
Bismuth: A Blockchain-Based Program For

Verifying Responsible Data Usage

by

Keeley Donovan Erhardt

S.B., C.S. M.I.T. (2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2017

c© Keeley Donovan Erhardt, MMXVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

August 16, 2017

Certified by. .
Alex “Sandy” Pentland

Toshiba Professor of Media Arts and Sciences
Thesis Supervisor

Accepted by .
Dr. Christopher J. Terman

Chairman, Department Committee on Graduate Theses

Bismuth: A Blockchain-Based Program For Verifying

Responsible Data Usage

by

Keeley Donovan Erhardt

Submitted to the Department of Electrical Engineering and Computer Science
on August 16, 2017, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science

Abstract

The amount of digital information generated, collected and stored is growing at a
staggering rate. Data-driven insights are increasingly relied upon to make decisions,
directly impacting individuals. The burgeoning importance of data in shaping the
world around us requires a shift in the current data ownership, exchange and usage
paradigm. Responsible data use should be verifiably free from leaking sensitive in-
formation, discriminatory usage, illegal applications, and other misuse. Additionally,
a standard of correctness for computations executed against datasets should be en-
forced. Enlisting trusted parties to vet the code being executed against sensitive data
can reduce the prevalence of irresponsible or malevolent data usage. Trusted parties
can attest to attributes of the code—for example, that the code is privacy-preserving,
or that it is legal to execute against data collected from users in a certain country, or
that a computation reliably and correctly computes an answer as advertised—to en-
sure that individuals’ personal information is used appropriately. This thesis presents
an illustration of a design to structure, vet and verify the code that is executed
against sensitive data, along with a proposal for using blockchain-based smart con-
tracts to audit and enforce proper usage of vetted code to promote a paradigm of
“safe” question-and-answer exchange. Finally, this thesis demonstrates Bismuth, a
blockchain-based program built to implement the ideas presented in this work and to
assist in a transition towards more thoughtful and responsible data usage.

Thesis Supervisor: Alex “Sandy” Pentland
Title: Toshiba Professor of Media Arts and Sciences

2

Acknowledgments

This work is generously supported by the Ripple Fellowship. Any opinions, findings,

conclusions and recommendations expressed in this thesis are those of the author and

do not necessarily reflect the views of Ripple.

Professor Alex “Sandy” Pentland, for serving as both a supervisor and a role model.

My family, especially my parents, for their unwavering support throughout my life.

3

Contents

1 Introduction 10

1.1 Blockchain . 13

1.2 Bismuth . 13

1.3 Paper organization . 14

2 Distributed ledger technology 15

2.1 Cryptocurrencies . 15

2.1.1 Bitcoin . 16

2.1.2 Altcoins . 17

2.2 Smart contracts . 18

2.2.1 Bitcoin . 20

2.2.2 Ethereum . 20

2.2.3 Hyperledger Project . 21

2.2.4 Rootstock (RSK) . 22

2.3 Comparison of smart contract platforms 22

3 Ethereum architecture 24

3.1 Accounts . 24

3.1.1 Elliptic curve key pairs and Ethereum addresses 25

3.2 Transactions and messages . 26

3.2.1 Transactions . 26

3.2.2 Messages . 27

3.2.3 Gas and transaction costs . 27

3.3 Ethereum as a state transition system 27

3.3.1 Merkle Patricia trees . 28

4

4 Bismuth 30

4.1 “Sending the code to the data” . 30

4.2 Verified attributes . 33

4.3 Two-way peg . 36

4.3.1 Elliptic curve digital signatures 37

4.3.2 Parallel state transitions . 39

4.3.3 Alternative state transition designs 46

4.3.4 Blockchain integration patterns 47

4.4 Storing data and value on the blockchain 48

4.4.1 Answer verification and payment 49

5 Integration with the OPAL server 52

5.1 OPAL documents . 52

5.1.1 Question document . 53

5.1.2 Smart contract document . 53

5.1.3 Question transaction document 54

5.1.4 Question results document . 54

5.2 OPAL nodes . 55

5.3 OPAL interactions . 57

5.3.1 Verified computations . 57

5.4 Bismuth integration . 59

6 Open questions and future work 60

6.1 Trusted parties . 60

6.1.1 Formal verification . 61

6.2 Unverified actions off-chain . 61

6.2.1 Reputation management system 62

6.3 Cryptographic guarantees . 63

7 Conclusion 64

A SingleDataProviderEscrowContract.sol 65

5

B MultiDataProviderBidContract.sol 68

6

List of Figures

2-1 The double-SHA256 proof-of-work hash of the Bitcoin genesis block

and the corresponding target, mined 2009-01-03 18:15:05 UTC. 17

4-1 Smart contracts as state transition systems. 41

4-2 Parallel state transitions on- and off-chain. 44

4-3 Bid-ask state transition system. 47

7

List of Tables

2.1 Comparison of smart contract platforms. 23

5.1 Common OPAL payload properties. 52

5.2 Question Document payload properties. 53

5.3 Smart Contract Document payload properties. 54

5.4 Question Transaction Document payload properties. 54

5.5 Question Results Document payload properties. 55

8

List of Listings

4.1 Sample JSON Web Document (JWD). 35

4.2 Credit worthiness question with verified attributes. 35

4.3 Declaration of valid states. 41

4.4 State transition events. 42

4.5 Assertions on smart contract state. 42

4.6 Confirmation of algorithm execution. 43

4.7 Withdrawal pattern for payments. 43

4.8 Smart contract initialization. 45

9

1 Introduction

The amount of digital information generated, collected and stored is growing expo-

nentially—by 2020 there is expected to be more than 16 zettabytes (16 trillion GB) of

useful data [Turner et al., 2014]. Digital devices such as smart phones, credit cards,

satellites, wearable devices, and connected “things” generate massive quantities of

data. People further produce data through online activities such as posting on social

media, exchanging email, and browsing the Internet. This data plays an increasingly

important role in our day-to-day life, informing individual, business and policy de-

cisions and driving human action. The economic and societal benefits accrued from

data-driven decision making are immense; big and open data is predicted to increase

European GDP by 1.9 percent by 2020—equivalent to a full year of economic growth

in the European Union [Buchholtz et al., 2014].

While data is undeniably useful for understanding and shaping the world around

us, an open question remains—who owns this data? Currently, the majority of data

is aggregated and stored by private companies and governments, rather than by in-

dividuals. Companies are increasingly adopting a business model that exchanges free

products and services for user data.1 Google offers an impressive array of “free” ser-

vices, generating revenue from the personal information it collects from its users.2

Data aggregation at this scale can be beneficially exploited: Google Flu Trends, a

free daily flu forecast for the United States launched by Google.org in 2008, famously

attempted to use search data to detect the onset of seasonal flu epidemics. Google

researchers demonstrated that by combining the billions of queries stored by the com-

pany with flu tracking information published by the US Centers for Disease Control

1This phenomenon is often referenced by the popular aphorism, “if you’re not paying for some-
thing, you’re not the customer; you’re the product being sold,” first mentioned in a comment by
user blue beetle within the famed MetaFilter community in August 2010.

2Google provides an exhaustive overview of the data it collects on users of Google services (cur-
rently available at https://privacy.google.com/your-data.html). The list includes (among other data-
points): (1) “things you do”—information you search for, websites you visit, and your location; (2)
“things you create’—emails you send and receive on Gmail, contacts you add, and calendar events;
and (3) “things that make you you”—name, email address and password, and birthday.

10

and Prevention (CDC), they could produce accurate estimates of flu prevalence two

weeks earlier than possible using only the CDC data [Butler, 2008].3

Google Flu Trends and related areas of research have the potential to deliver

substantial benefits to society. However, realizing these benefits is not contingent

upon acquiescing to a paradigm in which private companies maintain complete control

over individuals’ information. As an increasing amount of data is generated, questions

of privacy and data ownership must be confronted.

The “New Deal on Data”: a proposal for personal data ownership.

Presented at the World Economic Forum (WEF) in 2009, the “New Deal on Data”

proposes a novel framework for open information markets predicated on the idea that

people should own their data [Pentland, 2009]. Drawing from the three tenets of

ownership laid out in Old English Common Law—possession, use, and disposal—the

New Deal on Data mandates that individuals have the right to, (1) possess their data,

(2) fully control the use of their data, and (3) dispose or distribute their data. When

people retain possession over their data, companies perform the function of a Swiss

bank, simply holding data (ideally anonymously) on behalf of their users. When

people, rather than companies, act as data owners, they gain the ability to destroy or

remove and transfer their data from a company’s control if they are unsatisfied with

how it is being used or managed.

Under an open information market in which individuals own their data, data

can be more fairly and transparently utilized and monetized. Programs such as

Google Flu Trends would still be possible. Google could request specific and explicit

permission from its users to collect, aggregate and analyze all search queries involving

influenza related terms. By demonstrating the value of such a program, Google

could incentivize voluntary participation by its users. Obtaining fine-grained consent

reduces the likelihood of harmful and exploitative usage of personal data.

Unfortunately, even under the New Deal on Data, data be misused. Data might be

used in a discriminatory manner, or used illegally. Additionally, sensitive information

3For both the 2012-2013 and 2013-2014 seasons, Google Flu Trends overestimated the prevalence
of influenza by more than 50 percent. The program was subsequently dismantled, becoming a poster
child for the fallibility of big data.

11

might be inadvertently leaked. A company could request permission from each of

its users to mine and aggregate search data related to sexually transmitted diseases,

promising to anonymize the data so that the individuals’ search data cannot be tied

to them. However, most anonymization techniques have been shown to be ineffective

[Ohm, 2009]; released “anonymized” datasets often result in the leakage of sensitive

data [Wjst, 2010].

Open Algorithms (OPAL): sending the code to the data. OPAL is a new

paradigm designed to promote responsible data use by separating the code used to

generate insights from the data itself.4 An important feature of the design is that

raw data is kept under the protection of the individual, organization, company, or

government responsible for the data and never publicly released. Instead of a public

release, the design promotes “sending the code to the data [Greenwood et al., 2014].”

