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FINITE DIMENSIONAL HOPF ACTIONS ON WEYL

ALGEBRAS

JUAN CUADRA, PAVEL ETINGOF, AND CHELSEA WALTON

Abstract. We prove that any action of a finite dimensional Hopf al-

gebra H on a Weyl algebra A over an algebraically closed field of char-

acteristic zero factors through a group action. In other words, Weyl al-

gebras do not admit genuine finite quantum symmetries. This improves

a previous result by the authors, where the statement was established

for semisimple H . The proof relies on a refinement of the method pre-

viously used: namely, considering reductions of the action of H on A

modulo prime powers rather than primes. We also show that the result

holds, more generally, for algebras of differential operators. This gives

an affirmative answer to a question posed by the last two authors.

1. Introduction

Let k be an algebraically closed field of characteristic zero. In [EW1,

Theorem 1.3], it is shown that any action of a semisimple Hopf algebra

H on a commutative domain over k factors through a group action. In

particular, if the action is inner faithful, i.e., does not factor through that

of a Hopf algebra of smaller dimension, then H is a group algebra.

As an application of this result, it is proved in [EW1, Corollary 5.5] that

if H acts on An(k), the n-th Weyl algebra over k, and the action preserves

the standard filtration, then the action factors through a group action. The

idea is to use the associated graded algebra.

This result was complemented in [CEW, Theorem 4.1] with a similar

statement, but replacing the stability of the filtration by the semisimplicity

of H. The strategy in this case is different. The idea is to reduce the action

to positive characteristic, where An(k) becomes an Azumaya algebra over

its center, and then pass it to the division ring of quotients. The center of

the latter is stabilized by the action and [EW1, Theorem 1.3] is used again.

The goal of this paper is to prove the desired unconditional statement:

Theorem 1.1. Any action of a finite dimensional Hopf algebra H on An(k)

factors through a group action.
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In particular, if the action is inner faithful, Theorem 1.1 implies that H

must be a group algebra. In other words, the Weyl algebra has no genuine

finite quantum symmetries.

The proof of Theorem 1.1 uses ideas from that of [CEW, Theorem 4.1],

but differs from it in several important ways:

(1) The proof uses reduction modulo prime powers and not just modulo

primes;

(2) The proof does not use the main result of [EW1] (cf. [CEW, proof

of Proposition 3.3(ii)]);

(3) Unlike [CEW], the proof (and in fact, the theorem itself) fails when

An(k) is replaced by An(k[z1, . . . , zs]), see [CEW, Proposition 4.3].

This happens even for n = 0, as there are inner faithful actions of

non-semisimple Hopf algebras on polynomial algebras, see for exam-

ple [EW2] and references therein.

At the end of the paper, we show that our result extends to finite dimen-

sional Hopf actions on algebras of differential operators. More precisely, we

prove:

Theorem 1.2. Let D(X) be the algebra of differential operators on a smooth

affine irreducible variety X over k. Then, any finite dimensional Hopf action

on D(X) factors through a group action.

Theorem 1.1 is a special case of Theorem 1.2, for X = A
n. Theorem 1.2

gives an affirmative answer to [EW1, Question 5.7], even without the as-

sumption on the stability of the filtration.

Arguing as in the proof of [CEW, Proposition 4.4], one can show that

Theorem 1.2 remains valid when D(X) is replaced by its division ring of

quotients QD(X).

It would be interesting to establish absence of genuine finite quantum

symmetries for more general classes of noncommutative algebras. This is

the subject of future work. We refer the reader to [Ki] for an account on

recent developments in the study of Hopf actions on some natural classes of

noncommutative algebras.

The paper is organized as follows. Preliminary results on invariants of

Hopf actions on Weyl division algebras and on reduction modulo prime

powers are provided in Section 2. In Section 3, we establish an auxiliary

result on Hopf actions on fields in positive characteristic. The proofs of

Theorems 1.1 and 1.2 are given in Section 4.

