
-9

Adding Sorting and Grouping to the Mavo Framework for End User Web
Application Authoring

by Daniel Sanchez

S.B., C.S. M.I.T., 2016

Submitted to the
Department of Electrical Engineering and Computer Science
In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

February 2018

@ 2018 Massachusetts Institute of Technology. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole and in part in any medium

now known or hereafter created.

Author:

Certified by:

Acce

Signature redacted
Department of Electrical Eggineering and CoRguter Scece
February 2, 2018 Signature redacted
David R. Karger, Professor of Computer Science and Engineering, Thesgi'iTpervisor
February 2, 2018 Signature redacted
Christopher Terman, Chairman, M s Engineering Thesis Committee

MASSACHUSETS INSTTTE
OF TECHNOLOGY

JUL 17 2018

LIBRARIES
ARCHIVES 1

Adding Sorting and Grouping to the Mavo Framework for End User Web Application

Authoring

by Daniel Sanchez

Certified by David Karger

Submitted to the Department of Electrical Engineering and Computer Science

February 2, 2018

In Partial Fulfillment of the Requirements for the Degree of Master of Engineering in

Electrical Engineering and Computer Science

ABSTRACT

Sorting and grouping in Mavo gives developers further control as to how the data shown

on their webpage will be displayed. Given a collection of elements with the same

underlying data schema, users can choose a property of these elements whose value

should be used as a sorting criterion for what order the elements appear in. Expanding

on this, Mavo users can also view a collection of data in groups, where group headings

appear above a subset of the items denoting a shared characteristic of the items. With

this additional functionality, Mavo developers can now author more powerful web

applications that react dynamically to user input to display their data in a more

meaningful way. All this new functionality comes with the existing ease-of-use of Mavo,

requiring only an HTML attribute to specify how the data should be displayed, and how

the view should update should changes in the data occur.

3

4

ACKNOWLEDGEMENTS

I would like to extend a note of thanks to Lea Verou for her constant help and advice

throughout the development of these features. Lea is one of the original creators of

Mavo and by far the largest contributor to the Mavo codebase. With her expertise of

Mavo, she helped tremendously in building off of Mavo's existing functionality. In

addition to her behind the scenes help, Lea also gave a great deal of insight that

affected the final user experience of these features.

Additionally, I would like to thank my advisor, David Karger, for his input and help at

various times throughout the development of these features. We had our fair share of

whiteboard and online discussions with Lea, which ultimately helped greatly in shaping

the final outcome of this thesis.

5

6

TABLE OF CONTENTS

ABSTRACT 3

ACKNOWLEDGEMENTS 5

TABLE OF CONTENTS 7

LIST OF FIGURES 9

INTRODUCTION 11

RELATED WORK 18

Mavo 18

Similar Solutions 18
AngularJS 18
Exhibit 21

USER EXPERIENCE 24

Sorting and Grouping Using Attributes 24

Syntax 25

Dynamic Properties 26

Grouping 26

Sorting and Grouping Using Functions 29

Syntax 29

Use Cases 31

Triggers 31

IMPLEMENTATION 35
Sorting as a Plugin 35

MavoScript Functions 35
Sorting 36

Arguments and Data Processing 36

User Defined Comparison Function 37

Sorting Order Specification 38
Null Prefixed Sorting 38

Grouping 39

7

DOM Manipulation Functions 40
Setup 40
Sorting the DOM 41
Grouping the DOM 41
Cached Criteria 44

Triggers Implementation 44

FUTURE WORK 48
Nested Grouping 48
Automatic Group Headings for Specific Elements 48
Support for More Powerful Grouping Criteria 49
Persisting the Sorting Order 49

CONCLUSION 52

BIBLIOGRAPHY 53

8

LIST OF FIGURES

Figure 1. Syntax for statically sorting a collection by multiple properties 20

Figure 2. Syntax for dynamically sorting a collection by a single property 20

Figure 3. Using mv-sort with multiple properties 24

Figure 4. Automatic group heading elements, with developer code at the top, 28
and resulting HTML at the bottom

Figure 5. Using sort function in mv-value 30

Figure 6. Control flow while traversing output of groupBy function in 43
groupDOM

9

10

INTRODUCTION

Processing and displaying data is largely an inherent need of web applications today. In

the development process of these applications, developers use various strategies and

tools to better manage this data while maintaining a clean user experience for those

interacting with their application. This is where a variety of web application frameworks

come into play, each seeking to ease the web development process in their own way.

One common data pattern that developers need to deal with is the processing of

repeated instances of a data schema. In the view of the application, these will typically

be seen as various types of lists, with each item of the list displaying the characteristics

of one such instance. For example, perhaps we are developing a restaurant search

application, and need to display the relevant restaurants as a list of items. Each item in

this list would perhaps display the name of the restaurant, its location, and its phone

number, among a variety of other restaurant data. Creating each of the associated

DOM elements with vanilla JavaScript would quickly get tedious for developers. As

such, many of the aforementioned frameworks give users an easier way to create these

lists, requiring developers to simply specify the template of each element in the list, as

well as where the corresponding data should be displayed in that element.

From the user standpoint, these lists will always be presented to the user in some

default order. However, users oftentimes will have the need to view these items in a

different order, giving them a better context of the presented data. This is where sorting

is a necessity in many web applications. The ability to sort data can solve a variety of

use cases on the user side. Sorting can give users the power to quickly see more

relevant data at the top of the list, can give a better comparative context of the data

being presented, and can also be used as an assistant to searching should they choose

to scroll through their data. To meet these needs, developers typically sort the data on

11

the JavaScript side, before taking this sorted data and presenting it to the user. Some

web frameworks also provide constructs that can simplify the sorting process.

However, as it stands, creating these interfaces generally requires some programming

knowledge, namely in JavaScript, and a basic understanding of how to process data.

