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Abstract

Consider a computation on a massive random graph: Does one need to generate the whole
random graph up front, prior to performing the computation? Or, is it possible to provide
an oracle to answer queries to the random graph "on-the-fly" in a much more efficient man-
ner overall? That is, to provide a local access generator which incrementally constructs
the random graph locally, at the queried portions, in a manner consistent with the random
graph model and all previous choices. Local access generators can be useful when studying
the local behavior of specific random graph models. Our goal is to design local access gen-
erators whose required resource overhead for answering each query is significantly more
efficient than generating the whole random graph.

Our results focus on undirected graphs with independent edge probabilities, that is,
each edge is chosen as an independent Bernoulli random variable. We provide a general
implementation for generators in this model. Then, we use this construction to obtain the
first efficient local implementations for the Erdos-Renyi G(n, p) model, and the Stochastic
Block model.

As in previous local-access implementations for random graphs, we support VERTEX-
PAIR, NEXT-NEIGHBOR queries, and ALL-NEIGHBORS queries. In addition, we introduce
a new RANDOM-NEIGHBOR query. We also give the first local-access generation proce-
dure for ALL-NEIGHBORS queries in the (sparse and directed) Kleinberg's Small-World
model. Note that, in the sparse case, an ALL-NEIGHBORS query can be used to simulate
the other types of queries efficiently. All of our generators require no pre-processing time,
and answer each query using O(poly(log n)) time, random bits, and additional space.

Thesis Supervisor: Ronitt Rubinfeld
Title: Professor
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Chapter 1

Introduction

The problem of computing local information of huge random objects was pioneered in

[18, 19]. Further work of [33] considers the generation of sparse random G(n, p) graphs

from the Erd6s-Renyi model [14], with p = O(poly(log n)/n), which answers poly(log n)

ALL-NEIGHBORS queries, listing the neighbors of queried vertices. While these generators

use polylogarithmic resources over their entire execution, they generate graphs that are only

guaranteed to appear random to algorithms that inspect a limited portion of the generated

graph.

In [15], the authors construct an oracle for the generation of recursive trees, and BA

preferential attachment graphs. Unlike [33], their implementation allows for an arbitrary

number of queries. This result is particularly interesting - although the graphs in this

model are generated via a sequential process, the oracle is able to locally generate arbitrary

portions of it and answer queries in polylogarithmic time. Though preferential attachment

graphs are sparse, they contain vertices of high degree, thus [15] provides access to the

adjacency list through NEXT-NEIGHBOR quenes.

In this work, we begin by formalizing a model of local-access generators implicitly

used in [15]. We next construct oracles that allow queries to both the adjacency matrix

and adjacency list representation of a basic class of random graph families, without gener-

ating the entire graph at the onset. Our oracles provide VERTEX-PAIR, NEXT-NEIGHBOR,

and RANDOM-NEIGHBOR queries' for graphs with independent edge probabilities, that is,

IVERTEX-PAIR(U, v) returns whether u and v are adjacent, NEXT-NEIGHBOR(v) returns a new neighbor
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when each edge is chosen as an independent Bernoulli random variable. Using this frame-

work, we construct the first efficient local-access generators for undirected graph models,

supporting all three types of queries using O(poly(log n)) time, space, and random bits

per query, under assumptions on the ability to compute certain values pertaining to consec-

utive edge probabilities. In particular, our construction yields local-access generators for

the Erdos-R6nyi G(n, p) model (for all values of p), and the Stochastic Block model with

random community assignment. As in [15] (and unlike the generators in [18, 19, 33]), our

techniques allow unlimited queries.

While VERTEX-PAIR and NEXT-NEIGHBOR queries, as well as ALL-NEIGHBORS queries

for sparse graphs, have been considered in the prior works of [15, 18, 19, 33], we provide

the first implementation (to the best of our knowledge) of RANDOM-NEIGHBOR queries,

which do not follow trivially from the ALL-NEIGHBOR queries in non-sparse graphs. Such

queries are useful, for instance, for sub-linear algorithms that employ random walk pro-

cesses. RANDOM-NEIGHBOR queries present particularly interesting challenges, since as

we note in Section 1.1.1, (1) RANDOM-NEIGHBOR queries affect the conditional probabil-

ities of the remaining neighbors in a non-trivial manner, and (2) our implementation does

not resort to explicitly sampling the degree of any vertex in order to generate a random

neighbor. First, sampling the degree of the query vertex, we suspect, is not viable for sub-

linear generators, because this quantity alone imposes dependence on the existence of all

of its potential incident edges. Therefore, our generator needs to return a random neighbor,

with probability reciprocal to the query vertex's degree, without resorting to "knowing" its

degree. Second, even without committing to the degrees, answers to RANDOM-NEIGHBOR

queries affect the conditional probabilities of the remaining adjacencies in a global and

non-trivial manner - that is, from the point of view of the agent interacting with the gener-

ator. The generator, however, must somehow maintain and leverage its additional internal

knowledge of the partially-generated graph, to keep its computation tractable throughout

the entire graph generation process.

We then consider local-access generators for directed graphs in Kleinberg's Small World

of v each time it is invoked (until none is left), and RANDOM-NEIGHBOR(v) returns a uniform random
neighbor of v (if v is not isolated).

10



model. In this case, the probabilities are based on distances in a 2-dimensional grid. Using

a modified version of our previous sampling procedure, we present such a generator sup-

porting ALL-NEIGHBORS queries in O(poly(log n)) time, space and random bits per query

(since such graphs are sparse, the other queries follow directly).

For additional related work, see Section C.

1.1 Our Contributions and Techniques

We begin by formalizing a model of local-access generators (Section 2.1), implicitly used

in [15]. Our work provides local-access generators for various basic classes of graphs de-

scribed in the following, with VERTEX-PAIR, NEXT-NEIGHBOR, and RANDOM-NEIGHBOR

queries. In all of our results, each query is processed using poly(log n) time, random bits,

and additional space, with no initialization overhead. These guarantees hold even in the

case of adversarial queries. Our bounds assume constant computation time for each arith-

metic operation with O(log n)-bit precision. Each of our generators constructs a random

graph drawn from a distribution that is 1/poly(n)-close to the desired distribution in the

L1 -distance.2

1.1.1 Undirected Graphs

In Section 3 we construct local access generators for the generic class of undirected graphs

with independent edge probabilities {P,1,} , where p, denote the probability that

there is an edge between u and v. Throughout, we identify our vertices via their unique IDs

from 1 to n, namely V = [n]. We assume that we can compute various values pertaining to

consecutive edge probabilities for the class of graphs, as detailed below. We then show that

such values can be computed for graphs generated according to the Erdos-R6nyi G(n, p)

model and the Stochastic Block model.

NEXT-NEIGHBOR Queries. We note that the next neighbor of a vertex can be found triv-

ially by generating consecutive entries of the adjacency matrix, but for small edge prob-

2The Li-distance between two probability distributions p and q over domain D is defined as 11p - qJ1 =
ExED p(x) - q(x)l. We say that p and q are c-close if 1|p - q1 < c.
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abilities pu,, = o(1) this implementation can be too slow. In our algorithms, we achieve

speed-up by sampling multiple neighbor values at once for a given vertex u; more specif-

ically, we sample for the number of "non-neighbors" preceding the next neighbor. To do

this, we assume that we have access to an oracle which can estimate the "skip" probabilities

F(v, a, b) = H =a(1 - pv,u), where F(v, a, b) is the probability that v has no neighbors in

the range [a, b]. We later show that it is possible to compute this quantity efficiently for the

G(n, p) and Stochastic block models.

A main difficulty in our setup, as compared to [15], arises from the fact that our graph is

undirected, and thus we must design a data structure that "informs" all (potentially 8(n))

non-neighbors once we decide on the query vertex's next neighbor. More concretely, if

U' is sampled as the next neighbor of v after its previous neighbor u, we must maintain

consistency in subsequent steps by ensuring that none of the vertices in the range (u, u')

return v as a neighbor. This update will become even more complicated as we later handle

RANDOM-NEIGHBOR queries, where we may generate non-neighbors at random locations.

In Section 3.2, we present a very simple randomized generator (Algorithm 2) that sup-

ports NEXT-NEIGHBOR queries efficiently, albeit the analysis of its performance is rather

complicated. We remark that this approach may be extended to support VERTEX-PAIR

queries with superior performance (given that we do not to support RANDOM-NEIGHBOR

queries) and to provide deterministic resource usage guarantee - the full analysis can be

found in Section A and B, respectively.

RANDOM-NEIGHBOR Queries. We provide efficient RANDOM-NEIGHBOR queries (Sec-

tion 3.3). The ability to do so is surprising. First, note that after performing a RANDOM-

NEIGHBOR query all other conditional probabilities will be affected in a non-trivial way.

3 This requires a way of implicitly keeping track of all the resulting changes. Second, we

can sample a RANDOM-NEIGHBOR with the correct probability 1/ deg(v), even though we

do not sample or know the degree of the vertex.

We formulate a bucketing approach (Section 3.3) which samples multiple consecutive

3Consider a G('n, p) graph with small p, say p = 1/ , such that vertices will have O(y'ni) neighbors
with high probability. After O( f/_) RANDOM-NEIGHBOR queries, we will have uncovered all the neighbors
(w.h.p.), so that the conditional probability of the remaining 0(n) edges should now be close to zero.
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edges at once, in such a way that the conditional probabilities of the unsampled edges

remain independent and "well-behaved" during subsequent queries. For each vertex v, we

divide the vertex set (potential neighbors) or v into consecutive ranges (buckets), so that

each bucket contains, in expectation, roughly the same number of neighbors EZa Pv,u

(which we must be able to compute efficiently). The subroutine of NEXT-NEIGHBOR may

be applied to sample the neighbors within a bucket in expected constant time. Then, one

may obtain a random neighbor of v by picking a random neighbor from a random bucket;

probabilities of picking any neighbors may be normalized to the uniform distribution via

rejection sampling, while stilling yielding poly(log n) complexities overall. This bucketing

approach also naturally leads to our data structure that requires constant space for each

bucket and for each edge, using E(n + m) overall memory requirement. The VERTEX-

PAIR queries are implemented by sampling the relevant bucket.

We now consider the application of our construction above to actual random graph

models, where we must realize the assumption that H a(1 - pv,u) and Z=a Pv,u can be

computed efficiently. This holds trivially for the G(n, p) model via closed-form formulas,

but requires an additional back-end data structure for the Stochastic Block models.

Erdos-Renyi. In Section 4.1, we apply our construction to random G(n, p) graphs for ar-

bitrary p, and obtain VERTEX-PAIR, NEXT-NEIGHBOR, and RANDOM-NEIGHBOR queries,

using polylogarithmic resources (time, space and random bits) per query. We remark that,

while Q(n + m) = Q(pn2 ) time and space is clearly necessary to generate and represent a

full random graph, our implementation supports local-access via all three types of queries,

and yet can generate a full graph in 6(n + m) time and space (Corollary 3), which is tight

up to polylogarithmic factors.

Stochastic Block Model. We generalize our construction to the Stochastic Block Model.