2. Preliminary results

Unless stated otherwise, we will use the definitions and results from

[CEW] throughout the paper. We recall the notation, assumptions and

some facts from there:
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• k is an algebraically closed field of characteristic zero;

• H is a finite dimensional Hopf algebra over k;

• A is the n-th Weyl algebra An(k) generated by xi, yi for i = 1, . . . , n,

subject to relations [xi, xj ] = [yi, yj ] = 0 and [yi, xj ] = δij . We assume that

it carries an inner faithful H-action · : H ⊗k A→ A;

• R is a finitely generated subring of k containing the structure constants

of H and those of the H-action;

• HR is a Hopf R-order of H, so that the multiplication by scalars in-

duces an isomorphism HR ⊗R k ∼= H. The H-action restricts to an action

·R : HR ⊗R AR → AR, with AR := An(R). See [CEW, Lemma 2.2];

•Hp := H⊗RFp is the reduction ofH modulo a sufficiently large prime num-

ber p, associated to a homomorphism ψ : R→ Fp. See [CEW, Lemma 2.3];

• Ap := An(Fp) is the reduction of A modulo p. By tensoring the HR-action

·R : HR ⊗ AR → AR with Fp over R we endow Ap with an inner faithful

Hp-action ·p : Hp ⊗Fp
Ap → Ap, see [CEW, Proposition 2.4];

• Dp is the full localization of Ap, a division algebra over Fp, which, by

[CEW, Lemma 3.1] carries an inner faithful action of Hp induced from that

on Ap; and

• Z is the center of Dp. We will see in the Proposition 2.2 below that Z is

Hp-stable. (Note that we do not indicate the dependence of Z on p here, as

the prime p is fixed.)

In the rest of the section, we provide results on invariants of Hopf actions

on division algebras and reduction modulo prime powers, both of which we

will use to prove Theorem 1.1. But first we discuss a version of Hensel’s

lemma needed for this work.

2.1. Witt vectors and Hensel’s lemma. Let us recall here some basic

facts from commutative algebra and algebraic geometry.

Let Wp be the ring of Witt vectors of Fp; see [Se, Section II.6]. Let

Wm,p :=Wp/(p
m)

be the m-truncated ring of Witt vectors of Fp, which is an algebra over the

ring Z/pmZ. 1

For sufficiently large primes p, we have that R/(p) 6= 0. Further, R is

unramified at p so that the algebra Rp := R⊗Z Fp has no nonzero nilpotent

elements. Thus, Xp := Spec(Rp) is a nonempty algebraic variety over Fp.

If ψ : R → Fp is a smooth point of Xp (which is the case for generic ψ),

then we have the following version of Hensel’s lemma.

1In the sequel we consider several algebras over Z/pmZ, and it is important to remember

that they are not vector spaces over a field but only modules over the ring Z/pmZ.
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Lemma 2.1. The point ψ can be lifted to a point ψ∞ of Spec(R) over the

ring of Witt vectors Wp. In other words, there exists an (in general, non-

unique) homomorphism ψ∞ : R→Wp whose reduction modulo p gives ψ.

Let us choose such a lifting ψ∞; then, reducing it modulo pm, we obtain

homomorphisms

ψm : R→Wm,p,

such that ψm equals the reduction of ψm+1 modulo pm for m ≥ 1, and

ψ1 = ψ.

2.2. Auxiliary results on division algebras. The following result col-

lects [CEW, Proposition 3.3(i)] and a fact contained in the proof of [CEW,

Proposition 3.3(ii)].

Proposition 2.2. Let H be a finite dimensional Hopf algebra over an alge-

braically closed field F of dimension d. Let D be a division algebra over F

of degree m, that admits an action of H. If gcd(d!,m) = 1, then:

(i) The center Z of D is H-stable, and D = ZDH.

(ii) H acts inner faithfully on Z. �

Return to the notation set at the beginning of the section. The next three

results pertain to the quotient field QA of A.

Lemma 2.3. Let S be a left Ore domain, QS its division ring of fractions,

and let C ⊂ QS be a division subalgebra such that CS is finite dimensional

as a left C-vector space. Then, CS = QS. In particular, this holds if QS is

finite dimensional as a left C-vector space.

Proof. Any element of QS can be written as g−1f , for f, g ∈ S, so it suffices

to show that g−1 ∈ CS. To this end, note that since CS is finite dimensional

over C, the element g must satisfy a polynomial equation over C:

a0g
r + a1g

r−1 + · · ·+ ar = 0, with ai ∈ C.