This can act as a barrier to entry for web designers with experience creating interfaces

in HTML and CSS, but little to no experience with programming languages and data

processing. Mavo [1] is a web framework that seeks to bridge this gap, by empowering

developers to create data-driven web applications without writing any JavaScript. Mavo

also enforces a straightforward user experience, by permitting users to edit data right

where they see that data displayed. Mavo has proven to be a viable solution for this

audience of developers in many use cases, but previously, Mavo did not have a way to

sort data without writing JavaScript. This thesis presents sorting in Mavo, through the

use of new Mavo constructs that give developers a concise yet powerful way to specify

how a collection of data should be ordered. Building on top of sorting, we also present

grouping, a common added convenience to many list interfaces. Grouping gives Mavo

developers the ability to specify a criterion based on an item data schema that should

present a visual grouped representation of the items when displayed in the web

application. This visual representation is done in the form of group headers, which

Mavo can automatically insert into the DOM at the beginning of any group.

We have provided the following constructs to developers for sorting and grouping

functionality in Mavo: a sort function, a groupBy function, an mv-sort attribute, and

an mv-groupby attribute. Each of these constructs has its own use case, which we will

describe in detail in the following sections.

As these features are built on top of Mavo, we outline various facets of the Mavo

framework in order to provide a better context for work described in this paper:

12

Property

While properties can be used as a term somewhat generally within software, with

respect to Mavo, properties are elements designated to contain important data

that should be savable, editable, and/or used in expressions. This is done by

attaching a property attribute to the element where the data should be

displayed and edited. The value of this attribute designates a key for data to be

stored, while the contents of the element designate a value in a key-value

mapping that is saved. We will refer to these elements as property elements,

and refer to the key-value mapping of data that this element represents as the

property. More specifically, the key will be referred to as the property name, and

the value as the property value.

Expression

Expressions in Mavo are portions of the HTML wrapped in square brackets (e.g.

[... I), with the exception of any string in an mv-value attribute, which is

automatically considered an expression without the need for brackets. They are

used as ways to pass Mavo variables and evaluate small bits of code in places

where a static string would not convey the necessary information. The language

used within expressions is known as MavoScript, which provides some built-in

functions and variables, access to properties as variables, and has small

syntactic differences from JavaScript. In addition, vanilla JavaScript can also be

used in expressions for advanced users. While expressions are commonly used

within HTML attributes, they can be used to populate HTML content as well.

Expressions work well with the sorting and grouping features presented here, by

allowing a clean way to create sorted or grouped interfaces where the criterion

for sorting and grouping can change.

Mavo Node

13

Mavo Nodes are Mavo's base representation of a variety of Mavo elements.

They are always associated with a DOM element, typically property elements,

but also can represent the root of the Mavo application. They are represented in

the codebase with the Mavo. Node class.

Collection

Collections are Mavo's way of representing repeated instances of a data schema.

On the frontend, collections are specified with the mv-multiple attribute, and

the data for the collection is dependent on the structure of the mv-multiple

element. The mv-multiple element denotes the template element of the

collection: the element which each respective data item of the collection clones

before inserting the appropriate data into the cloned elements and getting

appended into the DOM. The structure of each data item is determined by the

structure of the collection's template element, using nested property elements to

denote nested properties in the data schema for each individual item.

Collections are represented in the codebase with the Mayo. Collection class,

and are subclasses of Mayo. Node.

Using mv-value

The mv-value attribute is used in Mavo to populate an element's data with the

result of an expression. The populated data is typically some primitive that the

expression has evaluated to. However, mv-value can also be used to process

arrays of data. Doing this requires the structure of the property elements in the

mv-value element to match the data schema of the items in the expression's

resulting array. An example of this is seen in Figure 5 later in the paper.

The basic format of using each of the sorting and grouping constructs follows a similar

pattern: the collection being operated on is specified (either explicitly or implicitly),

followed by a specification of the sorting or grouping criterion. At this point, the

14

developer's job is complete, and the sorting/grouping constructs wait for the appropriate

trigger to activate. Choosing these triggers was an important step in the design

process, as we wanted the interface to update in response to a number of different

scenarios, while also making sure that these updates were timed appropriately in a way

that keeps the user experience smooth and free of unexpected jumps. These jumps

can happen, for example, if a collection were to sort itself when a user is directly editing

the data in that collection. The sorting and grouping constructs then process the data

presented to them, by first figuring out the data type of each item in the collection, and

then discerning how to apply the given criterion to these items. In the case of primitive

items, the only piece of information we need from the criterion is the ordering, either

increasing or decreasing. If we have a Mavo Node or JavaScript object, we also need

the attributes of these items from which we can retrieve the value that we would like to

base our sorting comparisons on. This is done by specifying one or more properties as

the criteria, with the order direction (increasing or decreasing) specified for each

individual property. In the case of multiple properties, a subsequent property becomes

the new criterion when a former property resulted in a tie when comparing two items.

With grouping, some additional steps are taken to discern the individual groups, and to

create group heading elements in the DOM. At its current state, groups are divided

based on which items have equal values in a certain property. However, future

iterations can easily support more complex grouping criteria as well by applying an

operation on the resolved property. Thus, rather than checking for equal property

values, we can instead simply check for equal transformed property values (e.g.

transform all names into the first letter of the name, then group by people with the same

first letter of their name). The template for the group heading elements can be specified

by the user, otherwise we will automatically create a default heading element.

The remainder of the paper proceeds as follows: we first discuss various works related

to the work presented in this thesis. Then we present the user experience of sorting

15

and grouping in Mavo, followed by the implementation details of these features. Next

we describe future work that can be done to build off of these features, followed by a

conclusion summarizing the extent and impact of our work.

16

17

RELATED WORK

This chapter outlines the various works related to this thesis. This includes an overview

of Mavo, the framework upon which the work in this thesis builds upon, as well as other

frameworks that offer similar solutions to what we seeked to accomplish.

