3. Upon encoun-

tering the first constraint, pressure frontsensor ~ pressure-back sensor,

the two sets containing pressure@1 and pressure 2 are joined, and af-

ter the second constraint, pressurebacksensor - pressure-side sensor,

newt onApiGetRedundantSensors returns one set containing all three pressure types

pressure 1, pressure@2, and pressure3.

Now we can follow the redundancy elimination transformation described in this sec-

tion. Let Vi as described in the algorithm consist of f irst-pressure, se condpressure,

and third_pressure, and let Ri consist of readfrom-pressure sensorl(),

read_frompressure sensor2(), and readjfrompressure sensor3(). After Step 3

of the algorithm, which unifies all RHS of equivalent sensor variables' assignment state-

103



ments, the C compiler's IR now encodes the following. Remember that C compiler's IR

encodes Physics types as floats.

float first-pressure = read-from-pressure-sensorl();
2 float second-pressure = read-from-pressure-sensorl();

float third-pressure = read-from-pressure-sensorl();

5 float average-pressure = (first-pressure + second-pressure +
third-pressure) / 3;

6 return average-pressure;

After Step 4, which retains the Physics types, the Newton IR of the original program

encodes the following.

pressure@1 first-pressure = read-from-pressure-sensorl();
2 pressure@1 second-pressure = read-fromrpressure-sensorl();

pressure@1 third-pressure = read-from-pressure-sensorl();

pressure@O average-pressure = (first-pressure + second-pressure +
third-pressure) / 3;

6 return average-pressure;

If this redundancy elimination transformation is performed before the C compiler's own

optimizations, then Common Subexpression Elimination of C compiler's IR will result in

the following.

float temp = read-from-pressure-sensorl();
2 float first-pressure = temp;
3 float second-pressure = temp;
4 float third-pressure = temp;

6 float average-pressure = (first-pressure + second-pressure +
third-pressure) / 3;
return average-pressure;

If the C compiler performs Value Numbering and Dead Code Elimination on this code,

then it is simplified even further.

float temp = read-from.pressure-sensorl();
2

3 float average-pressure = (temp + temp + temp) / 3;
4 return average-pressure;

This pressure sensor reader method now contains no redundancy. This compile-time

transformation eliminates redundancy for a sensor platform that has redundant sensors. An

example use case of this transformation might be a smart watch with redundant sensors that

use a lot of battery power. If having accurate data from redundant sensors, say for example

accelerometers, on the platform is not safety-critical, then this transformation may help

improve performance of the system.

104

L



Chapter 7

Evaluation

As mentioned in the thesis proposal, this project is evaluated based on whether the following

tasks can successfully be completed.

1. Given a Newton description, an API call on a physics quantity should return a correct

SI unit.

2. Given a Newton description, an API call on a physics expression should return a

correct SI unit.

3. Newton is expressive enough to describe realistic systems. This MEng project will

compile at least 12 different Newton description files describing real-world systems

and verify the correctness of each description by checking the SI units of all Physics

types in the description.

4. It is possible to develop examples of pseudocode for 12 or more algorithms which

would benefit from having an implementation in a host language whose compiler uses

the Newton API.

Furthermore, this thesis accomplishes additional goals since the thesis proposal, namely

describing transformation algorithms using the Newton API and their use cases in example

systems.

The performance analysis of the two Newton API methods newtonApiInit and

newtonApiSatisfiesConstraints are shown below. The first table shows the mean

105



deswon fl -- -- Newton Compiler Newton AST

------- used by
methods

included as library by passes paramete
in the for

Test Driver Program in C ------------------

rs

Figure 7-1: To test the Newton API, a test driver program will construct a Newton AST and

call the Newton API on that tree. The test driver programs will have access to the Newton

API by including its header file as library.

runtimes (in nanoseconds) of both methods for each of the 12 Newton descriptions over 40

iterations, and the second table shows the standard deviations of those runtimes.

106

mat of



107

Newton Description newtonApilnit newtonApiSatisfiesConstraints

Step Counter 1503298 139392

Activity Classifier 1339013 156423

Vehicle Distance 675434 38847

Weather Balloon 1032082 89110

Airplane Pressure 684599 51114

Ball Dropped 1027406 77935

GPS Walking 786148 60469

Jet Engine 1010725 109836

Motor Wheel Chair 972281 63757

Reactor Rod 68395 62814

Sensor Life 1006878 88640

Tire Pressure 1621634 142686



108

Newton Description newtonApilnit newtonApiSatisfiesConstraints

Step Counter 277499 19956

Activity Classifier 382776 44034

Vehicle Distance 249525 29003

Weather Balloon 340519 44869

Airplane Pressure 309749 35106

Ball Dropped 351014 37800

GPS Walking 291808 40901

Jet Engine 355701 46060

Motor Wheel Chair 290080 34842

Reactor Rod 55412 36288

Sensor Life 479864 45578

Tire Pressure 455739 26999



Chapter 8

Future Work and Challenges

This thesis has focused on the Newton API, its implementations, and designing how a

compiler may interact with the API, as described in the thesis proposal. However, we do not

yet have a compiler that uses the Newton API to implement the algorithms mentioned in

Chapter 6. A main task that is to be completed in the future is implementing a compiler that

actually uses the Newton API and analyzing the effectiveness of the compiler's output.

The Newton API as of now only supports very simple host language programs that

comprise binary expressions and assign statements. Making more language constructs

will help support a wider variety of host language programs. Another feature that would

help solidify the Newton syntax is allowing definitions of vectors and their operations.

For example, Newton currently views variables defined in the Newton descriptions as a

Physics variable containing a scalar value. As of now Newton supports having multiple

dimensions for a Physics variable, such as 3 axes for acceleration. Having vectors would

allow encapsulation of these 3 variables into one vector as well as operations on these

vectors such as magnitude, dot products, and cross products.

In the current syntax of Newton, multiple invariants cannot have the same parameter

tuple signatures. As of now, when the Newton API looks for an invariant that matches a list

of parameters passed in from the host language compiler, it looks at the first invariant that

matches and checks if that invariant satisfies. A feature that may enforce the specification

that invariant signatures must be unique would be a mitigation pass that checks that all

invariant signatures are unique at the Newton description parsing step.

109



Newton's type system can be expanded to include operations like type casting so that

programmers can do computations on variables with different Physics types.

As mentioned in 5, if a programmer wants to execute some code path after the Newton

API call returns an error, the host language compiler needs to support additional syntax.

This will not require any interaction with the Newton API, but it is up to the compiler writer

to include this flexibility for the programmer.

Another feature that would increase the expressiveness of Newton is logical operators

on the constraints. There are examples where the sensor values are related to each other by

something other than laws of physics, and logical operators allow expressions such as "If

sensor A has this value, sensor B must have that value." For example, when an airplane is

landing, its wings must be perfectly level. In other words, if the altitude sensor indicates

that it is close to the ground, but the gyros of the plane indicate that the body of the plane

is tilted, then the sensor values are abnormal, and the pilot should be notified right away

by the airplane software. The airplane's speed is constrained by its altitude as well. If the

airplane is low to the ground, there are ranges of velocity acceptable for a particular altitude

[2]. There are examples in transmission gears of cars where the transmission range sensor

in the Power Train Control Module indicates what gear the car is in [5]. Depending on the

gear position of the car, the maximum engine speed may differ, where the engine speed is

read from another sensor. Note that in these cases, the sensor values are still constrained by

some relationships, but not by laws of physics.

The transformation to check invariants at runtime assumes a global error handler when

invariants are violated at runtime (see Section 6.2). If there is a clean syntax to annotate

which functions should handle which invariant failures, different functions could be used to

handle each failure case, which could help make the system more robust.

Finally, the transformations themselves can be part of the Newton API if there are

methods that take in LLVM IR's and transform them according to the algorithms mentioned

in this thesis. Achieving this task will shift the responsibility of the host language compiler

to Newton implementation and thus make Newton easier to use.

110



Chapter 9

Summary

Newton is a language for describing the laws of physics. A compiled Newton description

file and the Newton libraries can be used by any host language compiler to be able to

perform type checking and transform the the source code to be able to perform runtime value

checking. Being able to run these checks is useful because the hardware manufacturer can

enforce that certain relationships are preserved among sensor signal values on a hardware

platform. Much of Newton's research contribution is being able to bind variables in a

host language to specific constraints through the Newton API. For this thesis, we have

implemented the Newton API, which is an interface to any compilers that may want to use

it for the purposes of programming on platforms with sensors.

111



112



Appendix A

Appendix: Transformed Examples

In this section, we will explore the transformations that can be applied to the real-world

examples mentioned in Chapter 5. Each section in this chapter illustrates a host language

program that may utilize the Newton description and how it may be transformed. To see the

Newton description for each example, refer to Section 5.5.

All twelve examples in this appendix include the transformation to check invariants.

Pedometer Step Counter, Activity Classifier, GPS Walking, and Sensor Life examples

include the transformation to reduce sensor redundancy.

A.1 Pedometer Step Counter

The following code is a C program with additional syntax to utilize Newton that imple-

ments the step counter algorithm described in [7]. The main method of the code is the

run-step-counter() method which starts reading from the accelerometer of the step

counter. The algorithm uses a linear shift register and a dynamic threshold to determine

where a step happens. The linear shift register contains two registers sample-new and

sample-old. For every new acceleration data sample-result, the samplenew is shifted

to sampleold, and sample-result is stored in sample-new if the difference between

sample-result and the previous sample-new value is greater than some precision thresh-

old. A step is detected when there is a negative slope in the acceleration, which happens

when samplenew is less than sample-old and when the graph crosses below the dynamic

113



threshold. The dynamic threshold is the half the value of the minimum and the maximum

of the last 50 sample acceleration data. In the code, an array of last 50 acceleration data is

used to calculate the dynamic threshold, and mostrecentindex is the location in the 50

samples array that contains sample-new.

