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ABSTRACT

The high level cheecking of large-scale analog computers can be accom-
plished by comparing a numerically calculated solution of the equations
simulated with the solution obtained from the analog computer. A method
of ascertaining the adequacy of the numerical solutions for the purpose
of checking an analog computer is illustrated.

The errors committed at each interval of tabulation are examined and
the propagated effect of these errors are found. The effects of the
errors are assumed linear and superposition of the effects of the separate
errors gives the total propagated error.

The propagated effect is found by solving a set of variational
equations associated with the original differential equations. The solu-
tion of the variational equations are simplified by sectioning the solu=-
tion such that the solution of a set of constant-coefficient linear
differéntial equations is required for these sections,.

The application of the method to the propagation of inaccuracies in
analog computing elements is discussed as well as a comparison of alternate

approaches to obtaining a numerical solution
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Chapter I

INTRODUCTION

The judicious use of large-scale analog computers requires some
method of checking the accuracy of the solutions obtained from these
computers, The M.I.T. Flight Simula.taorl uses the method of comparing
a machine solution and a hand-calculated “check! solution. The effect
of errors in the check solution, the comparison of iarious approaches
to obtaining the check solution, and the comparison of two methods of

error analysis are discussed in this thesis.

1.0. The Problem and the Objectives of this Thesis.

The M.I.T. Flight Simulator is an analog computer and as such it
has many eccentricities. For example, the solution obtained from the
coinputer may not be the solution of the desired problem because of errors
in setup, gain errors in the amplifiers and other component errors, and
calibration errors. Since no automatic indication that the solution is
in error ispossible, a method of ascertaining the accuracy of the compus
tation of the desired problem is required before the solutions obtained
from the computer can be accepted with any degree of certainty. The
present method used to check the operation of the M,I.T. Flight Simulator
consists of comparing the analog solution with a specific numerical solu-
tion of the desired problem. If an adequate check is achieved, then the
computer is assumed to be set up properly ahd free of serious systematic
errors. Since variations of the parameters of the problem normally do not

seriously affect the accuracy of computation, solutions other than the

1Superscripts refer to references in Appendix C.
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check solution are usually assumed to be correct. In other words, it is
assumed that the computer can extrapolate solutions from the check solu=
tion without serious error. This fact has beeﬁ verified by adjusting the
computer to solve one check solution accurately and then changing the
parameters and checking the results with other numerically calculated
check solutions.

In addition to checking the setup of the computer, a check solution
furnishes many of the data needed to use the flight simulator to its
fullest capabilities. This is illustrated by the fact that the numerical
solution is useful in choosing the proper time scale extension factors,
scale factors, and gearbox ratios. These factors are determined largely
by the maximum and minimum values of the variables and the rate of change
of these variables.

Analyses of the accuracy of the M.I.T. Flight Simulator have been
made many times, but no analysis of the check solutions has been made.
Analysis of the check solution gives much information about the equations
being solved, as well as the effect of errors omnipresent in the computer
on the solution of the equations.

The objectives of this thesis are to determine the following:

1) a method of establishing the adequacy of the numerical check solutions
for the flight simulator, 2) the adequacy of alternate approaches to
obtaining the numerical check solutions, 3) the effects of machine errors

on the solutions.

l.1. History of the Problem.

The growth of the M.I.T, Flight Simulator has resulted in the accept-

ance of larger, more complex problems than those handled previously by the
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laboratory. The present hand computation method of obtaining numerical
check solutions for these larger problems is approaching impracticability
because of the excessive time required. A reduction of the time necessary
for the computation can be made if accuracy can be sacrificed. The éheck
solution need be accurate only to around 0.05 percent of the maximum devi-
ation of a particular variable, since the best solutions obtained from
the simulator are of that order of accuracy.
The process of obtaining a numerical solution is not an exact process._;

The numbers used in the computation are not exact since a roundoff error
occurs when a number is confined to a certain number of significant figures,
and since a truncation error results from the mumerical approximations to
the processes of integration and differentiation. These roundoff and
truncation errors are not of serious magnitude on an instantaneous basis,
but do have an accumulating and continuing effect which may render a com-
putation useless. This continuing effect varies from point to point in
the tabulation. That is, this propagated effect may be negligible at one
point, but may be excessively large at another point. The method used
for obtaining the numerical result also determines the effeet of the error.
For example, consider the question: What are the relative effects of an
error when using extrapolation techniques as compared to those when using
an iterative approach? . Lo

~ Other than the intuitive methods used by experienced numerical
analysts, the author has encountered two methods of attacking this problem.
Both methods require the solution of a system of variational equations.
The method of solution of these variational equations is the only differ=-
ence between the two approaches. One method gives the error as a function

of time and the other gives the error at one point caused by errors
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comnitted at previous times. Chapter II elaborates on the method used
in this thesis, as advanced by Murray and Brock,2 which solves the vari-
ational equations associated with the original differential equations by
sectioning the solution and assuming constant coefficients for the varia-
tional equations. A sample problem using this method isgiven in chapter
ITT to illustrate the final error.

The second scheme uses a weighting-function,3 which is the solution
of the adjoint equations associated with the variation equations.

Chapter IV shows the correlation between the two methods by illustrating

how to obtain the weighting function from the approach taken by this thesis.

A discussion of various approaches to obtaining a check solution is given

’
in chapter V along with sources of errors in numerical computation.
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Chapter II

THE THEORY OF THE ERROR®

The M.I.T. Flight Simulator is designed to solve a set of simul-
taneous ordinary differential equations. The numerical solution for these
equations is not the true solution due to roundoff and truncation errors
present at each interval of computation. The error analysis technique
presented in the following sections provides a means of compensating for
the errors resulting from all variables by means of corrective time func-
tions for each particular variable. The condition for the application of
this theory is that errors from different sources such as roundoff and
truncation are superposable, that is, the resultant correction is the sum
of the effects of all the separate errors committed. The theory is not

valid if the errors interact upon one another,

2.0, The Differential Equations and the Associated Variational Equations.