Code in this context could refer to queries, computations, or other algorithms; the

complexity of the code can range from a simple SQL or MongoDB query to MATLAB

code to an intricate machine learning algorithm. “Sending the code to the data” refers

to an entity sending a query, computation, or other algorithm to the party in custody

of the data to execute on his/her behalf, circumventing the need to release raw data.

Contribution of this work. Expanding on the OPAL paradigm, this thesis

presents three primary contributions:

(1) An illustration of a design that supports signed attestations from trusted

parties ascribing attributes to code executed against sensitive data.

(2) A proposed architecture to implement a two-way peg binding the action of

“sending the code to data” to blockchain transactions.

(3) A prototype implementation of the aforementioned ideas via a program called

Bismuth.

To validate Bismuth, the program has been incorporated into the open-source

OPAL server and tested within this architecture [CxSci, 2017].

4The Open Algorithms (OPAL) project is a multi-partner effort led by the Data-Pop Alliance,
Imperial College London, Orange, the World Economic Forum, and the MIT Media Lab.

12

1.1 Blockchain

In 2008, a pseudonymous person or persons named Satoshi Nakamoto released a

new protocol for “A Peer-to-Peer Electronic Cash System” using a cryptocurrency

called bitcoin [Nakamoto, 2008]. Bitcoin are represented as transactions recorded on a

globally distributed digital ledger, known as a blockchain. A blockchain is established

by a set of rules—in the form of distributed computations—that ensure the integrity

of arbitrary data without relying on a trusted third party. These rules aggregate

bitcoin transactions into ‘blocks’, which are then added to a ‘chain’ of existing blocks

using cryptographic signatures. Blockchains can store token balances, as well as more

complex information, by securing a set of private keys. The technology exhibits five

critical characteristics—blockchains are:

1. Distributed: geographically disparate computers run software to host the ledger.

2. Public: anyone can view the state of the network at any time and all transactions.

3. Inclusive: there are no restrictions on who can operate a node in the network.

4. Immutable: all transactions that occur are verified, cleared and stored in a time-

stamped block that references the previous block, thereby creating a chain.

5. Historical: the ledger retains unalterable information on every previous state.

Modern blockchain designs are capable of storing state and establishing permis-

sions to modify and update state through self-administering and self-executing scripts

run in a distributed virtual machine. These scripts are known as smart contracts, and

have the ability to define and regulate rules to govern users’ interactions with the un-

derlying blockchain. Further details are provided in Sections 2 and 3.

1.2 Bismuth

This thesis details the Bismuth program, a concrete implementation of a two-way peg

mechanism that associates the act of “sending the code to the data” to immutable,

publicly audit-able records on a blockchain. The ideas presented in this work are

general enough to guide implementations of two-way pegs associating actions in a va-

13

riety of domains with blockchain transactions. However, in the interest of illustrating

the underlying concepts as explicitly as possible through working code and concrete

examples, this thesis focuses on integrating Bismuth into the OPAL architecture.

It should be noted that in the blockchain ecosystem, the connotation associated

with the terminology “two-way peg” (2WP) differs slightly from the meaning adopted

in this work. In 2014, a group of researchers, loosely affiliated with Blockstream,

proposed pegged sidechains, a technology to enable bitcoins and other ledger assets to

be transferred between multiple blockchains.5 The authors defined a two-way peg as

“the mechanism by which coins are transferred between sidechains and back at a fixed

or otherwise deterministic exchange rate [Back et al., 2014].” Rather than associating

interactions occurring on different blockchains (a main chain and its sidechain), this

work aims to associate on- and off-chain actions. A two-way peg in this context is

a mechanism by which off-chain, or physical world, interactions are associated with

blockchain transactions in a verifiable manner.

1.3 Paper organization

The remainder of this paper is organized as follows. Section 2 provides an introduc-

tion to distributed ledger technology and a summary of a number of the more popular

distributed ledger implementations. An overview of Ethereum, the blockchain imple-

mentation selected for use in the initial Bismuth prototype, is presented in Section 3.

Section 4 outlines a design for creating and verifying signed attributes associated with

executable code, and a mechanism for developing a two-way peg. Section 5 details

the integration of Bismuth into the OPAL architecture, and Section 6 describes opti-

mizations and future work. Section 7 concludes with a discussion of the contributions

of this thesis and future directions.

5As defined by Back et al. in Enabling Blockchain Innovations with Pegged Sidechains, a sidechain
is a blockchain that validates data from other blockchains. A pegged sidechain is a sidechain whose
assets can be imported from and returned to other chains; that is, a sidechain that supports two-way
pegged assets.

14

2 Distributed ledger technology

A distributed ledger is a consensus of replicated, shared, and synchronized data ge-

ographically spread across multiple sites, countries, or institutions [Walport, 2016].

Ledgers have existed for millennia, and are used to record many things, most com-

monly assets such as money and property. Distributed ledgers extend the abilities

of traditional ledgers by enabling real-time and secure data sharing and updating

between physically disparate parties.

A core challenge in maintaining distributed ledgers is achieving consensus—all

network participants must be in agreement about the current state of the ledger.1

This requires updates to the ledger to be received in the proper order and with

minimal delay by all participants. Achieving decentralization further requires that

all participants have the ability to both receive and make updates to the ledger that

are recognized by the entirety of the network.

2.1 Cryptocurrencies

Nakamoto’s white paper on “Bitcoin: A Peer-to-Peer Electronic Cash System”, pre-

sented the first practical design for a Byzantine fault tolerant, decentralized and

trust-less distributed ledger.2 Bitcoin launched a new class of cryptocurrencies that

built on Nakamoto’s innovation to support their own implementations of decentralized

transfer of monetary value.

1Distributed consensus can be most easily explained by the Two Generals’ Problem. Two generals
are attempting to coordinate an attack on a city located in a valley between two hills. The generals
are located on the two hills above the city and must decide the exact time to attack the city by sending
a messenger through the valley and up to the other generals hill. There is a non-zero probability
that the messenger they send is captured and killed in the city below. Due to the possibility of a
generals acknowledgement being lost, achieving consensus with 100 percent confidence requires an
infinite series of messengers.

2Byzantine fault tolerance (BFT) is the characteristic of a system that tolerates the class of
failures known as the Byzantine Generals’ Problem, which is a generalized version of the Two
Generals’ Problem.

15

2.1.1 Bitcoin

Bitcoin is an entirely decentralized digital currency, free from any centralized issuer or

controller. It is the first cryptocurrency to achieve widespread adoption, and Bitcoin

and its derivatives have since experienced massive growth in popularity, research, and

market share. However, Bitcoin’s greatest contribution is arguably not the currency

itself, but rather the underlying blockchain technology as a mechanism for trust-less

and distributed consensus.

A blockchain is a type of distributed ledger that is composed of unchangeable,

digitally recorded data assembled into ‘blocks’. Each block in the chain contains data

(e.g. Bitcoin transactions) and is cryptographically hashed. The hash of the data in

each block references the previous block, resulting in a linear ‘chain’ of blocks, referred

to as a ‘blockchain’.3 Changing the data stored in any one block mutates the hash

of all subsequent blocks, ensuring that any tampering of information is immediately

detected by the participants in the network.

A blockchain requires distributed consensus to standardize on the valid ordering

of transactions. Bitcoin introduced a novel, decentralized mechanism for distributed

consensus known as proof-of-work. Proof-of-work (PoW) relies on participants in the

network performing computational work to validate each block of transactions. The

participants validating blocks of transactions to create new blocks are called miners.

Miners receive the cumulative amount of fees from transactions included in the blocks

they mine, as well as a block reward in the form of newly minted bitcoin.4

In order to validate a block of transactions and claim the block reward, miners

compete to find a nonce value to include in the block header that results in the

double-SHA256 hash of the block, treated as a 256-bit number, to be less than a

3A blockchain is only one example of a data structure which can be used to achieve distributed
consensus for a shared ledger. There are many other implementations of distributed ledger tech-
nology that use different methodologies to achieve the same consensus (e.g. Ripple, MultiChain,
HyperLedger Project).

4Bitcoin is a deflationary currency: the code permits only 21 million bitcoin to ever be in cir-
culation. New bitcoin are created in the system through the block reward. When Bitcoin was first
created, the block reward was set at 50 bitcoin per block mined. The code specifies that the block
reward is to be cut in half after every 210,000 blocks mined, falling to zero after 64 halving events.
At the time of this writing, the block reward is 12.5 bitcoin.

16

Figure 2-1: The double-SHA256 proof-of-work hash of the Bitcoin genesis block and
the corresponding target, mined 2009-01-03 18:15:05 UTC.

dynamically adjusted target (at the time of this writing, approximately 2187). The

Bitcoin network automatically adjusts this target depending on the hash rate of the

network (the total hashes per second the network of miners can compute) to ensure

that Bitcoin blocks are mined at a limited pace—approximately one block every 10

minutes.

Proof-of-work establishes a simple and effective consensus algorithm by making

block creation computationally hard. This consensus algorithm accomplishes several

tasks:

• it allows for free entry into the consensus protocol because anyone with a processing

unit can compete in the creation of new blocks;

• it prevents Sybil attackers from recreating the entire blockchain in their favor;5

• it introduces new bitcoin into the system at a steady rate;

• it distributes bitcoin among participants using a reasonably fair distribution scheme;

• it makes blocks tamper-resistant since any change to a block requires additional

work to generate a new proof.

2.1.2 Altcoins

Following the advent of Bitcoin, a wide range of alternative implementations of de-

centralized ledgers have been developed, and novel applications for distributed ledger

technology have been proposed. These alternative cryptocurrencies, known as alt-

coins, attempt to improve on the original Bitcoin protocol to add new features and

capabilities. Some altcoins attempt to augment the anonymity guarantees offered

by the Bitcoin protocol (e.g. Zerocash and Zerocoin), while others experiment with

5A Sybil attack refers to an attacker subverting a reputation system by forging a large number
of pseudonmous identities in a peer-to-peer network to gain disproportionally large influence. The
attack is named after the subject of the book Sybil, a case study of a woman diagnosed with
dissociative identity disorder.