S/*
2 http://www.analog.com/media/en/technical-documentation/technical-articles/

pedometer.pdf
3 *

* This code is a hypothetical implementation of pedometer step counter as
described in the paper above.

5 *

7 */
8 #include <stdio.h>
s #include <stdint.h>
9

W #define SAMPLESIZE 50
u #define PRECISIONTHRESHOLD 0.1

13 enum RegulationMode { SEARCHING, FOUNDOUT };
14

5 void run-step-counter()
16 {
17 /* initializations */
.18 int step-count = 0;
19 int mostrecent-index = 0;
20 int sample-size = 0;

time last-step-recorded = 0;
22 bool array-is-full = false;
23 acceleration precision-threshold = PRECISIONTHRESHOLD;
2" acceleration dynamic-threshold = 0;

acceleration samples[SAMPLESIZE]; /* x[most.-recent-index] is samplenew
from the paper*/

26 acceleration total = 0, threshold = 0;
2 RegulationMode mode = SEARCHING;

' /* start reading from step counter */
:Y while (true)
31 {
32 acceleration sample-old = samples[mostrecent-index]; /* sample-old

*/

time sample-time = get-new-sample-results.and-filter(x, y, z,
most-recent-index, precision-threshold);

35 most-recent-index = most-recent-index + 1 % SAMPLESIZE;
36

3 array-is-full = most-recent-index == 0;
3s sample-size = array-is-full ? SAMPLESIZE : most-recent-index;

40 dynamic-threshold = get-dynamic-threshold(samples, sample-size);

42 if (samples[most-recent-index] < sample-old && sample-old >
dynamic-threshold && samples[most-recent-index] < dynamic-threshold)

43 {

114



time step-duration = sample-time - last-step-recorded;

16 /* time window */
2)) if (step-count == 0 11 (step-duration > 0.2 && step-duration <
2))

48 {
949 step-count++;

50 last-step-recorded = sample-time;

52 if (step-count == 4)
sa {

44 mode = FOUNDOUT;
55 }
56 }
57 /* perform count regulation. invalid step discovered */
58 else
59 {

mode = SEARCHING;
01 step-count = 6;
62

63 }
64 sleep(500);
65

68 time get-new-sample-results-and-filter(
69 acceleration samples[SAMPLESIZE],
70 int mostrecent-index,
11 acceleration precision-threshold
72 ) {
- time now = read-system-clocko; /* timestamp for now */

75

76 *sample-result from the paper. Simulate adding all the inputs through a
summing unit

78 acceleration@0 x = read*/rorrxaccelerometero;
79 acceleration@1 y = read-from-yaccelerometer);
SO acceleration@2 z = read-from-zaccelerometero;
81 acceleration new-sample =. x + (acceleration@0) y + (acceleration@0) z;
82

84 * Each sensor values will be evaluated for Newton invariant preservation
85 * at every read. set the global variable VALID to false if invariant not

satisfied.
86

87

88 if (abs(samples[mostrecent-index] - newsample) > threshold)
89 samples[most-recent-index] = new-sample;
90
91 return now;
92 }
)93

9 G /*
95 Get the middle value of the last 50 samples

96 */

115



4 acceleration get-dynamic-threshold(
il acceleration samples[SAMPLE-SIZE],
99 int sample-size

100 ) {
101 acceleration min = LONG-MAX, max = LONG-MIN;
102

103 for (int index = 0; index < sample-size; index ++)
I A {
105 if (samples[index] < min)
106 min = x[index];
107

1os if (samples[index] > max)
109 max = samples[index];

ill }
111

1.12 return (min + max) / 2;
113 }
114

L1 void update-average-acceleration(
116 acceleration@0 samples[SAMPLESIZE],
117 acceleration@G *average,
118 int sample-size
jig ) {
120 *average = 0;

for (int index = 0; index < sample-size; index++)
12 {
2- *average += samples[index];
! 2a }
125 *average /= SAMPLE-SIZE;
126 }
127

12 @@error
129 void global-error-handler(NewtonAPIReport* report) {
130 ConstraintReport* currentConstraint = repprt->firstConstraintReport;
131 while (currentConstraint != NULL) {
13. /* log errors in some file */
133 currentConstraint = firstConstraint->next;
134 }
135 }

The following code illustrates a series of the Newton compile-time library calls made by

the C compiler to be able to make the invariant-checking transformation described in 6.2 for

the method runstep-counter. It illustrates what is done by the host language compiler

for dimensional type-checking and IR transformation. Read Chapter 4 for a more detailed

step-by-step explanation of a similar example.

1 /* Called in the beginning of host language compiler parser phase */
2 State * newton = newtonApiInit("pedometer.nt");

/* When the C compiler sees the token "time" for a type declaration in
time last.step...-recorded 0;"*/

IrNode * lastStepRecorded = makeIrNodeSetValue(
newton,

116



7 kNewtonIrNodeTypeTidentifier,
"time",

9 0

lastStepRecorded->physics = newtonApiGetPhysicsTypeByNameAndSubindex(newton
, "time", 0);

12

1 /* The C compiler can initialize values if known at compile-time. */
14 lastStepRecorded->value = 0;
15

16 /* Add this Newton AST node to inside a struct where the C compiler keeps
track of variables, say Variable -/

1? Variable * varTime = /* find Variable in C compiler's IR that corresponds
to lastStepRecorded */ ;

[18 varTime->newtonNode = lastStepRecorded;
'9

21 Repeat for acceleration when the C compiler sees "acceleration
dynamic-threshold = 0"

22 * The C compiler can pass in a default value for sub-dimension. Here, X
axis is the default.

2- * If the C compiler reads "acceleration@1", pass in 1 for the sub-
dimension parameter in newtonApiGetPhysicsTypeByNameAndSubindex

24 * Do the same for every Physics type token seen and construct Newton IR.

26

S/*
28 * "time last-step._ recorded = 0;"
29

30 * Whenever a statement or an expression contains a type defined by
Newton, the C compiler will

31 * construct a Newton AST of a statement or an expression at compile time
to verify dimensional consistency.

IrNode * leftTerm = genIrNode(newton, kNewtonIrNodeTypePquantityTerm,
4 lastStepRecorded /* left child */,

35 NULL /* right child */,
NULL /* source info */);

37 IrNode * leftExpression = genIrNode(newton,
kNewtonIrNodeTypePquantityExpression,

., leftTerm /* left child */,
'9 NULL /* right child */,
40 NULL /* source info */);
.411 IrNode * zero = makeIrNodeSetValue(newton, kNewtonIrNodeType-Tnumber,
2 NULL,
4 0);

44 IrNode * rightTerm = genIrNode(newton, kNewtonIrNodeType-PquantityTerm,
45 zero /* left child */,
46 NULL /* right child */,
47 NULL /* source info */);
48 IrNode * rightExpression = genIrNode(newton,

kNewtonIrNodeType-PquantityExpression,
49 rightTerm /* left child */,
so NULL /* right child *1,
51 NULL /4 source info */);
52 IrNode * statement = genIrNode(newton,

117



kNewtonIrNodeTypePquantityStatement,
53 leftExpression /* left child *1,
54 rightExpression /* right child */,
55 NULL /* source info */);
56

ConstraintReport* dimensionReport = newtonApiDimensionCheckTree(newton,
statement);

58 if (! dimensionReport->satisfiesDimensionConstraint)
59 {
W /* If dimensional consistency is violated, then the C compiler should

add this to compile errors*/
61 }
62

63 /*
64 * Repeat the steps above for the entire program pedometer.c
65 * By this step, we know if expressions and statements in pedometer.c are

dimensionally consistent.
66 "
67

618

69* Add all variables declared or used in the current block to the current
block.

70

Block* block = .... // or whatever struct C compiler uses for block
72 block.addVar(...);
73

74 /
* Run dynamic tagging. (or static tagging)

76 * After tagging is over, each variable's isTagged flag is set.

-z tagVariablesCorrelatedToSignals(newton, block->variables);

* Of all possible variables that are tagged, find out which subsequences
of variables can actually

6 * be passed into an invariant (matches an invariant signature in order)

If a variable cannot be passed into an invariant, turn off it's
isTagged flag

95 * That means every variable in the returned variable set has isTagged
flag set.

86 */
87 VariableListAndInvariantTuple* variableListAndInvariantHead =

getAllPossibleSubsequencesOfParameters(block->taggedVariables, newton->
invariantList);

88

89 1
90 * Construct parameter trees for each subsequence of variables that can

be passed in
91
92 while (variableListAndInvariantHead != NULL) {
9 Variable* var = variableListAndInvariantHead->variableHead;

IrNode * root = genIrNode(newton, kNewtonIrNodeTypePparameterTuple,
95 NULL /* left child */,
96 NULL /* right child */,
9- NULL /* source info */);

118



98~

while (var != NULL) {
io head->type = kNewtonIrNodeTypePparameter;
101 newtonApiAddLeafWithChainingSeqNoLexer(newton, root, var);

var = var->next;
103 }
1M4

1i5 newtonApiNumberParametersZeroToN(newton, root);
RtX
107 var = variableSetHead->variableHead;
108 while (var != NULL) {
109 /* first parameter tree appended is to be passed into the first

invariant appended, and so on */
110 appendParameterTreesToVariable(var, root);
111 appendInvariantToVariable(var, variableSetAndInvariantHead->

invariant);
H2 var = var->next;

na}
114

115 var = variableListAndInvariantHead->next;
11' }
117

19 * Insert code into C compiler's AST that would call
110 newtonApiSatisfiesConstraints(newton, var->parameterTreeHead, var->

invariant),
121 * where parameterTreeHead is the constructed parameter and var->

invariant is the invariant that
1 2 * corresponds to the parameter tree.
123 * Note that passing in the invariant pointer is merely an optimization.