In this model, the vertex set is partitioned into r communities {C1, ... , C, }. The probability

that an edge exists depends on the communities of its endpoints: if u E Ci and v E Ci,

then {u, v} exists with probability pij, given in an r x r matrix P. As communities in the

observed data are generally unknown a priori, and significant research has been devoted to

designing efficient algorithm for community detection and recovery, these studies generally

13



consider the random community assignment condition for the purpose of designing and

analyzing algorithms (see e.g., [32]). Thus, in this work, we aim to construct generators

for this important case, where the community assignment of vertices are independently

sampled from some given distribution R.

Our approach is, as before, to sample for the next neighbor or a random neighbor di-

rectly, although our result does not simply follow closed-form formulas, as the probabili-

ties for the potential edges now depend on the communities of endpoints. To handle this

issue, we observe that it is sufficient to efficiently count the number of vertices of each

community in any range of contiguous vertex indices. We then design a data structure

extending a construction of [19], which maintain these counts for ranges of vertices, and

"sample" the partition of their counts only on an as-needed basis. This extension results

in an efficient technique to sample counts from the multivariate hypergeometric distri-

bution (Section 4.2.1). This sampling procedure may be of independent interest. For r

communities, this yields an implementation with O(r - poly(log n)) overhead in required

resources for each operation. This upholds all previous polylogarithmic guarantees when

r = poly(log n).

1.1.2 Directed Graphs

Lastly, we consider Kleinberg's Small World model ([24, 29]) in Section 5. While Small-

World models are proposed to capture properties of observed data such as small shortest-

path distances and large clustering coefficients [41], this important special case of Klein-

berg's model, defined on two-dimensional grids, demonstrates underlying geographical

structures of networks. The vertices are aligned on a Vij x 5 grid, and the edge prob-

abilities are a function of a two-dimensional distance metric. Since the degree of each

vertex in this model is O(log n) with high probability, we design generators supporting

ALL-NEIGHBOR queries.

14



Chapter 2

Preliminaries

2.1 Local-Access Generators

We consider the problem of locally generating random graphs G = (V, E) drawn from

the desired families of simple unweighted graphs, undirected or directed. We denote the

number of vertices n = IV1, and refer to each vertex simply via its unique ID from [n]. For

undirected G, the set of neighbors of v E V is defined as F(v) {u E V {v, u} E ;

denote its degree by deg(v) = IF(v)I. Inspired by the goals and results of [15], we define a

model of local-access generators as follows.

Definition 1. A local-access generator of a random graph G sampled from a distribution

D, is a data structure that provides access to G by answering various types of supported

queries, while satisfying the following:

" Consistency. The responses of the local-access generator to all probes throughout

the entire execution must be consistent with a single graph G.

" Distribution equivalence. The random graph G provided by the generator must be

sampled from some distribution D' that is E-close to the desired distribution D in the

L1 -distance. In this work we focus on supporting c = n-cfor any desired constant

c > 0. As for RANDOM-NEIGHBOR(v), the distribution from which a neighbor is

returned must be c-close to the uniform distribution over neighbors of v with respect

to the sampled random graph G (w.h.p 1 - n-for each query).
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* Performance. The resources, consisting of (1) computation time, (2) additional ran-

dom bits required, and (3) additional space required, in order to compute an an-

swer to a single query and update the data structure, must be sub-linear, preferably

poly(log n).

In particular, we allow queries to be made adversarially and non-deterministically. The

adversary has full knowledge of the generator's behavior and its past random bits.

For ease of presentation, we allow generators to create graphs with self-loops. When

self-loops are not desired, it is sufficient to add a wrapper function that simply re-invokes

NEXT-NEIGHBOR(v) or RANDOM-NEIGHBOR(v) when the generator returns v.

Supported Queries in our Model. For undirected graphs, we consider queries of the

following forms. now we might want to do NEXT-NEIGHBOR first for consistency.

" NEXT-NEIGHBOR(v): The generator returns the neighbor of v with the lowest ID that

has not been returned during the execution of the generator so far. If all neighbors of

u have already been returned, the generator returns n + 1.

" RANDOM-NEIGHBOR(v): The generator returns a neighbor of v uniformly at random

(with probability 1/ deg(v) each). If v is isolated, I is returned.

" VERTEX-PAIR(u, v): The generator returns either 1 or 0, indicating whether {u, v} C

E or not.

" ALL-NEIGHBORS(v): The generator returns the entire list of out-neighbors of v.

We may use this query for relatively sparse graphs, specifically in the Small-World

model.

2.2 Random Graph Models

Erdos-Renyi Model. We consider the G(n, p) model: each edge {u, v} exists indepen-

dently with probability p E [0, 1]. Note that p is not assumed to be constant, but may be a

function of n.

Stochastic Block Model. This model is a generalization of the Erd6s-Renyi Model. The

vertex set V is partitioned into r communities C1, . . . , C, The probability that the edge

16



{ U, v} exists is pi,j when u E Ci and v E C3 , where the probabilities are given as an r x r

symmetric matrix P = [pij]iE[r. We assume that we are given explicitly the distribu-

tion R over the communities, and each vertex is assigned its community according to R

independently at random.'

Small-World Model. In this model, each vertex is identified via its 2D coordinate v

(v, vy) E [v/n]2. Define the Manhattan distance as DIST(u, v) =u, - vI + IuY - vyl,

and the probability that each directed edge (u, v) exists is c/(DIST(u, v)) 2 . Here, c is an

indicator of the number of long range directed edges present at each vertex. A common

choice for c is given by normalizing the distribution so that there is exactly one directed

edge emerging from each vertex (c = E(1/ log n)). We will however support a range of

values of c = log e(1) n. While not explicitly specified in the original model description

of [24], we assume that the probability is rounded down to 1 if c/(DIST(u, v)) 2 > 1

2.3 Miscellaneous

Arithmetic operations. Let N be a sufficiently large number of bits required to maintain

a multiplicative error of at most a 1 factor over poly(n) elementary computationspoly(n)

(+-, , /, exp). 2 We assume that each elementary operation on words of size N bits can be

performed in constant time. Likewise, a random N-bit integer can be acquired in constant

time. We assume that the input is also given with N-bit precision.

Sampling via a CDF. Consider a probability distribution X over 0(n) consecutive inte-

gers, whose cumulative distribution function (CDF) for can be computed with at most n-'

additive error for constant c. Using 09(log n) CDF evaluations, one can sample from a

distribution that is 1 -close to X in L1 -distance. 3

'Our algorithm also supports the alternative specification where the community sizes (Ci, . Cr1) are
given instead, where the assignment of vertices V into these communities is chosen uniformly at random.

2In our application of exp, we only compute a b for b E Z+ and 0 < a < 1 + 6(!), where ab = 0(1).
For this, N = O(log n) bits are sufficient to achieve the desired accuracy, namely an additive error of n--.

3 Generate a random N-bit number r, and binary-search for the smallest domain element x where P[X <
x] > r.
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Chapter 3

Local-Access Generators for Random

Undirected Graphs

In this section, we provide an efficient implementation of local-access generators for ran-

dom undirected graphs when the probabilities pu,v = P[{u, v} E E] are given. More

specifically, we assume that the following quantities can be efficiently computed: (1) the

probability that there is no edge between a vertex u and a range of consecutive vertices

from [a, b], namely Hba(1 - pv,u), and (2) the sum of the edge probabilities (i.e., the

expected number of edges) between u and vertices from [a, b], namely EZ a PV,u We

will later give subroutines for computing these values for the Erdos-R6nyi model and the

Stochastic Block model with randomly-assigned communities in Section 4. We also begin

by assuming perfect-precision arithmetic, until Section 3.5 where we show how to relax

this assumption to N = e(log n)-bit precision.

First, we propose a simple implementation of our generator in Section 3.1 that sequen-

tially fills out the adjacency matrix; while we do not focus on its efficiency, we establish

some basic concepts for further analysis in this section. Next, we improve our subroutine

for NEXT-NEIGHBOR queries in Section 3.2: this algorithm samples for the next candi-

date of the next neighbor in a more direct manner to speed-up the process. Extending this

construction, we obtain our main algorithm in Section 3.3 via the bucketing technique: par-

tition the vertex set into contiguous ranges to normalize the expected number of neighbors

in each bucket, allowing an efficient RANDOM-NEIGHBOR implementation by picking a
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random neighbor from a random bucket. The subroutine that samples for neighbors within

a bucket, along with the remaining analysis of the algorithm, is given later in Section 3.4.

Lastly, Section 3.5 handles the errors that may occur due to the use of finite precision.

3.1 Naive Generator with an Explicit Adjacency Matrix

First, consider a naive implemention that sim-

ply fills out the cells of the n x n adjacency

matrix A of G one-by-one as required by each

query. Each entry A[u] [vi occupies exactly

one of following three states: A [u] [v] = 1 or 0

if the generator has determined that {u, v} E

E or {u, v} E, respectively, and A[u] [v] =

0 if whether {u, v} E E or not will be deter-

mined by future random choices. Aside from

A, our generator also maintains the vector

last, where last[v] records the neighbor of v

returned in the last call NEXT-NEIGHBOR(v),

or last [v] = 0 if no such call has been in-

voked. This definition of last was introduced

in [15]. All cells of A and last are initialized

to 0 and 0, respectively. We refer to Algo-

rithm 1 for its straightforward implemention,

Algorithm 1 NaIve Generator

procedure VERTEX-PAIR(u, v)
if A[u[v] = then

draw Xuv ~ Bern (pu,v)
A[v][u], A[u][v] +- Xu,

return A[u][v]

procedure NEXT-NEIGHBOR(v)
for u +- last[v] + 1 to n do

if VERTEX-PAIR(v, u) = 1 then
lastvi +- u
return u

last[v] -- n + 1
return n + 1

procedure RANDOM-NEIGHBOR(v)
R +- V
repeat

sample u E R u.a.r.
if VERTEX-PAIR(v, u) = 1 then

return u
else

R <- R \ {u}

until R = 0
return I

but highlight some notations and useful observations here.

Characterizing random choices via Xu,v's. Algorithm 1 updates the cell A[u][v] = q to

the value of the Bernoulli random variable (RV) Xuv - Bern(pu,,) (i.e., flip a coin with

bias pu,v) only when it needs to decide whether {u, v} E E. For the sake of analysis, we

will frequently consider the entire table of RVs Xuv being sampled up-front (i.e., flip all

coins), and the algorithm simply "uncovers" these variables instead of making coin-flips.

Thus, every cell A[u] [v] is originally 0, but will eventually take the value Xuv once the
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graph generation is complete. An example application of this view of X,, is the following

analysis.

Sampling from F(v) uniformly without knowing deg(v). Consider a RANDOM-NEIGHBOR(v)

query. We create a pool R of vertices, draw from this pool one-by-one, until we find a

neighbor of u. Then, for any fixed table Xu,v, the probability that a vertex u E F(v) is

returned is simply the probability that, in the sequence of vertices drawn from the pool

R, u appears first among all neighbors in r(v). Hence, we sample each u E F(v) with

probability 1/ deg(v), even without knowing the specific value of deg(v).

Capturing the state of the partially-generated graph with A. Under the presence of

RANDOM-NEIGHBOR queries, the probability distribution of the random graphs condi-

tioned on the past queries and answers can be very complex: for instance, the number

of repeated returned neighbors of v reveals information about deg(v) = Esv X,,, which

imposes dependencies on as many as 6(n) variables. Our generator, on the other hand,

records the neighbors and also non-neighbors not revealed by its answers, yet surprisingly

this internal information fully captures the state of the partially-generated graph. This sug-

gests that we should design generators that maintain A as done in Algorithm 1, but in a

more implicit and efficient fashion in order to achieve the desired complexities. Another

benefit of this approach is that any analysis can be performed on the simple representation

A rather than any complicated data structure we may employ.

