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ABSTRACT

The high level checking of large-scale analog computers can be accom-

plished by comparing a numerically calculated solution of the equations

simulated with the solution obtained from the analog computer. A method

of ascertaining the adequacy of the numerical solutions for the purpose

of checking an analog computer is il~ustrated.

The errors committed at each interval of tabulation are examined and

the propagated effect of these errors are found. The effects of the

errors are assumed linear and superposition of the effects of the separate

errors gives the total propagated error.

The propagated effect is found by solving a set of variational

equations associated with the original differential equations. The solu-

tion of the variational equations are simplified by sectioning the solu-

tion such that the solution of a set of constant-coefficient linear

differential equations is required for these sections.

The application of the method to the propagation of inaccuracies in

analog computing elements is discussed as well as a comparison of alternate

approaches to obtaining a numerical solution
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INTRODUCTION

The judicious use of large-scale analog computers requires some

method of checking the accuracy of the solutions obtained from these

computers. The M.I.T. Flight Simulator1 uses the method of comparing

a machine solution and a hand-calculated ftheck" solution. The effect

of errors in the check solutionr, the comparison of various approaches

to obtaining the check solution, and the comparison of two methods of

error analysis are discussed in this thesis.

1.0. The Problem and the Objectives of this Thesis.

The M.I.T. Flight Simulator is an analog computer and as such it

has mary eccentricities. For example, the solution obtained from the

computer may not be the solution of the desired problem because of errors

in setup, gain errors in the amplifiers and other component errors, and

calibration errors. Since no automatic indication that the s:>lution is

in error is possible, a method of ascertaining the accuracy of the compu'

tation of the desired problem is required before the solutions obtained

from the computer can be accepted with ary degree of certaintr. The

present method used to check the operation of the M.I.T. Flight Simulator

consists of comparing the analog solution with a specific numerical solu-

tion of the desired problem. If an adequate check is achieved, then the

computer is assumed to be set up properly and free of serious systematic

errors. Since variations of the parameters of the problem normally do not

seriously affect the accuracy of computation, solutions other than the

1Superscripts refer to references in Appendix C.



check solution are usually assumed to be correct. In other words, it is

assumed that the computer can extrapolate solutions from the check solu-

tion without serious error. This fact has been verified by adjusting the

computer to solve one check solution accurately and then changing the

parameters and checking the results with other numerically calculated

check solutions.

In addition to checking the setup of the computer, a check solution

furnishes many of the data needed to use the flight simulator to its

fullest capabilities. This is illustrated by the fact that the numerical

solution is useful in choosing the proper time scale extension factors,

scale factors, and gearbox ratios. These factors are determined largely

by the maximum and minimum values of the variables and the rate of change

of these variables.

Analyses of the accuracy of the M.I.T. Flight Simulator have been

made many times, but no analysis of the check solutions has been made.

Analysis of the check solution gives much informatelon about the equations

being solved, as well as the effect of errors omnipresent in the computer

on the solution of the equations.

The objectives of this thesis are to determine the following;

1) a method of establishing the adequacy of the numerical check solutions

for the flight simulator, 2) the adequacy of alternate approaches to

obtaining the numerical check solutions, 3) the effects of machine errors

on the solutions.

1.1. History of the Problem.

The growth of the M.I.T. Flight Simulator has resulted in the accept-

ance of larger, more complex problems than those handled previously by the
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laboratory. The present hand computation method of obtaining numerical

check solutions for these larger problems is approaching impracticability

because of the excessive time required. A reduction of the time necessary

for the computation can be made if accuracy can be sacrificed. The check

solution need be accurate only to around 0.05 percent of the maximum devi-

ation of a particular variable, since the best solutions obtained from

the simulator are of that order of accuracy.

The process of obtaining a numerical solution is not an exact process. 1

The numbers used in the computation are not exact since a roundoff error

occurs when a number is confined to a certain number of significant figures,

and s ince a truncation error results from the numerical approximations to

the processes of integration and differentiation. These roundoff and

truncation errors are not of serious magnitude on an instantaneous basis,

but do have an accumulating and continuing effect which may render a com-

putation useless. This continuing effect varies from point to point in

the tabulation. That is, this propagated effect may be negligible at one

point, but may be excessively large at another point. The method used

for obtaining the numerical result also determines the effect of the error.

For example, consider the question: What are the relative effects of an

error when using extrapolation techniques as compared to those when using

an iterative approach?

Other than the intuitive methods used by experienced numerical

analysts, the author has encountered two methods of attacking this problem.

Both methods require *the solution of a system of variational equations.

The method of solution of these variational equations is the only differ-

ence between the two approaches. One method gives the error as a function

of time and the other gives the error at one point caused by errors



committed at previous times. Chapter II elaborates on the method used

in this thesis, as advanced by Murray and Brock,2 which solves the vari-

ational equations associated with the original differential equations by

sectioning the solution and assuming constant coefficients for the varia-

tional equations. A sample problem using this method isgiven in chapter

III to illustrate the final error.

The second scheme uses a weighting-function,3 which is the solution

of the adjoint equations associated with the variation equations.

Chapter IV shows the correlation between the two methods by illustrating

how to obtain the weighting function from the approach taken by this thesis.

A discussion of various approaches to obtaining a check solution is given

in chapter V along with sources of errors in numerical computation.



Chapter II

THE THEORY OF THE ERROR2

The M.I.T. Flight Simulator is designed to solve a set of simul-

taneous ordinary differential equations. The numerical solution for these

equations is not the true solution due to roundoff and truncation errors

present at each interval of computation. The error analysis technique

presented in the following sections provides a means of compensating for

the errors resulting from all variables by means of corrective time func-

tions for each particular variable. The condition for the application of

this theory is that errors from different sources such as roundoff and

truncation are superposable, that is, the resultant correction is the sum

of the effects of all the separate errors committed. The theory is not

valid if the errors interact upon one another.