17

alternative consensus algorithms to replace proof-of-work (e.g. Peercoin).6

Altcoins have two options for building their respective consensus protocols: build-

ing a protocol on top of Bitcoin, or developing an entirely independent network. Both

options require trade-offs and carry their own sets of challenges. A protocol built on

top of Bitcoin does not inherit Bitcoin’s simplified payment verification features.7

Furthermore, a meta-protocol cannot compel the underlying Bitcoin blockchain to

exclude transactions which are invalid in the context of the meta-protocol. To over-

come this limitation, a secure protocol built on top of Bitcoin must scan all the way to

the initial Bitcoin genesis block to determine if certain transactions are valid according

to its rules. On the other hand, building an independent network is time-consuming

and difficult to implement correctly. Immature cryptocurrencies further suffer from

low market liquidity, and decreased resiliency against attacks when the number of

participants in the network is small.

2.2 Smart contracts

Bitcoin was originally designed as a decentralized cryptocurrency network for trans-

acting monetary value, and the main purpose of the Bitcoin blockchain was to provide

a secure ledger for these financial transactions. More recently, use cases for non-

financial applications related to decentralized trust and store of value have begun to

emerge associated with the Bitcoin blockchain, and an even wider range of projects

have been proposed for decentralized ledgers more broadly.

In 1994, Nick Szabo coined the term smart contract, referring to an automated

program that would function similar to a standard computer program’s if-then state-

ments. Real-world actions or assets could satisfy pre-programmed conditions that

6Proof-of-Stake (PoS) is a commonly proposed alternative to PoW for achieving distributed con-
sensus. Proof-of-stake was first suggested in the bitcointalk forum in 2011, and first implemented by
Peercoin in 2012. In a proof-of-stake system, the creator of the next block is chosen in a deterministic
fashion—the likelihood of an account being selected depends on its wealth (i.e. its stake). No block
rewards are distributed; participation is incentivized solely through transactions fees.

7Simplified payment verification (SPV) is a method for verifying if particular transactions are
included in a block without downloading the entire block. The method is used by some lightweight
Bitcoin clients.

18

would cause a smart contract to execute the corresponding code. Szabo’s theories

originally went unrealized because a digitally native financial system capable of sup-

porting programmable transactions did not exist. More than a decade later, the

development of Bitcoin resulted in blockchains capable of supporting first a small

set of simple operations—primarily transactions of a currency-like token—and later

blockchains capable of more complex operations, defined in full-fledged programming

languages. Now general-purpose blockchains can act as programmable ledgers, capa-

ble of providing computing infrastructure to support complex logic and programmable

transactions.

The term “smart contract” is overloaded and used to represent a broad range

of concepts. This thesis defines smart contracts to be the code that is stored, veri-

fied and executed on an immutable distributed ledger whose inputs and outputs are

maintained globally consistent by a distributed consensus protocol. The distributed

ledgers have Virtual Machinery (VM), similar to the virtual machines of traditional

cloud computing; for example, a blockchain VM is a virtual network of decentral-

ized computers that are coordinated through the blockchain’s consensus rules. A

blockchain acts as a distributed computing architecture where every network node

executes and records the same transactions. Every node in the network runs the

blockchain’s VM and executes the same instructions. This massive parallelism makes

computation on a blockchain slower and less efficient than on a traditional computer,

but maintains network consensus.

Smart contracts often encapsulate logic, rules, processes, or agreements between

different parties. They can include arbitrary rules for ownership, transaction formats

and state transition functions on the blockchain. As a result of running on top of

a blockchain, the contracts adopt several unique characteristics compared to other

software programs. Smart contract programs:

• are recorded on the blockchain, so are themselves permanent and immutable;

• can control blockchain assets, i.e. transfer and store cryptocurrency;

• are executed by the blockchain, so will always run exactly as written.

The Bitcoin, Ethereum, Hyperledger Fabric, Hyperledger Sawtooth, Hyperledger

19

Corda (previously known as R3 Corda), and Rootstock (RSK) smart contract plat-

forms were considered for use in the Bismuth program.

2.2.1 Bitcoin

The original Bitcoin protocol has simple scripting capabilities for its blockchain which

support a highly limited concept of smart contracts. Bitcoin funds are typically

controlled by public key, however, they can also be owned by a more complex script

expressed in Bitcoin’s simple, stack-based programming language. In order to spend

the funds, a Bitcoin transaction must provide data that satisfies the script. This

functionality enables multisig validation, bounties for solving computational problems

and other capabilities. However, Bitcoin’s scripting language is not Turing-complete

and has several restrictive limitations:

• Value-blindness: a Bitcoin script is unable to provide fine-grained control over

the amount withdrawn.8

• Blockchain-blindness: Bitcoin transactions are blind to certain blockchain data

such as the nonce and previous block hash.

• Lack of State: the Bitcoin protocol recognizes only the concepts of spent or

unspent, with no mechanism for handling additional internal state.

2.2.2 Ethereum

Ethereum is an alternative decentralized ledger protocol—independent of Bitcoin—designed

as a platform for building decentralized applications. A decentralized application

consists of a set of one or more smart contracts and client-side code. Decentralized

applications are not controlled by any single individual, board, or other central entity,

8This limititation results from Bitcoin’s concept of unspent transaction outputs. A Bitcoin trans-
action works by consuming a collection of objects called unspent transaction outputs (UTXOs) cre-
ated by one or more previous transactions, and then producing one or more new UTXOs. These
new UTXOs are then available to be consumed by future transactions. If a user wants to send a
transaction of X coins to a particular address, the user must either have some set of UTXOs that
exactly sum to X, or include a set of UTXOs summing to a value greater than X and a second
destination UTXO called a “change output” that he/she controls. Therefore, for smart contracts to
handle transactions of arbitrary amounts the contracts would need to have many UTXOs of varying
denominations.

20

and are instead powered by smart contracts. Ethereum overcomes Bitcoin’s smart

contract limitations by providing a highly flexible and fundamental abstraction: a

blockchain with a built-in Turing-complete programming language.

Similar to Bitcoin, Ethereum executes contracts under an incentivization scheme

which pays miner fees based on the computing power spent. For this, it uses Ether,

its native cryptocurrency, which carries real-world value. Contracts are executed as

stack-based bytecode in the Ethereum Virtual Machine (EVM). Similar to the Bitcoin

blockchain, the Ethereum blockchain is a permissionless ledger—anybody is free to

join the network, perform transactions and/or access the source code of deployed

smart contracts.

2.2.3 Hyperledger Project

Bitcoin and Ethereum operate in a public (or permissionless) environment where par-

ticipants can join or leave at will. More recently, there has been increased interest in

private (or permissioned) blockchains optimized for private settings in which partic-

ipants are authenticated. The most prominent example of this new development is

the Linux Foundation’s Hyperledger Project which, “incubates and promotes a range

of business blockchain technologies, including distributed ledger frameworks, smart

contract engines, client libraries, graphical interfaces, utility libraries and sample ap-

plications [Foundation, 2017].” The initiative is an open source collaborative effort

that consists of over 140 members.

The Hyperledger projects focus on enterprise use cases, utilizing permissioned

ledgers. Hyperledger includes five distinct frameworks: Hyperledger Sawtooth, Hy-

perledger Iroha, Hyperledger Fabric, Hyperledger Burrow and Hyperledger Indy.9 In

addition, the R3 consortium of financial institution donated the code for their dis-

tributed ledger framework, Corda, to the Linux Foundation’s Hyperledger Project in

2017.

9It should be noted that although these frameworks are distributed ledger technologies, none
use a blockchain. Additionally, none implement PoW as a consensus algorithm—in a permissioned
ledger, unlike in a public network, the identities of participants are known so there are more efficient
mechanisms available to achieve Byzantine fault tolerance.

21

2.2.4 Rootstock (RSK)

Rootstock (RSK) is a smart-contract platform that incorporates a Turing-complete

virtual machine, the Rootstock Virtual Machine (RVM), into Bitcoin.10 RSK greatly

expands upon the smart contract capabilities built into the original Bitcoin protocol.

RSK is an evolution of QixCoin—a Turing-complete cryptocurrency created in 2013

by the same development team. RSK functions as a Bitcoin sidechain;11 bitcoin are

transferred into the Rootstock blockchain and become “Rootcoins” (RTC), which are

equivalent to BTC and can be transferred back at any time. There is no currency

issuance in Rootcoin, as all RTC are created from BTC from the Bitcoin blockchain.

The RSK sidechain uses RTC to pay miners for transaction and contract processing.

2.3 Comparison of smart contract platforms

Bitcoin and its sidechains (such as RSK), Ethereum, and the various permissioned

distributed ledger implementations that fall under the Hyperledger Project, are only

a subset of the platforms available for developing smart contracts. However, these

platforms are the most stable and/or mature currently available, so are the ones

selected for consideration in this thesis. Table 2.1 outlines a summarized comparison

of the platforms, with focus on their support for smart contract development.

10The Rootstock Virtual Machine (RVM) is compatible with the Ethereum Virtual Machine
(EVM) at the opcode level, so smart contracts built for one platform can run on both.

11A sidechain is an independent blockchain whose native currency is pegged to the value of another
blockchain currency automatically using proofs of payment.

22

Bitcoin Ethereum Rootstock (RSK)

Description of Platform Payments blockchain General purpose blockchain General purpose sidechain

Development Bitcoin developers Ethereum developers RSK Labs

Currency BTC Ether BTC via two-way peg

Mining Reward Yes Yes Yes

Data Model UTXO (Unspent Transaction Outputs) Account data UTXO

Consensus Algorithm PoW (Proof of Work) PoW PoW

Network Public Public or Permissioned Public

Language C++ GoLang, C++, Python

SPV Clients Yes Yes Yes

Confidential Transactions No Via contracts
Native support planned using

AppeCoin protocol

Turing-complete No Yes Yes

Execution Environment EVM (Ethereum Virtual Machine)

Smart Contract Languages Script Solidity, Serpent, LLL

Hyperledger Fabric Hyperledger Sawtooth Hyperledger Corda

Description of Platform Modular blockchain platform Modular blockchain platform Platform for financial industry

Governance Linux Foundation Linux Foundation Linux Foundation

Development IBM Intel R3

Currency None None None

Mining Reward N/A N/A N/A

Data Model Key-value database Transaction families UTXO

Consensus Algorithm BFT (Practical Byzantine Fault Tolerance) PoET (Proof of Elapsed Time) BFT or RAFT

Network Permissioned Permissioned Permissioned

Language Python

SPV Clients

Confidential Transactions Yes Yes Yes

Turing-complete Yes Yes Yes

Execution Environment modified-JVM (Java Virtual Machine)

Smart Contract Languages GoLang, Java Java, Kotlin

Table 2.1: Comparison of smart contract platforms.