Obstacles for maintaining A. There are two problems in the current approach. Firstly,

the algorithm only finds a neighbor, for a RANDOM-NEIGHBOR or NEXT-NEIGHBOR query,

with probability pu,,, which requires too many iterations: for G(n, p) this requires 1/p iter-

ations, which is already infeasible for p = o(1/poly(log n)). Secondly, the algorithm may

generate a large number of non-neighbors in the process, possibly in random or arbitrary

locations.
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3.2 NEXT-NEIGHBOR Queries via Run-of-Os Sampling

We now speed-up our NEXT-NEIGHBOR(v) procedure by attempting to sample for the

first index u > last[v} of Xv,, = 1, from a sequence of Bernoulli RVs {Xv,u}u>ast[v],

in a direct fashion. To do so, we sample a consecutive "run" of O's with probability

1u=last[]+1(1 - Pv,u): this is the probability that there is no edge between a vertex v

and any u E (last [v], u'], which can be computed efficiently by our assumption. The prob-

lem is that, some entries A [v] [u]'s in this run may have already been determined (to be 1

or 0) by queries NEXT-NEIGHBOR(u) for u > last [v]. To this end, we give a succinct data

structure that determines the value of A [v] [u] for u > last [v] and, more generally, captures

the state A, in Section 3.2.1. Using this data structure, we ensure that our sampled run

does not skip over any 1. Next, for the sampled index u of the first occurrence of 1, we

check against this data structure to see if A [v] [u] is already assigned to 0, in which case we

re-sample for a new candidate u' > u. Section 3.2.2 discusses the subtlety of this issue.

We note that we do not yet try to handle other types of queries here yet. We also do not

formally bound the number of re-sampling iterations of this approach here, because the ar-

gument is not needed by our final algorithm. Yet, we remark that O(log n) iterations suffice

with high probability, even if the queries are adversarial. This method can be extended to

support VERTEX-PAIR queries (but unfortunately not RANDOM-NEIGHBOR queries). See

Section A for full details.

3.2.1 Data structure

From the definition of Xu,,, NEXT-NEIGHBOR(v) is given by min{u > last[v] X, 1}

(or n + 1 if no satisfying u exists). Let Pv = {u : A[vI[ul = 1} be the set of known

neighbors of v, and wv = min{(Pv n (last[v], n]) U {n + 1}} be its first known neighbor

not yet reported by a NEXT-NEIGHBOR(v) query, or equivalently, the next occurrence of

1 in v's row on A after last[v]. Note that w, = n + 1 denotes that there is no known

neighbor of v after last[v]. Consequently, A[v][u] E {$, 0} for all u E (last[v], w,), so

NEXT-NEIGHBOR(v) is either the index u of the first occurrence of X,, 1 in this range,

or w, if no such index exists.
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We keep track of last[v] in a dictionary, where the key-value pair (v, last [v]) is stored

only when last[v] # 0: this removes any initialization overhead. Each Pv is maintained as

an ordered set, which is also only instantiated when it becomes non-empty. We maintain

Pv simply by adding u to v if a call NEXT-NEIGHBOR(v) returns u, and vice versa. Clearly,

A [v] [u] = 1 if and only if u G Pv by construction.

As discussed in the previous section, we cannot maintain A explicitly, as updating it

requires replacing up to e(n) O's to O's for a single NEXT-NEIGHBOR query in the worst

case. Instead, we argue that last and Pv's provide a succinct representation of A via the

following observation. For simplicity, we say that X,, is decided if A[u] [v] $ 4, and call

it undecided otherwise.

Lemma 1. The data structures last and Pv's together provide a succinct representation of

A when only NEXT-NEIGHB OR queries are allowed. In particular, A [v] [=] = 1 if and only

if u c P,. Otherwise, A[v] [u] = 0 when u < last [v] or v < last[u]. In all remaining

cases, A[v] [u] = 0.

Proof The condition for A[v] [u] = 1 clearly holds by constuction. Otherwise, observe

that A [v] [u] becomes decided (that is, its value is changed from # to 0) precisely during the

first call of NEXT-NEIGHBOR(v) that returns a value u' > u which thereby sets last[v] to

U' yielding u < last[v], or vice versa. L

3.2.2 Queries and Updates

We now provide our generator (Algorithm 2), and discuss the correctness of its sampling

process. The argument here is rather subtle and relies on viewing the random process as an

"uncovering" process on the table of RVs Xs,,'s as previously introduced in Section 3.1.

Algorithm 2, considers the following experiment for sampling the next neighbor of v in the

range (last [v], wv). Suppose that we generate a sequence of wv - last[v] - 1 independent

coin-tosses, where the ith coin Cvu corresponding to u = last [v] +i has bias pv,u, regardless

of whether X,,u's are decided or not. Then, we use the sequence (Cue) to assign values to

undecided random variable Xv,.. The crucial observation here is that, the decided random

variables Xvu = 0 do not need coin-flips, and the corresponding coin result Co,, can simply
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be discarded. Thus, we need to generate coin-flips up until we encounter some u satisfying

both (i) Co, = 1, and (ii) A[v][u] = 0.

Let F(v, a, b) denote the probability distri-

bution of the occurrence u of the first coin-flip

CV'U = 1 among the neighbors in (a, b). More

specifically, F ~ F(v, a, b) represents the event

that Cva+i = ... = Cv,F-1 = 0 and C0 ,F = 1,

which happens with probability P[F = f] =

J9I+1 (1 - Pv'U) * Pv,f. For convenience, let

F = b denote the event where all C., = 0.

Our algorithm samples F1 - F(v, last [v], w,)

to find the first occurrence of C,F, = 1, then

samples F2 ~ F(v, F1 , w,) to find the second

Algorithm 2 Sampling NEXT-NEIGHBOR

procedure NEXT-NEIGHBOR(v)

u <- last [v]
w, - min{(Pn(u, n]) U{n+1}}
repeat

sample F ~ F(v, u, w,)
u +- F

until u = w, or last[u] < v
if u / w, then

P, -P, n {u}
Pu- P n {v}

last [v] <- u
return u

occurrence CvF2 = 1, and so on. These

values {F} are iterated as u in Algorithm 2. As this process generates u satisfying (i) in

the increasing order, we repeat until we find one that also satisfies (ii). Note that once the

process terminates at some u, we make no implications on the results of any uninspected

coin-flips after Cv .

Obstacles for extending beyond NEXT-NEIGHBOR queries. There are two main issues

that prevent this method from supporting RANDOM-NEIGHBOR queries. Firstly, while one

might consider applying NEXT-NEIGHBOR from some random location u to find the min-

imum u' > u where A [v] [u'] = 1, the probability of choosing u' will depend on the

probabilities pv,u's, and is generally not uniform. While a rejection sampling method may

be applied to balance out the probabilities of choosing neighbors, these arbitrary pv,u's may

distribute the neighbors rather unevenly: some small contiguous locations may contain so

many neighbors that the rejection sampling approach requires too many iterations to obtain

a single uniform neighbor.

Secondly, in developing Algorithm 2, we observe that last [v] and P, together provide a

succinct representation of A [v] [u] = 0 only for contiguous cells A [v] [u] where u < last[v]

or v < last[u]: they cannot handle 0 anywhere else. Unfortunately, in order to extend

our construction to support RANDOM-NEIGHBOR queries using the idea suggested in Al-
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gorithm 1, we must unavoidably assign A [vi[u] to 0 in random locations beyond last [v]

or last [u], which cannot be captured by the current data structure. Furthermore, unlike

l's, we cannot record O's using a data structure similarly to that of P,. More specifically,

to speed-up the sampling process for small pv,'s, we must generate many random non-

neighbors at once as suggested in Algorithm 2, but we cannot afford to spend time linear

in the number of created O's to update our data structure. We remedy these issues via the

following bucketing approach.

3.3 Final Generator via the Bucketing Approach

We now resolve both of the above issues via the bucketing approach, allowing our gen-

erator to support all remaining types of queries. We begin this section by focusing first

on RANDOM-NEIGHBOR queries, then extend the construction to the remaining ones. In

order to handle RANDOM-NEIGHBOR(v), we divide the neighbors of v into buckets BV =

{B , B,(, ... }, so that each bucket contains, in expectation, roughly the same number of

neighbors of v. We may then implement RANDOM-NEIGHBOR(v) by randomly selecting

a bucket B(P, fill in entries A[v] [u] for u E B(') with l's and O's, then report a random

neighbor from this bucket. As the bucket size may be too large when the probabilities are

small, instead of using a linear scan, our FILL subroutine will be implemented with the

NEXT-NEIGHBOR subroutine in Algorithm 2 previously developed in Section 3.2. Since

the number of iterations required by this subroutine is roughly proportional to the num-

ber of neighbors, we choose to allocate a constant number of neighbors in expectation to

each bucket: with constant probability the bucket contains some neighbors, and with high

probability it has at most O(log n) neighbors.

Nonetheless, as the actual number of neighbors appearing in each bucket may be differ-

ent, we balance out these discrepancies by performing rejection sampling, equalizing the

probability of choosing any neighbor implicitly, again without the knowledge of deg(v) as

previously done in Section 3.1. Leveraging the fact that the maximum number of neighbors

in any bucket is 09(log n), we show not only that the probabability of success in the rejec-

tion sampling process is at least 1/poly(log n), but the number of iterations required by
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NEXT-NEIGHBOR is also bounded by poly(log n), achieving the overall poly(log n) com-

plexities. Here in this section, we will extensively rely on the assumption that the expected

number of neighbors for consecutive vertices, ia Pvu, can be computed efficiently.

3.3.1 Partitioning into buckets

More formally, we fix some sufficiently large constant L, and assign the vertex u to the

[Zi-1 pv,i/Llth bucket of v. Essentially, each bucket represents a contiguous range of

vertices, where the expected number of neighbors of v in the bucket is (mostly) in the

range [L - 1, L + 1] (for example, for G(n, p), each bucket contains roughly L/p vertices).

Let us define F0(v) = r(v) n B,), the actual neighbors appearing in bucket BvP. Our

construction ensures that E [F(0(v)] < L + 1 for every bucket, and E [II(20(v)] > L - 1

for every i < IBv I (i.e., the condition holds for all buckets but possibly the last one).

Now, we show that with high probability, all the bucket sizes IF(i)(v)I = O(log n), and

at least a 1/3-fraction of the buckets are non-empty (i.e., IFP (v) I > 0), via the following

lemmas.

Lemma 2. With high probability, the number of neighbors in every bucket, |FW (v) |, is at

most O(log n).

Proof Fix a bucket B(', and consider the Bernoulli RVs {Xv,u}UEB. The expected num-

ber of neighbors in this bucket is E [IF(W(v)I] = E Xv,,] < L + 1. Via the

Chernoff bound,

P [IF(' (v)I > (1 + 3c log n) - L] < ec- =n-LE(c)

for any constant c > 0. l

Lemma 3. With high probability, for every v such that IBvI = Q(log n) (i.e., E [IF(v)I] =

Q(log n)), at least a 1/3-fraction of the buckets {B C }i E[jBj| are non-empty.