Mavo

The work in this thesis builds upon the existing work in Mavo, a framework that

augments HTML syntax, giving authors the ability to implicitly define data schemas, and

author a functional data-driven web application without writing a line of JavaScript. The

existing work in Mavo supports a great deal of the preliminary work needed for sorting

and grouping to function properly, including the creation of collections, the notion of

implicit data schemas through properties, and the use of expressions to pass dynamic

property values. Upon the existing Mavo codebase, we implemented sorting and

grouping as a plugin, which takes advantage of the extensibility of Mavo to easily allow

developers to add this additional functionality to Mavo.

Similar Solutions

Some existing frameworks offer similar solutions to sorting and grouping, which we

outline below. Table 1 outlines the features in each of the frameworks, and Figures 1

and 2 shows examples of accomplishing a given task in each of the frameworks.

AngularJS

AngularJS' is a client side framework that has many similar approaches to Mavo. It

operates similarly to Mavo by extending the HTML vocabulary, thus leaving most of the

18

1 https://angularjs.org/

developer's interactions on the HTML side. However, AngularJS itself does require

JavaScript to process and manipulate data, such as data related to a collection. Once

this collection is set up, it can be referenced in an ng-repeat attribute, and sorted

using an orderBy construct that can be referenced within this attribute.

The orderBy construct expects the properties of the items that we would like to have

the items sorted by. When using multiple properties, AngularJS uses an array-like

format, comma-separating the property strings and having the set of property names

wrapped in square brackets. An example of this can be seen in Figure 1. Each

property is prefixed with + or - to control the sorting direction, ascending or descending

order respectively. The developer can also simply specify + or - without property

names, which will use the collection items themselves in comparisons. This can be

useful when sorting an array of primitives.

In addition, developers can choose to sort by a static or dynamic property, by providing

either a string, or AngularJS expression respectively for the property (AngularJS uses

its own version of expressions that operate similarly to Mavo, permitting developers to

reference variables that can update and trigger changes in the UI).

Developers can also specify a defined comparator function, as a means to determine

what makes an element "greater than" or "less than" another element. This comparator

function is a JavaScript function defined by the developer within an Angular scope, such

that its variable name can be referenced in an Angular expression in the HTML.

AngularJS does not currently have an out-of-the-box grouping solution.

19

Mavo AngularJS Exhibit

Sorting by multiple properties V

Control over sorting direction V

Dynamic sorting properties V

No JavaScript necessary Vb

Comparator function V X

Grouping V

8 Users cannot specify a dynamic property, but dynamic sorting is supported by default using an automatically
inserted dropdown
b JavaScript is necessary to set up Angular and the data variables, but the sorting action itself does not require
JavaScript

Table 1: Comparison of sorting and grouping features in various frameworks

Figure 1: Syntax for statically sorting a collection by multiple properties

* Note that Exhibit was excluded from this example, as its syntax does not support a variable property name

Figure 2: Syntax for dynamically sorting a collection by a single property

20

Exhibit

Exhibit2 is a publishing framework that seeks to simplify the development of data-rich

interactive web pages. Exhibit, unlike existing frameworks, expects data to be loaded

at the start of the application. Thus, given that you have a preexisting data source, you

can develop a data-rich interface in Exhibit with no extra JavaScript code. However,

this also means that Exhibit solves a different use case from Mavo as a whole, since

Mavo expects its users to be able to edit and save the data within the application, and

see changes to the data immediately. With Exhibit, we only operate on one collection of

data per application, so this collection is automatically inferred by Exhibit given that the

data is passed in the correct format. Thus, the only parameters of sorting left to specify

are the sorting criterion, which is specified through the use of an ex: orders attribute.

Similarly to ng-repeat in AngularJS, this attribute can accept one or more property

names of the items, whose property values will be what the items are sorted by. Each

of these properties must also be dot-prefixed, and comma separated (e.g.

ex: orders=". propl, .prop2". Unlike AngularJS, the ex: orders attribute is only

used to specify the sorting criterion upon page load, and updating the sorting order is an

inherent feature in Exhibit that requires no additional code. Exhibit automatically inserts

an element into the DOM that users can interact with to choose a new sorting criteria.

Specifying the sorting direction per property is done through the use of the

ex: directions attribute. For each listed property in ex: orders, the developer must

specify one of either "ascending" or "descending". These values must also be

comma separated.

By default, Exhibit does offer grouping functionality in sorted collections. Exhibit will

automatically place header elements above subsections of the items with the same

value specified by the sort criterion. Thus, grouping is built into the ex: orders

21

2 http://simile-widgets.org/exhibit/

attribute by default, and can be turned off by setting the ex: grouped attribute to

f alse.

22

23

USER EXPERIENCE

The direct interaction that Mavo developers have with the features presented in this

thesis is in their use of the various provided constructs. In this chapter, we will outline

how sorting and grouping in Mavo is used by Mavo developers. We present two new

constructs into the Mavo language to enable sorting: an mv-sort attribute, and a sort

function. Similarly, we also present an mv-groupby attribute and a groupBy function

for grouping functionality.

Sorting and Grouping Using Attributes

The provided mv-sort and mv-groupby attributes provide a way for developers to

specify sorting or grouping behavior on any element that defines or refers to a

collection. This is the case with any element with an mv-multiple attribute, or any

element with an mv-value attribute whose expression resolves to an array. Currently,

both attributes operate on the same syntax, with only the output differing.

a Prop L: b
Prop 2: 1

XU>
<11 proper-ty="'simpleGroup" mv-multiple mv-sort="+prop2 -prop1"> * Prop 1: a

div>Prop 1: </spaP></div> rop 2: 1
<divp,.>Prop 2: </ span></ div> M

* Prop 1: d
</I1> Prop 2: 2

0 Prop 1: c
Prop 2: 2

Figure 3: Using mv-sort with multiple properties

24

Syntax

Both the mv-sort and mv-groupby attributes expect space or comma separated

values, where each value falls under one of the following formats:

" Order character

o Simply a + or a - character, referring to increasing or decreasing order

respectively.

o e.g.+

* Property name

o The name of an existing property of the items in the collection. The value

of this property is what is compared when determining what is "greater

than" or "less than" a value from a separate item in the collection.

o e.g. propName

" Order character followed by property name

o e.g. -propName

Simply using an order character will compare the items in the collection directly to each

other. This is useful when sorting a collection of primitive values, such as numbers and

strings. As such, simply using an order character as the criteria is typically done without

any subsequent values.