Without loss of generality, we may assume that ar 6= 0 (otherwise we

can multiply on the right by an appropriate negative power of g). Hence,

g−1 = −a−1
r

∑r−1
i=0 aig

r−i−1 ∈ CS. �

Recall that the H-action on A extends uniquely to the quotient division

algebra QA of A by [SV, Theorem 2.2]. We apply Lemma 2.3 to S := A and

C := QH
A .

Lemma 2.4. One has QH
AA = QA.

Proof. By [BCF, Corollary 2.3] (restated in [CEW, Lemma 3.2]), the dimen-

sion of QA over the division ring of invariants QH
A (on either side) is less or

equal than dimH. The result now follows from Lemma 2.3. �

We next see that Lemma 2.4 allows us to choose a convenient finite span-

ning set for QA over QH
A contained in A. For a monomial u in xi, yi, let

deg(u) be the degree of u.
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Lemma 2.5. There exists a positive integer N so that we can express a

monomial v of any degree in xi, yi as

v =
∑

u: deg(u)≤N

bv,uu,

where the u are monomials in xi, yi, and the bv,u are noncommutative poly-

nomials in the finite set of elements bw,u ∈ QH
A , with w having degree N +1.

Proof. Let N be a positive integer such that the monomials in x1, . . . , xn,

y1, . . . , yn of degree ≤ N span QA over QH
A as a left vector space. Such N

exists, since QA is finite dimensional over QH
A by [BCF, Corollary 2.3], and

by Lemma 2.4 is spanned over QH
A by A. Then, for each monomial w in

xi, yi of degree N + 1, we have

(2.6) w =
∑

u: deg(u)≤N

bw,uu,

where the u are monomials in xi, yi, and bw,u ∈ QH
A . By applying (2.6)

repeatedly, we obtain the result for v of any degree; namely, bv,u is a non-

commutative polynomial in the finite set of elements {bw,u}, deg(w) = N+1,

and deg(u) ≤ N . �

We will also need the following lemma from the theory of division algebras.

The lemma is well known, but we provide a proof for reader’s convenience.

Lemma 2.7. Let D1 ⊂ D2 be division algebras each finite dimensional over

its center, with [D2 : D1] < ∞, and let the degree of Di be di for i = 1, 2.

Let Zi be the center of Di. Then:

(i) d2/d1 is an integer dividing [D2 : D1];

(ii) If d1 = d2, then D2 = Z2D1
∼= Z2 ⊗Z1

D1.

Proof. (i) We have [D2 : D1] = [D2 : Z2D1][Z2D1 : D1]. The center of Z2D1

is some field K containing Z1 and Z2. Thus KD1 = Z2D1. Moreover, we

have [Z2D1 : K] = d21 because K ⊗Z1
D1

∼= KD1. Let [K : Z2] = m. Then,

d22 = [D2 : Z2]

= [D2 : Z2D1][Z2D1 : Z2]

= [D2 : Z2D1][Z2D1 : K][K : Z2]

= [D2 : Z2D1]d
2
1m.

So [D2 : Z2D1] = d22/d
2
1m.

Let L be a maximal subfield of Z2D1. Then [L : K] = d1 and consequently

[L : Z2] = [L : K][K : Z2] = d1m. Now, L is contained in a maximal subfield

L′ of D2, with [L′ : Z2] = d2. So, d2 = [L′ : L]d1m. Thus, d1m divides d2.

Hence, d2/d1 is an integer dividing [D2 : Z2D1] = d22/d
2
1m, which in turn

divides [D2 : D1].

(ii) If d1 = d2, then [D2 : Z2D1] = 1, and so D2 = Z2D1. Thus, Z1 ⊂ Z2

and D2
∼= Z2 ⊗Z1

D1. �
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2.3. Reduction modulo prime powers. Now we want to reduce the ac-

tion of H on A modulo prime powers. This is done in a standard way, as

one does for any kind of “finite” linear algebraic structures. The process

is similar to reduction modulo a prime described in [CEW, Section 2], but

somewhat more complicated.

Recall from [CEW, Lemma 2.2] that the algebras H, A and the action of

H on A are defined over some finitely generated subring R ⊂ k. We have

the corresponding R-orders HR and AR and the restricted action of HR on

AR. For a sufficiently large prime p, fix a smooth point ψ ∈ Xp and its

lifting ψ∞ to Wp, which gives rise to the maps ψm, m ≥ 1 (see Lemma 2.1).