The system of differential equations solved by the computer can be
arranged so that the first time derivative of each variable is equated to
a function of the variables, A simple method of performing this arrange-
ment is to note the inputs to each integrator in the setup diagram for the
analog computer. The system of equations being solved by the simulator

can be written thus,

le " fu(Zl,Zz,ZB,Qotozm’t) o e 1,2,2..-.1‘1 2.1
d
where 2 = == Z,. The solution of this system of equations is

%
z,(t) = 2:(0) +j; £,(2 3%y gy enesly s t)dt g0
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Inasmuch as a numerical solution is to be obtained, the values of

the variables will be available only at discrete time intervals. Conse=-

quently, the equations are modified as follows}
t'n
Zu’n = Zu’n-l "’ft u,n 1(Z 2,23,..0|Zm,t)dto 203

The ideal solution above is not obtained, since errors are incurred at
each numerical step. The solution obtained is the one in which the
ubiquitous errors are also used in the computation and as a result

Eqe 2.3 should be written as

-~ ~

2 ft“ £ a4 P 2.1
Zu,n 3y u,n-l : % u,n-l( e o Ly # ¥
n=-1

where the tilde indicates the value of the function with the errors
included in them. If CZu 5 is the correction that must be applied to
1 2
the computed solution to give the correct solution (the total error at
-~
this point is the negative of czu’n), then by definition Zu,n + Cdu,n=

~
The substitution of Zu + CZu % in Eq. 2.3 yields

o1 s
£ ~ tn
3 Zu,n £ Czu,n = Zu,n—l + Czu,n-l - ft 1l1’1‘1__1[(2 + CZ ),
n=1
~ ~ ~F
(22 + cze), (23 + 023),....(Zm + czm),t] dt. 2.5

The relationship for the correction can be obtained by taking the

difference between Egs. 2.4 and 2.5:

- f n o
Céu,n Czu’n__1 +ft u,n-l kz + CZ ), (22 + sz).....
n-1

~ t ‘
Iy n T
(2. czm),t] dt -L fu,n__1 [21,22,23...zm,q dt. 2.6

Ti=
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If the partial derivatives Ofu/azj exist and are continuous, then by
e .- ~ 5 R A :
expanding f [(Z1 + 021),(22 + CZQ)..‘(Zm + CZm),i about fu(él,zlz,AB...dm,t.)

one obtains by neglecting all products of CZJ.

£ [Z + ez, (Z, + ¢z,), (z + 0Zy)eas Z + sz),t] .
ar,
£ [21,22,23,...zm,q + j=1a_: oz, 247
j
Substitution of Eq. 2.7 into Eq. 2.6 gives
£ o,

jgla— CZ 2.8

A * f 2
u,n u,n=1 %
n=1

If both sides of Eq. 2.8 are differentiated with respect to time the

result will be the system of the following variational equations.

[

o

m
z 2.9

J=l

q
<
G

2ele The WHM™ Matrix and its Characteristic Values.

A method of systematization is desirable so that the equations can
be handled efficiently. This is done by matrix notation wherever possible.
Equation 2.9 can be written as

E"Z] - [H] c;} 2,10

where H is an array of partial derivatives in the form



ai o, oz,
azl 3-21_2 » & 8 az_m
H e . . L] - 2.11

Hy

or, dsf o
3L ¥, ' ¥y

L e

s

[N

If "H" is assumed constant, that is, the array of pértial deriva=-
tives are constant, then the system of variation equations can be solved
easily. If the equations are sectioned into time intervals during each
of which the "H" matrix is essentially constant, a particularly simple
solution to Eqe. 2.10 can be found. The development which follows outlines
this approach.

In transform notation the variational equations become

xcz] - [H] cz] ' 2.12
or [H- )\U] CZ] = 0, where U is the unit matrix,

If "1’}‘2’7‘3“")&3 are the characteristic values of the "H" matrix,

then the solution for the variation equations can be assumed to be

1-%1 "0 3

where e P is a diagonal matrix.

2.2. Characteristic and Dual Vectors.,

Characteristic and dual vectors are used both to evaluate the con-

stants by the inclusion of initial conditions and also to separate the



terms so that the effects of the errors present in each of the wvariables

are noticeable.
The column matrix:zl is easily identified as the correction neces-

At
sary at time ta’ since [e pJ is equal to the unit matrix when t = ta.'

o] [ -4

Differentiation of Eq. 2.13 yields

A - 101 [
b1 - Dol ("]

Substituting Eq. 2.13 into Eq. 2.9

q - FF 10 2

then equating Egs. 2.15 and 2,17

A0 LT 3 (16112107
A T

Equation 2,19 is the condition for the solution of the V matrix,

but

.18

(A"

which is known as the characteristic vectors of the "H"™ matrix, The
inverse matrix is known as the dual vectors. The time expression of

Eq. 2.13 for the correction can be used only in the range where the
approximation that the "H" matrix remains constant can be applied. The
process of obtaining the "H" matrix and its associated characteristic
values, characteristic vectors, and dual vectorsmust be repeated for each
section, The amount of sectioning that is required will depend upon how

rapidly the partial derivatives change.
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The total correction in the solution will then be the sum of the
corrections due to the separate errors. This idea of superposition
requires that the errors from different sources do not interact upon
one another. This method of approach has an error due to sectioning
and an error due to linearizing. If the accufacy to which thé error is
sought is not great and if the sectioning is done judiciously, the com-
bined error from these two sources can be neglected. The examples taken

in the following chapters will show the validity of this statement.



=16m

Chapter III
A SAMPLE PROBLEM

The accuracy of the method of error analysis for a typical set of
equations for the M.I.T. Flight Simulator was determined by the use of
two mumerically computed check solutions. One solution was computed
with extreme vigilance using an iterative process with a small interval
of tabulation and a large number of significant figures. The number of
gignificant figures was reduced and the interval of tabulation was
increased for the second sélution. It was assumed that the first solu=-
tion was the desired result and the correction to the second solution

was obtained by noting the errors present in the second solution

3.0. Eqguations, "H" Matrix, and A Roots.

The equations as obtained by noting the inputs to each integrator
on the general setup diagram of the sample problem for the M.,I.T. Flight
Simulator in Fig. 3.1 is given below.