2.0. The Differential Equations and the Associated Variational Equations.

The system of differential equations solved by the computer can be

arranged so that the first time derivative of each variable is equated to

a function of the variables. A simple method of performing this arrange-

ment is to note the inputs to each integrator in the setup diagram for the

analog computer. The system of equations being solved by the simulator

can be written thus,

Zu = fu(Z ,Z 2 ,Z 3j****Zmst) u = l,2,2....m 2.1

dwhere Zu EiZ . The solution of this system of equations isU Udt

z U(t) z z(0) + ofuP-(z 223Z3P *eZm pt)dt2.



Inasmuch as a numerical solution is to be obtained, the values of

the variables will be available only at discrete time intervals. Conse-

quently, the equations are modified as follows;

t

Zu,n = Zu,n-l + n u,n-1(Z 1, Z2*Z3s''Zm, t)dto 2.3

n-1

The ideal solution above is not obtained, since errors are incurred at

each numerical step. The solution obtained is the one in which the

ubiquitous errors are also used in the computation and as a result

Eq. 2.3 should be written as

^0 t n
Z =n Z ufn-u + f un-1 (Z ,Z2,Z3 2000Zm t)dt. 2.4

ut n-u

where the tilde indicates the value of the function with the errors

included in them. If CZ is the correction that must be applied tou~n

the computed solution to give the correct solution (the total error at

this point is the negative of CZ ), then by definition Z + CZ = Z
u,n u,n u,n u,n

The substitution of Z + CZ in Eq. 2.3 yields
u,n u,n

OW AN t--
'Zu + CZu = Z + CZu .. + f un (Zi+ CZ1 ),zu ,n + zu~n = Zu ,n-1 + Zu ,n-1 + t n fu,n-1l( 1 + C 1)

n-1

(Z 2 + Cz2), (Z 3 + Cz 3 ),....(Z + CZm),t dt. 2.5

The relationship for the correction can be obtained by taking the

difference between Eqs. 2. and 2.5:

CZ = CZ + nf Z + CZ ),9 (Z + CZ )..u,n Cu,n-i +ftni u,n-l [( 1  1  2  2

(ZM + Cz),t dt - nZun-1 [' 2'z3...Z dt. 2.6

n-l
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If the partial derivatives 6f /aZ . exist and are continuous, then by
u 3

expanding fu UEl + CZ ),(Z2 + CZ 2 )..4ZM + CZm), about fu ( 1 Z2 ,Z3 **Zm t)

one obtains by neglecting all products of CZ

(Z + CZ1 ), (Z2 + CZ(2 Z 3 + CZ3 ).' M + CZM), t]

fu Z ,Z2,Z3''''Zm1 + t CZ . 2.7
j=lO. '

Substitution of Eq. 2.7 into Eq. 2.6 gives

CZ u.n CZ u. 1+ n U CZ 2.8

n-l

If both sides of Eq. 2.8 are differentiated with respect to time the

result will be the system of the following variational equations.

CZ = CZ 2.9

2.1. The "H" Matrix and its Characteristic Values.

A method of systematization is desirable so that the equations can

be handled efficiently. This is done by matrix notation wherever possible.

Equation 2.9 can be written as

=(H]C] 2.10

where H is an array of partial derivatives in the form



6 z 6 Z V~m O 1

Of2 O f2 Of 2H2 2 2

L 1 6'2 M

H * . . . 2.11

If "H" is assumed constant, that is, the array of partial deriva-

tives are constant, then the system of variation equations can be solved

easily. If the equations are sectioned into time intervals during each

of which the "H" matrix is essentially constant, a particularly simple

solution to Eq. 2.10 can be found. The development which follows outlines

this approach.

In transfom notation the variational equations become

XCZ = [H] CZ] 212

or [H. XU CZI = 0, where U is the unit matrix.

If gX 2 'X3 **X[ are the characteristic values of the "H" matrix,

then the solution for the variation equations can be assumed to be

X CZ = [ eXPt  E T1 Y 
2.13

where e P] is a diagonal matrix.

2.2. Characteristic and Dual Vectors.

Characteristic and dual vectors are used both to evaluate the con-

stants by the inclusion of initial conditions and also to separate the



terms so that the effects of the errors present in each of the variables

are noticdable.

The column matrix is easily identified as the correction neces-

sary at time t a, since e is equal to the unit matrix when t = t a

CZ( cj = [V]V[ ] = Y 2.14

Differentiation of Eq. 2.13 yields

= e (x p] [yr1 ] 2.15

but

[xpeXPt I [Xp [ P 2.16

Substituting Eq. 2.13 into Eq. 2.9

= [H][CK eX1 El1 ] 2.17

then equating Eqs. 2.15 and 2.17

[H] (V][ e [v t V] -1 [V [X t [VI 1 2.18

reveals that

= [V] Ip 219

Equation 2.19 is the condition for the solution of the V matrix,

which is known as the characteristic vectors of the "H" matrix. The

inverse matrix is known as the dual vectors. The time expression of

Eq. 2.13 for the correction can be used only in the range where the

approximation that the "H" matrix remains constant can be applied. The

process of obtaining the "H" matrix and its associated characteristic

values, characteristic vectors, and dual vectrasmust be repeated for each

section. The amount of sectioning that is required will depend upon how

rapidly the partial derivatives change.

-le-



The total correction in the solution will then be the sum of the

corrections due to the separate errors. This idea of superposition

requires that the errors from different sources do not interact upon

one another. This method of approach has an error due to sectioning

and an error due to linearizing. If the accuracy to which the error is

sought is not great and if the sectioning is done judiciously, the com-

bined error from these two sources can be neglected. The examples taken

in the following chapters will show the validity of this statement.