Now we define reductions of H and A modulo pm by the formulas:

• Hpm = HR ⊗R Wm,p, and

• Apm = AR ⊗R Wm,p.

Thus, in the notation, we suppress the dependence of these reductions on

the choice of ψm. Note that Apm = An(Wm,p).

Similar to [CEW, Proposition 2.4], Hpm acts on Apm by tensoring the

action of HR on AR with Wm,p over R using ψm.

2.4. The ring Dpm and its center Zm. We define:

• Dpm as the full localization of Apm, and

• Zm as the center of Dpm.

The algebra Dpm is obtained from Apm by inverting all elements which

are not zero divisors, i.e., not contained in the ideal (p). Thus, Dp is the

noncommutative field of quotients of the Weyl algebra Ap = An(Fp) (as in

[CEW]). Further, Dpm can be visualized as follows: its associated graded

algebra under the filtration by powers of p is gr(Dpm) = Dp[z]/(z
m). It is

therefore easy to see that Dpm is an Artinian ring.

Further, observe that Zm contains the ring of rational functions

• Km :=Wm,p(x
pm

i , yp
m

i : 1 ≤ i ≤ n).

(By a rational function we mean a fraction P/Q, where P,Q are polynomials,

and Q has a nonzero reduction modulo p). Moreover, Dpm is a free module

over Km with basis consisting of ordered monomials (
∏

i x
αi

i )(
∏

i y
βi

i ), where

α = (αi) and β = (βi) are multi-indices, such that 0 ≤ αi, βi ≤ pm − 1; the

rank of this module is p2nm.

The structure of Zm is described by the following result.

Lemma 2.8. The center Zm of Dpm is spanned over Km by the elements

vα,β := pm−s(α,β)
(∏

i

xαi

i

)(∏

i

yβi

i

)
, for 0 ≤ αi, βi ≤ pm−1, s(α, β) > 0,

where s(α, β) is the largest integer such that ps(α,β) divides gcd(αi, βi) for

i = 1, . . . , n. Moreover, the defining relations of Zm as a Km-module on

these generators are ps(α,β)vα,β = 0.
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Proof. Take f =
∑

α,β cα,β(
∏

i x
αi

i )(
∏

i y
βi

i ) ∈ Dpm , where cα,β ∈ Km. Com-

muting f with xi and yi, we find that f ∈ Zm if and only if ps(α,β)cα,β = 0

for all α, β. This implies the statement. �

3. Hopf actions on fields of characteristic p preserving pm-th

powers

The following theorem plays an auxiliary role in this paper, but is of

independent interest. Throughout this section, we make the following as-

sumptions:

Hypothesis 3.1. Take H to be a finite dimensional Hopf algebra over an

algebraically closed field F of characteristic p, and take Z to be a finitely

generated field extension of F . Assume that H acts F -linearly and inner

faithfully on Z. All algebras and ⊗ are over F . Let

Zpm := {zp
m

: z ∈ Z}.

The main result of this section is:

Theorem 3.2. Suppose that p > dimH, and H preserves Zpm for all

m ≥ 1. Then H is a group algebra.

The proof of Theorem 3.2 is provided at the end of this section. First, we

need the following two lemmas pertaining to the coideal subalgebra attached

to the action of H on Z.

Let ρ : Z → Z ⊗H∗ be the dual coaction map. Consider the Galois map

can : Z ⊗ZH Z → Z ⊗H∗, z ⊗ z′ 7→ (z ⊗ 1)ρ(z′).

Let B be the image of can. Then B is a commutative coideal subalgebra

in the Hopf algebra Z ⊗ H∗ over Z. The commutativity is clear, and the

coideal subalgebra condition follows from an argument similar to [EW1,

Lemma 3.2].

Moreover, we have the following:

Lemma 3.3. Suppose that B is defined over F , that is to say, B = Z ⊗B0

for some subalgebra B0 ⊂ H∗. Then, B0 = H∗ and B = Z ⊗ H∗. In

particular, H is cocommutative.

Proof. Let {bi}i∈I be a basis of B0, for some index set I. Thus, the coaction

of H∗ on Z is defined by the formula

ρ(z) =
∑

i

ρi(z) ⊗ bi,

for linear maps ρi : Z → Z. Applying the coproduct in the second compo-

nent and using coassociativity, we get
∑

i

ρi(z)⊗∆(bi) =
∑

i,j

ρj(ρi(z))⊗ bj ⊗ bi.