Q-Asine-i- B sin kt

X = A cos & + B cos kt

0=V

N - ‘lf( X,Y,O,\]r)

3.1

The inclusion of the variable ¥ shows how higher order time derivatives
can be handled by this method. The "H"™ matrix associated with this set

of equations is shown in Eq. 3.2.
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FIG. 3. SIMULATOR SETUP DIAGRAM FOR
SAMPLE PROBLEM
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0 0 A sin 6 0
0 0 =A cos © 0

H = 3.2
0 0 0 |
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The first step in detemining a satisfactory way of sectioning the

equations consists of examining terms of the "H" matrix to determine
which tems have large variations. The characteristic values of the "H"
matrix were obtained at 0.1T (T is the total solution time) second inter-
vals to assist in deciding the amount of sectioning required for the
problem. One of the characteristic values was zero, another was a nega-
tive real number, and the final two were a pair of complex conjugate
numbers. The loci _oi‘ these roots are plotted on the complex plane in .
Fig. 3.2.

An examirmation of Fig. 3.2 showed that for the major portion of the
solution the characteristic values did not change very rapidly. The assump-
tion of a constant "H" matrix, which implied a set of constant characteristic

values, was a valid one for sections of this problem.

3.1+ Sectioning, Characteristic Vectors, and Dual Vectors.

On the basis of the assumption that a constant "H" matrix could be
assumed for specific portions of the solution, the sample problem was
sectioned into three parts, 0£aT€0.4T and 0.LT £aT £0.8T and finally
0.0T€aT€T. The solution will be worked for the first two sections using
the values for the characteristic values, characteristic vectors, and dual
vectors obtained by using the information obtained from the check sol&iion

at a = 0,2 and a = 0.6. The characteristic values are
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0, =33.5, =16.6 £ j 55.2, and 0, -56.8, =L.9 * j

0.6, respectively.

The characteristic vectors are

r-111.1
-0.225

0

L 0

and

-222.0 1
-3051 -13.05
0 0.211

0 -0.,037

8

-27h-7
1.5k
-0.146

1
=27h.7
=3.8 + j 2.51

=0.228 - j 0.758

i
'13005
-0.252 + j 0.0LO

-0.0032 - j 0.041

 -0,0032 + j 0.041

62,2 for, a = 0.2 and

1
-27hs7
-3.8 + j 2.51

-0.228 + j 0.758

i
-13-05

-0.252 =t j OQOA'_LO

3.3

3.4

The dual vectors obtained by the inversion of the two matrices repre-

senting the characteristic vectors in Eqs. 3.3 and 3.4 are given below:

-.009

y o 10"6
1.3 x 10'8 6
$ §.2.2 x 10"

13 X ].O-8

-j 2.2 X 10-6

and

-.0045
718 = 10'5

2.6 x 1o'h )
* 3 300 %10

2.146 x :Lo"h l
N j 30)47 X lO-

.

-33 x 10"6

-10036
=6.7 x 10‘6 E
-3 1.1 x 10

6.7 x 10-6 ;
#5 11 %18

3

3

3.45 x 10"h

-.0L54

-.0156
-j 022

-00156
+j 022

0.219
--109
+j .033

-.109
"'j 0033

2.33
-1.16

*J 2908
-1.16

+J 972

0.724
"0362
b s BN o

-.362
=3 T

2.28

=1.1h
+j 13.24

-1.14

-j 13.24
o

3«5

3.6



Satisfactory assurance of the validity of the theory can be obtained
by carrying out a few numerical examples. The correction needed in the
variable X will be found in the following pages. Equation 2.13 shows that
the correction that must be applied to X to obtain the desired solution is

21 Xpb -1
CX(aT) = Vx [e ’1[\(] Y(aT)] 3T
: =) S )
where b = (a=-a) with aZ a. This equation was valid only in the region
a1_<_ aSa2 where ay and a, were the upper and lower bounds of the region
where the "HM™ matrix was assumed constant. For the region OSag.h the
correction, CX, given for the error present at time aT is CX = CJ'{Y o C}Lx ¥

CX. + cxe where

p g=33s5bT _ op (-16.6 BT

7 (2.6-% 10"(‘3 cos 55.2bT

CXY - [002 - .00

+ Ly x 10'6 sin 55.2bTi ;o

=-16,6 bT n

6, (=33.5bT

(1.34 x 107" cos 55.2bT

CXy = [7.39 x 10” + 275 e

* 2.2 x 10"1‘t sin 55,2 bT] ¥

3.8
Cx, =[275 Zige e PR TN BR (0 oug s €LSELT < 4066 80 ss.szl v

CX, =[275 '-.72he'33'5bT + e'lf"6 i («72L4 cos 55.2bT = 1.5L sin 55.2bT)]«(6

Similarly for the region O.hSaSl the correction, CX, becomes

=5648bT _ _=L.9bT

CJ(Y = [.0158 - 009 e (.006lL cos 62.2 bT - 0091 sin 62.2131‘]«(Y

=56.8bT _ e-h.9b‘1‘

cx, = [.0012 £ 592 e (.LO6L cos 62.2bT + .573 sin 62.2bT}]Yx



g

-56.8bT " e-h «9bT

CN = =13.05)2.33 e (=2.33 cos 62.,2bT + 1.94 sin 62.2bT]

Ty

=56.86T , =4e9PT (5,28 cos 62.2bT + 26,5 sin 62-2bT] e

CXe = =13.05)2.28 e

The constant term for the correction in X caused by Yys Yoo and Yy Was
neglected since the numerical value was less than 1/100th of the other
quantities. This indicates that the lasting effect on X caused by an error

in ¥, €, or X is very small.