Chapter III

A SAMPLE PROBLEM

The accuracy of the method of error analysis for a typical set of

equations for the M.I.T. Flight Simulator was determined by the use of

two numerically computed check solutions. One solution was computed

with extreme vigilance using an iterative process with a small interval

of tabulation and a large number of significant figures. The number of

significant figures was reduced and the interval of tabulation was

increased for the second solution. It was assumed that the first solu-

tion was the desired result and the correction to the second solution

was obtained by noting the errors present in the second solution

3.0. Equations, "H" Matrix, and X Roots.

The equations as obtained by noting the inputs to each integrator

on the general setup diagram of the sample problem for the M.I.T. Flight

Simulator in Fig. 3.1 is given below.

Y - A sin 0 + B sin kt

X - A cos 0 + B cos kt
3.1

0 - *

- f (XY,0,*)

The inclusion of the variable ' shows how higher order time derivatives

can be handled by this method. The "H" matrix associated with this set

of equations is shown in Eq. 3.2.
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T INDICATES REFERENCE VOLTAGE

B

*(DRIVINS FUNCTION)
RES.

POT.

8r 
A

-- +E . f( X .Y #9 ]

#1 POT.

9fA

FIG. 3.1 SIMULATOR SETUP DIAGRAM FOR

SAMPLE PROBLEMSAMPLE PROBL EM



0 0 A sin 6 0

0 0 -A cos 0 0
HI= 3.2

0 0 1

Of Of Of 6 f

The first step in determining a satisfactory way of sectioning the

equations consists of examining terms of the "H" matrix to determine

which terms have large variations. The characteristic values of the "H"

matrix were obtained at O.lT (T is the total solution time) second inter-

vals to assist in deciding the amount of sectioning required for the

problem. One of the characteristic values was zero, another was a nega-

tive real number, and the final two were a pair of complex conjugate

numbers. The loci of these roots are plotted on the complex plane in

Fig. 3.2.

An examiration of Fig. 3.2 showed that for the major portion of the

solution the characteristic values did not change very rapidly. The assump-

tion of a constant "H" matrix, which implied a set of constant characteristic

values, was a valid one for sections of this problem.

3.1. Sectioning, Characteristic Vectors, and Dual Vectors.

On the basis of the assumption that a constant "H" matrix could be

assumed for specific portions of the solution, the sample problem was

sectioned into three parts, 0IaTSO.LT and 0.1 (aT SO.8T and finally

0.8T aT(T. The solution will be worked for the first two sections using

the values for the characteristic values, characteristic vectors, and dual

vectors obtained by using the information obtained from the check soliion

at a = 0.2 and a = 0.6. The characteristic values are
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0, -33.5, -16.6 t j 55.2, and 0, -56.8, -4.9 j 62.2 for. a = 0.2 and

0.6, respectively.

The characteristic vectors are

1

-274.7

-3.8 + j 2.51

-o.46 -0.228 - j 0.758

1

-274.7

-3.8 + j 2.51

-0.228 + j 0.758

1

-3.51 -13.05

0

0

0.211

-0.037

-13.05

-0.252 + j 0.040

-0.0032 - j 0.041

-13.05

-0.252 - j 0.040

-0.0032 + j 0.041

The dual vectors obtained by the inversion of the two matrices repre-

senting the characteristic vectors in Eqs. 3.3 and 3.4 are given below:

-. 009

7.3 x 10 6

1.3 x 10 8
+ j 2.2 x 10.

1.3 x 10 6-j 2.2 x 1Cr6

-33 x 10-6

-. 0036

-6.7 x ~ m3
-j 1.1 x 10

-6.7 x 10
+j 1.1 x 10-3

0

0.219

-. 109
+j .033

.109
-j .033

-.0045

7.18 x 10-5

2.46 x 1C~ .4
+ J 3.47 x 10

2.46 x lo -4- j 3.47 x 10

3.45 x i0- 4

-. 0454

-. 0156
-j .022

-. 0156
+j .022

0

2.33
-1.16
+J .972

-1.16
+j .972

0

2.28

-1.14
+j 13.24

-1.14
-j 13.24

-111.1

-0.225

1

-274.7

0

0

1.54

and

-222.0

3.3

a

3.4

and

0

0.724

-.362
+ j .77

-.362
- j .77

3.5

3.6

a



Satisfactory assurance of the validity of the theory can be obtained

by carrying out a few numerical examples. The correction needed in the

variable X will be found in the following pages. Equation 2.13 shows that

the correction that must be applied to X to obtain the desired solution is

CX(aT) = i V [e ),Pb VI Y(aT) 3.7
a=O&Z

where b = (a-a) with a> a. This equation was valid only in the region

a <a <a where a and a were the upper and lower bounds of the region1:5 -2 1 2

where the "H" matrix was assumed constant. For the region 0<a<0.4 the

correction, CX, given for the error present at time aT is CX = CXY + CXX +

CX + CX where

CX= 002 - .002 e-33.5bT - 275 e-16.6 bT (2.6 x 10-8 cos 55.2bT

+ 4.4 x 106 sin 55.2bT y

CXX = 7.39 x 10-6 + e-33.5bT + 275 e-16.6 bT (1.34 x 1o-4 Cos 55.2bT

+ 2.2 x 10-4 sin 55.2 bT Y

3.8

Cx4, =[ -.2i9e-33.15bT , e-l6 .6 bT (.219 cos 5.52bT - .066 sin 55.2bT] l

CX =[275 7  e33 5bT + e16 .6 bT (.72c os 55.2bT - 1.5 sin 55.2bTC bY6

Similarly for the region 0.4<at< the correction, CX, becomes

cxY = [.Is~-.0he~,b eh*b ( oo64 cos 62f.2 bT - .0091 sin 62.2bT iYy

CXX = [.0012 + .592 e 56.8bT - mh9bT (.4c64 cos 62.2bT +.573 sin 62.2bTjIYX



CX = -13.05 2.33 e-56.8bT + e-h.9bT (-2.33 cos 62.2bT + 1.94 sin 62.2bT y*

CXe = -13.05 2.28 e-56.8bT + e*-.9bT (-2.28 cos 62.2bT + 26.5 sin 62.2bT ye

The constant term for the correction in X caused by yy, y, and y was

neglected since the numerical value was less than 1/l0th of the other

quantities. This indicates that the lasting effect on X caused by an error

in *, 0, or X is very small.