When using a property name without prefixing with an order character, this will sort the

collection by this property's value in a default order. If the user wants to specify

increasing or decreasing order for a specific property, they need only prefix the property

name with either a + or - respectively.

Sorting by multiple properties is done by simply space or comma separating these

values. This specifies how to sub-sort items that resulted in a tie in a previous property.

An example of this can be seen in Figure 3. Here we specified that first and foremost,

25

sort by prop2 in increasing order. We notice in the output that two items had a value of

1 for prop2, and two items had a value of 2 for prop2. For these tied cases, the

sorting function then referred to the next mentioned value in mv-sort, which was

-prop1. Thus, in these subgroups, we sorted the previously tied items in decreasing

order of their value for prop1.

Dynamic Properties

Often times, a Mavo developer may want the specified properties to change based on

the state of the application. Using expressions in Mavo, this is a very easy task to

accomplish. Rather than typing the name of a property of the collection items,

developers can instead specify in an expression the value of an external property. This

external property's value can be used to choose one of the property names in the

collection items as the sorting/grouping criterion. Doing this requires the use of

expressions, where the developer simply wraps the name of the external property in

square braces, for example, mv- sort=="- [propName] ", where propName is the

name of a external property. Whatever the value of propName is in the application will

populate mv-sort in replacement of the bracketed expression.

Grouping

Grouping is an extension of sorting, and thus, using mv-groupby in the same way as

mv-sort will create a grouped collection in the same manner. The differentiating factor

is the addition of heading elements in grouping. The group heading elements are

displayed above a subset of the items in the sorted collection, and are used to divide

the collection into subsets called groups, where each item in the group has a shared

characteristic. In the current iteration, the criterion for grouping items together is that

they have equal value in the property specified in the mv-groupby attribute. Using

multiple properties in mv-groupby is currently incomplete, but is expected to result in a

nested grouping structure, with latter properties appearing as groups within groups

created by previous properties.

26

The group heading elements can be created either explicitly, or automatically inserted.

In the explicit case, the user must specify an element with an mv-group-heading

class directly above the collection template element. This element will be cloned, and

the group values will be inserted inside each clone as the heading for each group.

Otherwise, if the user does not specify a group heading element, Mavo will default to

creating its own HTML section heading elements (one of <hl>, <h2>, <h3>,

<h4>, <h5>, <h6>). First, Mavo decides on a template group heading element. By

default, this will be an <hl> element, unless an HTML section heading element exists at

some point in the DOM prior to the collection. In this case, if the previous section

heading element is <h (n) >, then the group heading template element will be

<h (n+l)>. If the previous section heading element was an <h6> element, the group

heading template element will also be an <h6> element. In addition, any aria-level

attributes that existed on a previous section heading element will have the incremented

value as the aria-level of the group heading template element. After determining

the template element, Mavo will clone this element for each group, and insert the group

heading with its respective value above each group. Heading elements inserted

automatically will also automatically have an mv-group-heading class added to it. An

example of this can be seen in Figure 4. At the top, we see the setup of the application,

which passes the groupProp property in an expression to the mv-groupby attribute.

The select menu is used to select the value of groupProp. At the bottom, we

observe the resulting HTML. For our example, we selected "company" as our grouping

property. We notice that the resulting HTML inserted <h2> elements for each group

heading. This is because there existed an <hl> element earlier in the document, which

displayed "Students" at the top of the application. In addition, the aria-level of the

<hl> element was incremented in the <h2> element from 1 to 2.

27

______________________________________ -j

V

Stxdnt
Group by:

Comnpany9

Akamai

Matt Levine
SM
Akamai
1997

<hI aria-level=e"I">Students</hI>
<p>Group by: <-/p>

-select property="groupProp" mv-mode-"edit" value aria-label='
<h2 aria-tevel="12" class="mv-group-heading xv-ui>Akamai</h2.
-div m-"ltipl"e="students" mv-groupby=-+company- typeof="Item

Figure 4: Automatic group heading elements, with developer code at the top, and resulting HTML at the bottom

28

Google

April Rasala
S M
Google
2001

Jon Feldman
PhD
Google
2003

IBM

Dennis Quan
PhD
IBM
2003

0

Sorting and Grouping Using Functions

As we have seen, expressions in Mavo have proven to be vastly useful in their ability to

pass variables within HTML attributes. An additional benefit of expressions is the ability

to manipulate this data. Mavo provides an expression language, which expressions use

to perform computations on data. This expression language is called MavoScript, and

provides predefined special properties and functions which developers can use to

manipulate data. The additions of the sort and groupBy functions provides extra

functionality to this language, giving users more control over the collections used within

expressions.