3.2. The Step Response.,

The step responses (responses to a step of error), or sensitivity func-
tions, are the separate terms of Egs. 3.8 and 3.9. The relationship between
the portions of CX caused by errors committed in X, ¥, and © are given in
Figse 33, 3L, 3.5, and 3.6, respectively. The step response is the
prepagation of one error originating at one interval of tabulation in the
check solution. The procurement of a function of the error present in each
of the variables is necessary so that the convolution of the error functions

and the step responses can be made to obtain the total correction.

3.3 Truncation Errors.

If the functions to be numerically handled are assumed analytic,
then the two major errors are due to roundoff and truncation som:-c:es.5
The effectsof these errors are inherently affected by the integration formula
used in the numerical process. An elaboration of this phase of the problem

will be undertaken in chapter V. An iterative process utilizing the Newton-
Gregory integration fomu1a6 with finite differences is used by the analysis

section of the laboratory in obtaining the check solutionsi
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The truncation error in the Newton-Gregory formula

, A0 R T T
fn'fn--l*h[fn-.gé ""Tz"A -mb "720A ooo.] 3.10

is the first negleéted term in the formula, therefore, the error committed

by using n differences will bta8

: n+l
ET =R} Cnc-lﬂ & |

In the check solution being studied the first differences were neglected
in the integration of the variables X, Y, and €. The second differences
were neglected in VY. Substitution of these neglected differences in
Eq. 3.11 reveals that the truncation error for X, Y, and 6 at each interval
will be

gt 1A
Ep = = (.025T)(5)A el 3.12

but for ¥ will be

n
¥ Lt W TA
ET = - (.OQST)(E)A = - EB-G I3

The plotsof the first differences of X, ¥, and 6 multiplied by g are
given in Figs. 3.7, 3.8, and 3.9. The second differences of ¥ multiplied
by T/LBO are given in Fig. 3.10.

Since a reduction in the amount of numerical work was desirable, the
following scheme was used to reduce the work. The smoothed truncation
error curves were sampled at 0.05T-second intervals. The size of the
samples was increased by a factor of two since the number of error steps
(intervals at which a truncation error occurs) was decreased by two.

An examination of the truncation error in V¥ revegls that this error

seems to be alternately positive and negative and as a result has very
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little effect upon X. The truncétion error in ¥ is almost insignificant
in comparison with the other errors when convolved with QX‘P. This is
evidenced by noting the scale used in the graphs relating these quantities.
Although a crude approximation for ETI was made, the step response
was such that the contribution to the total correction was negligible from
this source of error. The major contribution to the correction arose from
truncation errors in € and X. An inspection of the magnitude of the step
responses and the magnitude of ETe and ETX shows that these two sources

were the major contributors to the total correction curves.

3.li« Roundoff Errors.

The roundoff error cannot be handled as precisely as the truncation
error since roundoff is a statistical variaf.ion and is not a function of
the equations being handled. The probability of having a roundoff error
can be handled. The maximum value caused by roundoff and a possible
standard deviation of the error originating at each time interval will
be attempted here.

The Newton-Gregory formula used by. the computing section of the lab-
oratory when written in terms of the ordinates rather than differences
becomes

Z, = Zn_l + th, 3.1L

when neglecting the first differences, and

h Ll -

h - L L]
" T % G ¢ [gz Wit BB zn---»2] 3526
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when using first and second differences respectively. If the Z's are

assumed correct and the maximum roundoff error in the Z's is e, the

maximum contribution to the Z's from the Z!'s will be9

Eoy = ah% lcd" 3.17

The factor Z |°j lwouid be equal to one when no differences or first
differences ;a.jre used, but would be equal to 1li/12 when second differences
are used. Equation 3,17 shows that the maximum error in Z caused by a
roundoff of & in é will be reduced by the interval of tabulation, he The
standard deviation of the error can be found by using the material in
Appendix A.

The preceding discussion indicates that the contribution of roundeff
in % to Zignot significant. The contribution of an error in the solution
is attributed mainly to the roundoff in the variable., The maximum error
in X would occur if a roundoff error of the same sign occurred in eveyy
variable for a period of time. The committed error function would be €
in this case, if maximum roundoff errors are assumed. \If the probability
of having a roundoff error of magnitude O0Se ¢ is unifo.m‘, then the

probability of having an error e would be P(e)de and the standard deviation

082‘\/‘[8 ezP(e)de = ’ée
0

The resultant error function would have a standard deviation equal boﬁa/B.

would be

Since the errors have an equal chance of being either positive or negative,
the resultant error in X will be almost negligible, when the convolution with

the step response is perfommed.
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Roundoff errors can be assumed random when the change in the quantity
at each interval is gmater than the maximum roundoff error. The only
qrantity in the check solution that did not satisfy this criterion was
the variable X. The change in X was less than the roundoff for a period
of 8 intervals when X reached a maximum value somewhere between a = 0,5
and a = 0,7. With this exception the rest of the variables changed rapidly

enough, so that the effects of roundoff could be neglected.

3.5. The Resultant Correction.

The resultant correction was obtained by summing the result of the
con;rolut.ions of the approximation to the truncation error (roundoff errors
are neglected) and the respective step responses. For the second section
0.4€2€0,8 the correction was obtained by using the terminal conditions
of the first section as well as the errors existing in the second section.
The resultant correction is plotted in Fig. 3.11 as a dotted curve. The
solid curve is the approximation to the actual difference between the two
check solutions determined by the computing section.

The apparent displacement in the solid curve after aT = 0.L45T seconds
was caused by X reaching a maximum value and remaining at this maximum value
for 0,15T seconds. The inclusion of this roundoff error in t.hé calculated
correction would give a closer, but not exact, agreement between the two
curves,

The occurrence of this gross roundoff error cannot be predicted, but
its effect is not serious since a cursory examination of Fig. 3.11 indicates
that the cumulative error for the majority of the solution is in the order

of magnitude of the roundoff error in X, Notice should be given also to
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the smoothing effect of integration on errors in .E;. The further that the
errors are removeﬁ from the point of interest, the less the effect of the
error. The more integrations that have to be performed before the effect
is felt, the less is the effect.