3.2. The Step Response.

The step responses (responses to a step of error), or sensitivity func-

tions, are the separate terms of Eqs. 3.8 and 3.9. The relationship between

the portions of CX caused by errors committed in X, Y, and e are given in

Figs. 3.3, 3.4, 3.5, and 3.6, respectively. The step response is the

propagation of one error originating at one interval of tabulation in the

check solution. The procuremept of a function of the error present in each

of the variables is necessary so that the convulution of the error functions

and the step responses can be made to obtain the total correction.

3.3. Truncation Errors.

If the functions to be numerically handled are assumed analytic,

then the two major errors are due to roundoff and truncation sources.5

The effectsof these errors are inherently affected by the integration formula

used in the numerical process. An elaboration of this phase of the problem

will be undertaken in chapter V. An iterative process utilizing the Newton-

Gregory integration formula6 with finite differences is used by the analysis

section of the laboratory in obtaining the check solutions:.
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The truncation error in the Newton-Gregory formula

f f 1  h ~ f~ 1 ' 1 " 1 " 9 I 3 a
fn-1~ + n A ' T2 27 ....31

is the first negledted term in the formula, therefore, the error committed

by using n differences will be8

ET n+C1l4 n+1 3l

In the check solution being studied the first differences were neglected

in the integration of the variables X, Y, and 0. The second differences

were neglected in *. Substitution of these neglected differences in

Eq. 3.11 reveals that the truncation error for X, Y, and 6 at each interval

will be

EZ - (.025T)( )A' T

but for * will be

1 "TAE (.025T)( A - - Th 3.13

T
The plots of the first differences of X, Y, and 6 multiplied byr are

given in Figs. 3.7, 3.8, and 3.9. The second differences of * multiplied

by T/b480 are given in Fig. 3.10.

Since a reduction in the amount of numerical work was desirable, the

following scheme was used to reduce the work. The smoothed truncation

error curves were sampled at 0.05T-second intervals. The size of the

samples was increased by a factor of two since the number of error steps

(intervals at which a truncation error occurs) was decreased by two.

An examination of the truncation error in * reveqls that this error

seems to be alternately positive and negative and as a result has very
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little effect upon X. The truncation error in * is almost insignificant

in comparison with the other errors when convolved with QX*. This is

evidenced by noting the scale used in the graphs relating these quantities.

Although a crude approximation for E was made, the step response

was such that the contribution to the total correction was negligible from

this source of error. The major contribution to the correction arose from

truncation errors in 0 and X. An inspection of the magnitude of the step

responses and the magnitude of ETO and En shows that these two sources

were the major contributors to the total correction curves.

3..4. Roundoff Errors.

The roundoff error cannot be handled as precisely as the truncation

error since roundoff is a statistical variation and is not a function of

the equations being handled. The probability of having a roundoff error

can be handled. The maximum value caused by roundoff and a possible

standard deviation of the error originating at each time interval will

be attempted here.

The Newton-Gregory formula used ty. the computing section of the lab-

oratory when written in terms of the ordinates rather than differences

becomes

Z =Z + hZ, 3.14n n-1 n

when neglecting the first differences, and

Z =Z +Z" Z 3.l<n n-l 2 n n-3

Z =Z +- Z 5 + 8 Z -Z3,16
n n-1 12 n n-1 n-21



when using first and second differences respectively. If the Z's are

assumed correct and the maximum roundoff error in the ZVs 'is e, the

maximum contribution to the Z' s from the Z' s will be

= ch c 6 3.17

The factor I c iwould be equal to one when no differences or first

differences are used, but would be equal to 14/12 when second differences

are used. Equation 3.17 shows that the maximum error in Z caused by a -

roundoff of & in Z will be reduced by the interval of tabulation, h. The

standard deviation of the error can be found by using the material in

Appendix A.

The preceding discussion indicates that the contribution of roundoff

in Z to Z isnot significant. The contribution of an error in the solution

is attributed mainly to the roundoff in the variable. The maximuim error

in I would occur if a roundoff error of the same sign occurred in every

variable for a period of time. The committed error function would be e

in this case, if maximum roundoff errors are assumed. If the probabili-ty

of having a roundoff error of magnitude O:Se :S is unifoigq, then the

probability of having an error e would be P(e )de and the standard deviation

would be

a =2 e2P(e )de = e
03

The resultant error function would have a standard deviation equal toft/3.

Since the errors have an equal chance of being either positive or negative,

the resultant error in X will be almost negligible, when the convolution with

the step response is perfonmed.



Roundoff errors can be assumed random when the change in the quantity

at each interval is greater than the maximum roundoff error. The only

qiantity in the check solution that did not satisfy this criterion was

the variable X. The change in XIwas less than the roundoff for a period

of 8 intervals when X reached a maximum value somewhere between a - 0.5

and a - 0.7. With this exception the rest of the variables changed rapidly

enough, so that the effects of roundoff could be neglected.

3.5. The Resultant Correction.

The resultant correction was obtained by summing the result of the

convolutions of the approximation to the truncation error (roundoff errors

are neglected) and the respective step responses. For the second section

0.4S a SO. 8 the correction was obtained by using the terminal conditions

of the first section as well as the errors existing in the second section.

The resultant correction is plotted in Fig. 3.11 as a dotted curve. The

solid curve is the approximation to the actual difference between the two

check solutions determined by the computing section.

The apparent displacement in the solid curve after aT = 0.45T seconds

was caused by X reaching a maximum value and remaining at this maximum value

for 0.15T seconds. The inclusion of this roundoff error in the calculated

correction would give a closer, but not exact, agreement between the two

curves.