Syntax

Both functions expect an array to sort or group as the first argument. In MavoScript this

can easily be done by passing the name of the collection. The remaining arguments

are a variable number of property strings in the same format as provided to the

mv-sort or mv-groupby attribute. This would be either an order character, a property

name, or an order character prefixing a property name. However, the property

arguments can also come in the form of arrays. This can happen when the developer

references the item's property without wrapping it in string quotations, and an example

can be seen in Figure 5. The reason for this is that by default, mv-value expects an

expression without the explicit use of square brackets, and thus any properties

referenced without string quotations are referenced as variables. When a property of an

item of a collection is referenced in an expression, the expression resolves this value to

an array of the property values of that property in the original collection. So in Figure 5,

the propi variable resolves to an array of [2, -1, 3, 0, 51, as these are the

corresponding values of propi in unsorted order in the simpleCollection

collection. This case is handled as a convenience to the developer, since switching

between using string quotations and not using string quotations between the

29

List 1

" Prop 1: 2
Prop 2:0

" Prop 1: -1
Prop 2: 1

" Prop 1: 3
Prop 2: 2

a Prop 1:0
Prop 2: 3

9 Prop 1: 5
Prop 2: 4

List 2

* Prop 1: 5
Prop 2: 4

* Prop 1: 3
Prop 2: 2

" Prop 1: 2
Prop 2: 0

* Prop 1: 0
Prop 2: 3

* Prop 1: -1
Prop 2: 1

Figure 5: Using sort function in mv-value

30

sorting/grouping attribute and the sorting/grouping function may have been a point of

confusion.

Use Cases

As it stands, the most common use case of collections in expressions is within the

mv-value attribute, and is typically used to create a synced copy of a preexisting

collection. If the value of the mv-value expression resolves to an array and the

element also has an mv-multiple attribute, then mv-value will operate similarly to

creating an original collection, creating repeated DOM instances of the data schema of

each element in the array. However, as this is a synced collection, the resulting data

displayed to the user cannot be edited here, and can only be edited in the original

collection. With the addition of the sorting and grouping functions, this synced collection

can now be the sorted or grouped version of the original collection, should the user

choose to display both. An example of this can be seen in Figure 5. Here list 1 is

displaying the collection in its original unsorted order, whereas list 2 has the sort

function operating on this collection with the value of prop1 as its criterion for sorting.

The developer can also use mv- sort to accomplish the same result, by simply using

mv-value="deepGroup" mv-sort="propl", and for Mavo's target audience, the

usage of the function is currently more of a convenience for developers who would

prefer to operate within MavoScript. However, for Mavo's advanced users, developers

can perform array operations on the resulting sorted array from within the expression,

as MavoScript also supports vanilla JavaScript. For example, a developer could take

the sorted output and call . slice (0, 3) to display the top 3 elements in the sorted

array.

Triggers
One carefully considered point when implementing sorting and grouping was figuring

out the right triggers under which the view should sort or group itself. For clarity, we will

31

describe here the triggers in the context of sorting. However, the same triggers that

trigger sorting also trigger grouping, where each mentioned sorting construct would be

associated with the corresponding grouping construct (mv-sort corresponds to

mv-groupby, sort function corresponds to the groupBy function).

First, when all Mavo elements are rendered, any collection whose template element has

an mv-sort attribute has a sort triggered on it given that the value of mv-sort is a

valid sorting criterion. It was decided that should mv-sort have a null value or an

empty string, the collection will be displayed in its original, unsorted order. The

reasoning behind this decision was so that with the use of expressions, mv-sort can

be used to show a collection sorted by various options of sorting criteria, or displayed in

its original order should no criterion be selected. We found this functionality to be more

useful than alternatively having an empty mv-sort attribute trigger some default sorting

behavior.

Sorting is also triggered in response to updates to the state of the application. For

example, a sort is triggered any time the sorting criterion is updated. This can happen

when an expression is used in mv-sort, and the expression updates based on user

interaction with another part of the application. In addition, sorting also occurs when

any data related to the collection is edited. This includes direct edits to the collection

items, or edits to other elements that indirectly change the collection data through

expressions. However, an additional concern for this case is the jarring user experience

that could occur should the shifting of the sorted elements occur as the user is editing a

property value. To address this concern, the sort is only triggered when the property

that is being changed is in read mode. This can happen in the latter aforementioned

case using expressions and edits external to the collection. If the property being

changed is in edit mode, the sort will only occur when the user exits edit mode. This

allows the user to make any edits to the collection data without worrying about collection

32

items shifting locations, and will update its display once the user declares that they have

completed their edits.

With regards to the sort function, it has essentially the same triggers for sorting as

mv-sort from the user's point of view. However, note when using the sort function

with mv-value, we are simply displaying the same data as another collection on the

page. This means that the copy cannot be edited, and to change its values you must

change the values from the collection it is based on. So any changes to a property

value in the original collection, or changes to sorting criterion will cause the copied

mv-value collection to evaluate itself for a sort.

33

34

IMPLEMENTATION

The implementation of sorting and grouping in Mavo is done in the form of a Mavo

plugin, mavo-sort. j s, which users can easily include by including the associated

JavaScript file, or loading the file through mv-plugins="sort". This plugin adds a

number of new functions to the Mavo codebase, and makes sure to call these functions

at the appropriate times. Namely, we add Mavo. Functions. sort,

Mayo.Functions.groupBy,Mavo.Collection.prototype.sortDOM,and

Mavo. Collection. prototype. group DOM, each of which we will explain in detail.

Sorting as a Plugin

We chose to abstract the sorting functionality into a Mavo plugin. This keeps the code

separate from the main Mavo codebase, and allows developers to include this code

easily if they choose to do so. All of the sorting code is self-contained, and keeping this

code in a plugin keeps Mavo modular, allowing developers only to load the code that

they need for their application, which can keep page load times quick upon loading the

application. After extended use, if we observe via feedback that sorting is an essential

tool for most use cases, adding the abstracted plugin code to the main codebase is a

simple task as well.

MavoScript Functions

In the Mavo codebase, all MavoScript functions that are available to Mavo users are

defined in Mayo. Functions. As such, our implementations of

Mavo. Functions. sort and Mavo. Functions . groupBy directly add these

functions for use in expressions through MavoScript.

35

Sorting

Sorting in MavoScript is implemented through Mayo. Functions. sort. In the User

Experience chapter, we talked about the various parameters that the developer can

pass to this function, and how that function is used to sort in the DOM. Here we will talk

about how these parameters are processed, and the various cases considered when

formulating the final output.

Arguments and Data Processing

The first argument to Mavo. Functions. sort is the array that we would like to sort.