The more sections used, the more accurate the resultant error to the
actual propagated errer. If the amount of sectioning is carried to its
extreme, the result is the solution of the variation equations without
sectioning. A superficial examination of Fige 3.11 indicates that the
resultant correction gives the order of magnitude of the error, but not the
exact form. These results indicate that a rough estimate of the error
can be made from a very few sections,. }

The last section .8€a<€1l was not performed since the object of this
chapter was to verify the validity of the sectioning and linearizing
assumptions for this error analysis technique. For the purposes of error
study this complete survey need not be made since a set of step responses
would give the desired infommation concerning the sensitivity of the various
sections to errors. Determination of the step responses is the beginning

to the error analysis study made by R:-.lbow,'h

in which the step responses
were obtained by superimposing a step (error) upon a solution and recording
the variation that resulted from this step when compared to the original
solution, The s#eps were inserted in the different variables and the
results recorded at the various points of interest. The time at which

the steps were initiated was also varied. The proper interpretation of
these stel; responses gave the weighting function that related the error

committed and the propagated error at a later time.



The “H"™ matrix technique gives a method of obtaining these step
respoﬁses during the presetup stage. The responses obtained are only
approximations to the experimentally obtained responses. Although the
- pulsesof error used in this chapter were the errors present in using a
numerical process, the errors could just as well have been errors in the
computer functional elements. A more efficient use of error analysis can
probably be made when the two techniques are combined; therefore, the
following chapter will show how a step response may be obtained at various

times during a solution by using the information obtained from the "H"

matrix technigque.
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Chapter IV

The study of the propagation of errors in analog computers by Jomzs3
used a weighting function which is the relationship between the error at
various times during a solution and the error that has accumulated at a
later time T in a solution. This weighting function can be obtained by
properly analyzing a set of step responses for the particular system.
This chapter illustrates the correlation between the step response

obtained experimentally and the one calculated by the "H" matrix.

L.0. Adjoint Method.

The weighting function is the solution of the adjoint equations which
are a set of equations in which the "HM™ matrix has been transposed with a

negative sign.
aﬂ ] Ll
a.] = EH];J“ ﬂ b2
ol =._§_.[-H]-1 L3

If Eq. Le3 is premultiplied with Eq. 2.11 the result is

e e I {0 R

wc +¢Ca = 0 hog

£

ol

or

but



Therefore
p .
& g a0 4t
~and by integrating from time ta. to T
T
d i
J; T &CZ]dt =0 L8
a
al(T)Czl(T) + aZ(T)sz(T) & e
d Ezl(ta)czl(ta) * ap(t 0020t ) * eer © ]= 0 Wlo

If the boundary conditions of an(T) =1, up(T) = 0 when p # n, the

equation reduces to
czn(T) = anl(ta}czl(ta) + anz(ta}czz(ta) B N (e

An inspection of the final equations shows that the propagated error
at time T is the weighted sum of the errors present at ta in the wvariables.
All errors must be changed to an equivalent error in one or more of the
variables. The solutions of the adjoint equations may be rather difficult,
but a system to obtain them experimentally was devised by Jones and verified
by Rabow. The essence of this method was to purposely insert an érror
(a step) at various times in a solution and to compare the results with a
solution that was run without the error (the step) inserted. The difference
between the two solutions (with and without the error)was the step response
to an error at the time when the step was initiated. The difference at a
time T in the two solutions was plotted against the time at which the error

was inserted as the base. The resultant curves gave the weighting function.



Jio.

i.1. Pulse Response by Using "H" Matrix.

The step response at various points in a solution is obtained by the
WH" matrix method. Since the problem is sectioned‘so that a constant “HW
matrix can be assumed, the step response is the same regardless of when the
error is inserted during a section of the problem. The responses are dif-
ferent for different sections. The time response to an error originating

in a section is
czn]= v [ e“] l:v]'l ﬂ .
s

For the purpose of illustrating how to obtain these step responses, a hypo=-
thetical problem with two variables which has been sectioned into two parts
will be used. The point of sectioning is at time ts. The response in the

two variables due to an error occurring at time ta. where 051:,(1 sts or

t_ &t 47T,
sS%a H
! Xl(t"ta) 2 XZ(t-ta ,
Czyy = [ " ke vy (tg)
.
N . kl(t—ta) s ke('b-t,a)
0221 = KZB + K2e Tz(ta).
The propagated error in Z1 caused by errors present in both Zl and 22 at
time ta is £
: Mt o M(t-t,]
Cdll = Kle + Kle Yl( ta)
[0 Mty) g Mt ]]
Cz,, = LLle + Lye «,—l(ta).

Two types of step resvonses can be obtained, one when the step is

inserted into the same variable that is being measured, and the other when

the step is inserted into a different variable.

If a step is inserted in



Zy during the period tsstasT and the response in Z, is desired, then

2
11

of the solution. A step initiated at a time Oﬁtas_ts in Zl requires that

%1 and CZ%]_ for the first section be calculated until time ts - ta. The
1

step response during the first section is Cle. The remainder of the step

CZ.., is the desired step response. The superscripts refer to the section

CZ

response (during the second section) is obtained by calculating czi where

the initiating steps are equal to the terminal values of czil and CZ%l at

time ts‘ This procedure is carried out for as many times as there are sec=-
tions in the solution. The above procedure is used to obtain the step
response of an error in the same variable as the one being measured.

If the step is inserted in Z, and the response in Zl is desired, then

2
for the interval ts_(_tagT the desired response is 0232-2. If the step is

initiated at O sta. S_ts then for the interval tq(ts the desired step response

in CZ%E during the first section. The value of Ci?.i2 and CZ;2 at time
| 2

li : : ; e L o2
t t’s-ta is the magnitude of the step used at time t’s to obtain 0412 + Céll

for the second section.

Lhe?2. Experimental Results.