12 * This means that whenever a sensor value changes, the Variable
corresponding to that sensor

26 * should update its value as well if it is tagged.
127 *
128 VariableListAndInvariantTuple * var = variableListAndInvariantHead;
129 while (var != NULL) {
11 IrNode* parameterTreeRoot = var->parameterTreeRoot;
13i Invariant* invariantRoot = var->invariantRoot;
132 while (parameterTreeRoot != NULL && invariantRoot != NULL) {
133 /*

4 * Find the place in the block where all of the variables in
parameterTreeRoot have been defined but

13 * none of them have been used yet.
13 * add code that calls newtonApiSatisfiesConstraints(newton,

parameterTreeHead, invariantRoot) to this place in host language IR;
*37

138

139 parameterTreeRoot = parameterTreeRoot->next;
140 invariantRoot = invariantRoot->next;
141 }
142 var = var->next;
143 }

Now the body of the step counter code can be transformed into the following by the C

119



compiler if we execute the global handler when the invariant is violated at runtime. The

transformation of the method getnew-sample-results and_f ilter is shown below.

To facilitate presentation, only x, y, and z are shown to be declared before used although all

variables should be declared before used for this transformation.

Note here that this code assumes that type casting feature when it is adding variables

of distance types. The current implementation does not allow adding variables of different

axes because different sub-dimensions are treated as separate Physics types. This can be

resolved by allowing type casting on individual Physics expressions.

time get-newsample results-andfilter(
2 acceleration samples[SAMPLESIZE],

int most-recent-index,
acceleration precision-threshold

VALID = true;
7 time now = readsystem-clocko; /* timestamp for now */

acceleration@O x = read-from-x-acceterometero;
acceleration@1 y = read-from-y-accelerometero;
acceleration@2 z = read-from-z-acceerometero;

12

3 NewtonAPIReport* report = newtonApiSatisfiesConstraints(newton, /*
parameter tree of containing x, y, and z*/);
VALID = VALID && report->satisfiesValueConstraint;
if (!VALID)

global-error-handler(report);

18 /

19 * sample-result from the paper. Simulate adding all the inputs through a
summing unit

20 *

acceleration new-sample = x + (acceleration@O) y + (acceleration@O) z;

222

24 * Each sensor values will be evaluated for Newton invariant preservation
25 * at every read. set the global variable VALID to false if invariant not

satisfied.
26

28 if (abs(samples[most-recent-index] - new-sample) > threshold)
29 samples[mosltrecent-index] = newsample;
30

31 return now;
32 }

There are two Newton invariant mentioned in Section 5.5: one invariant states that

the tangential velocity of the pedometer worn must be roughly equal to the radius

of the smart-watch pedometer times the angular velocity, and another invariant states

120



the acceleration maximum and minimum values. In the transformation of the method

getnewsample-resultsand_f ilter above, the variables x, y, z are valid parameters

to the second invariant but not to the first. They also directly represent the sensor variables.

In addition to the invariant checking transformation above, we show the sensor redun-

dancy transformation here. Imagine that the hardware manufacturer of the pedometer wants

the pedometer to have a low-power option which would execute the code that does not

deal with redundant sensors. As shown in Section 6.3, this transformation changes the

sensor reader function, which is the interface between the software and redundant sensors.

Suppose that these sensor reader functions just takes the average of the two redundant sets

of acceleration and gyro sensors.

acceleration read-from-accelerometerX() {
acceleration@O average = (read-from-accelerometerXl() + (acceleration@O)
read-from-accelerometerX2()) / 2;'
return average;

4}

After applying the transformation that reduces sensor redundancy, the above code

becomes the following.

acceleration read-fromaccelerometerX() {
acceleration@O average = (read-fromaccelerometerXl() +
read-from-accelerometerXl()) / 2;
return average;

4 }

The same transformation can be applied to the reader functions of other acceleration

axes data and gyro data as well. Whether this performance gained is worth the reliability

lost is not investigated in this thesis.

A.2 Activity Classifier

This section is about a piece of code describing the system in Section 5.5.2. This example

is different because it is written in Python, which means there is no compile-time type

checking. Python runtime should call newt onApiDimensionChe ckTree at the earliest time

the types of variables become available. Note that the Python compiler cannot observe a

type word that would trigger a Newton API call since types of variables are unknown until

runtime. To include the Physics in Python syntax at all, there needs to be a way for the

121



Python programmer to declare those types. In this case, we just use Python's syntax for

instantiating class objects, but that is entirely up to the Python compiler writer.

This code has three main parts. The first part defines sensor reader functions that simply

read from sensors of a smart-watch and return the values according to Python 3 function

type annotation [13]. Function type annotation reduces the amount of dynamic typing done

in Python but is not essential as Python can perform duck-typing. The code only defines the

method for the x acceleration, but suppose other reader functions are defined similarly. The

second part is a function that collects sensor data for a certain time duration. This data is

then used in the third part, which returns a classifier from the sensor data.

Suppose that the person wearing the smart-watch is performing a specified daily activity

under a laboratory condition so that a file containing the labels of the activities performed is

readily available to be passed into the classifier. Data collection and making the classifier

happens inside a smart-watch which contains various sensors, a processor, and a memory.

i import csv
2 import numpy as np
3 from sklearn.neural-network import MLPClassifier

5 # Python 3 type annotation. See https://docs.python.org/3/library/typing.html
6 def read-from-acceleration-x() -> acceleration@0:
7 acceleration@0 x = read-from-some-register-on-sensor-platform()

return x

to # assume all sensor reader methods are defined by hardware manufacturer like
x accelerometer

11
12 # Here, a user wearing a smart watch with sensors is performing some pre-

defined
1 # actions listed in a file called label-filename
1 def collect-datao:

15 feature-matrix = []
1 while read-from-system-clock() < 10000000:
17

18 # Here, there are reads from multiple sensor types in the same block.
The generated code from

19 # Python compiler will pass in these variables and Newton will
perform checks on them based on

20 # activity-classification-pedometer.nt
21 #

22 # the values read for each sensor. Each sensor values will be
evaluated for Newton invariant preservation

23 # at every read. Host lang compiler will set the global variable
INVALID if invariant not satisfied.

25 xacc = read-fromaccelerometerx()
26 yacc = read-from-accelerometery()

122



z-acc = read-from-accelerometerz()
x-gyro = read-from-gyro-row()

29 y-gyro = read-fromgyro-pitch()
z-gyro = read-from-gyro-yaw()

31 xpressure = read-from-pressure-sensor()
32 xmag = read-from-magnetic-fieldx()

y-mag = read-from-magnetic-field-y()
34 zmag = readfrom-magneticfieldz()

Yj sample-feature-vector = np.array([
x-acc, y-acc, z-acc, x-gyro, y-gyro,
z-gyro, x-pres, x-mag, y-mag, z-mag

39 ])
44)

feature-matrix.append(sample-feature-vector)

sleep(100)

44 return feature-matrix

47

48 def get-classifier(label-filename):
49 feature-matrix = collect-data()

labels = get-labels(label-filename)
classifier = MLPClassifier()
return classifier.fit(feature-matrix, labels)

54 @@error
def global-error-handler(report):

raise Exception("An invariant is violated")

There needs to be a series of Newton API calls, as mentioned in Chapter 4, to perform

dimensional type checking, construct Newton AST of the source code, and select host

language program variables as parameters to Newton invariants before inserting the Newton

runtime library call newtonApiSatisf iesConstraints into the host language IR.

Read Chapter 4 for a more detailed step-by-step explanation of a similar example.

The below program shows a transformed version of the method collectdata.

def collect-datao:
feature-matrix = []

3 while read-from-system-clock() < 10000000:

x-acc = read-from-accelerometer-x()
6 y-acc = read-from-accelerometery()

z-acc = read-from-accelerometer-z()
x-gyro = read-from-gyro-row()

9 y-gyro = read-fromgyro-pitch()
10 zgyro = read-from-gyro-yaw()
!I. xpressure = read-from-pressure-sensor()
12 xmag = read-from-magnetic-fieldx()
13 ymag = read-from-magnetic-fieldy()
I.. z-mag = read-from-magnetic-fieldz()

123



15

report = newton-api-satisfies-constraints('''parameter tree made of
x...acc, y.acc, z-acc, x.-gyro, y....gyro, z.gyro''')

17 if not report.satisfies-value-constraints:
18 global-error-handler(report)
19

20 sample-feature-vector = np.array([
21 x-acc, y-acc, z-acc, x-gyro, y.gyro,
22 z-gyro, x-pres, x-mag, y-mag, z-mag
23

feature-matrix.append(sample-feature-vector)
20

27 sleep(100)

29 return feature-matrix

If the invariant is not satisfied at runtime, the transformed code above will execute

the error handler function before the first usage of the variables that are parameters of the

Newton invariant. To facilitate presentation, the variables that will be parameters of the

Newton runtime library call are declared before used, but as mentioned in Section 6.2, the

prerequisite to performing this transformation to the host language IR is that all variables

must be declared before used and are defined exactly once.

Now we show the second transformation that reduces sensor redundancy. Imagine that

the person collecting the sensor data wants to disable sensor redundancy intentionally to

test if the classifier can categorize noisy sensor data. The transformed portion of the code is

same as in the pedometer example, which is the accelerometer reader function. The original

accelerometer reader function averages the output of the two redundant accelerometers.

acceleration read-from-accelerometerX() {
2 acceleration@O average = (read-from-accelerometerXl() + (acceleration@O)

read-from-accelerometerX2()) / 2;
return average;

4}

After applying the transformation that reduces sensor redundancy, the above code

becomes the following.

acceleration read-from-accelerometerX() {
2 acceleration@G average = (read-from-accelerometerX1() +

read-from-accelerometerXl()) / 2;
3 return average;
4 }

124



A.3 Maintaining Vehicle Distance

As mentioned in Section 5.5.3, this section describes a system of autonomous vehicles

driving in a line, each of which tries to maintain a certain distance from the previous vehicle

and respond quickly to any disturbances. Each vehicle takes a command from either the

head vehicle or a remote server which calculates the speed necessary for each vehicle to

reach stability of the system [9].