Proof For i < IBI, since E [P(0i(v)] = E [ZuBW XV,] > L - 1, we bound the
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probability that B5) is empty:

P[B(') is empty = (1 -pvu) e B K e - C

UEBV( i

for any arbitrary small constant c given sufficienty large constant L. Let T be the indicator

for the event that Bl) is not empty, so E [T] > 1--c. By the Chernoff bound, the probability

that less than I 1B/3 buckets are non-empty is

TL< vI] w ~ T, <Bv-1I] < e-e(IB,1-l)-

as IBvI = (log n) by assumption.

3.3.2 Filling a bucket

We consider buckets to be in two possible states - filled or unfilled. Initially, all buckets are

considered unf illed. In our algorithm we will maintain, for each bucket B P, the set P(i) of

known neighbors of u in bucket B4P; this is a refinement of the set Pv in Section 3.2. We

define the behaviors of the procedure HLL(v, i) as follows. When invoked on an unfilled

bucket Bl), HLL(v, i) performs the following tasks:

" decide whether each vertex u E B,(' is a neighbor of v (implicitly setting A[v] [u] to

1 or 0) unless Xvu is already decided; in other words, update Pvi) to j(j) (v)

* mark Bv) as filled.

For the sake of presentation, we postpone our description of the implementation of FILL to

Section 3.4. For now, let us use FILL as a black-box operation.

3.3.3 Putting it all together: RANDOM-NEIGHBOR queries

Consider Algorithm 3 for generating a random neighbor via rejection sampling, in a rather

similar overall framework as the simple implementation in Section 3.1. For simplicity,

throughout the analysis, we assume IBv = Q(log n); otherwise, invoke FILL(v, i) for all

i E [IBv|] to obtain the entire neighbor list F(v). This does not affect the analysis because
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we will soon bound the number of calls that Algorithm 3 makes to FILL by O(log n) (in

expectation) for IB, I = Q(log n).

To obtain a random neighbor, we first choose
Algorithm 3 Bucketing Generator

a bucket BV' uniformly at random. If the bucket procedure RANDOM-NEIGHBOR(v)

is not yet filled, we invoke FILL(V, i) and fill this R <- [IBvI1

bucket. Then, we accept the sampled bucket for apE .sample i c R u.a.r.

generating our random neighbor with probabil- if B4) is notfilled then
FIL L (v, i)

ity proportional to |P,)|. More specifically, let
if P() > 0 then

M = E(log n) be the upper bound on the maxi- with probability

mum number of neighbors in any bucket, as de- sample u E Pc u.a.r

rived in Lemma 2; we accept this bucket with else return u

probability IPW I/M, which is well-defined (i.e., R <- R \ {i}

does not exceed 1) with high probability. (Note until R = 0

that if Pv() = 0, we remove i from the pool, then return

repeat as usual.) If we choose to accept this bucket, we return a random neighbor from

Pv). Otherwise, reject this bucket and repeat the process again.

Since the returned value is always a member of Pi), a valid neighbor is always returned.

Further, i is removed from R only if Bv() does not contain any neighbors. So, if v has

any neighbor, RANDOM-NEIGHBOR does not return _. We now proceed to showing the

correctness of the algorithm and bound the number of iterations required for the rejection

sampling process.

Lemma 4. Algorithm 3 returns a uniformly random neighbor of vertex v.

Proof It suffices to show that the probability that any neighbor in I'(v) is return with

uniform positive probability, within the same iteration. Fix a single iteration and consider

a vertex u E P : we compute the probability that u is accepted. The probability that i is

picked is 1/IR1, the probability that B ( is accepted is IPv) I/M, and the probability that u

is chosen among Pv) is 1 / I)P . Hence, the overall probability of returning u in a single

iteration of the loop is 1/(IRI -M), which is positive and independent of u. Therefore, each

vertex is returned with the same probability.
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Lemma 5. Algorithm 3 terminates in O(log n) iterations in expectation, or O(log2 n) iter-

ations with high probability.

Proof Following the analysis above, the probability that some vertex from pV) is accepted

in an iteration is at least 1/(IRI - M). From Lemma 3, a (1/3)-fraction of the buckets are

non-empty (with high probability), so the probability of choosing a non-empty bucket is at

least 1/3. Further, M = e(log n) by Lemma 2. Hence, the success probability of each

iteration is at least 1/(3M) = Q(1/ log n). Thus, with high probability, the number of

iterations required is O(log 2 n) with high probability.

3.4 Implementation of FILL

Lastly, we describe the implementation of the FILL Algorithm 4 Sampling in a Bucket
procedure, employing the approach of skipping non- procedure FILL(v, i)

neighbors, as developed for Algorithm 2. We aim to (a, b) <- B(')
repeat

simulate the following process: perform coin-tosses sample u ~ F(v, a, b)

Cvu with probability p,,u for every u C B() and B) <- u's bucket con-

update A [v] [u]'s according to these coin-flips unless i is not filled thenif B~) i o ildte
they are decided (i.e., A[v] [u] # 0). We directly Pi +- Pi U { U }
generate a sequence of u's where the coins C,, = P - PUW U {v}

a <- u
1, then add u to Pv and vice versa if Xvu has not until a > b

previously been decided. Thus, once Ba) is filled, mark B) as filled

we will obtain Psi) = r(W)(v) as desired.

As discussed in Section 3.2, while we have recorded all occurrences of A[v] [u] = 1 in

Pli, we need and efficient way of checking whether A[v] [u = 0 or /. In Algorithm 2,

last serves this purpose by showing that A [v] [u] for all u < last [v] are decided as shown

in Lemma 1. Here instead, with our bucket structure, we maintain a single bit marking

whether each bucket is filled or unfilled: a filled bucket implies that A[v [u] for all u c B4)

are decided. The bucket structure along with mark bits, unlike last, are capable of handling

intermittent ranges of intervals, namely buckets, which is sufficient for our purpose, as

shown in the following lemma. This yields the implementation Algorithm 4 for the FILL
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procedure fulfilling the requirement previously given in Section 3.3.2.

Lemma 6. The data structures P( )'s and the bucket marking bits together provide a suc-

cinct representation of A as long as modifications to A are performed solely by the FILL

operation in Algorithm 4. In particular, let u C B(' and v E B 9. Then, A[v] [u] = 1 if

and only if u E P (). Otherwise, A [v] [u] = 0 when at least one of B$) or B (j is marked

as filled. In all remaining cases, A[v][u =0.

Proof The condition for A[v] [u] = 1 still holds by constuction. Otherwise, observe that

A[v][ul becomes decided precisely during a FILL(v, i) or a HLL(u, j) operation, which

thereby marks one of the corresponding buckets as filled. El

Note that Pvi )'s, maintained by our generator, are initially empty but may not still be

empty at the beginning of the FILL function call. These Pv() 's are again instantiated and

stored in a dictionary once they become non-empty. Further, observe that the coin-flips are

simulated independently of the state of Pj$, so the number of iterations of Algorithm 4

is the same as the number of coins C,, = 1 which is, in expectation, a constant (namely

WEBP P[CV,U = 11 = )EPv, < L + 1).

By tracking the resource required by Algorithm 4 we obtain the following lemma; note

that "additional space" refers to the enduring memory that the generator must allocate and

keep even after the execution, not its computation memory. The log n factors in our com-

plexities are required to perform binary-search for the range of Blz), or for the value u from

the CDF of F(u, a, b), and to maintain the ordered sets P) and P .

Lemma 7. Each execution of Algorithm 4 (the FILL operation) on an u nf illed bucket BV),

in expectation:

" terminates within 0(1) iterations (of its repeat loop);

" computes (log n) quantities of H ue[ab]( 1 
- Pv,u) and Zue[a,b] Pv,u each;

" aside from the above computations, uses 0(log n) time, 0(1) random N-bit words,

and 0(1) additional space.

Observe that the number of iterations required by Algorithm 4 only depends on its ran-

dom coin-flips and independent of the state of the algorithm. Combining with Lemma 5, we

finally obtain polylogarithimc resource bound for our implementation of RANDOM-NEIGHBOR.
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Corollary 1. Each execution of Algorithm 3 (the RANDOM-NEIGHBOR query), with high

probability,

" terminates within O(log 2 n) iterations (of its repeat loop);

" computes O(log 3 n) quantities of ue a,b]( - Pv,u) and uCE [a,b] Pv,u each;

" aside from the above computations, uses 09(log3 n) time, ((log 2 n) random N-bit

words, and O(log2 n) additional space.

Extension to other query types. We finally extend our algorithm to support other query

types as follows.

" VERTEX-PAIR(u,v): We simply need to make sure that Lemma 6 holds, so we first

apply FILL(u, j) on bucket BZ) containing v (if needed), then answer accordingly.

* NEXT-NEIGHBOR(v): We maintain last, and keep invoking FILL until we find a

neighbor. Recall that by Lemma 3, the probability that a particular bucket is empty

is a small constant. Then with high probability, there exists no W(log n) consecutive

empty buckets B('s for any vertex v, and thus NEXT-NEIGHBOR only invokes up to

O(log n) calls to FILL.

We summarize the results so far with through the following theorem.

Theorem 1. Under the assumption of

1. perfect-precision arithmetic, including the generation of random real numbers in

[0, 1), and

2. the quantities H0=a(1 - P,,u) and Zb- Pv"u of the random graph family can be

computed with perfect precision in logarithmic time, space and random bits,

there exists a local-access generator for the random graph family that supports RANDOM-

NEIGHBOR, VERTEX-PAIR and NEXT-NEIGHBOR queries that uses polylogarithmic run-

ning time, additional space, and random words per query.

Between these two assumptions, we first remove the assumption of perfect-precision

arithmetic in the upcoming Section 3.5. Later in Section 4, we show applications of our

generator to the G(n, p) model, and the Stochastic Block model under random community
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assignment, by providing formulas and by constructing data structures for computing the

quantities specified in the second assumption, respectively.

3.5 Removing the Perfect-Precision Arithmetic Assump-

tion

In this section we remove the prefect-precision arithmetic assumption. Instead, we only

assume that it is possible to compute ]lu(1 - pu,=) and _a pv,,u to N-bit precision,

as well as drawing a random N-bit word, using polylogarithmic resources. Here we will

focus on proving that the family of the random graph we generate via our procedures is

statistically close to that of the desired distribution. The main technicality of this lemma

arises from the fact that, not only the generator is randomized, but the agent interacting

with the generator may choose his queries arbitrarily (or adversarially): our proof must

handle any sequence of random choices the generator makes, and any sequence of queries

the agent may make.

Observe that the distribution of the graphs constructed by our generator is governed

entirely by the samples u drawn from F(v, a, b) in Algorithm 4. By our assumption, the

CDF of any F(v, a, b) can be efficiently computed from H1["a(1 - Pvu), and thus sampling

with 1 error in the Ll-distance requires a random N-bit word and a binary-search in

0 (log(b - a + 1)) = O(log n) iterations. Using this crucial fact, we prove our lemma that

removes the perfect-precision arithmetic assumption.

Lemma 8. If Algorithm 4 (the FILL operation) is repeatedly invoked to construct a graph

G by drawing the value u for at most S times in total, each of which comes from some

distribution F'(v, a, b) that is c-close in L1 -distance to the correct distribution F(v, a, b)

that perfectly generates the desired distribution G over all graphs, then the distribution G'

of the generated graph G is (ES)-close to G in the Ll-distance.