The two step responses given in Fige. L.l as a solid line were obtained
by Rabow by inserting a pulse into the input of integrators x and 6, respec-
tively. This pulse in the integrand is equivalent to a step in the output.
The responses are for the variable x. A general block diagram for the simu-
lator setup used‘t.o obtain these pulse responses are given in Fig., L.2, which

simulates the equations given below.
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L}
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The pulse widths used were 0.3 seconds and the pulse height was of
such a magnitude that both the x and 6 shafts were displaced by 0.00333
units. Inasmuch:as the pulse is not an impulse, the shaft displacement
is not an ideal step, but a step with a ramp front. As a result the CXx
in Fig. L.2 did not start from 0.0033 but started from zero. The delay
in the rise of cxe was also due to the fact that a pulse was used rather
than a step.

The dotted line gives the same responses for an ideal step in using

the initial conditions to the original differential equations in obtaining

the "H"™ matrix. The equations for the step responses are

CR i~ 3.550 x 1072 & BOSIAT L 5 5oy 33570 gLl 2RT

+ e-lO.ZaT EI..OZ))-L cos 20.17aT + 8735 sin QO‘ITB‘T]

CX, = -.068 e~525:kal _ ¢ ogg om13L.2aT

+ ¢710+27 [26.328 cos 20.17aT = 1210 sin 20.17a@]
The assumption of a constant "H"™ matrix cannot be made for an entire

solution for the type of equations solved on the M.I.T. Flight Simulator.
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A possible time of sectioning would be at a time of two thirds the
solution time. This would give closer agreement at the end of the responses.
?his step response without sectioning gives an indication of what can be
expected by using only the initial values of the variables in solving the
WH" matrix.

The conclusions to be drawn here are that the "H"™ matrix method can
give the step responses necessary for obtaining the weighting functions by
using a very few sections. The experimentally obtained step response is an
approximation to the step response in that a pulse rather than an impulse is
used in the integrator inputs. The precision of the simulator dictates the
lower limit for the size of the pulse to be used, and the upper limit is
reached when the error cannot be assumed to be an increment additive to the
solution. The weighting function obtained by using pulse responses obtained
by the "H" matrix can be made to correspond closely to experimental results

if the solution is sectioned into possibly three sections.
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Chapter V

SOURCES OF ERROR

The truncation and roundoff errors present at each numerical tabulation
are inherently associated with the integration formula used in the numerical
process. The numerical technique used in the numerical computation (iterative
or extrapolation) has a marked effect on these errors. The propagation of
these errors has been explained in the previous sections of this thesis,
but the actual source of these errors has not been discussed. This section

will elaborate on these errors.

5.0, Roundoff Errors.

The process of numerical computation involves the use of present and
past information to obtain present or future information. The process can
be integration, differentiation, extrapolation or any other mathematical
operation. <+he probability of having a roundoff in the result is dependent
upon the coefficients multiplying the past information and the probability
of roundoff in the past data. The maximum roundoff error will occur when
the algebraic sum of the coeffiecients and the roundoff in the past ordinates
or differences are a maximum. An indication of the magnitude of the maximum
roundoff error that can occur is the sum of the absolute values of the
coefficients multiplied by the roundoff. The probability of having a
roundoff error in a sum of numbers is dependent upon the coefficients mul-
tiplying the numbers as explained in Appendix B, The roundoff error com-
mitted at any step can be aszumed random if the variable changes more than

the magnitude of the maximum roundoff between tabulation intervals., #&lthough
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the roundoff errors committed at each interval are comparable regardless
of whether iteration or extrapolation techniques are used, the buildup of
the error can become prohibitive in an extrapolation process. This buildup

of the error will be explained in section 5.3.

S.1. Truncation Errors.

The magnitude of the truncation error is an indication of the accuracy
of the numerical mathematical process of the variable to the true mathe-
matical process. In the case of integration when a Newtonian integration
formula is used the truncation error committed is approximately equal to
the first neglected term in the formula, but if an infinite number of
terms are used then the process is exactly equivalent to a true integration.
The more rapidly the function to be integrated varies, the more terms of
the formula must be used to reduce the truncation error. The errors com=-
mitted in the various Newton formulas when the first, second, or third
differences are neglected are discussed in Chapter 3. This time domain
approximation to the error committed gives an indication of the error com-
mitted, but the signal frequency spectrum that the formula can handle is
best expressed in the frequency domain. In the analog computation field,
the use of transfer functions is prevalent and the numerical analyst may
find it useful to look at the numerical processes in the frequency domain,
The closeness of the various integration formulas to 1/s when expressed
in the freaquency domain is an indication of the adeguacy of the fommula
to the functions being integrated.

The Newton Gregory formula with no differences reduces to the simple

integration formula



L

en = Gn—l + Te-n Bl
which in the freaquency domain ’oecomes7

e s) = ___2__:_811‘_ " 5.2

8(s) 1-e '

When one difference is used the integration formula reduces to the

trapezoidal rule

T L ] L]
bt B Yl te; ¥ en-l) 543

and when two differences are used the integration formula becomes
T L L] L] )
0, = Bpcy *iaH 0 ¥ B0y - 9o 54l

The corresponding transfer functions for these integration formulas become

géil o Eiate e-ST) Lol

2 1 a e-sT
s
and
Ggs) i T s Be-sT b e-2ST 6.6
e 12 -gT ¥ 3
6(s) l-¢e
respectively.

Each of the above integration formulas should reduce to 1/s in the
range s = -#¥2 and s = *jW? where £ = 2n/T if true integration is to be

T into a series, Eas. 5.2, 5.5, and 5.6 can

performed. By expanding e -
be reduced to the following when sT is made small enough so that the

higher order temms can be neglected.
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=aT 2
sT . (sT)
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e SN E L ) e T = A 5.8

-sT  =2sT 12 - 657 + HST)™
T 5+8 C . £ 5.9
12 Y e-sT 12sT (sT.}2

Equations 5.7, 5.8, and 5.9 will approximate 1/s as follows.