23

3 Ethereum architecture

The Bismuth program is agnostic with respect to the particular distributed ledger

used in the two-way peg. Bismuth achieves this independence by specifying a standard

interface for the two-way peg that can be implemented for any distributed ledger

with the requisite logic capabilities. As a prototype, this thesis demonstrates an

implemention of the Bismuth interface for the Ethereum blockchain.

Ethereum was selected for the initial implementation because it supports the de-

sired smart contract functionality, can be run as a permissionless network, is open-

source, and is arguably the most mature smart contract platform. In comparison,

the original Bitcoin protocol does not support the logic capabilities required by Bis-

muth, the Hyperledger implementations not suitable due to the fact that they are

permissioned networks, and although the potential for a Bitcoin sidechain with smart

contract capabilities is intriguing, the Rootstock sidechain was not released in time

for full consideration in this work (RSK Labs released the RSK Ginger testnet in May

2017). The remainder of this section covers concepts specific to Ethereum that are

useful in understanding how Bismuth integrates with the Ethereum blockchain.

3.1 Accounts

In Ethereum, the state is composed of objects called accounts, each with their own

20-byte address. There exist two types of accounts: externally owned accounts,

controlled by private keys, and contract accounts, controlled by their contract

code. Both types of accounts can hold a balance in ether. Externally owned accounts

have no associated code, and simply send messages to other accounts by creating

and signing transactions. Contract accounts have code which activates every time a

message is received by the account, allowing the account to read and write to internal

storage, send new messages or create contracts. An account holds four fields:

• the nonce, a counter used to ensure each transaction is only processed once.

24

• the account’s current ether balance.

• the account’s contract code, if present.

• the account’s storage (empty by default).

3.1.1 Elliptic curve key pairs and Ethereum addresses

The 20-byte Ethereum account addresses are derived from an elliptic curve keypair

as follows:

1. Create a random private key.

• 64 (hex) characters / 256 bits / 32 bytes

2. Derive the public key from this private key.

• 128 (hex) characters / 512 bits / 64 bytes

3. Derive the address from this public key.

• Take the keccak-256 hash of the hexadecimal form of a public key; keep

only the last 20 bytes.

• 40 (hex) characters / 160 bits / 20 bytes

In theory, every possible account already exists; however, the overwhelming ma-

jority of accounts are unclaimed and store no value or data. There are 2256−232−977

valid private keys that can be used to derive Ethereum addresses, resulting in a near-

zero chance of randomly generating a private key corresponding to an Ethereum

address that is already in use.1 Furthermore, with current technology it is compu-

tationally infeasible to derive the private key corresponding to a given public key or

Ethereum address.2.

It is important to note that the only claim to ownership that a user has over a

particular account is knowledge of the private key from which the account address

can be derived. In fact, each Ethereum address can be generated by any of M unique

12256−232−977 is referred to as N in the Ethereum source code, and is the order of the generator
of the elliptic curve secp256k1, which is used to generate Ethereum keypairs.

2The elliptic curve currently used by Ethereum is considered unsafe against quantum computing;
a quantum computer would be able to derive an Ethereum private key from the corresponding public
key. This threat is further discussed in Section 7

25

private keys (i.e. there is not a one-to-one mapping from private keys to Ethereum

address), so knowledge of a corresponding private key is not unique.

3.2 Transactions and messages

Messages and transactions are both digitally signed pieces of data which can transfer

data and/or value to other accounts (either externally owned accounts or contract ac-

counts) Messages and transactions are similar concepts, except a message is produced

by a contract and a transaction is produced by an external actor. Transactions set in

motion all action on the Ethereum blockchain. Every time a contract receives a trans-

action, the contract’s code executes in response to the input parameters included in

the transaction. Each node participating in the network executes the corresponding

contract code in the Ethereum Virtual Machine (EVM) as part of their verification

of new blocks.

3.2.1 Transactions

A “transaction” is the signed data package that contains a message sent form an

externally owned account. A transaction includes:

• A signature identifying the sender.

• The recipient of the message.

• A VALUE field, specifying the amount of wei to transfer from the sender to the

recipient.3

• An optional data field.

• A STARTGAS value, representing the maximum number of computational steps the

transaction execution is allowed to take.

• A GASPRICE value, representing the fee the sender pays per computational step.

3Wei is a denomination of ether: 1000000000000000000 wei = 1 ether.

26

3.2.2 Messages

Contracts can send “messages” to other contracts, which are never serialized and exist

only in the Ethereum execution environment. A message includes:

• The sender of the message (implicit).

• The recipient of the message.

• A VALUE field, the amount of wei to transfer with the message.

• An optional data field.

• A STARTGAS value, representing the maximum number of computational steps the

transaction execution is allowed to take.

3.2.3 Gas and transaction costs

Both transactions and messages include values associated with “gas” (STARTGAS

and GASPRICE). Gas is the fundamental unit of computation in Ethereum, and the

STARTGAS and GASPRICE values support Ethereum’s anti-denial-of-service model.

Each transaction sent in the network must set a limit on the number of computational

steps of code execution it can use. This mechanism prevents accidental or hostile

infinite loops and disincentivizes inefficient code.

Users pay a gas fee roughly proportional to the computational resources consumed,

including: computation, bandwidth and storage. The STARTGAS is the gas limit a

user accepts, and GASPRICE is the fee a user is willing to pay per gas. The cost of a

transaction is calculated as: Total cost = gasUsed ∗ gasPrice, where gasUsed

is the total gas consumed by the transaction and gasPrice is the price (in wei) of

one unit of gas as specified by STARTGAS in the transaction.

3.3 Ethereum as a state transition system

The Ethereum blockchain can be thought of as a state transition system, where

state transitions consist of the direct transfer of value and information between ac-

counts using messages and transactions. As detailed in the Ethereum white pa-

per, the state transition function, APPLY(S,TX) -> S’, can be defined as follows

27

[Buterin et al., 2013]:

1. Validate that the transaction is well-formed and has a valid signature, and that

the nonce provided matches the nonce in the sender’s account.4

2. Calculate the transaction fee as STARTGAS * GASPRICE, and determine the

sending address from the signature. Subtract the transaction fee from the

sender’s account balance and increment the sender’s nonce. If there is not

enough balance to spend, return an error.

3. Initialize GAS = STARTGAS, and subtract gas at a rate proportional to the

number of bytes in the transaction.

4. Transfer the transaction value from the sender’s account to the receiving ac-

count. If the receiving account does not yet exist, create it. If the receiving

account is a contract, run the contract’s code either to completion or until the

execution runs out of gas.

5. If the value transfer fails due to the sender not having enough money or the

code execution running out of gas, revert all state changes except the payment

of the fees, and add the fees to the miner’s account.

6. Otherwise, refund the fees for all remaining gas to the sender, and send the fees

paid for gas consumed to the miner.

Each transaction must provide a valid state transition from the previously ac-

cepted state (prior to the execution of the transaction) to some new state. In this

way, Ethereum smart contracts act as state transition and persistent storage sys-

tems that have access to environmental information, such as block timestamps and

headers and sender balances, and that manipulate data according to pre-programmed

conditions and requirements.

3.3.1 Merkle Patricia trees

The fundamental data structure used in Ethereum is the Merke Patricia tree—a fully

deterministic, cryptographically authenticated data structure that can be used to

4An account nonce is a transaction counter in each account. The nonce helps to prevent replay
attacks in which a transaction that sends 10 coins from account A to B is repeatedly replayed by B
until A’s account balance is completely drained.

28

store key-value pairs.5 The Merkle Patricia tree is a combination of a Merkle tree

and a Patricia tree; it subsumes the advantages of each to create a data structure with

two critical properties: (1) Each unique set of key-value pairs maps uniquely to a root

hash—this makes it impossible to dishonestly report membership of a key-value pair

in a trie (unless an attacker has 2128 computing power), and (2) Inserts, lookups and

deletes can be achieved in logarithmic time. Each block header in Ethereum holds

three Merkle Patricia trees, each for a different type of object: transactions, receipts

(pieces of data that reflect the effects of each transaction) and account state.

5Alan Reiner first proposed Merkle Patricia trees, and the data structure was subsequently im-
plemented in the Ripple protocol.

29

4 Bismuth

This section details a design for verified attributes, a description of a two-peg mecha-

nism, and the structure of the Bismuth program. First, an expansion of the previously

proposed OPAL paradigm is explicitly formalized as the exchange of questions for an-

swers through a question-and-answer system that incorporates verified attributes for

proposed questions. Next, the motivation and procedure for creating and verifying

attributes of code is detailed, and the interface for a two-way peg is specified. Finally,

Bismuth and the related considerations associated with storing information and value

on a blockchain are discussed.

4.1 “Sending the code to the data”

Imagine a scenario in which the City of Boston wants to construct a new subway line.

The city hires a team of forward-thinking city planners and engineers to design the

new subway line—a team that recognizes the benefits of data-driven decision making.

In order to guide their decision making, the team brainstorms and compiles a list of

questions. The team wants to know: What is the distribution of income for Boston

subway riders? Which current subway stops are most over-utilized? What is the

distribution of time spent on the subway for riders originating from South Boston?