8 JUAN CUADRA, PAVEL ETINGOF, AND CHELSEA WALTON

Let asm, zsm ∈ Z be such that
∑

s(asm ⊗ 1)ρ(zsm) = 1 ⊗ bm. They exist

because B = Z⊗B0. Applying the coproduct again in the second component

and using the previous equality, we obtain

1⊗∆(bm) =
∑

i,s

asmρi(zsm)⊗∆(bi) =
∑

i,j,s

asmρj(ρi(zsm))⊗ bj ⊗ bi.

This implies that ∆(bm) ∈ B0 ⊗B0. In other words, B0 is a subbialgebra of

H∗. Since H∗ is finite dimensional, B0 is a Hopf subalgebra of H∗. Since H

acts inner faithfully on Z, there does not exist a proper Hopf subalgebra K

of H∗ so that ρ(Z) ⊂ Z ⊗K. Hence, B0 = H∗. But B0 is commutative by

assumption, so H∗ is commutative and H is cocommutative, as desired. �

Lemma 3.4. The following conditions on B are equivalent:

(i) B is defined over F ;

(ii) For any m, the subspace B is defined over Zpm, that is to say, there

exists an Zpm-subspace Vm of Zpm ⊗H∗ such that B = Z ⊗Zpm Vm.

Proof. It is clear that the intersection L :=
⋂

m≥0 Z
pm is a perfect field.

Also, L is finitely generated over F , since it is a subfield of Z containing F .

This yields that L = F .

Now, condition (i) is equivalent to the condition that ratios of the Plücker

coordinates of B as a Z-subspace of Z ⊗ H∗ lie in F . Since
⋂

m≥0 Z
pm =

F , this is, in turn, equivalent to the condition that ratios of the Plücker

coordinates of B lie in Zpm for all m. But the last statement is clearly

equivalent to condition (ii). �

Now we prove the main result of this section.

Proof of Theorem 3.2. For any m, let Vm denote the span of can(z ⊗ z′),

where z, z′ ∈ Zpm . Since H preserves Zpm, the space Vm is a Zpm-subspace

of Zpm ⊗H∗.

Now, we claim that ZHZpm = Z. Indeed, by [BCF, Corollary 2.3], we

have [Z : ZH ] ≤ dimH, so [Z : ZH ] is not divisible by p. Since [Z : ZHZpm]

divides [Z : ZH ], we also have that [Z : ZHZpm] is not divisible by p. On the

other hand, [Z : ZHZpm] divides [Z : Zpm], so is a power of p. Therefore,

[Z : ZHZpm ] = 1.

Thus, Z ⊗ZH Z = Z ⊗ZH (ZHZpm) = Z ⊗ZH∩Zpm Zpm . Hence,

B = can(Z ⊗ZH Z) = can
(
Z ⊗ZH∩Zpm Zpm

)

is equal to Z ⊗Zpm Vm. Hence, B is defined over Zpm for all m, which by

Lemmas 3.3 and 3.4, implies that H is cocommutative. Thus, H is a group

algebra (using again that p > dimH). �

Remark 3.5. By [Et, Proposition 3.9], the assumption in Theorem 3.2 that

p > dimH can be replaced by a weaker assumption that p does not divide

dimH.
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4. Proof of Theorems 1.1 and 1.2

To begin, we simplify notation as follows.

Notation. We denote invariants under Hpm just by superscript H. For

instance, we will writeDH
p forHp-invariants inDp, and Z

H forHp-invariants

in Z.

4.1. Structure of the proof of Theorem 1.1. Since the proof of Theo-

rem 1.1 is rather technical, let us describe its structure. The proof consists

of three parts. To begin, we take a prime number p≫ 0.

1. In Lemma 4.3, we show that all Hp-invariants in Dp lift modulo pm

for all m (to invariants in Dpm). This is done by induction in m, and is

based on Lemma 4.1. The argument relies on constructing a large amount

of invariants in characteristic zero (which is done in Lemma 2.5) and then

reducing them modulo pm. This creates a sufficient supply of invariants

modulo pm to show that all invariants modulo pm−1 must lift modulo pm.