Sensors used by each vehicle in this code are an accelerometer, a gear shaft rotation

sensor, and a sonar radar sensor (gives distance from the previous vehicle). The invariant

simply states that the vehicle should maintain a reference distance from the previous vehicle.

C code

I/ https://ths.rwth-aachen.de/research/projects/hypro/n-vehicle-platoon/
2 // Simulate 5 autonomously driven vehicles trying to keep distance from each

other
3

.8 //

5/ Each individual car
6 //

s int car-index = 3;
6 distance reference-distance = 1.3;

10
i distance
12 readfromradar-sensoro;
13

la distance
15 readfromngearshaftvelocitysensoro;
16

1^ void
i update-relative-state-vector() {

19 if (car-index > 0) // if not the first car
20 {
2 distance distance-from-prev-car = readcfrom-radar-sensoro;

velocity currentvelocity = readfrom_ gearshaftvelocity-sensor);
23 acceleration current-acceleration = read-from-accelerometero;

23 relative-position = distance-from-prev-car - reference-distance;
26 relative-velocity = current-velocity - ask-server-prev-car-velocity()

27 relative-acceleration = current-acceleration -
askserver-prevcar-acceleration(car-index);

28

29 send-state-to-server(

125

i



car-index,
relative-position,

32 relative-velocity,
33 relative-acceleration,
34 current-acceleration,
35 current-velocity
34

37 }
38 }
39

4 void
41 receive-command-fromserver() {
42 speed target-speed = (speed) /* parse HTTP request */
43 if (read-from-from-gear-shaft-velocity-sensor() < target-speed)
4d {
45 speedupo;
46 }
47 else
48 {
49 slowdowno;

31 }
s1 }

53 void
54 send-state-to-server(

int car-index,
56 position relative-position,
57 velocity relative-velocity,
58 acceleration relative-acceleration,

acceleration absolute-acceleration,
44 velocity absolute-velocity
41 ) {
62 /* Send some HTTP request or signal to a server in a remote location or

in one of the cars*/
63 }

65

47 // A server controlling each car's speed
48 1

* ** ** ** ** * ** ** *** * **** * ** ********** * ** ** ** ** ** * ** ** ** ** * *** * ** ******* ** ** ** ** *

fs distance relative-positions[5];
7o velocity relative-velocities[5];
71 acceleration relative-accelerations[5];
12

73 acceleration absolute-accelerations[5];
74 velocity absolute-velocities[5];
75

76 distance reference-distance = 1.3;
77

78 void
79 send-prev-car-absolute-acceleration() {
80 int car-index = /* parse HTTP request */

126



/* send absolute..accelerations[car..index-1] to vehicle number car-index -
1 *&/

S2 }

84 void
85 send-prev-car-absolute-velocity() {

int car-index = /* parse HTTP request */
/* send absolute-velocities [car_index-11 to vehicle number car-index - 1

si8 }

w void
91 receive-state-from-client-vehicle()
92 {

/* parse HTTP request parameters */
-94

95 relative-positions[car-index] = relative-position;
96 relative-velocities [car-index] = relative-velocity;

relative-accelerations[car-index] = relative-acceleration;

99 absolute-accelerations[car-index] = current-acceleration;
100 absolute-velocities[car-index] = current-velocity;
101 }
102

103 void
ag solvecontrols-andsendcommands()
10S {
106 /* Compute closed loop system by solving H2 optimization problem and then

command vehicles how to react */
I0 }

There needs to be a series of Newton API calls, as mentioned in Chapter 4, to perform

dimensional type checking, construct Newton AST of the source code, and select host

language program variables as parameters to Newton invariants before inserting the Newton

runtime library call newtonApiSatisf iesConstraints into the host language IR-.

Read Chapter 4 for a more detailed step-by-step explanation of a similar example.

The code below is a transformed version of the method

update-relativestatevector that checks invariants at runtime and executes

the global error handler function if the invariant is not satisfied.

i void
2 update-relative-state-vector(int car-index) {

if (car-index > 0) // if not the first car
4{

distance distance-from-prev-car = readcfrom-radar-sensoro;
6 velocity current-velocity = read-from-gear-shaft-velocity-sensor();
7 acceleration current-acceleration = read-fromnaccelerometero;

9) NewtonAPIReport* report = newtonApiSatisfiesConstraints(
10 newton,

127



/* parameter tree made of distance-fromprev car */

3 VALID = VALID && report->satisfiesValueConstraint;
14 if (!VALID)
15 global-error-handler( report);
16
17 NewtonAPIReport* report = newtonApiSatisfiesConstraints(
Is newton,
it) /* parameter tree made of distance-from-prevcar and

currentvelocity */
20 )

21 VALID = VALID && report->satisfiesValueConstraint;
22 if (!VALID)
23 global-error-handler(report);

25 relative-position = distance-from-prev-car - reference-distance;
relative-velocity = current-velocity - ask-server-prev-car-velocity()

27; relative-acceleration = current-acceleration -
ask-server-prev-car-acceleration(car-index);

29 sendstate-to-server(
so car-index,
3i relative-position,

relative-velocity,
relative-acceleration,

34 current-acceleration,
35 current-velocity
36

S}
as}

A.4 Weather Balloon

As mentioned in Section 5.5.4, this system is a weather balloon with various sensors

including temperature sensors, altitude sensor, pressure sensor, and humidity sensor that

simply floats in the air and records sensor data. This example focuses on temperature and

pressure sensor data. The invariant is that the atmospheric temperature and the pressure are

related by the gas laws that describe the International Standard Atmosphere [10].

The C program for the weather balloon written below describes a weather balloon

reading data from sensors and writing them to a file.

C code

i void record-weather-conditions() {
2 char* weather-file = "/path/to/weather.txt";
:3 while (is-risingo) {

128



pressure ground-pressure = read-from-pressure-sensoro;
record-pressure(weather-file, ground-pressure);

temperature ground-temp = read-from-temperature-sensor);
8 record-temperature(weather-file, ground-temp);
9

sleep(1000);
S}

12 }
13

, @@error
5 void global-error-handler(NewtonAPIReport* report) {
16 ConstraintReport* currentConstraint = report->firstConstraintReport;
17 while (currentConstraint != NULL) {
18 /* log errors in some file */
19 currentConstraint = firstConstraint->next;

20}
21 }

There needs to be a series of Newton API calls, as mentioned in Chapter 4, to perform

dimensional type checking, construct Newton AST of the source code, and select host

language program variables as parameters to Newton invariants before inserting the Newton

runtime library call newtonApiSatisf iesConstraints into the host language IR.

Read Chapter 4 for a more detailed step-by-step explanation of a similar example.

The code below is a transformed version of the method record weather conditions

that checks invariants at runtime and executes the global error handler function if the

invariant is not satisfied.

C code

void record-weather-conditions()
2{

3 char* weather-file = "/path/to/weather.txt";
while (is-risingo) {

bool VALID = true;

pressure air-pressure = read-from-pressure-sensoro;
recordpressure(weather-file, air-pressure);

temperature air-temp = readcfrom-temperature-sensoro;

12 NewtonAPIReport* report = newtonApiSatisfiesConstraints(
13 newton,

/* parameter tree made of air-pressure and air-temp */

6 VALID = VALID && report->satisfiesValueConstraint;
17 if (!VALID)

global-error-handler( report);

recordtemperature(weatherfile, air-temp);

129



1

22 sleep(1000);
-3 }

The Newton runtime library call newtonApiSatisf iesConstraints is called after

air-pressure and airtemp have been assigned a value. At compile-time by matching

types and dynamic tagging, the C compiler can find out that air-pressure and air-temp

are parameters to the Newton invariant. Then, it finds a point, after all parameters have been

assigned, that is before any parameter has been used. In this code, after both parameters

have been assigned a value, airpressure is already used. However, if the invariant was

found to be violated, the global error handler will execute before the usage of air-temp.

A.5 GPS Walking

The application here is an example from [15] where a person is walking with a smart-watch

with an accelerometer and a GPS. The person receives an alert from the smart-watch if she

is walking below a target speed. The Newton description for this application is in Section

5.5.5

The invariants are that the speed computed from the GPS location simply by dividing by

sampling time should roughly match the speed computed from the accelerometers in the

sensors by multiplying by sampling time.

The following code uses annotations to designate some functions as routines that return

values meant to be used for invariant checking. In the code below, the annotated functions

are the accelerometer reader functions, get-distance moved, and get-speed. This an-

notation allows the host language compiler to identify variables whose values are assigned

directly from those functions and mark them as a potential parameter to be checked for an

invariant. See Section 6.2.2 for more information.

Note here that this code assumes that type casting feature when it is adding variables

of distance types. The current implementation does not allow adding variables of different

axes because different sub-dimensions are treated as separate Physics types. This can be

resolved by allowing type casting on individual Physics expressions.

130



i // Uncertain<T> by Bornholt paper. Figure Sa in the paper

void
gps-walking() {

time dt = 50;
6

7 distance@0 loc-x = gps.get-latitudeo;
distance@1 loc-y = gps.get-longitudeo;

9

('. while (true) {
sleep(dt);
distance@0 cur-loc-x = gps.get-latitudeo;
distance@1 cur-loc-y = gps.get-longitudeo;

distance@0 ds = get-distance-moved(curloc-x, loc-x, cur-loc-y, loc-y

speed v = get-speed(ds, dt);
if (v > 4) GoodJobo;

19 else SpeedUp();
19

20 loc-x = cur-loc-x;
loc-y = cur-loc-y;

2}
23 }

2 @sensor
2R distance@0 get-distance-moved(
27 distance@0 prev-loc-x,

distance@0 cur-loc-x,
29 distance@1 prev-loc-y,
30 distance@1 cur-loc-y,
31) {
72 return (distance@3)(curloc-x - prev-loc-x) + (distance@3)(cur-locy -

prev-loc-y);
3 }

3, @sensor
. distance@0 get-speed(
37 distance@3 ds,
38 time dt
39 ) {
41 return ds / dt;
41 }

43 @@error
44 void global-error-handler(NewtonAPIReport* report) {
45 ConstraintReport* currentConstraint = report->firstConstraintReport;
46 while (currentConstraint != NULL) {
47 /* log errors in some file */
48 currentConstraint = firstConstraint->next;
49 }
'o }

There needs to be a series of Newton API calls, as mentioned in Chapter 4, to perform

dimensional type checking, construct Newton AST of the source code, and select host

131



language program variables as parameters to Newton invariants before inserting the Newton

runtime library call newtonApiSatisf iesConstraints into the host language IR.