Answering the questions posed by the team of city planners and engineers ques-

tions requires historical ridership data (e.g. the peak number of riders per day for each

station, the average distance traveled by a rider, etc.) for subway users in the Greater

Boston area. Luckily, the Massachusetts Bay Transportation Authority (MBTA) has

collected and stored ridership data spanning the past five years. Given that the rider-

ship data is already under the control of the MBTA, it is both unnecessary and risky

to release the raw data to the design team for the team to analyze itself. Instead,

the team members can convert their questions into code (represented as queries, com-

putations, and algorithms) and send the code (representing the original questions)

30

directly to the MBTA for the MBTA to execute on their behalf. The MBTA can

then compute answers to pertinent project questions and return the results to the

new subway-line design team.

However, this solution is overly simplistic. Despite possessing data on all subway

riders in the Greater Boston area, the MBTA has a responsibility to not simply

answer any question posed to it. Overly specific questions might leak sensitive data

by revealing the identities of individuals in the MBTA’s ridership dataset, even if an

attempt is made to anonymize the data. Other questions might inadvertently reveal

information that could be used in a discriminatory manner. Additionally, the MBTA

might be obligated under Massachusetts state law to withhold certain information

from inquiries, and would therefore be breaking the law by answering questions that

elicit this protected information. For the MBTA to responsibly protect its data from

misuse, and to ensure that it remains compliant with city, state and federal law, it

should only answer certain questions.

If the MBTA had preliminary knowledge about the expected characteristics of an

answer resulting from a given question, it would be trivial to determine whether or

not the question should be answered: if the characteristics of an answer are desirable,

respond to the question, otherwise, do not respond to the question. A characteristic

of an answer might be that the answer is anonymous. The associated question could

then be said to have a “privacy-preserving” attribute. Another question might have

the attribute that it is compliant with Massachusetts state law, so answering the

question is legal in the State of Massachusetts.

Instead of simply asking arbitrary questions, the subway design team could send

the MBTA only questions with acceptable attributes. What is considered “accept-

able” would be defined by the data owner, domain area, or particular application on

a case-by-case basis. In the case of providing data insights for the construction of

a new subway line, the MBTA could specify that it will only respond to questions

which are (1) non-discriminatory, (2) compliant with Massachusetts state law, and (3)

preserve the anonymity of any one individual’s travel patterns. Any questions asked

about datasets held by the MBTA will not be answered unless they have verified

31

attestations asserting all three attributes.

To ensure the credibility of an attribute associated with a question, the attribute

must be attested to by a trusted and qualified party. For example, a lawyer from the

American Civil Liberties Union (ACLU) could attest to the non-discriminatory nature

of a question, a privacy expert could attest to the anonymity of the returned results,

and a Boston city attorney could attest to a question’s legality under Massachusetts

state law. The ACLU lawyer might make a mistake; the code she verifies might

in actuality be discriminatory. A verified attribute does not provide a mistake-free

guarantee. However, the more trusted parties that assert that a question is free

from discrimination, the more the question, and its associated anti-discriminatory

attribute, can be trusted. Likewise, although it is challenging to guarantee that the

results of a computation will be privacy-preserving, the more experts that come to

this conclusion, the more confident a data holder can be in executing the code against

sensitive data.

The uncertainty associated with each of a question’s attributes can be quantified

using a risk function. Each attribute has a corresponding risk function. The risk

function is a mathematical equation that takes a dataset’s schema as input, and out-

puts a probability p ∈ [0, 1] that the attribute holds for the given dataset. Rather

than asserting that a question is definitively privacy-preserving, a privacy expert can

instead attest to a risk function that computes the probability p that the question

produces anonymous results. This risk function might compute p a normalized value

directly proportional to the number of unique rows in the dataset that the code is

executed against. In other cases, the risk function might reduce to a binary classi-

fication. For example, the risk function associated with an attribute asserting the

legality of a particular question might reduce to p = 0 if the dataset includes data

from citizens of the European Union, else p = 1.

This model is highly scalable. Publishing both the human-readable and computer

code representation of questions, along with their verified attributes, enables other

parties with similar use cases to re-use the same questions against different datasets.

Publicly releasing the questions asked by the Boston subway design team allows other

32

cities contemplating similar transportation expansions to productively benefit from

the team’s work. If San Francisco wants to expand the Bay Area Rapid Transit

(BART) system, the city’s officials can re-use many of the same questions answered

to help guide the design of the Boston subway expansion. The city officials can

examine the attributes associated with the pre-existing questions and determine if

they want to request additional attestations of the attributes, or if certain questions

require new attributes specific to their use case. The officials might decide that they

are satisfied with the non-discriminatory attestation provided by the ACLU lawyer

and the privacy-preserving attestation supplied by the privacy expert, but would like

a University of San Francisco School of Law professor to attest to the legality of the

question under California state law. The updated questions can then be sent to the

stewards of the BART ridership data to generate Bay Area-specific answers.

4.2 Verified attributes

Verified attributes represent the assertions that a trusted party makes about a ques-

tion. An attribute is verifiable if the party providing the attestation can be provably

linked to the assertion of the attribute. A digital signature is a mathematical scheme

for demonstrating the authenticity of digital messages and documents, and be used as

an efficient and secure tool for linking trusted parties to verified attributes. A valid

digital signature proves:

• Authentication: the document was signed by a known party

• Non-repudiation: the party cannot deny having signed the document

• Integrity: the document was not altered in transit

Consider a dataset that contains mobile phone metadata on the phone calls and

text exchanges between 9 million of Orange’s customers in Senegal between January

1, 2013 and December 31, 2013.1 This data can be productively and beneficially

used; for example, mobile phone metadata can be used to understand traffic patterns

1This example is directly motivated by the D4D-Senegal challenge, an open innovation data
challenge on anonymous call patterns of Orange’s mobile phone users in Senegal. The challenge aimed
to use data to aid in socio-economic development and to improve the well-being of the Senegalese
population [de Montjoye et al., 2014].

33

or the propagation of malaria across a population. However, to ensure responsible

usage the computational social science and mobile phone researchers analyzing the

Orange data should not necessarily receive direct access to the raw data. Even if

the records are pre-processed and anonymized, the records are still vulnerable to de-

anonymization. Instead, the researchers can propose the questions that they would

like to investigate, and the associated queries, computations and algorithms. Trusted

parties (a consortium of telecommunication companies, a research committee focused

on data anonymization techniques, etc.) can then assign attributes and associated risk

functions to each of the researchers’ questions, e.g. this question is privacy preserving

given that the dataset has more than N = 106 unique customers represented and the

timestamps of the records involved in the question span at least three months. In

this example, the attribute being verified is that the question is privacy-preserving,

and the risk function (which calculates the probability that the attribute is true for

any given dataset based on the dataset’s schema) simplifies to:

p =

 1 if N ≥ 106 AND endTimeInDays - startTimeInDays ≥ 90 days

0 otherwise

JSON Web Documents (JWD). A JWD holds optionally signed and/or en-

crypted JSON data for storage, retrieval, transmission and display. JWDs provide

an ideal container for storing questions and their associated attributes: multiple sig-

natures can be added to the same payload, tampering with the data stored within

a JWD invalidates the signatures, and a JWD can specify an expiration time after

which it is invalidated. The most common JWD signing algorithms are HMAC +

SHA256, RSASSA-PKCS1-v1 5 + SHA256, and ECDSA + P-256 + SHA256.2 RSA

and ECDSA are examples of asymmetric cryptography, also known as public key

cryptography, which uses public and private keys to encrypt and decrypt data. An

asymmetric key scheme enables third parties to validate information signed with a

private key using the associated public key.

2The specifications for JSON Web Tokens (JWTs), a related URL-safe means of represent-
ing claims between parties, defines additional algorithms for signing. RFC 7518: available at
https://tools.ietf.org/html/rfc7518section-3.

34

{

"payload": <payload contents>,

"signatures": [

{

"protected": <integrity-protected header 1 contents>,

"header": <non-integrity-protected header 1 contents>,

"signature": "<signature 1 contents>"

},

...

{

"protected": <integrity-protected header N contents>,

"header": <non-integrity-protected header N contents>,

"signature": "<signature N contents>"

}

]

}

Listing 4.1: Sample JSON Web Document (JWD).

Attribute attestations are located in the protected header. This design allows

multiple trusted parties to each sign the same payload, as the payload includes only

information inherent to the question itself (i.e. the question’s executable code, title,

description, asking price, etc.) and to add only the attributes that they individually

attest to with their respective signatures. Section 5 provides details about the JWD

payload properties included in Listing 4.2.

{

"payload": {

"qid": "fa280399-7ef8-47d8-908c-c397af690e46",

"language": "Python",

"code": "import math... class DecisionTree... return score...",

"version": "0.0.1",

"title": "Credit Worthiness Predictor using a Decision Tree

Classifier",

35

"description": "Returns the credit worthiness of a loan applicant.",

"type": "classifier",

"ask": "25.10",

"cur": "USD",

},

"signatures": [

{

"protected": {

"Complies with the Equal Credit Opportunity Act of 1974 (ECOA)":

{

"function":
∏
t∈T

it, T=[race, color, religion, national origin,

sex, marital status, age, receives public assistance],

it =

 1 if if no dataset field reveals trait t

0 otherwise

"prose": "MUST NOT have any fields that indicate race, color,

religion, national origin, sex, marital status, age, or if

the individual receives public assistance."

}

}

"header": <non-integrity-protected header 1 contents>,

"signature": "<signature 1 contents>"

}

]

}

Listing 4.2: Credit worthiness question with verified attributes.

4.3 Two-way peg

By definition, a question-and-answer data exchange is a data-driven relationship.

Employing smart contracts as the primary mechanism for administering the data-

driven interactions between parties provides cryptographically enforceable agreements

governing the exchange of questions, answers, and payments. Working under the

assumption that the schemas for all available datasets and all questions’ attributes

36

and associated risk functions are publicly accessible, recording question and answer

interactions on a blockchain allows parties outside of the exchange to observe—

• which questions are being asked,

• the attributes of these questions, and

• the likelihood that a particular attribute holds in any given instance

—all calculated using the schema of the dataset specified in the question as input to

the attribute’s risk function.