2. Using Lemma 4.3, we show that the centralizer of DH
pm in Dpm reduces

to the center Zm of Dpm . (Basically, the argument says that since there are

a lot of invariants, commuting with them is a strong condition and forces

the element to be in the center). Using this, and Lemma 4.7 (which says

that the reduction modulo p of Zm is Zpm), we prove in Proposition 4.8 that

Zpm is Hp-invariant.

3. Now Propositions 2.2(i) and 4.8 imply that the assumptions of Theo-

rem 3.2 applied to the Hp-action on Z are satisfied. Applying Theorem 3.2,

we conclude that Hp is cocommutative. Since this holds for sufficiently large

p, we conclude that H is cocommutative and hence a group algebra.

4.2. Abundance of invariants. By [SV, Theorem 2.2], the action of Hpm

on Apm extends to Dpm . The goal of this subsection is to show that there

are “many” invariants of the Hpm-action on Dpm for any m, in the sense

that any invariant modulo pm−1 lifts modulo pm.

We need the following notation.

• DH
p (m) = DH

pm/(pDpm ∩DH
pm), identified with the image of DH

pm in Dp.

• ZH(m) is the center of DH
p (m).

Note that DH
p (m) is a division subalgebra of Dp, and

DH
p = DH

p (1) ⊃ DH
p (2) ⊃ · · · ⊃ DH

p (m) ⊃ . . . .

Lemma 4.1. Take p ≫ 0. Then, for any m, one has Dp = DH
p (m)Ap,

and hence Dpm = DH
pmApm . Moreover, Dp is spanned over DH

p (m) as a left

vector space by the monomials in xi, yi of degree less or equal than N .

Proof. First note that if p is large enough and ψ is sufficiently generic, then

the elements bw,u from Lemma 2.5 (for deg(w) = N +1,deg(u) = N) can be

reduced modulo pm (cf. [CEW, proof of Proposition 4.4]). More precisely,
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we have bw,u = T−1b′w,u, where T, b
′
w,u ∈ A. We should choose R so that

it contains the coefficients of T, b′w,u. Then for sufficiently large p and a

suitably generic choice of ψ the reduction of T modulo p is not zero, so the

reduction of T−1 is defined. Let bw,u,pm ∈ Dpm be the reductions of bw,u

modulo pm.

Sublemma. One has bw,u,pm ∈ DH
pm, i.e., bw,u,pm is invariant under Hpm.

Proof of the Sublemma. Let b := bw,u, and write b as T−1a, where T, a ∈ A.

Then Tb = a. Since b is H-invariant, applying the coaction to this equality,

we obtain ∑

i

Tib⊗ h∗i =
∑

i

ai ⊗ h∗i ,

where hi is a basis of H, h∗i the dual basis of H∗, and

ρ(T ) =
∑

i

Ti ⊗ h∗i , ρ(a) =
∑

i

ai ⊗ h∗i .

Thus, Tib = ai for all i. Since A is an Ore domain, there exist T∗ 6= 0, a∗ ∈ A

such that aT∗ = Ta∗. So b = a∗T
−1
∗ , hence Tia∗ = aiT∗.

For sufficiently large p, the reductions of all the above elements modulo

pm are defined, and the reduction of T∗ is invertible (i.e., nonzero modulo

p). So we have the identities

apmT∗,pm = Tpma∗,pm , Ti,pma∗,pm = ai,pmT∗,pm ,

ρ(Tpm) =
∑

i

Ti,pm ⊗ h∗i,pm, ρ(apm) =
∑

i

ai,pm ⊗ h∗i,pm,

where the subscripts pm denote the reductions modulo pm. Thus,

ρ(Tpm)(a∗,pm ⊗ 1) = ρ(apm)(T∗,pm ⊗ 1).

Hence,

ρ(Tpm)(a∗,pmT
−1
∗,pm ⊗ 1) = ρ(apm).

Therefore,

ρ(Tpm)(T
−1
pm apm ⊗ 1) = ρ(apm),

or

T−1
pm apm ⊗ 1 = ρ(T−1

pm )ρ(apm) = ρ(T−1
pm apm).