In MavoScript, passing the variable name of a collection will get its array representation.

When implementing this function, we wanted to make sure it was able to handle item

data of various data types. Namely, the cases we handle are Mavo. Node instances,

primitives, and JavaScript objects. Mavo. Node instances will occur anytime a

collection is referenced in a Mavo expression. From these instances, we can get their

data in the format of a JavaScript object or a primitive by calling the getData method

on the instance. If the collection items themselves have properties, getData will return

JavaScript objects, otherwise, it will return either a number or a string primitive. Now

we've equalized the cases between getting an array of Mavo. Node instances, and an

array of primitives or JavaScript objects, and we can handle each case appropriately.

Supporting arrays of primitives or JavaScript objects as input keeps MavoScript

generalizable, such that advanced users can pass their own data should they choose

to.

The remaining arguments represent a variable number of properties, and the order they

would like to be sorted in. The order can only be specified if the arguments come in the

form of strings, where the first character will either be a + or a -, denoting increasing

and decreasing order respectively. Using the remainder of the string, if the items in the

collection represent JavaScript objects (either directly or after getData), we can use

this property name to search for the appropriate property value in the object. In the

36

case where the JavaScript object represents nested properties, the nested property can

either be specified by its direct name, or through dot notation (e.g. if prop2 is nested

inside of prop1 in a collection item, a user can either simply specify prop2, or

prop1 prop2).

The property arguments can also come in the form of arrays, representing the

respective values of the property in the unsorted collection. In these cases, in order to

retrieve the appropriate property value, we need the index of the item in the unsorted

array. We do this by creating a copy of our array using JavaScript's map 3 function, that

maps each item to an [item, index] tuple, that gives us access to both pieces of

information for a given item. This tuple also comes in handy for stable sorting, where

we compare indices in the case that all property comparisons resulted in a tie. The use

of these arrays as property arguments does not have any way of specifying sorting

direction, and in these cases, we default to sorting the items in the default sorting

direction, which is currently in decreasing order.

Now that we have defined a way to retrieve the values used for comparison, we segue

into where these comparisons happen. We use JavaScript's native sort' function,

where all of the processing mentioned above happens in the comparison function that

we've defined. The comparison function gets the aforementioned [item, index]

tuples as arguments, and use the property arguments to retrieve the value of

comparison from item. In the case that all properties result in ties, we resort to

comparing the indices, resulting in a stable sort, since stable sort is not natively

supported by JavaScript's sort function.

User Defined Comparison Function

In its current state, sorting in Mavo does not support the use of a user-defined

comparison function. The main reason this was not prioritized in the current iteration of

' https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
4 https://developer. mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

37

Mavo sorting is that defining a complex comparison function lies outside the

expectations of Mavo's target audience. Mavo seeks to be a viable solution for those

with little to no programming experience, and the addition of such a feature would likely

not be used by this audience. In addition, as Mavo is a language used entirely within

HTML, figuring out the right method for developers to define such a function is a

challenge within itself. Though Mavo's target audience may be unfamiliar with

programming, there are more advanced users that do use Mavo, and supporting the

use of user-defined comparison functions could be a useful addition that can be

explored in future iterations of sort.

Sorting Order Specification

One point of contention was deciding the best way for a user to specify the order that a

property should be sorted in. While we ended up choosing the +/- prefix format, we

also thought about the idea of using comma separated word pairs. The first word in the

pair would be the property name, and the second word would be either as c specifying

ascending order, or desc specifying descending order (e.g. mv-sort="prop1 asc,

prop2 desc...". The main advantage to this format was increased readability at the

expense of more characters. In addition, users must comma separate the word pairs,

whereas they can choose to comma or space separate with the existing

implementation. We chose the +/- prefix format as we believed it to be concise, and

helped stick with the HTML attribute standard of space separating separate values

within an attribute, while also providing the freedom to comma separate if a developer is

more comfortable with that format. In addition, we found it to be only slightly less

readable than the alternative such that the tradeoff was worth it.

Null Prefixed Sorting

Occasionally, users may save their data without inputting values for the relevant

property fields in a collection item. This results in null values for that property, and we

needed to decide how to deal with these cases when sorting by a property that has a

null value for some items. For these items with null properties, we decided to always

38

place these items at the end of the collection. Our reasoning behind this decision is that

users will likely want to see relevant data first, and such relevant data is more likely to

be non-null values. However, there may be instances where users want to specify that

they want to see the null items first, and while this is not supported in the current

iteration of sort, it is something that can be explored in future iterations.

Grouping

As grouping is an extension of sorting, the parameters that

Mavo. Functions. groupBy accepts are exactly the same as

Mavo. Functions. sort. In fact, the first thing that the groupBy function does is call

Mavo. Functions. sort on the input array with the same parameters to get a sorted

copy that the function uses to create grouped structures.

These group structures come in the form of a JavaScript object, and use three object

properties to convey the information related to a group: id, property, and items.

The id property specifies the value of the group headings, property specifies which

property name the grouping function is grouping on, and items is an array of the items

from the original array that this group contains, in sorted order. In order to determine

the value of id, groupBy parses the items in the same way that the sort function

does to retrieve the elements being compared. The items property may also contain

nested group structures in the case of grouping by multiple properties. Thus, the final

output of the groupBy function is an array of group structure objects, each of which

may recursively contain an array of group structure objects in items, or may simply

contain the grouped items in sorted order.

Something to note is that in order to use the groupBy function in mv-value,

developers must be sure that the structure of the property elements matches that of the

group structure objects output by groupBy. As such, if the developer wants groupBy

to work in the same way as mv-groupby, they need to be sure that they include an id

39

property element, as well as an items property element within the mv-value element.

The value of the group header will be displayed in the id property element, whereas the

respective items will be displayed in the items property element.