In an effort to build a blockchain-agnostic system, the exchange of questions and

answers occurs primarily outside the context of a blockchain. This design enables a

standardized protocol for question-answer data exchange that is independent of the

pegged blockchain. Bismuth supports using different blockchains interchangeably by

specifying a standard interface for the two-way peg. The interface has no knowledge of

how any particular blockchain implements transactions or data storage. Instead, Bis-

muth specifies three generalized mechanisms for pegging question-answer interactions

to blockchain transactions:

• use the same keys for signing data on- and off-chain;

• mirror on- and off-chain state transitions;

• process payments for questions through transfer of value on the blockchain.

4.3.1 Elliptic curve digital signatures

Ethereum secures its network using elliptic curve cryptography, in particular, the

Elliptic Curve Digital Signature Algorithm (ECDSA) with secp256k1 (the parame-

ters of the ECDSA curve).3. When a participant in the Ethereum network sends a

transaction, the transaction must be signed with the sender’s private key. Signing a

transaction with a private key ties the transaction to the private key’s corresponding

Ethereum address, i.e. the account of the sender.4 Knowing only the public key asso-

ciated with an Ethereum account does not enable another user to send a transaction

3Bitcoin also uses secp256k1; it is defined in Standards for Efficient Cryptography (SEC) (Certi-
com Research, http://www.secg.org/sec2-v2.pdf)

4A side effect of signing a transaction (in the Ethereum Frontier release) is the revelation of the
public key associated with the originator of the transaction.

37

from that account. This is important because transactions cost gas (drawn from the

sender’s account balance) and can transfer ether out of the sender’s account. A simi-

lar key-based cryptographic protocol exists for virtually all smart contract platforms,

albeit the specific curve employed can vary, as can the signing algorithm used.

Signing both JWDs (off-chain) and blockchain transactions (on-chain) using the

same keys provably associates the on-chain and off-chain information, thereby tying

an entity’s off-chain identity to a corresponding blockchain address. This is a desir-

able property when it is important to maintain consistent digital identities. Using

the same keys to sign both the JWDs involved in the exchange of questions and

answers and the blockchain transactions that deploy the corresponding smart con-

tract and initiate susbequent interactions with the contract, pegs the two activities.

Any information that is conveyed by a JWD can be associated with an immutable,

time-stamped blockchain transaction, and both the on-chain and off-chain data are

cryptographically proven to be generated by the entity in possession of the common

private key.

Dual integration: Dual integration is the process of integrating information

that exists outside of the context of a blockchain network with information stored

on the blockchain. Dual integration provides an alternative mechanism for associ-

ating on- and off-chain signatures using keys. Instead of using the same keys for

signing both JWDs and blockchain transactions, a dual integration enables a party

to use two different sets of key: one set of keys to signs JWDs and one set to sign

blockchain trasnactions. The two sets of keys are cryptographically associated using

dual integration:

1. deploy a smart contract (from an unrelated blockchain address) that is capable

of storing two checksums

2. produce the checksums (also known as “hashes” or “digital fingerprints”) of the

public keys associated with each of the keypairs (the keypair used for signing

JWDs and the keypair used for signing blockchain transactions)

3. send a transaction storing the checksums to the smart contract

Although dual integration is more complex than simply using the same keys to

38

sign both on- and off-chain data, it has two advantages: (1) the proof that the

signer of a JWD and a blockchain transaction are the same party is concealed and

only selectively revealed, and (2) a different signing algorithms and/or curve can

be used to sign a JWD than is required by a specific smart contract platform for

signing blockchain transactions. The association between the signer of a JWD and

a blockchain transaction is concealed because it is impossible to associate a party’s

blockchain transactions to the party using only information gained from the party’s

JWD signatures, unless the party that signed the JWD reveals a public key that

produces the same hash as the checksum stored in a previously deployed contract.

Once this public key is revealed (provably associating the public key with the party

that presents it) any past, present or future blockchain transactions sent using the

party’s other keypair can be provably linked through the revealed public key. The

signing algorithms and/or curves used by each set of keypairs can be different because

all that is needed to associaed the keypairs is a smart contract that stores the hash

of the public key associated with each of the keypairs.

4.3.2 Parallel state transitions

Pegging on- and off-chain activities is simplified when activities conform to specific

states, linked via defined state transitions.

A simple illustration of question-and-answer exchange involves two parties: a data

provider which holds data in its custody, and a questioner who asks questions of the

data provider by requesting that the provider run certain code against the provider’s

protected data. A typical interaction consists of a series of discrete steps:

1. The questioner creates a question by specifying pre-vetted code to execute

against a particular dataset, payment for the cost of execution, and any other

relevant information.

2. The questioner sends the prepared question to the data provider.

3. The data provider receives the question and validates that it has access to the

requested dataset. If not, the data provider rejects the question. If the data

provider does have access to the requested dataset, the provider calculate the

39

risk function for each of the question’s associated attributes to determine the

likelihood that each attribute holds if the question is executed against the re-

quested dataset. Based upon the data provider’s defined thresholds specifying

the attributes required to protect for the specified dataset, the provider deter-

mine if the question is safe to answer.

4. If the question is safe, the data provider executes the code against the specified

dataset and sends the computed answer to the questioner.

5. The data provider receives payment for the computation.

An protocol that pegs the exchange of questions and answers to blockchain trans-

actions, should faciliatate a blockchain transaction corresponding to each of the stages

in the above interaction.

Smart contract state transition system. A smart contract can be built as

a state transition system. As an illustration, the human-readable smart contract

code for SingleDataProviderEscrowContract is presented as a state transi-

tion system in Figure 4-1 (complete code provided in Appendix A).5 State transitions

within a smart contract can be triggered by sending a valid message or transaction to

the address of a contract account. Every time a contract account receives a message

or transaction its code activates, and this code can update the contract’s state.

5Ethereum has four special-purpose, contract-oriented languages: Serpent (Python inspired),
Solidity (JavaScript inspired), Mutan (Go inspired) and LLL (Lisp inspired). Each of these
high-level languages compile down to low-level Ethereum Virtual Machine (EVM) code. The
SingleDataProviderEscrowContract and all other smart contracts presented in this thesis
are written in Solidity.

40

Figure 4-1: Smart contracts as state transition systems.

The SingleDataProviderEscrowContract first defines the valid set of states:

Created, Completed, and Inactive, and initializes its starting state to Created.

enum State { Created, Completed, Inactive }

State public state = State.Created;

Listing 4.3: Declaration of valid states.

Events are used in Ethereum to facilitate communication between smart contracts

and their user interfaces, and can be defined to correspond to state transitions. The

SingleDataProviderEscrowContract begins in the Created state when it

is first deployed by a questioner. After a data provider executes the questioner’s

requested algorithm against the specified dataset, the data provider sends a hash

of the results to a function in the smart contract. This function call triggers an

AlgorithmExecuted event and a state change from Created to Completed.

After the algorithm is executed and the results are delivered to the questioner, the

data provider is able to retrieve the agreed upon payment for the computation from

the smart contract (for additional explanations on this pull payment system, refer

to Section 4.3). Following successful payment withdrawal, a PaymentDelivered

41

event is emitted and the contract transitions from the Completed to the Inactive

state.

event AlgorithmExecuted(address target, address questioner, string

resultsUri);

event PaymentDelivered(address from, address to, uint amount);

Listing 4.4: State transition events.

Modifiers can be defined to ensure that state transitions occur as anticipated,

resulting in improved code readability and heightened defense against race condition

attacks such as the reentrancy and transaction ordering dependence attacks.6 In this

contract, a modifier is declared to validate that the contract is in an expected state

prior to the execution of any modified functions.

modifier inState(State _state) {

require(state == _state);

_;

}

Listing 4.5: Assertions on smart contract state.

Functions that include the inState modifier will not execute if the current state

of the contract does not match the state specified by the modifier. In order to call

the confirmAlgorithmExecuted function, the contract must be in the Created

state. This provides both a sanity check and can aid in protecting against race

condition attacks. If the contract is in the proper state, the function will begin

execution and the contract’s state can be updated—here, the state transitions from

6A danger of calling external contracts is that they can take over control flow and make changes
to data that the caller was not expecting. Reentrancy attacks exploit functions that can be called
repeatedly. An attacker calls the vulnerable function multiple times, before previous invocations have
completed, causing the different invocations to interact in destructive ways. A reentrancy attack
involves executing malicious code within a single transaction. A transaction ordering attack exploits
the race condition inherent to blockchains: the order of transactions within a block is vulnerable to
manipulation. A user might therefore assume a particular state of a contract which does not hold
when her transaction is processed.

42

Created to Completed and emits an AlgorithmExecuted event.

function confirmAlgorithmExecuted(string _resultsUri)

onlyTarget()

inState(State.Created)

public

returns(bool success)

{

resultsUri = _resultsUri;

AlgorithmExecuted(msg.sender, questioner, resultsUri);

state = State.Completed;

return true;

}

Listing 4.6: Confirmation of algorithm execution.

After the contract reaches the Completed state, the funds stored within it can

be withdrawn (the value associated with the contract address). If the withdrawal

is successful, a paymentDelivered event is emitted and the contract reaches the

Inactive state.

function withdraw()

onlyTarget()

inState(State.Completed)

public

returns(bool success)

{

uint payment = amount;

amount = 0;

if (msg.sender.send(payment)) {

PaymentDelivered(questioner, msg.sender, amount);

state = State.Inactive;

return true;

} else {

amount = payment;

43

Figure 4-2: Parallel state transitions on- and off-chain.

return false;

}

}

Listing 4.7: Withdrawal pattern for payments.

Developing smart contracts as state transition systems makes the code substan-

tially easier to reason about. Additionally, this design can more clearly map directly

to real-world interactions.

As demonstrated in Figure 4-2, this exchange can be represented as a state tran-

sition system with a one-to-one mapping to the previously detailed states of the

SingleDataProviderEscrowContract.

In order to initiate the execution of an algorithm against a dataset in the data

exchange, a questioner initializes a new smart contract. Smart contracts are created

by sending a new transaction to the 0x00000000000000000000 address with the

contract’s EVM code included in the data field.