Read Chapter 4 for a more detailed step-by-step explanation of a similar example.

The code below is a transformed version of the method gps-walking that checks

invariants at runtime and executes the global error handler function if the invariant is not

satisfied.

1 // Uncertain<T> by Bornholt paper. Figure 5a in the paper
2

3 void
4 gps-walking() {
5 time dt = 50;
6

7 distance@0 loc-x = gps.get-latitudeo;
distance@1 loc-y = gps.get-longitudeo;

9

10 while (true) {
11 sleep(dt);
12 distance@0 cur-loc-x = gps.get-latitudeo;
0 distance@1 cur-loc-y = gps.get-longitudeo;
14

15 distance@3 ds = get-distance-moved(cur-loc-x, loc-x, cur-loc-y, loc-y

16 speed v = get-speed(ds, dt);

18 NewtonAPIReport* report = newtonApiSatisfiesConstraints(
19 newton,
20 /* parameter tree made of air-pressure and air-temp */

22 VALID = VALID && report->satisfiesValueConstraint;
23 if (!VALID)
24 global-error-handler( report);

26 if (v > 4) GoodJobo;
27 else SpeedUpo;
28

N loc-x = cur-loc-x;
30 loc-y = cur-loc-y;
31 }
32}

Now we show the second transformation that reduces sensor redundancy. Suppose that

the smart-watch used for GPS-Walking has an option for a low-power GPS which reduces

GPS redundancy. Almost identical to the pedometer and the activity classifier example

before, this transformation would affect the GPS reader function.

distance@0 read-from-gps-x-coordinate() {
distance@0 average = (read-from-gps-x-coordinatel() + (distance@0)
read-from-gps-x-coordinate2()) / 2;
return average;

132



S}

After applying the transformation that reduces sensor redundancy, the above code

becomes the following.

j distance@0 read-from-gps-x coordinate() {
2 distance@0 average = (read-from-gps-x-coordinate1() +

read-from-gps-x-coordinate2()) / 2;
return average;

A.6 SensorLife

This code describes the system from Section 5.5.6. This SensorLife example is identical to

Conway's Game of Life except living and dying are determined by the number of neighbors

over a threshold temperature. If a cell receives a signal to die, the cooling unit within the

cell quickly cools the cell down to below the threshold temperature, and likewise, if a cell

receives a signal to be revived, the heating unit within the cell heats up the cell. The function

that transitions the grids is shown below.

temperature threshold = 50;
2

void update-one-cell(
uint8_t cur-x,
uint8_t cur-y,
Cell* [max-width][max-height] current-grid,
Cell* [max-width][max-height] next-grid

int num-live-neighbors = 0

temperature@0 nw = read-neighbor-temp-nw(current-g rid[ curx] [cury] );
12 temperature@1 n = read-neighbor-temp-n(current-grid[curx] [cur-y]);

temperature@2 ne = read-neighbor-temp-ne(current-grid[cur-x] [cur-y]);
14 temperature@3 e = read-neighbor-temp-e(current-grid[cur-x] [cur-y]);

temperature@4 w = read-neighbor-temp-w(current-grid[curx] [cur-y]);
temperature@5 sw = read-neighbor-tempsw(current-g rid[ curx] [cur-y]) ;

1 temperature@6 s = read-neighbor-temp-s(current-grid[curx] [cur-y]);
'is temperature@7 se = read-neighbor-temp-se (current-g rid[ curx] [cur-y]) ;

20 if (nw > threshold)
21 num-live-neighbors++;
22 if (n > threshold)
23 num-live-neighbors++;
24 if (ne > threshold)
25 num-live-neighbors++;
26 if (e > threshold)
27 num-live-neighbors++;

133



28 if (w > threshold)
29 num-live-neighbors++;
30 if (sw > threshold)

num-live-neighbors++;
if (s > threshold)

33 numlive-neighbors++;
34 if (se > threshold)
35 num-live-neighbors++;
36

37 if (current-grid[curxx][cur-y].alive)
38 {

if (num-live-neighbors < 2 11 num-live-neighbors > 3)
.40 kill(next-grid[curx][cury]); // cool the cell to below

threshold
41 }
42 else
43 {
44 if (numnlive-neighbors == 3)
45 revive(next-grid[cur-x][cur-y]); // heat up the cell to above

threshold
as}

7 }
48

49 @@error
5o void global-error-handler(NewtonAPIReport* report) {
51 ConstraintReport* currentConstraint = report->firstConstraintReport;
52 while (currentConstraint != NULL) {
53 /* log errors in some file */

currentConstraint = firstConstraint->next;
as}

54 }

There needs to be a series of Newton API calls, as mentioned in Chapter 4, to perform

dimensional type checking, construct Newton AST of the source code, and select host

language program variables as parameters to Newton invariants before inserting the Newton

runtime library call newtonApiSatisf iesConstraints into the host language IR.

Read Chapter 4 for a more detailed step-by-step explanation of a similar example.

The code below is a transformed version of the method update-onecell that checks

invariants at runtime and executes the global error handler function if the invariant is not

satisfied.

i temperature threshold = 50;
2

3 void update-one-cell(
4 uint8-t cur-x,
5 uint8_t cur-y,
6 Cell* [max-width][max-height] current-grid,
7 Cell* [max-width][max-height] next-grid
8 ) {
9 bool VALID = true;

134



int num-live-neighbors = 0

temperature@0
temperature@1
temperature@2
temperature@3
temperature@4
temperature@5
temperature@6
temperature@7

nw = read-neighbor-temp-nw(current-grid[cur-x][cur-y]);
n = read-neighbor-temp-n(current-grid[cur-x][cur-y]);
ne = read-neighbor-temp-ne(current-grid[cur-x][cur-y]);
e = read-neighbor-temp-e(current-grid[cur-x][cur-y]);
w = read-neighbor-temp-w(current-grid[cur-x][cur-y]);
sw = read-neighbor-temp-sw(current-grid[curx][cur-y]);
s = read-neighbor-temp-s(current-grid[cur-x][cur-yl);
se = read-neighbor-temp-se(current-grid[curxl[cur-y]);

21 NewtonAPIReport* report = newtonApiSatisfiesConstraints(newton,
parameter tree made of above variables */);

22 VALID = VALID && report->satisfiesValueConstraint;
23 if (!VALID)
2- global-error-handler(report);

26 if (nw > threshold)
num-live-neighbors++;

28 if (n > threshold)
29 num-live-neighbors++;

if (ne > threshold)
31 num-live-neighbors++;
.;2 if (e > threshold)

num-live-neighbors++;
34 if (w > threshold)
353 num-live-neighbors++;

6s if (sw > threshold)
37 num-live-neighbors++;
38, if (s > threshold)
39 num-live-neighbors++;
40 if (se > threshold)
4; 1num-live-neighbors++;

if (current-grid[cur-x][cur-y].alive)
{

if (numlive-neighbors < 2 1| num-live-neighbors > 3)
kill(next-grid[cur-x][cur-y]); // cool the cell to below

threshold
}
else
{

if (numlive-neighbors == 3)
revive(next-grid[cur-x][cur-y]); // heat up the cell to above

threshold
}52

4.3}

Now suppose that we want to apply the sensor redundancy reducing transformation to

this code. As in the pedometer, the activity classifier, and GPS-Walking examples, this

transformation concerns the temperature sensor redundancy. In this example, a total of 9

temperature sensor usages would be reduced because there are two redundant temperature

135

12

15

16

17

18

i9

43

44
45

-46

47
48

49

50

r1



sensors for each of the 9 sets of sensors. The code below shows a reader function for one of

the temperature sensors. The transformation below would be repeated for the other 8 sets of

sensors as well.

temperature@G read-from-gps-x-coordinate() {
temperature@O average = (read-from-temperature-sensor-O() +
temperature@9) read-from-temperature-sensor-9()) / 2;
return average;

After applying the transformation that reduces sensor redundancy, the above code

becomes the following.

temperature@0 readfromgpsxcoordinate() {
2 temperature@0 average = (read-from-temperature-sensor_0() +

read-from-temperature-sensor_3()) / 2;
3 return average;

A.7 Ball Dropped from a Height

This C code as mentioned in Section 5.5.7 describes a simple Physics experiment where

sensors are placed inside a ball and various sensor data are measured.

The invariant is that the ball should lose mechanical energy as it bounces against the

ground.

S/*
2 * Just imagine observing a sensor ball dropped from 10 m above the ground

and measuring
* how it behaves. The ball has an altitude sensor and 3 axes accelerometer

4 */

5 void record-measurements()

i while (true)
S {
9 acceleration@0 x = read-from-accelerometer-x();

so acceleration@1 y = read~from~accelerometery();
acceleration@2 z = read-from-accelerometer-zo;

1 distance@2 altitude = read-from-altitude-sensoro;
13

I.I record-accelerationx(x);
15 record-acceleration-y(y);
is record-acceleration-z(z);
1 recordaltitude(altitude);
I8 }
5Q }

136



There needs to be a series of Newton API calls, as mentioned in Chapter 4, to perform

dimensional type checking, construct Newton AST of the source code, and select host

language program variables as parameters to Newton invariants before inserting the Newton

runtime library call newtonApiSatisf iesConstraints into the host language IR.

Read Chapter 4 for a more detailed step-by-step explanation of a similar example.