The occurrence of this gross roundoff error cannot be predicted, but

its effect is not serious since a cursory examination of Fig. 3.11 indicates

that the cumulative error for the majority of the solution is in the order

of magnitude of the roundoff error in I. Notice should be given also to
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the smoothing effect of integration on errors in (. The further that the

errors are removed from the point of interest, the less the effect of the

error. The more integrations that have to be performed before the effect

is felt, the less is the effect.

The more sections used, the more accurate the resultant error to the

actual propagated error. If the amount of sectioning is carried to its

extreme, the result is the solution of the variation equations without

sectioning. A superficial examination of Fig. 3.11 indicates that the

resultant correction gives the order of magnitude of the error, but not the

exact form. These results indicate that a rough estimate of the error

can be made from a very few sections.

The last section .8Sagl was not performed since the object of this

chapter was to verify the validity of the sectioning and linearizing

assumptions for this error analysis technique. For the purposes of error

study this complete survey need not be made since a set of step. responses

would give the desired information concerning the sensitivity of the various

sections to errors. Determination of the step responses is the beginning

to the error analysis study made by Rabow, in which the step responses

were obtained by superimposing a step (error) upon a solution and recording

the variation that resulted from this step when compared to the original

solution. The sAeps were inserted in the different variables and the

results recorded at the various points of interest. The time at which

the steps were initiated was also varied. The proper interpretation of

these step responses gave the weighting function that related the error

committed and the propagated error at a later time.



The "H" matrix technique gives a method of obtaining these step

responses during the presetup stage. The responses obtained are only

approximations to the experimentally obtained responses. Although the

pulses of error used in this chapter were the errors present in using a

numerical process, the errors could just as well have been errors in the

computer functional elements. A more efficient use of error analysis can

probably be made when the two techniques are combined; therefore, the

following chapter will show how a step response may be obtained at various

times during a solution by using the information obtained from the "H"

matrix technique.
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Chapter IV

The study of the propagation of errors in analog computers by Jones 3

used a weighting function which is the relationship between the error at

various times during a solution and the error that has accumulated at a

later time T in a solution. This weighting function can be obtained by

properly analyzing a set of step responses for the particular system.

This chapter illustrates the correlation between the step response

obtained experimentally and the one calculated by the "H" matrix.

4.0. Adjoint Method.

The weighting function is the solution of the adjoint equations which

are a set of equations in which the "H" matrix has been transposed'with a

negative sign.

= [H ta 4.1

a] = H] .2

If Eq. 4.3 is premultiplied with Eq. 2.11 the result is

W.QWA~C =f [H].1[1 C CZ 4.4

or

+ JCZ = 4 .5

but

d cJ = + , .6



Therefore

d CZ = 4.7

and by integrating from time t to T

T d14CZ dt = 0 4.8

c(T)CZ(T) + a2(T)CZ2 (T) *

- at)CZ1 (t,) a+ a2 (a )CZ2 t) + .. 9 = 0 1,9

If the boundary conditions of a n (T) 1 ., ap (T) 0 when p / n, the

equation reduces to

CZ n (T) a nl(t )CZ ) + n2 a 2 a) + . . ..

An inspection of the final equations shows that the propagated error

at time T is the weighted sum of the errors present at t in the variables.

All errors must be changed to an equivalent error in one or more of the

variables. The solutions of the adjoint equations may be rather difficult,

but a system to obtain them experimentally was devised by Jones and verified

by Rabow. The essence of this method was to purposely insert an error

(a step) at various times in a solution and to compare the results iith a

solution that was run without the error (the step) inserted. The difference

between the two solutions (with and without the error) was the step response

to an error at the time when the step was initiated. The difference at a

time T in the two solutions was plotted against the time at which the error

was inserted as the base. The resultant curves gave the weighting function.



4.1. Pulse Response by Using "H" Matrix.

The step response at various points in a solution is obtained by the

"H" matrix method. Since the problem is sectioned so that a constant "H"

matrix can be assumed, the step response is the same regardless of when the

error is inserted during a section of the problem. The responses are dif-

ferent for different sections. The time response to an error originating

in a section is

CZ =V e '- t .V

For the purpose of illustrating how to obtain these step responses, a hypo-

thetical problem with two variables which has been sectioned into two parts

will be used. The point of sectioning is at time t s The response in the

two variables due to an error occurring at time t where 0 Ct is or

ts t a T,

CZ ~tta = Ka t

cz.1 (ta) 2 X2  1 (ta
CZ 21 = 2Ke l + K 2Y2 (t*

The propagated error in Z caused by errors present in both Z and Z2 at

-1 ) 2 2 a
CZ = L le + L e Y (ta)

Two types of step resonses can be obtained, one when the step is

inserted into the same variable that is being measured, and the other when

the step is inserted into a different variable. If a step is inserted in



Z during the period t 4 t < T and the response in Z is desired, then
1 ~~s a CL a

Cz is the desired step response. The superscripts refer to the section

of the solution. A step initiated at a time 0 Q t t in Z requires that

1 1CZ and CZ for the first section be calculated until time t - t The11 21 s a

step response during the first section is CZ 1  The remainder of the step11

response (during the second section) is obtained by calculating CZ where

the initiating steps are equal to the teminal values of CZ 1  and CZ 1 at11 21

time t s This procedure is carried out for as many times as there are sec-

tions in the solution. The above procedure is used to obtain the step

response of an error in the same variable as the one being measured.

If the step is inserted in Z2 and the response in Z is desired, then

for the interval t (t ST the desired response is CZ 2 . If the step is

initiated at C i t < t then for the interval ta Ct the desired step responseCL5 5

1 1 1in CZ 2 during the first section. The value of CZ 2 and CZ at time

t = t -t is the magnitude of the step used at time t5 to obtain CZ 2 + CZ 2
s s12 U1

for the second section.

4.2. Experimental Results.

The two step responses given in Fig. 4.1 as a solid line were obtained

by Rabow by inserting a pulse into the input of integrators x and 0, respec-

tively. This pulse in the integrand is equivalent to a step in the output.