44

Code can access the value, sender, and data of an incoming message (msg.sender,

msg.value, and msg.data respectively), as well as block header data. In the

initializer for SingleDataProviderEscrowContract, the deployer of the con-

tract (msg.sender) specifies values for each of the four initialization parameters

(algorithmUri, target, dataId and amount) in the data field, and the de-

ployer herself is set as the questioner. The algorithmUri corresponds to the

Uniform Resource Identifier (URI) where the algorithm to execute can be retrieved

from; the target corresponds to the address of the data provider that holds the

relevant data; the dataId identifies the specific dataset; and the amount repre-

sents the offered payment for executing the algorithm against the specified data. The

payable modifier indicates that ether may be sent to the function (i.e. msg.value

can be greater than zero).

function SingleDataProviderEscrowContract(string _algorithmUri, address

_target, string _dataId, uint _amount)

payable

{

questioner = msg.sender;

algorithmUri = _algorithmUri;

target = _target;

dataId = _dataId;

amount = _amount;

}

Listing 4.8: Smart contract initialization.

Trustless decentralized escrow. Smart contracts provide a powerful mecha-

nism for trustless and decentralized escrow. Contract accounts hold balances in the

same way that externally owned accounts hold balances, so can act as provably secure

escrow providers. A function in the contract code—the initializer and/or some other

function(s)—can be designated as payable, which allows ether to be sent to the func-

tion in a transaction or message. This ether is then credited to the contract’s account.

45

A questioner who deploys a smart contract can fund the contract’s account with

enough ether to cover the cost of executing an algorithm in the question-and-answer

system. By simply examining the publicaly visible smart contract account associated

with a given question, the data provider can ensure that payment for the algorithm

has been reserved, and is therefore guaranteed upon returning an answer. If some con-

dition must be met in order to withdraw ether from the contract account, the smart

contract is providing escrow. In the SingleDataProviderEscrowContract the

condition is an indication that the data provider has performed the computation and

returned the result to the questioner. Routing the payments associated with the ex-

change of questions for answers through the pegged blockchain further bolsters the

two-way peg.

4.3.3 Alternative state transition designs

The state transition conditions outlined are representative of a typical data exchange,

yet not entirely comprehensive. Bismuth aims to be flexible and to enable participants

in a question-and-answer system to specify contracts that model their anticipated real-

world exchange of questions for answers. To best accommodate this, Bismuth provides

multiple smart contracts that can be used to peg a particular question. The exact

state transitions coded into the various available smart contract might differ slightly,

though roughly all follow a similar lifecycle (starting with Created and ending in

Inactive). Appendix B: MultiDataProviderBidContract.sol is an exam-

ple of a more complex smart contract that accommodates multiple data providers and

incorporates a bid-ask mechanism. The state transitions associated with this contract

differ from those in SingleDataProviderEscrowContract, as an additional

state, Locked, is included to represent the point at which a payment price is settled

upon between the data providers and the questioner, and the funds are locked. As

exhibited in Figure 4-3, additional events are emitted in this contract that correspond

to behaviour involved in locking the contract, while the rest of the state transition

system remains identical to that of the SingleDataProviderEscrowContract.

46

Figure 4-3: Bid-ask state transition system.

4.3.4 Blockchain integration patterns

In the design presented, Bismuth integrates with a pegged blockchain by deploy-

ing independent smart contracts for each instance of question and answer exchange.

Independent smart contracts represent a fully decentralized solution, where each ques-

tioner is directly responsible for, and has full control over, the two-way peg associ-

ated with their question. Questioners can exercise this control by choosing the smart

contract that they associate with their question. In the SingleDataProvider-

EscrowContract, the contract provides escrow functionality and only one data

provider is involved in the exchange. A question could instead require computations

from multiple data providers, or a questioner might opt not to use the contract for

escrow, preferring an alternative payment mechanism. The negative implications of

this approach are (1) that the size of the bytecode associated with the smart con-

tracts might be large—especially for more complex or feature-laden contracts—and

therefore expensive to deploy, and (2) the available smart contracts must be hosted

somewhere. However, independent smart contracts still provided more benefits than

the alternative patterns considered.

47

Smart contract factory. An alternative to deploying independent smart con-

tracts is to create a smart contract “factory”, which holds the bytecode associated

with different smart contracts. Instead of a questioner retrieving the smart contract

bytecode that she would like to associate with her question and deploying it herself,

the smart contract factory could host all of the available smart contract types, and

she could simply send payment and request the factor to deploy a new contract on

her behalf with specified parameters (algorithm URI, data provider address, dataset

identifier, etc.). This approach solves the hosting issue, as all participants in the

Ethereum network could see the available contracts as data stored on the blockchain,

yet introduces a source of centralization. Someone would need to be responsible for

deploying and maintaining this original factory smart contract.

Sending data with transactions. An additional option is to include the rele-

vant open data exchange information as data in the transaction, rather than embed-

ded within a smart contract. A transaction could be sent directly from a questioner

to a data provider with the value set as the cost of the algorithm’s execution, and the

algorithm and dataset identifiers included as additional data. This is a smaller trans-

action, so would require less gas to send. However, it severely limits the potential

functionality provided by Bismuth: the complexity associated with a question involv-

ing input from multiple data providers grows immensely; payment would need to be

provided up-front—there could be no escrow option; adding additional functionality

would be challenging, if not impossible.

4.4 Storing data and value on the blockchain

In a public blockchain, all account data (including contract code) and all transactions

are visible to every participant in the network. Beginining from the genesis block,

each discrete state can be replayed, and it is impossible to remove information from

the blockchain’s history. The visibility of information on a public blockchain greatly

effects Bismuth’s design.

48

4.4.1 Answer verification and payment

Listing 4.6 hides an important detail; to call the function which confirms execution of

the requested algorithm, the function takes the URI from which the computed results

can be retrieved. The URI is required to transition the smart contract from the

Created state to the Completed state. The contract acts as an escrow provider,

so there must be some condition which the data provider can satisfy to enable the

provider to withdraw payment upon answering the question posed by the questioner.

The satisfiable condition should provide a guarantee that the data provider did in

fact execute the requested algorithm and send the answer to the original questioner.

The difficulty arises in devising a mechanism in which no party is incentivized to act

dishonestly: the data provider does not try to retrieve payment without executing

the code, or without sending the results to the questioner, and the questioner does

not try to prevent the delivery of payment to the data provider after receiving the

answer.

The simplest solution is arguably be to send the computed answer itself as input

to the function. This solution virtually guarantees that the question was answered,

as the answer is recorded on the blockchain for all network participants to verify—all

transactions, as well as the current and historical states and account data, are vis-

ible to every participant in the Ethereum network. Additionally, the questioner is

guaranteed to receive the result, as the result is publicly available on the blockchain.

However, this solution has two fundamental flaws. First, there is a cost associated

with the size of a transaction and the amount of data that it adds to the blockchain.

If the answer includes a large number of bytes, returning the answer might be pro-

hibitively expensive. Second, in the context of a question-and-answer system that

charges questioners for sending questions to data providers to answer, publicly pro-

viding the answer disincentivizes data providers participation. Once a data provider

answer a question and reveals the data on the blockchain, no questioner will pay to

ask the question again as the answer is already publicly available. Instead, only the

original questioner should receive the answer.

49

The smart contract could instead require that the data provider send a hash of

the computed results. This gives a weak guarantee that the question was answered

(the guarantee is weak because an arbitrary string of characters could be provided as

a hash, rather than a legitimate hash), and no guarantee that the questioner received

the original computed results. However, the approach resolves the issue of the public

visibility of computed answers on the blockchain (assuming the data providers uses a

secure, one-way hashing algorithm), and improves upon the issue of storage size, as

a hash of the results will have a smaller size than the raw results.

Bismuth utilizes neither of the aforementioned strategies, and instead requires the

URI from which to retrieve the results. The URI is encrypted using the questioner’s

public key so that only the original questioner knows where to retrieve the answer. Al-

though this strategy still provides only a weak guarantee that the algorithm was exe-

cuted and the results were delivered to the questioner, there is a clearer tie between the

delivery of results and the provided argument to the confirmAlgorithmExecuted

function. Section 6 addresses how Bismuth provides the primitives required to incor-

porate a reputation management system into the question-and-answer system, which

would strengthen the guarantee that the data provider did in fact make the answer

available at the provided URI—questioners could report data providers that fail to

make the answer available at the URI they provide. The benefits of sending an

encrypted URI additionally include:

• only the original questioner can access the results, as the address from which to

retrieve the answer is encrypted using the questioner’s public key;

• if the URI is compromised for some reason (e.g. the hashing algorithm used is

broken), the answer located at the URI can be moved;

• in the majority of anticipated cases, the size of an encrypted URI is smaller than

a hash of the results, reducing the associated storage costs;7

• delivery of the answer is managed directly through the blockchain, rather than

7To further reduce storage costs, Ethereum allows events to be employed as a cheaper form of
storage. When an event is emitted, the corresponding logs are written to the blockchain. These logs
are inaccessible to other contracts, but can be viewed by outside participants. The logs cost only 8
gas per byte, whereas contract storage costs 20,000 gas per 32 bytes.

50

through some auxilirary protocol.

Of course, none of these proposed schemes ensure that the data provider answered

the question correctly, whether though unintentional error or malicious deception. A

method for verifying the accuracy of returned answers without access to the raw

data used to generate the answers is an incredibly interesting question, yet highly

complex and out of the scope of this work. The aforementioned reputation system

might additionally prove beneficial in detecting data providers who consistently return

questionable answers.

From answer delivery to payment. Listing 4.7 demonstrates functionality to

pay data providers via the withdrawal pattern. After the contract has reached the

Completed state, the data provider is eligible to collect payment from escrow for

answering the posed question. No input is required to call this function; the inState

modifier confirms that the contract is “completed”, i.e. that the questioner has re-

ceived an answer and that the data provider is therefore eligible to collect payment.

The withdrawal pattern utilizes pull payments in place of push payments, protecting

against malicious behavior if the data provider address is tied to a malevolent contract

account. When a contract receives funds, it invokes a special function on the contract,

called a fallback function. This behavior gives the contract control over the control

flow of the transaction that invoked it, and could potentially allow contract code at

the recipient account to act maliciously. The possibility is avoided by requiring data

providers to withdraw their payment, rather than using the smart contract to send

payments.