Proof For simplicity, assume that the algorithm generates the graph to completion accord-

ing to a sequence of up to n2 distinct buckets B = (B(ul), B"U2),.. .), where each B

specifies the unfilled bucket in which any query instigates a FILL function call. Define an
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internal state of our generator as the triplet s = (k, u, A), representing that the algorithm

is currently processing the kth FILL, in the iteration (the repeat loop of Algorithm 4) with

value u, and have generated A so far. Let tA denote the terminal state after processing

all queries and having generated the graph GA represented by A. We note that A is used

here in the analysis but not explicitly maintained; further, it reflects the changes in every

iteration: as u is updated during each iteration of FILL, the cells A[v] [u'] = for u' < u

(within that bucket) that has been skipped are also updated to 0.

Let S denote the set of all (internal and terminal) states. For each state s, the generator

samples u from the corresponding F'(v, a, b) where IIF(v, a, b) - F'(v, a, b) I1  E = 1
- poly(n)'

then moves to a new state according to u. In other words, there is an induced pair of

collection of distributions over the states: (T, T') where T = {T,},8 s, T' = {T'}cs,

such that T,(s') and T' (s') denote the probability that the algorithm advances from s to

s' by using a sample from the correct F(v, a, b) and from the approximated F'(v, a, b),

respectively. Consequently, |IT, - T',I1 < c for every s E S.

The generator begins with the initial (internal) state so = (1, 0, AO) where all cells of

AO are #'s, goes through at most S = O(n 3 ) other states (as there are up to n2 values of

k and O(n) values of u), and reach some terminal state tA, generating the entire graph in

the process. Let Wr = (sJ = sI, ... , s = tA) for some A denote a sequence ("path")

of up to S + 1 states the algorithm proceeds through, where f(7r) denote the number of

transitions it undergoes. For simplicity, let TA(tA) = 1, and T, (s) = 0 for all state

s # tA, so that the terminal state can be repeated and we may assume f(7r) = S for

every 7r. Then, for the correct transition probabilities described as T, each 7r occurs with

probability q(7) = Js T, 1 (si), and thus G(GA) = Zws"=tA q(7).

Let Tm i"= {T 'na}ss where Ti"(s') min{T,(s'), T' (s')}, and note that each T'in

is not necessarily a probability distribution. Then, E,, TW"(s') = 1 - IT, - T'| 1 ;> 1 - .

Define q', qm i, G'(GA), Gm"i (GA) analogously, and observe that q"i"(7r) < min{q(ir), q'(7)}

for every ir, so Gmin(GA) < min{G(GA), G'(GA)} for every GA as well. In other words,

q ""(7r) lower bounds the probability that the algorithm, drawing samples from the correct

distributions or the approximated distributions, proceeds through states of ir; consequently,

Gr"i"(GA) lower bounds the probability that the algorithm generates the graph GA.
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Next, consider the probability that the algorithm proceeds through the prefix ri =

(sg,. .. ,s') of 7r. Observe that for i > 1,

q"""(-Xi) = qm
i"(_1) - Tr"(s ) E qr"(7_j) -Ts

mi E3 E~'(' 3 > qm
ifl(i- 1 ) > (1,~)> qm ifl(7j- )

St ~s -7r:s' 1 =s

Roughly speaking, at least a factor of 1 - E of the "agreement" between the distributions

over states according to T and T' is necessarily conserved after a single sampling pro-

cess. As E> q"n"(7o) = 1 because the algorithm begins with so = (1, 0, AO), by an

inductive argument we have E> qmin(r) E, q""(7rs) > (1 - E 1 - ES. Hence,

EGA min{G(GA), G'(GA) I EGA G"in(GA) > 1 - cS, implying that JIG - G'11 1 <; eS,

as desired. In particular, by substituting e = and S =(n 3), we have shown that

Algorithm 4 only creates a 1 error in the L-distance. l

We remark that RANDOM-NEIGHBOR queries also require that the returned edge is

drawn from a distribution that is close to a uniform one, but this requirement applies only

per query rather then over the entire execution of the generator. Hence, the error due to the

selection of a random neighbor may be handled separately from the error for generating the

random graph; its guarantee follows straightforwardly from a similar analysis.
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Chapter 4

Applications to Erdos-Re~nyi Model and

Stochastic Block Model

In this section we demonstrate the application of our techniques to two well known, and

widely studied models of randon graphs. That is, as required by Theorem 1, we must pro-

vide a method for computing the quantities flu (1 - Pvu) and Z Pvu of the desired

random graph families in logarithmic time, space and random bits. Our first implemen-

tation focuses on the well known Erdos-Renyi model - G(n, p): in this case, pv,,u p is

uniform and our quantities admit closed-form formulas.

Next, we focus on the Stochastic Block model with randomly-assigned communities.

Our implementation assigns each vertex to a community in {C1, . . . , C,} identically and

independently at random, according to some given distribution R over the communities. We

formulate a method of sampling community assignments locally. This essentially allows

us to sample from the multivariate hypergeometric distribution, using poly(log n) random

bits, which may be of independent interest. We remark that, as our first step, we sample

for the number of vertices of each community. That is, our construction can alternatively

support the community assignment where the number of vertices of each community is

given, under the assumption that the partition of the vertex set into communities is chosen

uniformly at random.
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4.1 Erdos-Renyi Model

As pv,, = p for all edges {u, v} in the Erd6s-Renyi G(n, p) model, we have the closed-

form formulas Hl6,_,(1 - pv,) = (I -p)b-a+l and EZavp, = (b- a+ +)p, which can be

computed in constant time according to our assumption, yielding the following corollary.

Corollary 2. The final algorithm in Section 3 locally generates a random graph from the

Erdds-Renyi G(n, p) model using O(log3 n) time, 09(log2 n) random N-bit words, and

O(log 2 n) additional space per query with high probability.

We remark that there exists an alternative approach that picks F - F(v, a, b) directly

via a closed-form formula a+ r gu U where U is drawn uniformly from [0, 1), rather than
log (1-P

binary-searching for U in its CDF. Such an approach may save some poly(log n) factors

in the resources, given the prefect-precision arithmetic assumption. This usage of the log

function requires Q(n)-bit precision, which is not applicable to our computation model.

While we are able to generate our random graph on-the-fly supporting all three types

of queries, our construction still only requires O(m + n) space (N-bit words) in total at

any state; that is, we keep O(n) words for last, 0(1) words per neighbor in P,'s, and one

marking bit for each bucket (where there can be up to m + n buckets in total). Hence, our

memory usage is nearly optimal for the G(n, p) model:

Corollary 3. The final algorithm in Section 3 can generate a complete random graph from

the Erdos-Renyi G (n, p) model using overall 0 (n + m) time, random bits and space, which

is (9(pnr 2 ) in expectation. This is optimal up to 0(poly(log n)) factors.

4.2 Stochastic Block model

For the Stochastic Block model, each vertex is assigned to some community Ci, i E [r]. By

partitioning the product by communities, we may rewrite the desired formulas, for v E Ci,

as HJa (1 - Pv,u) = H > (1 - pi,)I[aJb]fl and aPV,u = Z= 1|[a, b] n Cj| - pi,j.

Thus, it is sufficient to design a data structure, or a generator, that draws a community

assignment for the vertex set according to the given distribution R. This data structure
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should be able to efficiently count the number of occurrences of vertices of each community

in any contiguous range, namely the value I [a, bl n Cj I for each j E [r]. To this end, we

use the following lemma, yielding the generator for the Stochastic Block model that uses

O(r poly(log n)) resources per query.

Theorem 2. There exists a data structure (generator) that samples a community for each

vertex independently at random from R with 1 error in the L,-distance, and supports

queries that ask for the number of occurrences of vertices of each community in any con-

tiguous range, using O(r poly(log n)) time, random N-bit words and additional space per

query. Further this data structure may be implemented in such a way that requires no

overhead for initialization.

Corollary 4. The final algorithm in Section 3 generates a random graph from the Stochas-

tic Block model with randomly-assigned communities using O(r poly(log n)) time, random

N-bit words, and additional space per query with high probability.

We provide the full details of the construction in the following Section 4.2.1. Our con-

struction extends upon a similar generator in the work of [19] which only supports r = 2.

Our overall data structure is a balanced binary tree, where the root corresponds to the en-

tire range of indices {1, . . . , n}, and the children of each vertex corresponds to each half

of the parent's range. Each node' holds the number of vertices of each community in its

range. The tree initially contains only the root, with the number of vertices of each com-

munity sampled according to the multinomial distribution 2 (for n samples (vertices) from

the probability distribution R). The children are only generated top-down on an as-needed

basis according to the given queries. The technical difficulties arise when generating the

children, where one needs to sample "half" of the counts of the parent from the correct

marginal distribution. To this end, we show how to sample such a count as described in

the statement below. Namely, we provide an algorithm for sampling from the multivariate

hypergeometric distribution.

'For clarity, "vertex" is only used in the generated graph, and "node" is only used in the internal data
structures of the generator.

2 See e.g., section 3.4.1 of [25]
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4.2.1 Sampling from the Multivariate Hypergeometric Distribution

Consider the following random experiment. Suppose that we have an urn containing B < n

marbles (representing vertices), each occupies one of the r possible colors (representing

communities) represented by an integer from [r]. The number of marbles of each color in

the urn is known: there are Ck indistinguishable marbles of color k e [r], where C1 +

... + C = B. Consider the process of drawing e < B marbles from this urn without

replacement. We would like to sample how many marbles of each color we draw.

More formally, let C = (ci,... , Cr), then we would like to (approximately) sample a

vector SC of r non-negative integers such that

Pr[S' = (si,..., s,)] =S )
(C1+C2+---+Cr

where the distribution is supported by all vectors satisfying Sk E {, ... , Ck} for all

k c [r] and Zr-. Sk = f. This distribution is referred to as the multivariate hypergeometric

distribution.

The sample SC above may be generated easily by simulating the drawing process, but

this may take Q(f) iterations, which have linear dependency in n in the worst case: =

G(B) = e(n). Instead, we aim to generate such a sample in O(r poly(log n)) time with

high probability. We first make use of the following procedure from [19].

Lemma 9. Suppose that there are T marbles of color 1 and B - T marbles of color 2 in an

urn, where B < n is even. There exists an algorithm that samples (S1, S2), the number of

marbles of each color appearing when drawing B/2 marbles from the urn without replace-

ment, in O(poly(log n)) time and random words. Specifically, the probability of sampling

a specific pair (s1, s2) where s, + S2 = T is approximately (B/2) ( B/2 (B) with error ofs1 ) T-s) 1T

at most n-c for any constant c > 0.

In other words, the claim here only applies to the two-color case, where we sample the

number of marbles when drawing exactly half of the marbles from the entire urn (r = 2 and

f = B/2). First we generalize this claim to handle any desired number of drawn marbles f

(while keeping r = 2).
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Lemma 10. Given C1 marbles of color 1 and C2 = B - C1 marbles of color 2, there exists

an algorithm that samples (s1, S2), the number of marbles of each color appearing when

drawing 1 marbles from the urn without replacement, in O(poly(log n)) time and random

words.

Proof For the base case where B = 1, we trivially have SC = C and S = 0. Otherwise,

for even B, we apply the following procedure.