The code below is a transformed version of the method recordmeasurements that

checks invariants at runtime and executes the global error handler function if the invariant is

not satisfied.

void record-measurements()
2 {

while (true)
a e{
acceleration@1 x = read-from-accelerometerxo;

7 acceleration@1 y = read-fromaccelerometeryo;
7 acceleration@2 z = read-fromaccelerometerz();

distance@2 altitude = read-from-altitude-sensoro;

10 NewtonAPIReport* report = newtonApiSatisfiesConstraints(newton, /*
parameter tree made of above variables L/);

VALID = VALID && report->satisfiesValueConstraint;
if (!VALID)

;3 globalerror-handler( report);

record-acceleration-x(x);
recordacceleration-y(y);
record-acceleration-z(z);
record-altitude(altitude);

19}
2 }

A.8 Jet Engine

The following code models what the software monitoring a jet engine would do assuming

that the engine follows the Moor Greitzer Jet Engine Model. The code simply monitors the

conditions of the jet engine. The Newton description for this code is in Section 5.5.8.

I void monitorjet-engine()
2{

mass-flow-rate flow = read-from-mass-flow-rate-sensor(;
4 pressure engine-pressure = read-fromrpressure-sensor();

6 /* there might be more sensors here *1
7

Is display-info-monitor();

137



9 }
10
11 @@error
12 global-error-handler(NewtonAPIReport* report) {
n /* display errors to the pilot on a monitor */
14 }

There needs to be a series of Newton API calls, as mentioned in Chapter 4, to perform

dimensional type checking, construct Newton AST of the source code, and select host

language program variables as parameters to Newton invariants before inserting the Newton

runtime library call newtonApiSatisf iesConstraints into the host language IR.

Read Chapter 4 for a more detailed step-by-step explanation of a similar example.

The code below is a transformed version of the method monitor-jet-engine that

checks invariants at runtime and executes the global error handler function if the invariant is

not satisfied.

void monitor-jet-engine()

mass-flow-rate flow = read-from.mass-flow-rate-sensor();
4 pressure engine-pressure = read-from-pressure-sensoro;

6 NewtonAPIReport* report = newtonApiSatisfiesConstraints(newton, /*
parameter tree made of above variables */);

7 VALID = VALID && report->satisfiesValueConstraint;
8 if (!VALID)
9 global-error-handler( report);

[10

2 /* there might be more sensors here */

displayinfo-monitoro;
1e }

A.9 Reactor Rod Cooling

This section describes a monitoring application of reactor rod temperature. Reactor rods

are usually submerged under some coolants like heavy water. The rods cool off faster if the

water has better cooling coefficients. The following code describes a monitoring application

with a Newton invariant. The invariant is that the time it would take for the rod to cool off to

a target temperature if the power was off should not exceed the maximum amount of time

allowed for the reactor to be turned off. See the Newton description in Section 5.5.9.

138



2 *The goal is to control the temperature of the rods by swapping out
coolants when rod temperature rises.

4

5 void monitor-reactor-temperature()

7 temperature@0 rod-temp = read-from-rod-temperature-sensor();
9 temperature@0 coolant-temp = read-from-coolant-temperature-sensor);
9 if (rod-temp > 300 && coolant-temp > 50)
W {
H changecoolanto;
2 }

'3 }

1 @@error
6 void global-error-handler(NewtonAPIReport* report) {

alert-operator("Reactor rod temperature very high");
1i}

There needs to be a series of Newton API calls, as mentioned in Chapter 4, to perform

dimensional type checking, construct Newton AST of the source code, and select host

language program variables as parameters to Newton invariants before inserting the Newton

runtime library call newtonApiSatisf iesConstraints into the host language IR.

Read Chapter 4 for a more detailed step-by-step explanation of a similar example.

The code below is a transformed version of the method

monitorreactor_temperature that checks invariants at runtime and executes

the global error handler function if the invariant is not satisfied. The error handler here

would alert the reactor operator who would then take necessary steps to control the

temperature.

void monitor-reactor-temperature()

temperature@0 rod-temp = read-fromrod-temperature-sensoro;
temperature@0 coolant-temp = read-from-coolant-temperature-sensor);

6 NewtonAPIReport* report = newtonApiSatisfiesConstraints(newton, /*
parameter tree made of above variables */);

7 VALID = VALID && report ->satisfiesValueConst raint;
8 if (!VALID)
9 global-e rro r-handle r (report);

10

if (rod-temp > 300 && coolant-temp > 50)
I2 {
3 changecoolant (;

'5 }

139



A.10 Airplane Altitude and Speed

As explained in Section 5.5.10, airplanes have two pressure sensors in its altimeter and

its pitot tube. It is essential for those pressure sensors to report identical readings, or the

altitude and the velocity readings would be incorrect. The following code represents what an

autopilot software would do to monitor the aircraft conditions and determine the air speed.

void aircraft-speed-controller()

3 speed aircraft-speed = read-from-speed-sensoro;
4 distance@2 altitude = read-fromaltimetero;

6 if (altitude < 3000 && aircraft-speed < 1000)
7 {

speed-upo;
9 }

10 }
I I

12 @@error
13 void global-error-handler(NewtonAPIReport* report) {
1 alert-pilot("Pressure sensors in altimeter and pitot tube are broken.");
15 }

There needs to be a series of Newton API calls, as mentioned in Chapter 4, to perform

dimensional type checking, construct Newton AST of the source code, and select host

language program variables as parameters to Newton invariants before inserting the Newton

runtime library call newtonApiSatisf iesConstraints into the host language IR.

Read Chapter 4 for a more detailed step-by-step explanation of a similar example.

The code below is a transformed version of the method aircraf t_speedcontroller

that checks invariants at runtime and executes the global error handler function if the

invariant is not satisfied. The error handler here would alert the reactor operator who would

then take necessary steps to control the temperature.

1 void aircraft-speed-controller()
2 {

3 speed aircraft-speed = read-from-speed-sensoro;
4 distance@2 altitude = read-from-altimeter);

C) NewtonAPIReport* report = newtonApiSatisfiesConstraints(newton, /*
parameter tree made of above variables */);

7 VALID = VALID && report->satisfiesValueConstraint;
8 if (!VALID)
9 global-e r ro r-handle r (report);

10
11 if (altitude < 3000 && aircraft-speed < 1000)
2 {

140



I , speed-up(;
S}

14 }

A.11 Motorized Wheel Chair

This section describes a programmable motorized wheel chair mentioned in Section 5.5.11.

Imagine that the programmer wants the wheel chair to be automated and that the motor of

the wheel chair should only turn on if there is someone sitting on the chair for safety. The

following code reads from the sensors available on the wheel chair to see if they are still

working before moving. Newton invariants are used in checksensors to check additional

constraints specified by the hardware manufacturer.

S/*
2 * a motor wheel chair should turn on only if there is
3 * someone sitting on it.
4 *

6 void start-moving(int direction) {
check-sensorso;
speed-up(direction);

9}
10

i void check-sensors() {
12 pressure seat-pressure = read-from-pressure-sensor);
'3 temperature seat-temp = read-from-temperature-sensor);
14 acceleration@O x = read-from-accelerometer-xo;
15 acceleration@1 y = read-from-accelerometer-yo;
16 acceleration@2 z = readcfrom-accelerometer-zo;
17
18 assert(seat-pressure != 0);

assert(seatltemp != 0);
20 assert(x != 0);
21 assert(y != 0);
22 assert(z != 0);
23 }

25 @@error
26 void global-error-handler(NewtonAPIReport* report) {
-, display("Safety check failed");
28 slowdown-to-halt );
29 }

There needs to be a series of Newton API calls, as mentioned in Chapter 4, to perform

dimensional type checking, construct Newton AST of the source code, and select host

language program variables as parameters to Newton invariants before inserting the Newton

141



runtime library call newtonApiSatisf iesConstraints into the host language IR.

Read Chapter 4 for a more detailed step-by-step explanation of a similar example.

The code below is a transformed version of the method checksensors that checks

invariants at runtime and executes the global error handler function if the invariant is not

satisfied. The error handler function lets the rider know that the safety check has failed and

slows down the wheel chair to a stop.

void check-sensors() {
2 pressure seat-pressure = read-from-pressure-sensoro;
3 temperature seat-temp = read-fromtemperature-sensoro;
4 acceleration@O x = read-from-accelerometer-xo;
5 acceleration@l y = read-from-accelerometer-yo;
6 acceleration@2 z = read-from-accelerometer-zo;

NewtonAPIReport* report = newtonApiSatisfiesConstraints(newton, /*
parameter tree made of seat-pressure and seat-temp */);

o VALID = VALID && report->satisfiesValueConstraint;
0 if (!VALID)

global-error-handler(report);
1

3 NewtonAPIReport* report = newtonApiSatisfiesConstraints(newton, /*
parameter tree made of x, y, and z */);

1 VALID = VALID && report->satisfiesValueConstraint;
if (!VALID)

global-error-handler( report);
17

Is assert(seat-pressure != 0);
9 assert(seat-temp != 0);

20 assert(x != 0);
21 assert(y != 0);
22 assert(z != 0);
44 }

A.12 Car Tire Pressure And Acceleration Range

This application is a software that monitors conditions of a car by reading sensor values and

displaying them on a dashboard monitor display. The invariant is simply a value constraint

on tire pressure and car acceleration.

I // pressure sensors in car tires
2 // https://www.kaltire. com/the-right-tire-pressure-why-the-maximum-isnt-the-

best/
3

4 void
5 display-car-condition-on-dashboard() {
6 pressure tire-pressure = read-from-tire-pressure-sensoro;

float remaining-gas-in-gallons = read-from-gas-metero;

142



IS speed current-speed = read-fromspeedometero;

C)

/* display the above info on monitor */
12 }

@@error
5 void global-error-handler(NewtonAPIReport* report) {

16 display("Tire pressure abnormal");
'7 }

There needs to be a series of Newton API calls, as mentioned in Chapter 4, to perform

dimensional type checking, construct Newton AST of the source code, and select host

language program variables as parameters to Newton invariants before inserting the Newton

runtime library call newtonApiSatisf iesConstraints into the host language IR.