T 1 I
s

= 2 3
sT . (sT) (sT)
ol oot ) ity Gl

2 3
el . (al) sT)
TR Sl 21 c:v Rk 316y MR

5.10

T 1+e 1
2 -sT S 2 3
1-e sT . (sT) (sT)
1!!?"' 31 - h‘ 5w W
2
8T _ (sT L
T Pkl et a1 1--.’2_+TI-L+(ST) A A 5.12
Té l_e-ST S 1_$T+(ST)2_(ST)3+
i 3% Ll (2 T

The results indicate that Eq. 5.9 gives the smallest error, Eq. 5.8
the next smallest and Eq. 5.7 the largest error. These results are con-
sistent with the results from the time domain analysis. For a fixed

maximum frequency signal Eq. 5.7 can have the same accuracy as Eq. 5.9
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if the intefval of tabulation T for Eq. 5.7 is decreased by a sufficient
amount. When the numerical integration formulas are expressed in the
frequency domain, the ability to handle a certain signal frequency spec-

trum with a specified accuracy becomes evident.

C.2. Extrapolation.

Numerical analysts use two basic methods of approach to obtain a
numerical solution to the type of equa.‘bio.ns solved on the M.I1.T, Flight
Simulator, The two methods are the iteration and extrapolatioﬁ me thods.

In the iteration technique , the equations are combined and arranged so

that if a value for one variable is assumed, then all other variables can
be obtained by numerical integration or other mathematical relationships.
After the value for the first variable is chosen and the values for all the
other variables have been computed, one iteration is completed when the
newly obtained variables are replaced in the original equations to determine
if a proper choice for the assumed quantity was made., If the two values
(the assumed values and the values obtained by the numerical computations)
do not agree within the limits of accuracy specified, then another itera-
tion is performed. Not until an agreement within the tolerances specified .
is reached does the computer advance to the next interval., This process,
which can be likened to a servo system, can use a crude integration formula,
since the feedback loop (the original equations) is the most accurate meas=-
uring device that is available. The buildup of the errors cannot be great
since each integrated value is substituted into the original equations for

verification at each interval.
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In the extrapolation method the values of the variable at previous
intervals are weighted to obtain the value of the variable at the present
interval. A relatively high accuracy formula. which is not susceptible
to roundoff errors must be used since no verification is performed at
each interval. An error ean be made at one interval and will not be core-
rected as in the iterative.processes,

The buildup of errors has usually limited the number of consecutive
steps that can be handled by extrapolation techniques. Wong8 has shown
that the choice of extrapolation formulas, so that the buildup of errors
will at most be linear, must have the absolute magnitude of the largest
coefficient multiplying the various past information around unity. As an
illustration the following simultaneous linear differential equations
were solvedy

2=x-y-1l+2t

F=2x-y+3te+1 513

L}
o

JC(O) - ]." Y(O)

using the extrapolation formula below:

xn a xn---h 13 xn--3 g xn»-l X Txn-_’j 1 Txn—l

. . 5.1

&% DX * T

L Yn-h *Tus m X n-1

n 3 n=1 Ne=3

After the solution of the equations had been calculated for a number
of intervals, the same intervals were recalculated with an error inserted
at one interval in x. The difference of the two solutions was the step
resgponse to an error. This response shown in Fig. 5.1 exhibits ah unusual
pattern, which was not expected from the analysis made by using the “H"'

matrix scheme. The "H" matrix for the set of equations in 5.13 becomes
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STEP RESPONSE FOR AN EXTRAPOLATION PROCESS
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H = 5+15

The characteristic roots of the "H¥ matrix are £jl. The equations

for the step response using characteristic and dual vectors as explained

in chapter I1become

- & S TaTr = =
3t o A
CX i i i e 0 53 23 Yx
= 5e16
% . -3t -l-j il
- + 0 e J 1
CY 1=j 143 L 53 73 Yy
- b L - - - J
or
CIX = -gin t
5417

CX, = 2 sin (t+ 4s°) .

The answer to the pattern was that an error in one variable was not inserted
once, but four times by the extrapolation formula. Ah examination of the
extrapolation formula in Egs. 5.1L reveals that if an error was committed
in one interval, then the pattern of the errors in succeeding intervals
wonld ve a8 followss 1. =k, &y Oy 'Oy Q, L4 «l, ' Ly Q¢ 10500, %%
The pattern repeats itself after 6 intervals. The effect of the errors in
the derivatives was neglected since these errors were diminished by the
interval of tabulation (.03). The actual error in x would be the running
sum of the errors committed at each step, therefore the extrapolation for-
mula used has a linear buildup of errors. The smoothing effect due to
decreasing the interval of tabulation which occurs in an iteration process
was not present in the extrapolation technique. In fact the more steps
required for a solution the more likely the accumulation of a large error

when using an extrapolation technique.



The iteration process may require considerable time when a slow-speed
computing machine is used and a large amount of iteration is required at
each step. On the other hand the buildup of errors when using an extrapo=-
lation technique may render a computation useless if a 1arge number of
steps are required in the solution. A compromise between the two would be
to use iteration, for example, at every tenth step and extrapolation at
other times. A watch on the differences would indicate when a computation
is becoming useless due to the inadequacy of the numerical process. The
type of equations solved on the M.I.T. Flight Simulator is such tﬁat the

errors cannot build up to an extremely large value.



Chapter VI

SUMMARY AND CONCLUSIONS

A correction can be found to compensate for the errors committed at
each interval of ta:bulation. The errors present at each interval must be
known to obtain the actual correction, but for error analysis purposes the
obtaining of the step response is sufficient. These sensitivity functions
indicate the susceptibility of the solution of the differential equations
to an error in any of the variables. This scheme is not a catholicon for
errors in a numerical solution, but is rather a method of assessing the
adequacy of the solution for the purposes of checking the M,I,T. Flight

Simulator.