This shows that the element bpm = T−1
pm apm is Hpm-invariant, as desired. �

By the Sublemma, the elements bw,u,p belong to DH
p (m) for all m (as

they are reductions of bw,u,pm modulo p). So we conclude that DH
p (m)Ap is

spanned over DH
p (m) by the monomials in xi, yi of degree less or equal than

N . Thus, DH
p (m)Ap is finite dimensional over DH

p (m), and hence the result

follows from Lemma 2.3. �

Let M be a free Z/pmZ-module. Recall that a submodule M ′ ⊂ M is

called saturated if the natural map M ′/pM ′ → M/pM is injective, that is,

(pM) ∩M ′ = pM ′. Equivalently, M ′ is saturated if M/M ′ is free.
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Example 4.2. The center Zm of Dpm is not saturated. By Lemma 2.8, Zm

contains elements pxp
m−1

i which project to zero in Dpm/(p), but to nonzero

in Zm/(p).

Lemma 4.3. Take p ≫ 0. For any m, the inclusion DH
p (m) →֒ DH

p is

an isomorphism. In other words, the Z/pmZ-submodules DH
pm ⊂ Dpm are

saturated (i.e., invariants modulo pm−1 lift modulo pm).

Proof. The degree of the division algebra DH
p (m) must be ps for some s ≤ n,

since it is contained in the division algebra Dp which has degree pn. If s < n,

then by Lemma 2.7(i), [Dp : D
H
p (m)] has to be at least p. But by Lemma 4.1,

we have

[Dp : D
H
p (m)] ≤ 1 + 2n+ (2n)2 + · · ·+ (2n)N ,

which is less than p for p sufficiently large. This means that for p ≫ 0, we

have s = n and thus the degree of DH
p (m) is pn. That is, the degrees of Dp

and DH
p (m), m ≥ 1, including DH

p (1) = DH
p , are all the same. Thus, by

Lemma 2.7(ii), we have ZH(m− 1) ⊃ ZH(m) for all m ≥ 2, and

DH
p (m− 1) ∼= ZH(m− 1)⊗ZH(m) D

H
p (m).

Hence, for m ≥ 1,

(4.4) DH
p = DH

p (1) ∼= ZH(1) ⊗ZH(m) D
H
p (m) = ZH ⊗ZH(m) D

H
p (m).

Moreover,

(4.5) [ZH : ZH(m)] = [DH
p : DH

p (m)] < p;

this inequality holds as p is sufficiently large.

Now let us prove that DH
p (m) = DH

p by induction in m. The statement

for m = 1 is trivial, so we may assume that m ≥ 2 and the statement is

known below m.

Consider the spectral sequence attached to the filtration by powers of

p to compute the associated graded space of the cohomology of Hpm with

coefficients in Dpm (in particular, of the zeroth cohomology, which is DH
pm).

The E2 page of this spectral sequence is defined by Ei,j
2 = H i(Hp,Dp),

and our job is to show that it degenerates at E2 for i = 0, i.e., that the

differentials d1, . . . , dm−1 vanish for i = 0. By the induction assumption,

the differentials

d1, . . . , dm−2 : DH
p → H1(Hp,Dp) = Ext1Hp

(Fp,Dp)

are zero. Further, we have a differential

∂ := dm−1 : D
H
p → H1(Hp,Dp).

The restriction of ∂ to ZH is a derivation of ZH into the moduleH1(Hp,Dp).

Moreover, Ker(∂|ZH ) = ZH(m). (Indeed, for z ∈ ZH , dm−1(z) characterizes

the failure of z to lift modulo pm when it is known to lift modulo pm−1.)

Now take z ∈ ZH , and let its minimal polynomial over ZH(m) be P .

So, we obtain 0 = ∂P (z) = P ′(z)∂(z). Since [ZH : ZH(m)] < p by (4.5),
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we have deg(P ) < p. So, P ′(z) 6= 0 and we get that ∂(z) = 0. Thus,

ZH(m) = Ker(∂|ZH ) = ZH , and hence DH
p (m) = DH

p by (4.4). �

4.3. Invariance of Zpm under the action of Hp. Suppose that p≫ 0.

Lemma 4.6. The centralizer of DH
pm in Dpm coincides with Zm. As a

consequence, Zm is Hpm-stable.

Proof. Let u ∈ Dpm be such that [DH
pm, u] = 0. The map Dpm → Dpm

given by a 7→ [a, u] is a derivation of Dpm. By way of contradiction, sup-

pose that this derivation is nonzero. Let r be the largest integer such that

[Dpm , u] ⊂ prDpm . Then, [?, u] defines a nonzero map ∂ : Dp → Dp, such

that ∂a is the image of [ã, u] in prDpm/p
r+1Dpm

∼= Dp for any lift ã of a to

Dpm . It is clear that ∂ is a derivation, so ∂(Z) ⊂ Z. Also, by Lemma 4.3,

∂(DH
p ) = 0.