" If f < B/2, generate C' = S'/ using Claim 9.

- If f = B/2 then we are done.

- Else, for t < B/2 we recursively generate Sc'.

" Else, for i > B/2, we generate Sc'_- as above, then output C - Sc'

On the other hand, for odd B, we simply simulate drawing a single random marble from

the urn before applying the above procedure on the remaining B - 1 marbles in the urn.

That is, this process halves the domain size B in each step, requiring log B iterations to

sample Sc. I

Lastly we generalize to support larger r.

Theorem 3. Given B marbles of r different colors, such that there are Ci marbles of color i,

there exists an algorithm that samples (sI, S2, ' ' - , Sr), the number of marbles of each color

appearing when drawing I marbles from the urn without replacement, in O(r -poly(log n))

time and random words.

Proof. Observe that we may reduce r > 2 to the two-color case by sampling the number

of marbles of the first color, collapsing the rest of the colors together. Namely, define a pair

C = (Ci, C2 + + Cr), then generate SC = (Si, S2 + ... + Sr) via the above procedure.

At this point we have obtained the first entry si of the desired Sc. So it remains to generate

the number of marbles of each color from the remaining r - 1 colors in f - si remaining

draws. In total, we may generate S' by performing r iterations of the two-colored case.

The error in the L 1 -distance may be established similarly to the proof of Lemma 8. IJ
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4.2.2 Data structure

We now show that Theorem 3 may be used in order to create the following data structure.

Recall that R denote the given distribution over integers [r] (namely, the random distribution

of communities for each vertex). Our data structure generates and maintains random vari-

ables X1, . . . , X, each of which is drawn independently at random from R: Xi denotes the

community of vertex i. Then given a pair (i, j), it returns the vector C(i, j) = (c, . . , C)

where Ck counts the number of variables Xi,. . . , Xj that takes on the value k. Note that we

may also find out Xi by querying for (i, i) and take the corresponding index.

We maintain a complete binary tree whose leaves corresponds to indices from [n]. Each

node represents a range and stores the vector C for the corresponding range. The root

represents the entire range [n], which is then halved in each level. Initially the root samples

C(1, n) from the multinomial distribution according to R (see e.g., Section 3.4.1 of [25]).

Then, the children are generated on-the-fly using the lemma above. Thus, each query can

be processed within O(r poly(log n)) time, yielding Theorem 2. Then, by embedding the

information stored by the data structure into the state (as in the proof of Lemma 8), we

obtain the desired Corollary 4.
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Chapter 5

Local-Access Generators for Random

Directed Graphs

In this section, we consider Kleinberg's Small-World model [24, 29] where the probability

that a directed edge (u, v) exists is min{c/(DIST(u, v)) 2 , 11. Here, DIST(u, v) is the Man-

hattan distance between u and v on a V x V/nY grid. We begin with the case where c = 1,

then generalize to different values of c = logle(l) (n). We aim to support ALL-NEIGHBORS

queries using poly(log n) resources. This returns the entire list of out-neighbors of v.

5.1 Generator for c = 1

Observe that since the graphs we consider here are directed, the answers to the ALL-NEIGHBOR

queries are all independent: each vertex may determine its out-neighbors independently.

Given a vertex v, we consider a partition of all the other vertices of the graph into sets

{I', F',.. .} by distance: T'v {u : DIST(v, u) = k} contains all vertices at a distance

k from vertex v. Observe that I II < 4k = 0(k). Then, the expected number of edges

from v to vertices in Fv is therefore IF I - 1/k 2 = 0(1/k). Hence, the expected degree of

v is at most E2 ~-)0 0(1/k) = O(log n). It is straightforward to verify that this bound

holds with high probability (use Hoeffding's inequality). Since the degree of v is small, in

this model we can afford to perform ALL-NEIGHBORS queries instead of NEXT-NEIGHBOR

queries using an additional poly(log n) resources.
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Nonetheless, internally in our generator, we sample for our neighbors one-by-one simi-

larly to how we process NEXT-NEIGHBOR queries. We perform our sampling in two phases.

In the first phase, we sample a distance d, such that the next neighbor closest to v is at dis-

tance d. We maintain last[v] to be the last sampled distance. In the second phase, we

sample all neighbors of v at distance d, under the assumption that there must be at least one

such neighbor. For simplicity, we sample these neighbors as if there are full 4d vertices at

distance d from v: some sampled neighbors may lie outside our V x V grid, which are

simply discarded. As the running time of our generator is proportional to the number of

generated neighbors, then by the bound on the number of neighbors, this assumption does

not asymptotically worsen the performance of the generator.

5.1.1 Phase 1: Sample the distance D

Let a = last[v] + 1, and let D(a) to denote the probability distribution of the distance

where the next closest neighbor of v is located, or I if there is no neighbor at distance at

most 2(N/ni - 1). That is, if D ~ D(a) is drawn, then we proceed to Phase 2 to sample

all neighbors at distance D. We repeat the process by sampling the next distance from

D(a + D) and so on until we obtain 1, at which point we return our answers and terminate.

To sample the next distance, we perform a binary search: we must evaluate the CDF

of D(a). The CDF is given by P[D < d] where D ~ D(a), the probability that there is

some neighbor at distance at most d. As usual, we compute the probability of the negation:

there is no neighbor at distance at most d. Recall that each distance i has exactly IFv = 41

vertices, and the probability of a vertex u E F' is not a neighbor is exactly 1 - 1/i 2. So,

the probability that there is no neighbor at distance i is (1 - 1/i2)4i. Thus, for D ~ D(a)

and d < 2(V5 - 1),

d[ I dfll ~'=lf(zi1 ( +1) 1i (a - 1)a (d +1)d'\4

P[D~ ~~ ~ ( ]=I-H(1 2 I-Hi aal1 dd 1

where the product enjoys telescoping as the denominator (z 2)4i cancels with (i2)4(i1) and

(z2)4(i+1) in the numerators of the previous and the next term, respectively. This gives us a
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closed form for the CDF, which we can compute with 2 --N additive error in constant time

(by our computation model assumption). Thus, we may sample for the distance D ~ D(a)

with O(log n) time and one random N-bit word.

5.1.2 Phase 2: Sampling neighbors at distance D

After sampling a distance D, we now have to sample all the neighbors at distance D.

We label the vertices in F' with unique indices in {1,... , 4D}. Note that now each of

the 4D vertices in IF' is a neighbor with probability 1/D2 . However, by Phase 1, this

is conditioned on the fact that there is at least one neighbor among the vertices in IFY,

which may be difficult to sample when 1/D2 is very small. We can emulate this naively by

repeatedly sampling a "block", composing of the 4D vertices in F' , by deciding whether

each vertex is a neighbor of v with uniform probability 1/D2 (i.e., 4D identical independent

Bernoulli trials), and then discarding the entire block if it contains no neighbor. We repeat

this process until we finally sample one block that contains at least one neighbor, and use

this block as our output.

For the purpose of making the sampling process more efficient, we view this process

differently. Let us imagine that we are given an infinite sequence of independent Bernoulli

variables, each with bias 1/D2 . We then divide the sequence into contiguous blocks of

length 4D each. Our task is to find the first occurrence of success (a neighbor), then report

the whole block hosting this variable.

This first occurrence of a successful Bernoulli trial is given by sampling from the ge-

ometric distribution, X - Geo(1/D 2 ). Since the vertices in each block are labeled by

1,... , 4D, then this first occurrence has label X' = X mod 4D. By sampling X

Geo(1/D 2 ), the first X' Bernoulli variables of this block is also implicitly determined.

Namely, the vertices of labels 1, ... , X' - 1 are non-neighbors, and that of label X' is a

neighbor. The sampling for the remaining 4D - X' vertices can then be performed in the

same fashion we sample for next neighbors in the G(n, p) case: repeatedly find the next

neighbor by sampling from Geo(1/D 2 ), until the index of the next neighbor falls beyond

this block.

43



Thus at this point, we have sampled all neighbors in IF'. We can then update last [vi ]-

D and continue the process of larger distances. Sampling each neighbor takes O(log n)

time and one random N-bit word; the resources spent sampling the distances is also bounded

by that of the neighbors. As there are O(log n) neighbors with high probability, we obtain

the following theorem.

Theorem 4. There exists an algorithm that generates a random graph from Kleinberg's

Small World model, where probability of including each directed edge (u, v) in the graph

is 1/(DIST(u, v)) 2 where DIST denote the Manhattan distance, using O(log 2 n) time and

random N-bit words per ALL-NEIGHBORS query with high probability.

5.2 Generator for c / 1

Observe that to support different values of c in the probability function c/(DIST(u, v)) 2 , we

do not have a closed-form formula for computing the CDF for Phase 1, whereas the process

for Phase 2 remains unchanged. To handle the change in the probability distribution Phase

1, we consider the following, more general problem. Suppose that we have a process

P that, one-by-one, provide occurrences of successes from the sequence of independent

Bernoulli trials with success probabilities (pi, P2 .). We show how to construct a process

Pc that provide occurrences of successes from Bernoulli trials with success probabilities

(c -p1, c P2 ... .) (truncated down to 1 as needed). For our application, we assume that c is

given in N-bit precision, there are 0(n) Bernoulli trials, and we aim for an error of 1poly(n)

in the L1 -distance.

5.2.1 Case c < 1

We use rejection sampling in order to construct a new Bernoulli process.

Lemma 11. Given a process P outputting the indices of successful Bernoulli trials with

bias (pi), there exists a process 'P outputting the indices of successful Bernoulli trials with

bias (c -pi) where c < 1, using one additional N-bit word overhead for each answer of P.
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Proof Consider the following rejection sampling process to generating the Bernoulli trials.

In addition to each Bernoulli variable Xi with bias pi, we sample another coin-flip Ci with

bias c. Set Y = Xi -C, then P[Yi = 1] = P[Xi = 1] -P[Ci] = c -pi, as desired. That is, we

keep a success of a Bernoulli trial with probability c, or reject it with probability 1 - c.

Now, we are already given the process P that "handles" Xi's, generating a sequence of

indices i with Xi = 1. The new process PC then only needs to handle the Ci's. Namely,

for each i reported as success by P, PC flips a coin Ci to see if it should also report i, or

discard it. As a result, Pc can generate the indices of successful Bernoulli trials using only

one random N-bit word overhead for each answer from P. l

Applying this reduction to the distance sampling in Phase 1, we obtain the following

corollary.

Corollary 5. There exists an algorithm that generates a random graph from Kleinberg's

Small World model with edge probabilities c/(DIST(u, v))2 where c < 1, using O(log 2 n)

time and random N-bit words per ALL-NEIGHBORS query with high probability.

5.2.2 Case c> 1

Since we aim to sample with larger probabilities, we instead consider making k - c inde-

pendent copies of each process P, where k > 1 is a positive integer. Intuitively, we hope

that the probability that one of these process returns an index i will be at least c -pi, so that

we may perform rejection sampling to decide whether to keep i or not. Unfortunately such

a process cannot handle the case where c -pi is large, notably when c - pi > 1 is truncated

down to 1, while there is always a possibility that none of the processes return i.