Read Chapter 4 for a more detailed step-by-step explanation of a similar example.

The code below is a transformed version of the method

display-car conditionondashboard that checks invariants at runtime and

executes the global error handler function if the invariant is not satisfied.

void
2 display-car-condition-ondashboard() {

pressure tire-pressure = read-from-tire-pressure-sensor();
float remaining-gas-in-gallons = read-from-gas-metero;
speed current-speed = read-from-speedometero;

6

8 NewtonAPIReport* report = newtonApiSatisfiesConstraints(newton, /*
parameter tree made of tire-pressure */);
VALID = VALID && report->satisfiesValueConstraint;

10 if (!VALID)
global-e rrorhandler( report);

12

J 3

. /* display the above info on monitor */
15 }

143



144



Appendix B

Appendix: Formal Grammar for the

Newton Description File

j <Newton-file> ::= <rule-list>
2

<rule-list> ::= [<rule>]+
<rule> (<constant> I <invariant> I <base-signal>)

6 <constant> ::= <identifier> ':' 'constant' '=' <number> <unit-expression>
<invariant> ::= <identifier> ':' 'invariant' <parameter-tuple> '=' '{' <

constraint-list> '}'
x <base-signal> ::= <identifier> ':' 'signal' [subdimension-tuple]? '' '{' <

name> <symbol> <derivation> '}'

1 <name> ::= 'name' '=' <string-constant> <language-setting>
<symbol> ::= 'symbol' '=' <string-constant> ';'

1 <derivation> ::= 'derivation' '=' ('none' I <quantity-expression>) ';'

<subdimension-tuple> '(' <identifier> ':' <number> 'to' <number> ')'

15

16 <parameter-tuple> '(' <parameter> [',' <parameter>]* ')'
I <parameter> ::= <identifier> ':' <identifier>
IS
1o <constraint-list> <constraint> [',' <constraint>]*
20 <constraint>
21 <quantity-expression> <compare-op> <quantity-expression>

22 <quantity> <assign-op> <quantity-expression>
23 .

25 <quantity-expression> <quantity-term> [<low-precedence-op> <quantity-term
>1*

26 <quantity-term> ::= '1? <quantity-factor> [<mid-precedence-op> <quantity-
factor>]*

2 <quantity-factor>
<quantity> [<high-precedence-op> <quantity-

145



expression>]? |
29 <time-op>* <quantity-expression> I

'(' <quantity-expression> ')'
<vector-op> '(' <quantity-expression> ',' <quantity-

expression>')'
.32

33 <quantity> ::= <number> I (<identifier> ['@' <number>]*)
34 <low-precedence-op> : +' '
3, <mid-precedence-op> '*'

3. <high-precedence-op> '**'

. <vector-op> ::= 'dot' | 'cross'
n8 <time-op> ::= 'derivative' I 'integral'
.39 <assign-op>

1 <unit-expression> ::= <unit-term>
42 <unit-term> ::= <unit-factor> [<mid-precedence-op> <unit-factor>]+
43 <unit-factor> ::= ['-']? (<unit> [<high-precedence-op> <number>]? I '(' <unit

-expression> ')')
4 <unit> ::= <identifier>
.45

4 <number> : '-']? <integer> ['.' <integer>]*
47 <integer> [1..9][0..9]*
48 <string-constant> ::= '"'[a-zA-Z]+"'
4 <identifier> [a-zA-Z][(-9a-zA-Z\_]*
a <compare-op> : ['o<' '~' '<' i '<=' I '>' I '>=']
<language-setting> ::= ('English' I 'Spanish')

146



Appendix C

Appendix: Data Structures Used

* Checking on each constraint will add a ConstraintReport struct
* to the NewtonAPIReport struct. While walking the expression tree,
* the Newton API compares the dimensions and the values of the operands

of a binary operation and generates a report.
*/

struct ConstraintReport

bool satisfiesDimensionConstraint;
char dimensionErrorMessage[1024];
bool satisfiesValueConstraint;
char valueErrorMessage[1024];

a 3
NT SourceInfo * failedLocation;

16 ConstraintReport* next;
17

19

21 * Contains a linked list of ConstraintReport's
21 * Each call to newtonApiSatisfiesConstraints will generate a NewtonAPIReport
22 *

23 struct NewtonAPIReport
24 {
25 ConstraintReport* firstConstraintReport;
26 };

28 typedef struct Scope Scope;
29 typedef struct Symbol Symbol;
30 typedef struct Token Token;
31 typedef struct IrNode IrNode;
32 typedef struct SourceInfo SourceInfo;
33 typedef struct Dimension Dimension;
34 typedef struct Physics Physics;
31 typedef struct IntegralList IntegralList
36 i
37 typedef struct Invariant Invariant;

147

9

i
2

3
e
5
e
7



39 struct Dimension
40 {

41 char * identifier;
42 char * abbreviation;
43

44 double exponent; // default value is 1 if exists
45

46 Scope * scope;

48 SourceInfo * sourceInfo;
49

50

51 int primeNumber;

53 Dimension * next;

56 struct Invariant

58 char * identifier; // name of the physics quantity. of type
kNoisyConfigType-.Tidentifier

59

61
62 Scope * scope;
63 SourceInfo * sourceInfo;
64

65

66

67 IrNode * parameterList; // this is just bunch of IrNode's in Xseq
68 unsigned long long int id;
69

70 IrNode * constraints;

Invariant * next;

- struct Physics
76 {
77 char * identifier; // name of the physics quantity. of type

kNoisyConfigTypeTidentifier
79 unsigned long long int id;
79 int subindex; /* index for further identification. e.g.) acceleration along

x, y, z axes */
80
8! Scope * scope;
82 SourceInfo * sourceInfo;
83

4 double value; /* for constants like Pi or gravitational acceleration */
85 bool isConstant;
56

87 Dimension * dimensions;
88
89 char * dimensionAlias;
90 char * dimensionAliasAbbreviation;

148



Physics * definition;

Physics * next;

struct IrNode

{
IrNodeType

* Syntactic

type;

(AST) information.

char * tokenString;
Token * token;
SourceInfo * sourceInfo;
IrNode * irParent;
IrNode * irLeftChild;
IrNode * irRightChild;

Symbol * symbol;

* Used for evaluating dimensions in expressions

Physics * physics;

* only if this node
*/

double value;

belongs to a ParseNumericExpression subtree

15 int subindexStart;
1 int subindexEnd;

128

129 A parameter tuple of length n has ordering from zero to n - 1
130

13 int parameterNumber;
132

13 /

134 * When doing an API check of the invariant tree given a parameter tree,
s15 * the method looks up all instances of

136 */
137

138

1.9 * Used for coloring the IR tree, e.g., during Graphviz/dot generation
140

141 IrNodeColor nodeColor;
142

143
14-4

45 struct SourceInfo
146 {

149

119

120

12i

122

123



char ** genealogy;

char *
uint64_t
uint64_t
uint64_t

147

148

149

150

151
1t i
52

153

154

155

156 SI
157 {
18

159

1601

161

162

163

1 (

165

166

167

168

169

172

*1 734

175

170

177

178

180

Token * prev;
Token * next;

ruct Scope

/*
* For named scopes (at the moment, only Progtypes)
*/

char * identifier;

int currentSubindex;

* Hierarchy. The firstChild is used to access its siblings via firstChild
->next

Scope * parent;
Scope * firstChild;

* Symbols in this scope. The list of symbols is accesed via firstSymbol->
next
*/
Symbol * firstSymbol;

* each invariant scope will have its own list of parameters

IrNode * invariantParameterList; // this is just bunch of IrNode's in
Xseq

/*
* For the config file, we only have one global scope that keeps track of
all
* dimensions and Physics types.

150

ruct Token

IrNodeType
char *
uint64_t
double
char *
SourceInfo

182

114

185

196

187

188

189
190

191

192

143

194

195

196

197

198

fileName;
lineNumber;
columnNumber;
length;

type;
identifier;
integerConst;
realConst;
stringConst;

* sourceInfo;



Dimension * firstDimension;
Physics * firstPhysics;

* Where in source scope begins and ends

SourceInfo *
SourceInfo *

begin;
end;

.03

200

201

2M2

203

204

205

206

207

211

21

21

212

19

22 struct Symbol
22- {
-24 char *
225

226

227

229

230

identifier;

* This field is duplicated in the AST node, since only
* identifiers get into the symbol table:

SourceInfo * sourceInfo;

* Declaration, type definition, use, etc. (kNoisySymbolTypeXXX)

int
236

237

238

239

240

241

242

243

246

247

248

249

250

253

254

symbolType;

/*
* Scope within which sym appears

Scope * scope;

* If an identifier use, definition's Sym, if any

Symbol * definition;

/*
* Subtree in AST that represents typeexpr
*/

IrNode * typeTree;

* If an ICONST, its value.
*/

151

/*
* For chaining together scopes (currently only used for Progtype
* scopes and for chaining together children).

Scope * next;
Scope * prev;

* Used for coloring the IR tree, e.g., during Graphviz/dot generation

IrNodeColor nodeColor;



nt intConst;
ouble realConst;
har * stringConst;

*
* For chaining together sibling symbols in the same scope
*/

Symbol *
Symbol *

next;
prev;

typedef struct
{

* Timestamps to track lifecycle

uint64-t
TimeStamp *
uint64_t
uint64_t

initializationTimestamp;
timestamps;
timestampCount;
timestampSlots;

* Track aggregate time spent in all routines, by incrementing
* timeAggregates[timeAggregatesLastKey] by (now -
timeAggregatesLastTimestamp)

*/
uint64t * timeAggregates;
TimeStampKey timeAggregatesLastKey;
uint64-t timeAggregatesLastTimestamp;
uint64_t timeAggregateTotal;
uint64t * callAggregates;
uint64_t callAggregateTotal;

* Used to get error status from FlexLib routines

FlexErrState * Fe;

* State for the portable/monitoring allocator (FlexM)

FlexMstate * Fm;

* State for portable/buffering print routines (FlexP)
* We have one buffer for informational messages, another
* for errors and warnings.