The responses are for the variable x. A general block diagram for the simu-

lator setup used to obtain these pulse responses are given in Fig. 4.2, which

simulates the equations given below.
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& = A cos 0 + B cos

dt

= A sin 0 + B sin

dt

- f(x, y, w, e, e)

at
dt

dw W= f(e, 0, w)

The pulse widths used were 0.3 seconds and the pulse- height was of

such a magnitude that both the x and 0 shafts were displaced by 0.00333

units. Inaamuch -as the pulse is not an impulse, the shaft displacement

is not an ideal step, but a step with a ramp front. As a result the CX

in Fig. 4.2 did not start from 0.0033 but started from zero. The delay

in the rise of CX was also due to the fact that a pulse was used rather

than a step.

The dotted line gives the same responses for an ideal step in using

the initial conditions to the original differential equations in obtaining

the "H" matrix. The equations for the step responses are

CX = 3.559 x 10-5 e-525.4aT - 3.394 x 10- 2 e-134.2aT
x

+ e-10.2aT 1.034 cos 20.17aT + ."'735 sin 20.17aT

CX0 O -.068 e525.haT - 26.260 e-134.2aT

+ e-10.2aT [26.323 cos20.17aT - 1210 sin 20.17aTJ

The assumption of a constant "H" matrix cannot be made for an entire

solution for the type of equations solved on the M.I.T. Flight Simulator.



A possible time of sectioning would be at a time of two thirds the

solution time. This would give closer agreement at the end of the responses.

This step response without sectioning gives an indication of what can be

expected by using only the initial values of the variables in solving the

H" matrix.

The conclusions to be drawn here are that the "H" matrix method can

give the step responses necessary for obtaining the weighting functions by

using a very few sections. The experimentally obtained step response is an

approximation to the step response in that a pulse rather than an impulse is

used in the integrator inputs. The precision of the simulator dictates the

lower limit for the size of the pulse to be used, and the upper limit is

reached when the error cannot be assumed to be an increment additive to the

solution. The weighting function obtained by using pulse responses obtained

by the "H" matrix can be made to correspond closely to experimental results

if the solution is sectioned into possibly three sections.



Chapter V

SOURCES OF ERBOR

The truncation and roundoff errors present at each numerical. tabulation

are inherently associated with the integration formula used in the numerical

process. The numerical technique used in the numerical computation (iterative

or extrapolation) has a marked effect on these errors. The propagation of

these errors has been explained in the previous sections of this thesis,

but the actual source of these errors has not been discussed. This section

will elaborate on these errors.

5.0. Roundoff Errors.

The process of numerical computation involves the use of present and

past information to obtain present or future information. The process can

be integration, differentiation, extrapolation or any other mathematical

operation. *he probability of having a roundoff in the result is dependent

upon the coefficients multiplying the past information and the probabillity

of roundoff in the past data. The maximum roundoff error will occur when

the algebraic sum of the coefficients and the roundoff in the past ordinates

or differences are a maximum. An indication of the magnitude of the maximum

roundoff error that can occur is the sum of the absolute values of the

coefficients multiplied by the roundoff. The probability of having a

roundoff error in a sum of numbers is dependent upon the coefficients mul-

tiplying the numbers as explained in Appendix B. The roundoff error com-

mitted at any step can be assumed random if the variable changes more than

the magnitude of the maximum roundoff between tabulation intervals. Although



the roundoff errors committed at each interval are comparable regardless

of whether iteration or extrapolation techniques are used, the buildup of

the error can become prohibitive in an extrapolation process. This buildup

of the error will be explained in section 5.3.

5.l. Truncation Errors.

The magnitude of the truncation error is an indication of the accuracy

of the numerical mathematical process of the variable to the true mathe-

matical process. In the case of integration when a Newtonian integration

formula is used the truncation error committed is apprximately equal to

the first neglected term in the formula, but if an infinite number of

terms are used then the process is exactly equivalent to a true integration.

The more rapidly -the function to be integrated varies, the more "terms of

the formula must be used to reduce the truncation error. The errors com-

mitted in the various Newton formulas when the first, second, or third

differences are neglected are discussed in Chapter 3. This time domain

approximation to the error committed gives an indication of the error com-

mitted, but the signal frequency spectrum that the formula can handle is

best expressed in the frequency domain. In the analog computation field,

the use of transfer functions .is prevalent and the numerical analysbt may

find it useful to look at the numerical processes in the frequency domain.

The closeness of the various integration formulas to 1/s when expressed

in the frequency domain is an indication of the adequacy of the formula

to the functions being integrated.

The Newton Gregory formula with no differences reduces to the simp3e

integration formula



4n M 6n-i + n 5.1

which in the frequency domain becomes 7

___ T

O(s) 1 - e-sT

When one difference is used the integration formula reduces to the

trapezoidal rule
T 0 

50

en n-1 + Sn n-1) .

and when two differences are used the integration formula becomes

() MT (5 + 8
n 6 n-1 + n + n-1 n-2)

The corresponding transfer functions for these integration formulas become

.906 , T + e-sT
2 -sT

and

T_ 5 + 8e's - e -2sT

B(s) 12 -sT 5

respectively.

Each of the above integration formulas should reduce to 1/s in the

range s = -A2 and s = * 2 where At= 21T/T if true integration is to be

performed. By expanding e-sT into a series, Eqs. 5.2, 5.5, and 5.6 can

be reduced to the following when sT is made small enough so that the

higher order terms can be neglected.
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T _
e-sT1 - e-T

T 1 + esT T
2 ~-sT 2T

1 - -2s

T 5 + 8e~T -e2sT

T2_ 1 - e-sT

T

sT(1 sT + 2

sTl 21 31.

2sT + (sT)2ST +2. *

sT (sT)

T 12 - 6sT + 2L
J2sT * sT (sT)2

1 2- + N + .1

Equations 5.7, 5.8, and 5.9 will approximate 1/s as follows.