6.0. Location of Characteristic Values on Complex Plane,

The behavior of the errors can be obtained by a cursory examination
of the location of the roots of the characteristic equations in the complex
plane. A root in the left half plane indicates that the errors will die
out, whereas a root in the right half plane indicates that the errors will
increase with time. The root locations change with time as well as with
parametric changes of the differential equations. The movement of the
root locations is towards the right half plane as the problem progresses
for the type of equations simulated on the M,I,T. Flight Simulator.
Although errors committed near the end of the solution do not die out, the
buildup in the remaining time can not become excessive and the solution is

still valid at the end.
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6.1. Application to Study of Machine Errors and Approximation in Equations.

The scheme used in this thesis is not limited to a study of errors in
numerical solutions, but can also be mwsed to study the effects of computing
machine errors in the solution.. The effects of parametric changes as well
as the effect of approximations used in fhe simulation of the equations

can also be studied by this scheme.

6.2. Error Analysis Before and During Operation.

The weighting function method requires a considerable amount of analog
computer time at a premium cost to perform an error analysis study. A
reduction in the time required for a high order system can be accomplished
by using the scheme outlined in this thesis to note the effects of errors
in the various sections to the oufput quantities of the sections. For
example, the effects of errors in the aerodynamic section on the output
quantities of the aerodynamic section. The weighting function method could
then be applied to note the effects of the output quantities on the final

solution.

6.3. Extrapolation Versus Iteration. ’

The iterative method of numerical computation seems superior for the
procurement of check solutions for the M,I.T. Flight Simulator. The extra=
polation technique has a buildup of errors which cannot be tolerated for
the hand computation of check solutions. The buildup of errors would
necessitate carrying many more figures than those required for the final

solution.



6.4 Use of Digital Computers.

The time required for a hand calculated solution is such that the
maximum benefit is not derived from the check solution. The use of digital
computers will be required to obtain the numerical solutions for the M.I,T.
Flight Simulator if the magnitude of the problems becomes larger than that
of the present time. The use of iteration processes is not as suited to
use on digital computers as is the extrapolation process. The large number
of tabulation intervals required for a check solution will require that some
verification or iteration be performed at periodic intervals if an extrapo-
lation technique is used. The need for a digital computer in the laboratory
is exigent. The use of presently available digital computing facilities
could be used, but the most desirable condition would be to have a digital
computer in the computing section of the laboratory so that check solutions
as well as error analysis could be performed in conjunction with the opera-

tion of the M,I.T. Flight Simulator.
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APPENDIX A

STEP RESPONSE BY SOLVING LINEARIZED DIFFERENTIAL
RESPONSE EQUATIONS ON AN ELECTRONIC ANALOG COMPUTER

The solution of the var:%.ation equations to obtain the step response
entails a large amount of hand computation. The step response can be
obtained by using a small amount of analog computing equipment. The auto-
pilot servo simulator section9 is ideally constructed to obtain these
error sensitivity functions. This d-c equipment can be set up easily and

rapidly. For example, the equations for the sample problem

CY = A(Ce)

CX = B(CO)

oy = C(CY) + D(CX) + E(CY) + F(C8)
cé = OV

can be set up as shown in Fig. A.l. The necessary equipment consists of
a few summing circuits, coefficients, and integrators. The number of
integrators required is the same as the number of equations. The coeffi-
cients are the values of the elements of the "H"™ matrix, which are varied
for the different sections of the problem.

The step response can be obtained by applying a pulse furnished by
the sequence timers to the  input of the integrators and recording the
quantities at the points of interest. A set of these step responses is
then obtained very rapidly and the coefficients are changed to correspond
to the coefficients of the MH"™ matrix for a different section. In this

manner the step response can be obtained to a problem before the setup
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FIG. A.l AUTOPILOT SERVO SIMULATOR SETUP
TO OBTAIN STEP RESPONSES
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stage of the problem has begun. The critical portions of the setup are
found and attention is focused at these points during the simulator opera=-
tion. A check solution must be available so that the coefficients of the

d-c equipment can be set.
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APPENDIX B

PROBABILITY OF A ROUNDOFF ERRCR IN A SUM OF NUMBERS

What is the probability of introducing a roundoff error in a sum
of numbers AX + BY + CY + +.4s.., when 4,B,Cy...... are exact numbers and
X,Y,Z,0000ss are numbers which have roundoff errors in them? The proba-
bility of an error in the sum of two numbers AX + BY will be found and
then extended to include the sum of several numbers. If the probability
of having a roundoff a in X and b in Y.is P(a) da and Q(b) db, respec-
tively, then the probability of having a roundoff of s in the sum will be
the probability of having a roundoff of a in X and a roundoff of s-a in
Y occurring at the same time. A theory of compound probability states that

if P, is the probability that event E1 occurs, and P, is the probability

1 2
that event E2 occurs, then Ple is the probability that both events occur
in either order or simultaneously if E1 and E2 are independent.lo

The probability of a roundoff of s in the sum will be P(a) Q(s=-a) for
a chosen value of a, but for all possible values of a the integral of the

product is taken.
R(s) = cha> Q(s-a) da

The convolution of the two probability density curves of P(a) and Q(b)
gives the probability density curve for the sum of two numbers.

To obtain the probability density curve for the cases of more than
the sum of two numbers, the probability density curve if first obtained
for the sum of the two and then the resultant curve is convolved with the

probability density curve of the following number. This process is



i D

repeated for as many times as there are temms in the sum. The effect of
the multiplying coefficients A; B, C, cueees. is to multiply the base of
the probability density curve by the coefficient and to divide the ordi-
nates of the curve.

As an example, the probability of having a roundoff error in the

following sum will be found.
G G VS

The numbers X, Y, and Z are rounded to the nearest whole nmumber and the
probability density curve is uniform between the limits of %¥1/2., The

probability density curve for the roundoff in X + 2ZY becomes | g
_‘ |

'Z =1 (1 - e-ST 1 - e'ZST)
s 2s ’ ar

since convolution in the time domain is multiplication in the frequency

domain. Then the probability density curve for the roundoff in (X + 2Y)

-Z b (1 _Se-sT) (1 _22-251‘)(1 _BE-BST) .

+ 37 becomes

P
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