FlexPrintBuf *
FlexPrintBuf *

Fperr;
Fpinfo;

152

i
d
C

255

256

-57

258

259

20

261

262

263

265

266

267

268

269

270

22

273

-74

2-5

/*



* The output file of the last render. TODO: Not very happy
* with this solution as it stands... (inherited from Sal/svm)

char * lastDotRender;

* This is the name of the progtype that the file we're parsing implements

*/

31,

31531*7

318

319

320

321

.progtypeOfFile;

322 * We keep a global handle on the list of progtype scopes,
reference.

323 * In this use case, the node->identifier holds the scopes
and we

n2: * chain then using their prev/next fields.
.12*

for easy

string name,

Scope * progtypeScopes;

* Lexer state

char *
char *
uint64_t
uint64_t
uint64_t
char *
uint64-t
Token *
Token *

fileName;
lineBuffer;
columnNumber;
lineNumber;
lineLength;
currentToken;
currentTokenLength;

tokenList;
lastToken;

330

332

336

334

335

339

350

31

140

341

340

34

356

357

352

354

35-0

356

357

359

360

362

363

153

char *

* The root of the IR tree, and top scope

IrNode * noisyIrRoot;
IrNode * newtonIrRoot;
Scope * noisyIrTopScope;

Scope * newtonIrTopScope;

/*
* Output file name when emitting bytecode/protobuf
*/
char * outputFilePath;

NoisyMode mode;
uint64-t verbosityLevel;
uint64Lt dotDetailLevel;
uint64_t optimizationLevel;
uint64_t irPasses;
uint64-t irBackends;



36".

366

,67

M&6

3V9

jmp-buf jmpbuf;
bool jmpbufIsValid;

/*
* Global index of which prime numbers we have used for the dimension id'

/

370 int primeNumbersIndex;
371

372

377 * When parsing invariant constraints, need to number the factors that
correspond to the parameters passed in.

374 * This is so that finding matching Parameter doesn't depend either the
identifier passed, or the physics type.

37 * That is a good idea because now we don't need to implicitly fill in the
left identifier child of the parameter node.

36 */
37 int currentParameterNumber;
378

379 Invariant * invariantList;
3801
381 } State;

154



Appendix D

Appendix: The Header File for the

Newton API

* Given a path to a Newton description file
* return a global state that contains the Newton IR and the symbol

tables.
* The symbol table contains the list of all Physics structs and

Dimension structs.
This state is used to make all other API calls.

NoisyState * newtonApiInit(char * newtonFileName);

Given a Newton state and a string, get a Physics type with the name of
that string.
* return NULL if there isn't a Physics struct with the given name in the
Newton description

12 * passed into the API call newtonApiInit.
S*/

14 Physics* newtonApiGetPhysicsTypeByName(NoisyState* N, char* nameOfType);
15

16

7 * Given a Newton state and a tree of kNewtonIrNodeType.Pparameter nodes,
which have
* left child with kNewtonIrNodeType.Tidentifier describing the name of

the variable of a Physics type
* and a numeric value assigned to that variable

20 * and a right child with kNewtonIrNodeType...-Tidentifier describing the
name of the Physics type and containing

21 * in its physics field the result of the API call
newtonApiGetPhysicsTypeByName(newton, physicsString),

22 * return a NewtonAPIReport struct that constains information about
whether the constraints between

23 * different Physics structs are satisfied.
24 *

155



NewtonAPIReport* newtonApiSatisfiesConstraints(NoisyState* N, NoisyIrNode
* parameterTreeRoot);

27

28 * Given a Newton state and a tree of kNewtonIrNodeTypePparameter nodes,
29 * return an Invariant which contains constraints made of the variables

with Physics types
30* mentioned in the given parameter tree.
31

32 Invariant * newtonApiGetInvariantByParameters(NoisyState* N, NoisyIrNode*
parameterTreeRoot);

23

34

35

36 *Makes an Ir node.
37 */
:ZR genNoisyIrNode(NoisyState* N, NoisyIrNodeType type, NoisyIrNode* left,

NoisyIrNode* right, NoisySourceInfo* source);

41 * Makes an Ir node and set its value.
42 .

43 makeNoisyIrNodeSetToken(NoisyState* N, NoisyIrNodeType type, char*
identifier, char* stringConst, double numericValue);

45 /

46 * Adds a node to tree in post-order traversal manner.
47

48 addLeaf(NoisyState* N, NoisyIrNode* root, NoisyIrNode* child);
49

5( /

21 Adds a node to tree in post-order traversal manner but add a Xseq node
before attaching the child

53, addLeafWithChainingSeqNoLexer(NoisyState* N, NoisyIrNode* root,
NoisyIrNode* child);

156



Bibliography

[1] Aeroperu flight 603. https://en.wikipedia.org/wiki/AeroperC3%BA-

Flight_603. Accessed: 2017-05-16.

[2] Airplane was flying below recommended landing speed be-

fore crash. https://ww2.kqed.org/news/2013/07/07/102813/

investigation- sfo- flight -214- crash/. Accessed: 2017-05-13.

[3] Conway's game of life. https://en.wikipedia.org/wiki/Conway%27s-Game_

of-Life. Accessed: 2017-05-16.

[4] Duck typing. https://en.wikipedia.org/wiki/Duck-typing. Accessed: 2017-

05-13.

[5] Electrical sensors. http://www. toptransmissions . com/electrical- sensors.

Accessed: 2017-05-13.

[6] Fail-fast. https://martinfowler. com/ieeeSoftware/failFast.pdf. Accessed:

2017-06-08.

[7] Full-featured pedometer design realized with 3-axis digital accelerome-

ter. http://www.analog.com/media/en/technical-documentation/

technical-articles/pedometer. pdf. Accessed: 2017-06-15.

[8] Google io. https://dl.google. com/io/2009/pres/W-0300-

CodingforLife-BatteryLifeThatIs.pdf. Accessed: 2017-06-04.

[9] H2-based n-vehicle platoon. https://ths.rwth-aachen.de/research/

projects/hypro/n-vehicle-platoon/. Accessed: 2017-06-18.

157



[10] The international standard atmosphere. http: //home. anadolu. edu. t r/-mcavcar/

common/ISAweb. pd f. Accessed: 2017-05-16.

[11] The physics of usain bolt's world record 100-meter dash. http://io9.gizmodo. com/

the-physics-of-usain-bolts-world-record-100-meter-dash-924744818.

Accessed: 2017-06-15.

[12] Stability and robustness analysis of nonlinear systems via contractionmetrics and

sos programming. http: //web.mit.edu/nsl/www/prep rints/SOS-met rics. pd f.

Accessed: 2017-06-18.

[13] typing. https://docs.python.org/3/library/typing.html. Accessed: 2017-

06-18.

[14] T. Antoniu, P. A. Steckler, S. Krishnamurthi, E. Neuwirth, and M. Felleisen. Validating

the unit correctness of spreadsheet programs. In Proceedings of the 26th International

Conference on Software Engineering, ICSE '04, pages 439-448, Washington, DC,

USA, 2004. IEEE Computer Society.

[15] J. Bornholt, T. Mytkowicz, and K. S. McKinley. Uncertain: A first-order type for

uncertain data. SIGPLAN Not., 49(4):51-66, Feb. 2014.

[16] L. Brand. The pi theorem of dimensional analysis. A rchive for Rational Mechanics

and Analysis, l(1):35-45, 1957.

[17] E. Buckingham. On physically similar systems; illustrations of the use of dimensional

equations. Phys. Rev., 4:345-376, Oct 1914.

[18] F. M. for sustainable development. Sensor Malfunction Fact Sheet. April.

[19] R. T. House. A proposal for an extended form of type checking of expressions. Comput.

J., 26(4):366-374, Nov. 1983.

[20] A. Kennedy. Dimension types. In Proceedings of the 5th European Symposium on

Programming: Programming Languages and Systems, ESOP '94, pages 348-362,

London, UK, UK, 1994. Springer-Verlag.

158



[21] A. Kennedy. Types for units-of-measure: Theory and practice. In Proceedings of

the Third Summer School Conference on Central European Functional Programming

School, CEFP'09, pages 268-305, Berlin, Heidelberg, 2010. Springer-Verlag.

[22] M. Kitamura. Detection of Sensor Failures in Nuclear Plants Using Analytic Redun-

dancy. Oak Ridge National Laboratory, Oakridge, Tennessee.

[23] R. Kurth. A note on dimensional analysis. The American Mathematical Monthly,

72(9):965-969, 1965.

[24] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Grossman, and L. Ceze.

Expressing and verifying probabilistic assertions. In M. F. P. O'Boyle and K. Pingali,

editors, Proceedings of the 35th Conference on Programming Language Design and

Implementation, page 14. ACM, 2014.

[25] P. Stanley-Marbell and D. Marculescu. Sunflower: Full-system, embedded, microar-

chitecture evaluation. In Proceedings of the 2Nd International Conference on High

Performance Embedded Architectures and Compilers, HiPEAC'07, pages 168-182,

Berlin, Heidelberg, 2007. Springer-Verlag.

[26] P. Stanley-Marbell and M. Rinard. Lax: Driver interfaces for approximate sensor

device access. In 15th Workshop on Hot Topics in Operating Systems (HotOS XV),

Kartause Ittingen, Switzerland, 2015. USENIX Association.

[27] P. Stanley-Marbell and M. Rinard. Reducing serial i/o power in error-tolerant applica-

tions by efficient lossy encoding. In Proceedings of the 53rd Annual Design Automation

Conference, DAC '16, pages 62:1-62:6, New York, NY, USA, 2016. ACM.

[28] D. R. Stoutemyer. Dimensional Analysis, Using Computer Symbolic Mathematics.

Journal of Computational Physics, 24:141-149, June 1977.

159