T 1

e-sT s
1

sT (sT)7- + -141 +.

5.10

5.11sT +(sT)2 (sT)3
T 1 + e- 1 2 (2)(2') (2)(3+
2 -s T s sT ( 

+ T)3'
1 e1 + 3L._2 +

T s + 8es-T _ e-2sT

T s 1 - e-s'

sT ~2 4
1 - + + (sT)4 - . . .

= ~ 2 ~ 31

SsT (sT) (sT)3
3- + .L

The results indicate that Eq. 5.9 gives the smallest error, Eq. 5.8

the next smallest and Eq. 5.7 the largest error. These results are con-

sistent with the results from the time domain analysis. For a fixed

maximum frequency signal Eq. 5.7 can have the same accuracy as Eq. 5.9

5.12



if the interval of tabulation T for Eq. 5.7 is decreased by a sufficient

amount. When the numerical integration formulas are expressed in the

frequency domain, the ability to handle a certain signal frequency spec-

trm with a specified accuracy becomes evident.

5.2. Extrapolation.

Numerical analysts use two basic methods of approach to obtain a

numerical solution to the type of equations solved on the M.I.T. Flight

Simulator, The two methods are the iteration and extrapolation methods.

1n the iteration technique, the equations are cambined and arranged so

that if a value for one variable is assumed, then all other variables can

be obtained by numerical integration or other mathematical relationships.

AIfter the value for the first variable is chosen and the values for all the

other variables have been computed, one iteration is comple ted when the

newly obtained variables are replaced in the original equations to determine

if a proper choioe for the assumed quantity was made. If the two values

(the assumed values and the values obtained by the numerical computations)

do not agree within the limits of accuracy specified, then another itera-

tion is performed. Not until an agreement within the tolerances specified

is reached does the computer advance to the next interval. This process,

which can be likened to a servo system, can use a crude integration formula,

since the feedback loop (the original equations) is the most accurate meas-

uring device that is available. The buildup of the errors cannot be great

since each integrated value is substituted into the original equations for

verification at each interval.



In the extrapolation method the values of the variable at previous

intervals are weighted to obtain the value of the variable at the present

interval. A relatively high accuracy formula. which is not susceptible

to roundoff errors must be used since no verification is performed at

each interval. An error can be made at one interval and will not be cor-

rected as in the iterative.processes.

The buildup of errors has usually limited the number of consecutive

steps that can be handled by extrapolation techniques. Wong has shown

that .the choice of extrapolation formulaa, so that the buildup of errors

will at most be linear, must have the absolute magnitude of the largest

coefficient multiplying the various past information around unity. As an

illustration the following simultaneous linear differential equations

were solvedi

* = x - y - 1 + 2t

S 2x -y + 3t + 1 5.13

x(O) - 1, y(O) = 0

using the extrapolation formula below:

Xn = n-4 + X-3 X n- +TX n-3 + TXn-

. . 5.14
Y - Y + Y -Y +TY + TY

n n-4 n-3 n-l n-3 n.1

After the solution of the equations had been calculated for a number

of intervals, the same intervals were recalculated with an error inserted

at one interval in x. The difference of the two solutions was the step

remponse to an error. This response shown in Fig. 5.l exhibits an unusual

pattern, which was not expected from the analysis made by using the "H"

matrix scheme. The "H" matrix for the set of equations in 5.13 becomes
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H = $.15
2 -

The characteristic roots of the "IIH matrix are tjl. The equations

for the step response using characteristic and dual vectors as explained

in chapter IIbecome

CX 1 1 e 0 -a. 1
2j 2j x

5.16

CY 1-j 1+j 0 e-jt 1
J L J L2j 2j y

or

Cy - -sin t
5.17

CX - 2 sin (t + 45*)x

The answer to the pattern was that an error in one variable was not inserted

once, but four times by the extrapolation formula. Ah examination of the

extrapolation formula in Eqs. 5.14 reveals that if an error was committed

in one interval, then the pattern of the errors in succeeding intervals

would be as follows: 1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0,

The pattern repeats itself after 6 intervals. The effect of the errors in

the derivatives was neglected since these errors mem diminished by the

interval of tabulation (.03). The actual error in x would be the running

sum of the errors committed' at each step, therefore the extrapolation for-

mula used has a linear buildup of errors. The smoothing effect due to

decreasing the interval of tabulation which occurs in an iteration process

was not present in the extrapolation technique. In fact the more steps

required for a solution the more likely the accumulation of a large error

when using an extrapolation technique.



The iteration process may require considerable time when a slow-speed

computing machine is used and a large amount of iteration is required at

each step. On the other hand the buildup of errors when using an extrapo-

lation technique may render a computation useless if a large number of

steps are required in the solution. A compromise between the two would be

to use iteration, for example, at every tenth step and extrapolation at

other times. A watch on the differences would indicate when a computation

is becoming useless due to the inadequacy of the numerical process. The

type of equations solved on the M.I.T. Flight Simulator is such that the

errors cannot build up to an extremely large value.



Chapter VI

SUMMARY AND CONCLUSIONS

A correction can be found to compensate for the errors committed at

each interval of tabulation. The errors present at each interval must be

known to obtain the actual correction, but for error analysis purposes the

obtaining of the step response is sufficient. These sensitivity functions

indicate the susceptibility of the solution of the differential equations

to an error in any of the variables. This scheme is not a catholicon for

errors in a numerical solution, but is rather a method of assessing the

adequacy of the solution for the purposes of checking the M.I.T. Flight

Simulator.

6.0. Location of Characteristic Values on Complex Plane.

The behavior of the errors can be obtained by a cursory examination

of the location of the roots of the characteristic equations in the complex

plane. A root in the left half plane indicates that the errors will die

out, whereas a root in the right half plane indicates that the errors will

increase with time. The root locations change with time as well as with

parametric changes of the differential equations. The movement of the

root locations is towards the right half plane as the problem progresses

for the type of equations simulated on the M.I.T. Flight Simulator.