Lemma 12. Let k > 1 be a constant integer Given a process P outputting the indices of

successful Bernoulli trials with bias (pi), there exists a process Pc outputting the indices

of successful Bernoulli trials with bias (min{c - pi, 1}) where c > 1 and c - pi < 1 - 1

for every i, using one additional N-bit word overhead for each answer of k - c independent

copies of P.
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Proof By applying the following form of Bernoulli's inequality, we have

k c-pi k -c-pi < k -c -pi
1 + (k c - 1) -pi 1+k-cp-p - 1 + (k - 1)

That is, the probability that at least one of the generators report an index i is 1- (1 p)kc >

c - pi, as required. Then, the process Pc simply reports i with probability (c - pi)/(1 -

(1 - p,)k.c) or discard i otherwise. Again, we only require N-bit of precision for each

computation, and thus one random N-bit word suffices. El

In Phase 1, we may apply this reduction only when the condition c -pi 1 - .is sat-

isfied. For lower value of pi = 1/D 2 , namely for distance D < Vc/(1 - 1/k) = O(w/d),

we may afford to sample the Bernoulli trials one-by-one as c is poly(log n). We also note

that the degree of each vertex is clearly bounded by 0 (log n) with high probability, as its

expectation is scaled up by at most a factor of c. Thus, we obtain the following corollary.

Corollary 6. There exists an algorithm that generates a random graph from Kleinberg's

Small World model with edge probabilities c/(DIST(u, v)) 2 where c = poly(log n), using

O(log 2 n) time and random N-bit words per ALL-NEIGHBORS query with high probability.
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Appendix A

Further Analysis and Extensions of

Algorithm 2

A.1 Performance Guarantee

This section is devoted to showing the following lemma that bounds the required resources

per query of Algorithm 2. We note that we only require efficient computation of H [ (1] -

Pv,u) (and not Iu[a, b]Pv,u), and that for the G(n, p) model, the resources required for such

computation is asymptotically negligible.

Theorem 5. Each execution of Algorithm 2 (the NEXT-NEIGHBOR query), with high prob-

ability,

" terminates within 09(log n) iterations (of its repeat loop);

" computes O(log2 n) quantitiesof fu E[a,b] ( 1 - Pv,u);

" aside from the above computations, uses O(log2 n) time, O(log n) random N-bit

words, and O(log n) additional space.

Proof We focus on the number of iterations as the remaining results follow trivially. This

proof is rather involved and thus is divided into several steps.

Specifying random choices. The performance of the algorithm depends on not only the

random variables X.,j's, but also the unused coins Cu's. We characterize the two col-
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lections of Bernoulli variables {Xo,,} and {Y,,,} that cover all random choices made by

Algorithm 2 as follows.

" Each X,, (same as X,,,) represents the result for the first coin-toss corresponding

to cells A[v][u] and A[u)[v], which is the coin-toss obtained when Xv,, becomes

decided: either C,, during a NEXT-NEIGHBOR(v) call when A[v][u] = q, or C,,

during a NEXT-NEIGHBOR(U) call when A[u][v] = , whichever occurs first. This

description of X,,u respects our invariant that, if the generation process is executed

to completion, we will have A[v] [u] = X,,, in all entries.

" Each Y,, represents the result for the second coin-toss corresponding to cell A [v] [u],

which is the coin-toss C,, obtained during a NEXT-NEIGHBOR(v) call when Xv, is

already decided. In other words, {Yo,,}'s are the coin-tosses that should have been

skipped but still performed in Algorithm 2 (if they have indeed been generated).

Unlike the previous case, Y,, and Yuv are two independent random variables: they

may be generated during a NEXT-NEIGHBOR(v) call and a NEXT-NEIGHBOR(u) call,

respectively.

As mentioned earlier, we allow any sequence of probabilities pv,u in our proof. The success

probabilities of these indicators are therefore given by P[X,, = 1] = P[Y,, = 1] p,,.

Characterizing iterations. Suppose that we compute NEXT-NEIGHBOR(v) and obtain

an answer u. Then Xv,Iast[v]+1 = - - = X -,_= 0 as none of u' E (last[vi, u) is a

neighbor of v. The vertices considered in the loop of Algorithm 2 that do not result in the

answer u, are u' E (last[v], u) satisfying A[v] [u'] = 0 and Y,,, = 1; we call the iteration

corresponding to such a u'a failed iteration. Observe that if Xv,,, = 0 but is undecided

(A[v] [u'] = #), then the iteration is not failed, even if Yu, = 1 (in which case, Xvu, takes.

the value of C,,, while Yvu, is never used). Thus we assume the worst-case scenario where

all X,,,, are revealed: A [v] [u'] = X,,, = 0 for all u' E (last [v], u). The number of failed

iterations in this case stochastically dominates those in all other cases.1

'There exists an adversary who can enforce this worst case. Namely, an adversary that first makes NEXT-
NEIGHBOR queries to learn all neighbors of every vertex except for v, thereby filling out the whole A in
the process. The claimed worst case then occurs as this adversary now repeatedly makes NEXT-NEIGHBOR

queries on v. In particular, a committee of n adversaries, each of which is tasked to perform this series of
calls corresponding to each v, can always expose this worst case.
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Then, the upper bound on the number of failed iterations of a call NEXT-NEIGHBOR(v)

is given by the maximum number of cells YL'u= 1 of u' C (last[v], u), over any u C

(last[v], n] satisfying Xv,ast[vl+1 =v = , 0. Informally, we are asking "of all

consecutive cells of O's in a single row of {X,, }-table, what is the largest number of cells

of l's in the corresponding cells of {Yo,}-table?"

Bounding the number of iterations required for a fixed pair (v, last [v]). We now pro-

ceed to bounding the number of iterations required over a sampled pair of {Xv,,j} and

{Y,, from any probability distribution. For simplicity we renumber our indices and drop

the index (v, last[v]) as follows. Let Pi, .-. . , PL E [0, 1] denote the probabilities corre-

sponding to the cells A [v] [last [v] + I . . . n] (where L = n - last [v]), then let X1 ,... , XL

and Y 1, . . . , YL be the random variables corresponding to the same cells on A.

For i = 1,.. . , L, define the random variable Zi in terms of Xi and Yi so that

" Zi = 2 if Xi = 0 and Yi = 1, which occurs with probability pi(I - pi).

This represents the event where i is not a neighbor, and the iteration fails.

" Z, 1 if X, = Y = 0, which occurs with probability (1 - p,)2

This represents the event where i is not a neighbor, and the iteration does not fail.

" Zi = 0 if Xi = 1, which occurs with probability pi.

This represents the event where i is a neighbor.

For E C [LI, define the random variable Me := H>_1 Zi, and Mo = 1 for convenience.

If Xi = 1 for some i C [1, J], then Zi = 0 and M = 0. Otherwise, log Me counts

the number of indices i E [f] with Yi = 1, the number of failed iterations. Therefore,

log(maxfE{0,...,L} Me) gives the number of failed iterations this NEXT-NEIGHBOR(v) call.

To bound Mj, observe that for any f E [L], E[Zl = 2pe(1-p)+(1 -pf) 2  I _ P 1 < I

regardless of the probability p C [0, 1]. Then, E[Me] = IE[J7I= Zi] = Il_ 1 E[Zi]

1 because Ze's are all independent. By Markov's inequality, for any (integer) r > 0,

Pr[log M > r] = Pr[M > 2'] < 2'. By the union bound, the probability that more than

r failed iterations are encountered is Pr[log(max{0,...,L} Me) > rl < L - 2 - < n - 2-.

Establishing the overall performance guarantee. So far we have deduced that, for each

pair of a vertex v and its last [v], the probability that the call NEXT-NEIGHBOR(v) encoun-
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ters more than r failed iterations is less that n - 2 ', which is at most n-' for any desired

constant c by choosing a sufficiently large r = E(log n). As Algorithm 2 may need to sup-

port up to 0(n2 ) NEXT-NEIGHBOR calls, one corresponding to each pair (v, last[v]), the

probability that it ever encounters more than O(log n) failed iterations to answer a single

NEXT-NEIGHBOR query is at most nrc. That is, with high probability, O(log n) iterations

are required per NEXT-NEIGHBOR call, which concludes the proof of Theorem 5. E

A.2 Supporting VERTEX-PAIR Queries

We extend our generator (Algorithm 2) to support the VERTEX-PAIR queries: given a pair

of vertices (u, v), decide whether there exists an edge {u, v} in the generated graph. To

answer a VERTEX-PAIR query, we must first check whether the value Xuv for {u, v} has

already been assigned, in which case we answer accordingly. Otherwise, we must make

a coin-flip with the corresponding bias pu,v to assign Xuv, deciding whether {u, v} exists

in the generated graph. If we maintained the full A as done in the nalve Algorithm 1, we

would have been able to simply set A[u] [v] and A[v] [u] to this new value. However, our

more efficient Algorithm 2 that represents A compactly via last and Pr's cannot record

arbitrary modifications to A.

Observe that if we were to apply the trivial implementation of VERTEX-PAIR in Al-

gorithm 1, then by Lemma 1, last and P,'s will only fail capture the state A [v] [u] = 0

when u > last[v] and v > last[u]. Fortunately, unlike NEXT-NEIGHBOR queries, a

VERTEX-PAIR query can only set one cell A[v] [u] to 0 per query, and thus we may af-

ford to store these changes explicitly.' To this end, we define the set Q = {{u, v}

Xs,, is assigned to 0 during a VERTEX-PAIR query}, maintained as a hash table. Updating

Q during VERTEX-PAIR queries is trivial: we simply add {u, v} to Q before we finish pro-

cessing the query if we set A[u] [v] = 0. Conversely, we need to add a to P, and add v to Pu

if the VERTEX-PAIR query sets A[u] [v] = 1 as usual, yielding the following observation.

It is straightforward to verify that each VERTEX-PAIR query requires O(log n) time, 0(1)

2The disadvantage of this approach is that the generator may allocate more than 8(m) space over the
entire graph generation process, if VERTEX-PAIR queries generate many of these O's.
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random N-bit word, and 0(1) additional space per query.

Lemma 13. The data structures last, P 's and Q together provide a succinct represen-

tation of A when NEXT-NEIGHBOR queries (modified Algorithm 2) and VERTEX-PAIR

queries (modified Algorithm 1) are allowed. In particular, A[v] [u] = 1 if and only if

u E Pv. Otherwise, A[v][u] = 0 if u < last [v], v < last [u], or {v,u} E Q. In all

remaining cases, A [v] []= .

We now explain other necessary changes to Algorithm 2. In the implementation of

NEXT-NEIGHBOR, an iteration is not failed when the chosen X,, is still undecided: A[v] [u]

must still be #. Since X,, may also be assigned to 0 via a VERTEX-PAIR(v, u) query, we

must also consider an iteration where {v, u} E Q failed. That is, we now require one ad-

ditional condition {v, u} Q for termination (which only takes 0(1) time to verify per

iteration). As for the analysis, aside from handling the fact that X,, may also become

decided during a VERTEX-PAIR call, and allowing the states of the algorithm to support

VERTEX-PAIR queries, all of the remaining analysis for correctness and performance guar-

antee still holds.

Therefore, we have established that our augmentation to Algorithm 2 still maintains

all of its (asymptotic) performance guarantees for NEXT-NEIGHBOR queries, and sup-

ports VERTEX-PAIR queries with complexities as specified above, concluding the following

corollary. We remark that, as we do not aim to support RANDOM-NEIGHBOR queries, this

simple algorithm here provides significant improvement over the performance of RANDOM-

NEIGHBOR queries (given in Corollary 1).