DOM Manipulation Functions

The Mayo. Collection. prototype. sortDOM, and

Mayo. Collection. prototype. groupDOM functions are used by the plugin

internally to interact with the DOM when the mv-sort or mv-groupby attributes are

used. When Mavo finds an element that should be interpreted and saved as a

collection (the element must have an mv-multiple attribute and a property name),

Mavo first uses the data associated with the property to create a Mavo. Collection

instance. Mavo looks at the associated data and the template element to which

mv-multiple is attached, and creates children elements that are clones of the

template element, with each child populated with item data in the appropriate locations.

Mavo appends these clones to the DOM in place of the template element, and uses

these elements to create Mavo. Node instances which are stored in the children

property of the Mayo. Collection instance.

Setup

Since sortDOM and groupDOM are prototype methods that can be called from a

collection instance, any collection now has the ability to change its DOM representation.

In addition, the collection instance gives sortDOM and groupDOM access to the

elements that need reordering, where they are currently placed in the DOM, and the

Mavo . Node instances associated with the data. Since these DOM methods already

have access to this data as a result of being called from a collection instance, the

remaining pieces of information needed to sort or group in the DOM are the properties

that the collection should be sorted or grouped by, which sortDOM and groupDOM both

take as arguments in the form of a list of values. Each value is formatted in the same

way that the sort or groupBy functions expect them, either as a string representing

40

the property and its order direction, or an array representing the property's unsorted

values.

Sorting the DOM

Sorting the DOM is then simply done by first retrieving the array data associated with

the collection, which we can simply use this. children for (where this refers to the

Mayo. Collection instance). Using this array and the properties passed to sortDOM,

we can call Mavo. Functions. sort to get an array with the Mavo nodes in sorted

order. Finally, we create a DocumentFragment5 , append the elements associated with

the ordered Mavo Nodes to this fragment, and then append this fragment to the DOM in

place of the template element. Appending elements to the Document Fragment rather

than the DOM minimizes the amount of restructuring incurred on the DOM, which is

expected to be a much larger and more complex Document6 , resulting in better

expected performance of a sorting or grouping action.

Grouping the DOM

In order to group the DOM, groupDOM first gets the data it needs for grouping, by

calling Mayo. Functions .groupBy with the appropriate parameters. Next, groupDOM

determines the heading template element, which will later be cloned and populated with

heading data. If the collection has a heading template element stored in

this .headingTemplate, this element will be used. This element is stored after the

collection determines its heading template element for the first time, since the template

is removed from the DOM after grouping. This allows users to group and ungroup a

collection, while still giving the collection access to the template. If a stored template

heading element doesn't exist, groupDOM proceeds to determine it in the same way

described in the User Experience chapter, by using the previous mv-group-heading

element if it exists, otherwise creating a section heading element based on the closest

section heading element that appears above the collection template element when

5 https://developer.mozilla.org/en-US/docs/Web/API/DocumentFragment
6 https://developer.mozilla.org/en-US/docs/Web/API/Document

41

viewing the HTML source code. We determine the existence of such an HTML section

heading element by using a simple selector to find all section heading elements that

exist in the Mavo application, and using Node. compareDocument Position7 to

determine the closest one existing prior to the collection template element. After

determining the appropriate heading template, this element gets saved in

this . headingTemplate for future use.

Now we move to inserting the collection elements and the heading elements in the

correct spots in the DOM, and with the correct data. This is done by traversing the

output of the groupBy function. This traversal starts by looking at the first group

structure object. As this structure represents a group, we clone the heading template

element, populate it with the id value of the group structure object, and append this to a

DocumentFragment. Then we recursively look at the items property of this element,

appending heading elements to the DOM for every nested group structure we find, until

we come across a collection item. Upon reaching an array of collection items in an

items property, we append the elements representing these items in their sorted order

to the fragment, placing them beneath the appropriate heading element. The control

flow of this recursive process is outlined in Figure 6. After the fragment is populated

with the appropriate headings and elements, it is simply appended to the DOM in place

of the collection template element.

7 https://developer.mozilla.org/en-US/docs/Web/API/Node/compareDocumentPosition

42

{ -1
"id": "Main heading 1",
"property": "p1,
"items":

{ 2
id: *Sub heading 1",
"property": "p2*

-3
*wid": 3,
"pls' "Main heading l"
p2: "Sub heading I'

-4
"id"s 2,
"p1": "Main heading 1"
"p2": "Sub heading I'

}

{ -5
"id": "Sub heading 2%
"property": "p2",
"items"_!_

-6
"id': 0,
plAI "Main heiding l

"p2: "'Sub heading 2"

"id": 1,
"p1": "Main heading 1"'
"p2*: "Sub heading 2"

},

8+

Figure 6: Controlflow while traversing output of groupBy function in groupDOM. Solid boxes outline group structure objects,

dashed boxes outline collection item data. Numbers on the side displays the order the elements are traversed in.

43

Cached Criteria

Both DOM manipulation functions also cache the criterion by which they were last

sorted. This criterion is stored in the collection instance as a property in the form of a

formatted string, that is unique per criterion. In certain instances of sorting and

grouping, before the associated DOM manipulation function executes, we compare the

given criterion to what is stored. If they do not match, the sorting or grouping action

continues, otherwise, this action is skipped. This can help eliminate unnecessary

sorting or grouping, which can occur in some cases of triggers described below.

Triggers Implementation

Earlier we described the different scenarios that causes the view to sort or group itself

from the user's perspective. Here we will delve into how we account for all of these

various cases in the implementation of our plugin. We will again explain our

implementation in the context of sorting, under the assumption that the same logic

applies for grouping. We recall that we account for three general cases of sorting: when

Mavo loads all relevant elements, when the sorting criterion changes, and when the

collection data changes.

Many of these cases are handled through the use of Mavo hooks. Mavo hooking is an

extensibility practice used by Mavo to give Mavo plugin developers the ability to execute

bits of plugin code at various portions of the Mavo codebase, without them directly

editing the Mavo codebase. In the Mavo codebase, at various key instances of code

execution, a Mavo. hooks. run (name, env) method is called. Plugin developers can

then run their own code at this point of execution by defining a callback function in

Mavo.hooks.add(name, callback).