Although errors committed near the end of the solution do not die out, the

buildup in the remaining time can not become excessive and the solution is

still valid at the end.



6.1. Application to Study of Machine Errors and Approximation in Equations.

The scheme used in this thesis is not limited to a study of errors in

numerical solutions, but can also be Xsed to study the effects of computing

machine errors in the solution. The effects of parametric changes as well

as the effect of approximations used in the simulation of the equations

can also be studied by this scheme.

6.2. Error Analysis Before and During Operation.

The weighting function method requires a considerable amount of analog

computer time at a premium cost to perform an error analysis study. A

reduction in the time required for a high order system can be accomplished

by using the scheme outlined in this thesis to note the effects of errors

in the various sections to the output quantities of the sections. For

example, the effects of errors in the aerodynamic section on the output

quantities of the aerodynamic section. The weighting function method couJd

then be applied to note the effects of the output quantities on the final

solution.

6.3. Extrapolation Versus Iteration.

The iterative method of numerical computation seems superior for the

procurement of check solutions for the M.I.T. Flight Simulator. The extra-

polation technique has a buildup of errors which cannot be tolerated for

the hand computation of check solutions. The buildup of errors would

necessitate carrying mary more figures than those required for the final

solution.
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6.4. Use of Digital Computers.

The time required for a hand calculated solution is such that the

maximum benefit is not derived from the check solution. The use of digital

computers will be required to obtain the numerical solutions for the M.I.T.

Flight Simulator if the magnitude of the problems becomes larger than that

of the present time. The use of iteration processes is not as suited to

use on digital computers as is the extrapolation process. The large number

of tabulation intervals required for a check solution will require that some

verification or iteration be performed at periodic intervals if an extrapo-

lation technique is used. The need for a digital computer in the laboratory

is exigent. The use of presently available digital computing facilities

could be used, but the most desirable condition would be to have a digital

computer in the computing section of the laboratory so that check solutions

as well as error analysis could be performed in conjunction with the opera-

tion of the M.I.T. Flight Simulator.



APPENDIX A

STEP RESPONSE BY SOLVING LINEARIZED DIFFERENTIAL

RE3PONSE EQUATIONS ON AN ELECTRONIC ANALOG COMPUTER

The solution of the variation equations to obtain the step response

entails a large amount of hand computation. The step response can be

obtained by using a small Imouht of analog computing equipment. The auto-

pilot servo simulator section9 is ideally constructed to obtain these

error sensitivity functions. This d-c equipment can be set up easily and

rapidly. For example, the equations for the sample problem

0

CY - A(CO)

Ci = B(C6)

C; = C(CY) + D(CX) + E(C4) + F(Ce)

Ce W C*

can be set up as shown in Fig. A.l. The necessary equipment consists of

a few summing circuits, coefficients, and integrators. The number of

integrators required is the same as the number of equations. The coeffi-

cients are the values of the elements of the "H" matrix, which are varied

for the different sections of the problem.

The step response can be obtained by applying a pulse furnished by

the sequence timers to the input of the integrators and recording the

quantities at the points of interest. A set of these step responses is

then obtained very rapidly and the coefficients are changed to correspond

to the coefficients of the "H" matrix for a different section. In this

manner the step response can be obtained to a problem before the setup
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I.C.s INITIAL CONDITION

RECORD CY

I.C.-

RECORD CX

0 cx D

RECORD C

RECORD C8

FIG. A.I AUTOPILOT SERVO SIMJLATOR SETUP
TO OBTAIN STEP RESPONSES
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stage of the pioblem has begun. The critical portions of the setup are

found and attention is focused at these points during the simulator opera-

tion. A check solution must be available so that the coefficients of the

d-c equipment can be set.



APPENDIX B

PROBABILITY OF A ROUNDOFF ERROR IN A SUM OF NUMBERS

What is the probability of introducing a roundoff error in a sum

of numbers AX + BY + CY + ...... when A,B,C,...... are exact numbers and

X,Y,Z,...... are numbers which have roundoff errors in them? The proba-

bility of an error in the sum of two numbers AX + BY will be found and

then extended to include the sum of several numbers. If the probability

of having a roundoff a in X and b in Y is P(a) da and Q(b) db, respec-

tivuiy, Lhen the probability of having a roundoff of s in the sum will be

the probability of having a roundoff of a in X and a roundoff of s-a in

Y occurring at the same time. A theory of compound probability states that

if P is the probability that event E1 occurs, and P2 is the probability1 E

that event E2 occurs, then P P2 is the probability that both events occur

in either order or simultaneously if El and E 2 are independent. 1 0

The probability of a roundoff of s in the sum will be P(a) Q(s-a) for

a chosen value of a, but for all possible values of a the integral of the

product is taken.

H(s) = P(a) Q(s-a) da

The convolution of the two probability density curves of P(a) and Q(b)

gives the probability density curve for the sum of two numbers.

To obtain the probability density curve for the cases of more than

the sum of two numbers, the probability density curve if first obtained

for the sum of the two and then the resultant curve is convolved with the

probability density curve of the following number. This process is



repeated for as many times as there are terms in the sum. The effect of

the multiplying coefficients A, B, C, ...... is to multiply the base of

the probability density curve by the coefficient and to divide the ordi-

nates of the curve.

As an example, the probability of having a roundoff error in the

following sum will be found.

X + 2Y + 3Z

The numbers X, Y, and Z are rounded to the nearest whole number and the

probability density curve is uniform between the limits of 1/2. 'The

probability density curve for the roundoff in X + 2Y becomes

-1 1 -e sT e2 2 T-'[( ~s T( 2s)

since convolution in the time domain is multiplication in the frequency

domain. Then the probability density curve for the roundoff in (X + 2Y)

+ 3Z becomes

-l [i )(sT 2sT -3sT
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