Corollary 7. Algorithm 2 can be modified to allow an implementation of VERTEX-PAIR

query as explained above, such that the resource usages per query still asymptotically

follow those of Theorem 5.
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Appendix B

Alternative Generator with

Deterministic Performance Guarantee

In this section, we construct data structures that allow us to sample for the next neigh-

bor directly by considering only the cells A[v] [u] = 0 in the Erdos-Renyi model and the

Stochastic Block model. This provides poly(log n) worst-case performance guarantee for

generators supporting only the NEXT-NEIGHBOR queries. We may again extend this data

structure to support VERTEX-PAIR queries, however, at the cost of providing poly(log n)

amortized performance guarantee instead.

In what follows, we first focus on the G(n, p) model, starting with NEXT-NEIGHBOR

queries (Section B.1) then extend to VERTEX-PAIR queries (Section B.2. We then explain

how this result may be generalized to support the Stochastic Block model with random

community assignment in Section B.3.

B.1 Data structure for next-neighbor queries in the Erdos-

Renyi model
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Recall that NEXT-NEIGHBOR(v) is given by min{u > last[v] : X,, = 1} (or n + 1 if no

satisfying u exists). To aid in computing this quantity, we define:

K, = {u c (last[v], n] : A[v][u] =

wV = min Kv, or n + 1 if K = 0,

T, {u E (last[v], w, ) : A[v][u] = }.

The ordered set K, is only defined for ease of presentation within this section: it is equiv-

alent to (last[v], ni] P,, recording the known neighbors of v after last[v] (i.e., those that

have not been returned as an answer by any NEXT-NEIGHBOR(v) query yet). The quantity

wv remains unchanged but is simply restated in terms of Kv. T, specifies the list of can-

didates u for NEXT-NEIGHBOR(v) with A[v] [u] = ; in particular, all candidates u's, such

that the corresponding RVs X,,, = 0 are decided, are explicitly excluded from Tv.

Unlike the approach of Algorithm 2 that sim-

ulates coin-flips even for decided Xv,,'s, here we

only flip undecided coins for the indices in Tv:

we have ITv, Bernoulli trials to simulate. Let

F be the random variable denoting the first in-

dex of a successful trial out of Tv, I coin-flips, or

ITv, + 1 if all fail; denote the distribution of F

by ExactF(p, ITI). The CDF of F is given by

P[F = f = I - (1 - p)f for f T, | (i.e.,

there is some success trial in the first f trials),

and P[F = ITvI + 1] = 1. Thus, we must design

Algorithm 5 Alternative Generator

procedure NEXT-NEIGHBOR(v)
w <- min Kv, or n + 1 if Kv, 0
t +- COUNT(v)
sample F - ExactF(p, t)
if F < t then

u <- PICK(v, F)
K, ÷- K, U {v}

else
Z4 <- W

if u n + 1 then
KI7 <- Kv \ {u}

UPDATE(v, u)
last[v] <- u

return u

a data structure that can compute wv, compute ITv , , find the Fth minimum value in T, , and

update A [v] [u] for the F lowest values u E Tv accordingly.

Let k = [log n. We create a range tree, where each node itself contains a balanced

binary search tree (BBST), storing last values of its corresponding range. Formally, for

i E [0, n/23) and j E [0, k], the ith node of the jth level of the range tree, stores last[v] for

every v E (.2 2 i, (+) 2 k-j]. Denote the range tree by R, and each BBST corresponding
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to the range [a, b] by B[a,b]. We say that the range [a, b] is canonical if it corresponds to a

range of some B[a,bJ in R.

Again, to allow fast initialization, we make the following adjustments from the given

formalization above: (1) values last[v = 0 are never stored in any B[a,b], and (2) each

B[a,b] is created on-the-fly during the first occasion it becomes non-empty. Further, we

augment each B[a,b) so that each of its node maintains the size of the subtree rooted at that

node: this allows us to count, in O(log n) time, the number of entries in B[a,bj that is no

smaller than a given threshold.

Observe that each v is included in exactly one B[,,b] per level in R, so k +1 O= (log n)

copies of last[v] are stored throughout R. Moreover, by the property of range trees, any

interval can be decomposed into a disjoint union of O(log n) canonical ranges. From these

properties we implement the data structure R to support the following operations. (Note

that R is initially an empty tree, so initialization is trivial.)

" COUNT(v): compute T I.

We break (last[v], w,) into O(log n) disjoint canonical ranges [ai, bi]'s each corre-

sponding to some B[ai,b.], then compute t[ai,bi] = {u C [ai, bi] : last[u] < v}j, and

return Ei t[at,b.]. The value t[ai,bi] is obtained by counting the entries of B[ai,btl that

is at least v, then subtract it from bi - a + 1; we cannot count entries less than v

because last [u] = 0 are not stored.

" PICK(v, F): find the Fth minimum value in Tv (assuming F < |Tv).

We again break (last[v], w,) into O(log n) canonical ranges [ai, bi]'s, compute t[aiA] ',

and identify the canonical range [a*, b*] containing the Zth smallest element (i.e.,

[ai, b] with the smallest b satisfying Ej<j t[aj,bj] > F assuming ranges are sorted).

Binary-search in [a*, b*] to find exactly the ith smallest element of T. This is ccom-

plished by traversing R starting from the range [a*, b*] down to a leaf, at each step

computing the children's T[ab]'s and deciding which child's range contains the de-

sired element.

" UPDATE(v, u): simulate coin-flips, assigning X,, <- 1, and X,, +- 0 for u' E

(last [v], u) n T.

This is done implicitly by handling the change last[v] <- u: for each BBST B[abl;
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where v E [a, b], remove the old value of last[v] and insert u instead.

It is straightforward to verify that all operations require at most O(log2 n) time and O(log n)

additional space per call. The overall implementation is given in Algorithm 5, using the

same asymptotic time and additional space. Recall also that sampling F ~ ExactF(p, t)

requires O(log n) time and one N-bit random word for the G(n, p) model.

B.2 Data structure for VERTEX-PAIR queries in the Erdos-

R enyi model

Recall that we define Q in Algorithm 2 as the set of pairs (u, v) where X,, is assigned to

0 during a VERTEX-PAIR query, allowing us to check for modifications of A not captured

by last [v] and Kv. Here in Algorithm 5, rather than checking, we need to be able to count

such entries. Thus, we instead create a BBST Q, for each v defined as:

Q= {u : u > last [v], v > last[u], and Xu,v is assigned to 0 during a VERTEX-PAIR query}.

This definition differs from that of Q in Section A.2 in two aspects. First, we ensure that

each A[v] [u] = 0 is recorded by either last (via Lemma 1) or Q' (explicitly), but not both.

In particular, if u were to stay in Q' when last[v] increases beyond u, we would have

double-counted these entries 0 not only recorded by Q' but also implied by last [v] and Kv.

By having a BBST for each Q , we can compute the number of O's that must be excluded

from Tv, which cannot be determined via last [v] and Kv alone: we subtract these from any

counting process done in the data structure R.

Second, we maintain Q' separately for each v as an ordered set, so that we may iden-

tify non-neighbors of v within a specific range - this allows us to remove non-neighbors

in specific range, ensuring that the first aspect holds. More specifically, when we increase

last [v], we must go through the data structure Q' and remove all u < last [v], and for each

such u, also remove v from Q' . There can be as many as linear number of such u, but

the number of removals is trivially bounded by the number of insertions, yielding an amor-

tized time performance guarantee in the following theorem. Aside from the deterministic
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guarantee, unsurprisingly, the required amount of random words for this algorithm is lower

than that of the algorithm from Section A (given in Theorem 5 and Corollary 7).

Theorem 6. Consider the Erds-Re'nyi G(rn, p) model. For NEXT-NEIGHBOR queries only,

Algorithm 5 is a generator that answers each query using O(log2 n) time, O(log n) ad-

ditional space, and one N-bit random word. For NEXT-NEIGHBOR and VERTEX PAIR

queries,an extension of Algorithm 5 answers each query using O(log2 n) amortized time,

O(log n) additional space, and one N-bit random word.

B.3 Data structure for the Stochastic Block model

We employ the data structure for generating and counting the number of vertices of each

community in a specified range from Section 4.2. We create r different copies of the data

structure R and Q', one for each community, so that we may implement the required

operations separately for each color, including using the COUNT subroutine to sample F

ExactF via the corresponding CDF, and picking the next neighbor according to F. Recall

that since we do not store last[v] = 0 in R, and we only add an entry to K,, P, or QC

after drawing the corresponding X,,, the communities of the endpoints, which cover all

elements stored in these data structures, must have already been determined. Thus, we

obtain the following corollary for the Stochastic Block model.

Corollary 8. Consider the Stochastic Block model with randomly-assigned communities.

For NEXT-NEIGHBOR queries only, Algorithm 5 is a generator that answers each query

using O(r poly(log n)) time, random words, and additional space per query. For NEXT-

NEIGHBOR and VERTEX-PAIR queries, Algorithm 5 answers each query using O(r poly(log n))

amortized time, O(r poly(log n)) random words, and O(r poly(log n)) additional space

per query additional space, and one N-bit random word.
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Appendix C

Additional related work

Random graph models. The Erdos-Renyi model, given in [14], is one of the most sim-

ple theoretical random graph model, yet more specialized models are required to capture

properties of real-world data. The Stochastic Block model (or the planted partition model)

was proposed in [22] originally for modeling social networks; nonetheless, it has proven

to be an useful general statistical model in numerous fields, including recommender sys-

tems [26, 37], medicine [39], social networks [17, 35], molecular biology [9, 28], ge-

netics [8, 23, 11], and image segmentation [38]. Canonical problems for this model are

the community detection and community recovery problems: some recent works include

[10, 32, 3, 2]; see e.g., [1] for survey of recent results. The study of Small-World networks

is originated in [41] has frequently been observed, and proven to be important for the mod-

eling of many real world graphs such as social networks [12, 40], brain neurons [5], among

many others. Kleinberg's model on the simple lattice topology (as considered in this paper)

imposes a geographical that allows navigations, yielding important results such as routing

algorithms (decentralized search) [24, 29]. See also e.g., [34] and Chapter 20 of [13].

Generation of random graphs. The problem of local-access implementation of random

graphs has been considered in the aforementioned work [18, 33, 15], as well as in [27]

that locally generates out-going edges on bipartite graphs while minimizing the maximum

in-degree. The problem of generating full graph instances for random graph models have

been frequently considered in many models of computations, such as sequential algorithms
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[31, 6, 36, 30], and the parallel computation model [4].

Query models. In the study of sub-linear time graph algorithms where reading the entire

input is infeasible, it is necessary to specify how the algorithm may access the input graph,

normally by defining the type of queries that the algorithm may ask about the input graph;

the allowed types of queries can greatly affect the performance of the algorithms. While

NEXT-NEIGHBOR query is only recently considered in [15], there are other query models

providing a neighbor of a vertex, such as asking for an entry in the adjacency-list represen-

tation [21], or traversing to a random neighbor [7]. On the other hand, the VERTEX-PAIR

query is common in the study of dense graphs as accessing the adjacency matrix represen-

tation [20]. The ALL-NEIGHBORS query has recently been explicitly considered in local

algorithms [16].
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