From Proposition 2.2(i) we obtain ZDH
p = Dp. Thus, to get a contradic-

tion, it suffices to show that ∂(Z) = 0. Let z ∈ Z, and P be the minimal

polynomial of z over ZH . Since ∂(ZH) = 0, we have 0 = ∂P (z) = P ′(z)∂z.

Since p ≫ 0, [Z : ZH ] ≤ dimH < p, and hence, P ′ 6= 0. Thus, ∂z = 0,

which gives the desired contradiction.

The last statement follows since (h · z)a = a(h · z), for h ∈ Hpm , a ∈ DH
pm ,

and for z in the centralizer of DH
pm in Dpm . �

Lemma 4.7. The image of Zm in Dp is Zpm−1

.

Proof. This is a straightforward calculation with the Weyl algebra. Namely,

recall the subring Km ⊂ Zm defined in Subsection 2.4. It follows from

Lemma 2.8 that Z1 = Z = K1 and Zm = Km + pZm−1 for m ≥ 2. But

Zpm = Fp

(
xp

m+1

i , yp
m+1

i : i = 1, . . . , n
)
,

hence Km projects surjectively onto Zpm−1

under reduction modulo p. This

implies the statement. �

Proposition 4.8. The Hp-action on Z preserves Zpm for all m.

Proof. It follows from Lemma 4.6 that Hpm preserves Zm. Therefore, by

Lemma 4.7, Hp preserves Zpm. �

4.4. Proof of Theorem 1.1. Let p ≫ 0. By Proposition 2.2(ii), Hp acts

inner faithfully on Z. Therefore, by Proposition 4.8, the assumptions of

Theorem 3.2 applied to the Hp-action on Z are satisfied. So by Theorem 3.2,

Hp is cocommutative (a group algebra). But by [CEW, Lemma 2.3(ii)], the

product of all ψ for p ≥ ℓ is injective for any ℓ, so we conclude that HR is

cocommutative. Hence, H is cocommutative. Thus, H = kG, where G is a

finite group, and Theorem 1.1 is proved. �
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4.5. Proof of Theorem 1.2. The proof is parallel to that of Theorem 1.1,

and obtained by replacing A = An(k) by A = D(X), using the fact that the

reduction of X mod p is smooth for large p and generic ψ [EGA, 17.7.8(ii)].

Let us list the necessary changes.

1. In Lemma 2.5 and below, xi, yi should be replaced by any finite set of

generators L1, . . . , Lr ofD(X), and the number 2n in the proof of Lemma 4.3

should be replaced by r.

2. The discussion in Subsection 2.4 should be modified as follows. Pick a

point x ∈ X, and let x1, . . . , xn be local coordinates near x. Let yi =
∂

∂xi
be

the corresponding partial derivatives; they are rational vector fields on X.

Let f1, . . . , fq be generators of the algebra of regular functions O(X) on X.

Let Km = Wm,p(f
pm

i , yp
m

j ), where reductions of fi, yj modulo pm are also

denoted by fi, yj , respectively. Then, one can check by computing in local

coordinates that Zm = Km + pZm−1, so that the proof of Lemma 4.7 goes

through. �
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E-mail address: jcdiaz@ual.es

Department of Mathematics, Massachusetts Institute of Technology, Cam-

bridge, Massachusetts 02139, USA

E-mail address: etingof@math.mit.edu

Department of Mathematics, Temple University, Philadelphia, Pennsylva-

nia 19122, USA

E-mail address: notlaw@temple.edu


	1. Introduction
	2. Preliminary results
	2.1. Witt vectors and Hensel's lemma
	2.2. Auxiliary results on division algebras
	2.3. Reduction modulo prime powers
	2.4. The ring Dpm and its center Zm.

	3. Hopf actions on fields of characteristic p preserving pm-th powers
	4. Proof of Theorems ?? and ??
	4.1. Structure of the proof of Theorem ??
	4.2. Abundance of invariants
	4.3. Invariance of Zpm under the action of Hp.
	4.4. Proof of Theorem ??
	4.5. Proof of Theorem ??

	Acknowledgments
	References