To trigger sorting when Mavo loads all relevant elements, we make use of the

"node-render-end" hook, which is executed when a Mavo. Node instance has its

44

element rendered in the DOM. At this point, we simply check if the associated element

has an mv-sort attribute, determine the associated Mavo. Collection instance, and

pass the associated parameters to sortDOM. We must note that this is triggered for

each element in a collection, and as such we take advantage of caching the sort

criterion to make sure that the collection is only sorted once per criterion.

Next we consider the case of sorting when the sorting criterion changes. To handle this,

we make use of hooks, and MutationObserver8 instances. First, we use the

"init-end" hook as a spot to set up our MutationObserver instances. This hook

is run when Mavo has created all internal Mavo objects, but has not rendered all the

Mavo-generated elements. When this hook is run we create a special

MutationObserver for every element with an mv-sort attribute, which will listen for

any changes to this attribute, which happens when an expression used in this attribute

is updated. When these changes occur, we can call sortDOM with the appropriate

parameters. We opted to use the "init-end" hook because at this point, the

elements of a collection aren't cloned yet, with only the template element existing in the

DOM. Thus, we create one MutationObserver instance per collection.

Finally, we describe how we trigger a sort upon changes to collection data. To handle

this case, we use the "render-end" hook, which is run when all elements associated

with Mavo . Node instances are rendered in the DOM. At this hook's callback, we listen

for "mv-change " and "mv-done " events on these elements. These are events

created by Mavo that are broadcasted in certain scenarios. "mv-change" is triggered

upon any data changes to the data of a Mayo. Node instance, where the event is fired

from the associated element. Upon this event, we check if the changed node is in read

mode, meaning it must have been changed from an external interaction, likely through

the use of an expression. If so, we find the collection containing this Node, make sure

that the sort criterion of the collection includes the property that this Node represents,

8 https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver

45

and if so, we trigger a sort on this collection. We don't trigger sorting in write mode, as

this would result in the jumping behavior of elements moving in the DOM as a user is

attempting to edit them. Instead, to handle direct edits to a collection, we use

"mv-done". This event is triggered when a user exits edit mode on a Mavo

application, and is triggered for every Mavo. Node in the application. As such, when

triggered, we trigger a sort on every collection in the Mavo application.

46

47

FUTURE WORK

Nested Grouping

While sorting by multiple properties is currently supported, grouping by multiple

properties is currently incomplete. When grouping by multiple properties, the heading

elements will appear above each nested group, but the concept of a nested structure is

not currently apparent. The group heading element is the same for every level of the

group, even when using the automatically inserted <hl>-<h6> HTML section heading

elements. In the future, we instead would like to increment n for each <h (n) > element

at a deeper level than the previous, such that the section heading elements themselves

could convey this nested structure. In addition, the use of indentation is a commonly

used mechanism to convey nested information, and would be a useful visual aid to

Mavo grouping.

Automatic Group Headings for Specific Elements

In the case where the user does not specify a heading element with

mv-group-heading, while using HTML section heading elements is a reasonable

general case heading element, there are cases where there are better choices for

heading elements depending on what element the underlying collection is operating on.

For example, in the case where the collection is operating on an option element within

a select menu, the best candidate for a heading element here would be an optgroup

element. While the user has the power to specify this themselves, it would be desirable

to have a default action that makes sense in as many conceivable cases as possible.

48

Support for More Powerful Grouping Criteria

Currently with grouping, we group by the same criterion with which we sort a collection.

Given that grouping is a feature built on top of sorting, this works and makes sense.

However, there are cases where users will want more control over what defines a group

heading. For example, consider a contact list that simply displays names. Given the

current implementation of grouping, only people with the same name will be grouped

together. Assuming that most people have different names, this grouping criterion

would not be effective in helping to organize the data. The grouping functionality

provided by Mavo should give users the ability to specify a more meaningful grouping

criterion based on the data that they expect in their application. One way this could be

done is through the use of an expression that maps a property value to a new heading

value. With this heading value, we can now check for equivalence as we currently do

with the base property value. In the context of contact list example, consider an

expression that maps a name to the first letter of that name, thus producing a contact

list grouped by letter. Something left to consider is how such an expression can work

easily with the existing mv-groupby and group function constructs in a way that is

simple to use and easily understood by a web developer.

Persisting the Sorting Order

As it stands, sorting is a view action rather than a data action. This means that the

sorted order is not persisted along with the rest of the collection data when the user

saves their Mavo application. Even so, most use cases currently give the appearance

that the order is persisted. If a static property is used as the sorting criteria, that static

property runs the sort on the view every time the page is loaded. If a dynamic property

is used as the sorting criteria (e.g. through the use of expressions), then if the

expression is based on the value of an external property, that property can be saved.

Thus the sorting criteria is persisted in that manner, resulting in the same sort upon

49

page load. However, it may be worth exploring whether there are use cases not

covered here that would be solved by saving the sort order.

50

51

CONCLUSION

Mavo currently gives developers a great deal of power over how their web applications

will display data, with very little effort on their part. When implementing sorting and

grouping functionality into Mavo, keeping this preface in mind was an important aspect

that guided the efforts in maintaining a quality developer experience with the addition of

new functionality. Sorting and grouping gives developers even more control over their

web applications, with very little code required to maintain a dynamically updating

data-driven web application that Mavo seeks to provide its users. With even more

control over the display of their data, we expect more users to find Mavo to be a top

choice of framework when developing data-driven web applications.

52

BIBLIOGRAPHY

[1] Verou, Lea, Amy X. Zhang, and David R. Karger. "Mavo: Creating Interactive

Data-Driven Web Applications by Authoring HTML." Proceedings of the 29th Annual

Symposium on User Interface Software and Technology. ACM, 2016.

53