51

5 Integration with the OPAL server

The OPAL server is a working implementation for “sending the code to the data”.

OPAL is designed with a plugin architecture to allow users of the software to easily

customize behavior (e.g. support for interchanging different distributed ledgers im-

plementations to provide the two-way peg). The system is composed of document

objects represented by signed JWDs, and nodes which interact with these objects.

This section defines the OPAL objects and nodes, and details how they interact with

one another. It concludes with a discussion of how Bismuth integrates into the OPAL

server.

5.1 OPAL documents

Documents in OPAL are represented by signed JWDs—a data storage format that na-

tively supports digital signatures used to authenticate the document contents. OPAL

JWDs support multiple signing algorithms (ES256, ES384, ES512, RS256, RS384,

and RS512) and multiple signers (each of which can independently select a signing

algorithm with which to sign). OPAL includes four basic document types: Question

Documents, Smart Contract Documents, Query Transaction Documents,

and Query Result Documents, each of which can contain some subset of five

common payload properties.

uuid Globally unique identifier

uri Location of the document

iss Issuer of the document

iat UNIX timestamp in seconds

exp UNIX timestamp in seconds

Table 5.1: Common OPAL payload properties.

52

5.1.1 Question document

A Question Document represents a question as executable code, a plain text de-

scription, and a question identifier. The executable code can be represented in any

language used for computation (C++, R, Map-Reduce, etc.); the language of the

code is specified in the document. A Question Document can additionally specify

a certain smart contract that must be used to facilitate its two-way peg, as well as

pricing information for the cost of executing the question.

qid REQUIRED question identifier

language REQUIRED media-type of executable code

code REQUIRED executable code

version REQUIRED version number

title RECOMMENDED human recognizable name for the question

description RECOMMENDED explanation of the meaning of the results

type RECOMMENDED type of question (aggregate, etc)

cid OPTIONAL smart contract identifier

ask OPTIONAL asking price of the question

cur OPTIONAL currency of the asking price

Table 5.2: Question Document payload properties.

5.1.2 Smart contract document

A Smart Contract Document holds smart contract code (e.g. EVM bytecode)

to deploy to a smart contract platform to provide the two-way peg. The document

can be written to support any smart contract platform, and used with any smart

contract language.

53

cid REQUIRED smart contract identifier

platform REQUIRED smart contract platforms (Ethereum, etc.)

language REQUIRED language of source code (Solidity, etc.)

code REQUIRED source code for the smart contract

version REQUIRED version number

title RECOMMENDED human recognizable name for the smart contract

description RECOMMENDED explanation of the behavior of the smart contract

Table 5.3: Smart Contract Document payload properties.

5.1.3 Question transaction document

A Question Transaction Document represents the information associated with

a specific instance of asking a question.

tx REQUIRED transaction identifer

qid REQUIRED question identifier

iss REQUIRED URI or identifier of the party asking the question

providers REQUIRED array of objects describing the data providers

cid REQUIRED contract identifer

qp OPTIONAL JSON object representing question parameters

rt OPTIONAL response type requested by the questioner

cb OPTIONAL URI for callback

total OPTIONAL total value of smart contract

cur OPTIONAL currency of the ‘total’ value

Table 5.4: Question Transaction Document payload properties.

5.1.4 Question results document

A Question Results Document contains the computed answer to a question.

54

content-type REQUIRED value indicating the format of the ‘results‘

results OPTIONAL data representing the results

Table 5.5: Question Results Document payload properties.

5.2 OPAL nodes

A node is a computer that runs a distributed ledger client software, which validates

or rejects new incoming data. OPAL supports four node types, and a client can run

one or more nodes.

• Question provider node. A Question Provider node accepts question

proposals, signs questions (at the request and discretion of an authorized user),

and publishes all questions with search and changes endpoints. The Question

Provider acts as a trusted party.

• Contract provider node. A Contract Provider node publishes smart con-

tracts that can be used to facilitate the two-way beg between the exchange of

questions and answers and blockchain transactions.

• Data provider node. A Data Provider node is an entity that owns or controls

dataset that is available for questions to be asked of it. A Data Provider node

signs and publishes information describing the schema of their available datasets.

• Questioner node. A Questioner node is the node that asks questions. The

Questioner signs a document indicating the targeted data providers and dataset,

question and pegged smart contract, and any additional supporting information

required.

The OPAL architecture permits each type of nodes to engage in a specific type

of activity. Questions can be proposed by any authorized party; a proposed question

is simply an unsigned Question Document payload. A proposed question can

optionally include proposed attributed for a Question Provider node to attest

to.

Question Provider nodes act as trusted parties responsible for signing at-

55

tributes associated with proposed questions. Question Provider nodes examine

the proposed questions (which may already included suggested attributes), and can

attest to one or more of the suggested attributes, or attest to a new attribute. Each at-

testation must carry an associated risk function (as defined in Section 4). A proposed

question that is signed by a Question Provider node is a signed Question

Document. As an example, a Question Provider node run by a US federal

bank regulatory agency might examine all questions proposed by banks operating in

the United States. If a bank proposes a computation to calculate leverage ratio, the

Question Provider node run by the federal bank regulatory agency could attest

that the calculation is complaint with US federal capital requirement regulations.

The number and type of signatures required for a Question Document to be

valid to execute against a protected dataset might depend on the domain area, the

particular dataset, the attributes attested to, the signers, or a number of other factors.

Each Data Provider node determines which vetted questions it will answer, based

on criteria it defines.

A Contract Provider node is responsible for signing smart contract code that

can be used to provide a two-way peg associating question and answer interactions to

blockchain records. Authorized parties propose smart contract for different smart con-

tract platforms, represented as unsigned Smart Contract Document payloads,

written in whatever language is supported by the particular platform. Contract

Provider node can then verify that the smart contract code is safe and behaves as

intended by signing the proposed Smart Contract Document payload.

In order to ask a Data Provider node a question, a Questioner node must

invoke a Question Transaction Document with the question and other neces-

sary information. A Question Transaction Document associates a Question

Document with a Smart Contract Document, setting up the two-way peg mech-

anism, and is then sent to a Data Provider node to be executed. The results of

the question’s execution are returned to the Questioner in a Question Results

Document.

56

5.3 OPAL interactions

In the classical instantiation of a question-and-answer system, one party acts as the

questioner and a different party asks as the answerer. The inclusion of pre-vetted ques-

tions and verified attributes necessitates two additional parties: one party to propose

questions and another to provide relevant attestations. These parties can be different

entities, or a single entity running multiple services and acting as multiple nodes. As

in the aforementioned example, a commercial bank could use a pre-vetted leverage

ratio calculation to compute leverage ratios using the bank’s own data, thereby acting

as both a Questioner and a Data Provider.

Each permutation of entities and OPAL nodes implies a unique interaction. When

a Questioner and a Data Provider are different entities, the Questioner is

taking advantage of the data collected and stored by another entity to answer a

question relevant to the Questioner. In this scenario, the Questioner benefits

from OPAL in that the Questioner is able to answer questions for which it does

not have the data necessary to arrive at an answer. The Data Provider benefits

from OPAL by agreeing to only execute algorithms that have been pre-vetted by

a Question Provider to include some set of verified attributes, such that the

Data Provider is aware of the results of executing the Questioner’s algorithm

and returning the answer—i.e. that the result is free from discrimination, privacy-

preserving, or compliant with a given regulation or piece of legislation. Additionally,

the OPAL system provides guarantees regarding the exchange of payments for answers

and the validity of provided attestations through the use of Bismuth. Bismuth is

able to provide these guarantees when provided with a smart contract, supplied by a

Contract Provider node, capable of supporting the specific question-and-answer

exchange through a two-way peg.

5.3.1 Verified computations

Another interesting permutation of entities and OPAL nodes occurs when the Questioner

node and the Data Provider node represent the same underlying entity. In this

57

scenario, the Questioner technically has access to the data necessary to answer a

particular question (as the Questioner is also the Data Provider), seemingly

implying no use for a question-and-answer system as proposed. However, OPAL re-

mains highly relevant through its support for verified computations. Similarly to how

a trusted party can attest to a question being non-discriminatory—through asserting

a non-discriminatory attribute associated with a given question—a trusted party can

likewise attest to the correctness of a question. In the question-and-answer system

proposed, a question is represented in code as an algorithm, computation or query. A

correct algorithm, computation or query is one which consistently returns a result as

specified. A verified computation is therefore a computation which has been vetted

for correctness. Two simple examples clearly illustrate the concept:

1. In the previous example of a commercial bank using a pre-vetted leverage ratio

calculation to compute ratios using its own data, the bank is acting as both a

Questioner and as a Data Provider. OPAL is useful in this scenario because

it exposes the code behind the leverage ratio calculation to the outside world,

enabling the code to be verified for correctness and compliancy with federal banking

regulations. This process permits the bank to publicize its compliancy, and allows

the correctness of the calculation to be verified by outside parties—both of which

facilitate increased transparency in the banking sector.

2. An alternative scenario is one in which an entity holds the data required to answer

a known question, but does not know how to go about answering the question.

Consider a Fitbit user who has collected large amounts of personal health data

through his/her Fitbit device. The user may wish to calculate his/her propensity

for some ailment or injury based upon the collected data, but does not want to

reveal the data to an outside party. With an OPAL question-and-answer system,

the user can select the computation corresponding to his/her question that, for

example, has been verified as correct by Harvard Medical Center scientists, and

compute the answer to the question without needing to reveal his/her health data

to any outside party.

58

5.4 Bismuth integration

Bismuth is incorporated into the OPAL server as a library providing multi-blockchain

support. It includes standard smart contract implementations that are generally ap-

plicable for pegging standard OPAL exchanges, such as the SingleDataProvider-

EscrowContract.sol and MultiDataProviderBidContract.sol contracts

provided in appendices A and B. The Bismuth library uses the adapter pattern to

support clients across multiple blockchains. These clients each implement the two-

way peg interface specified by Bismuth for their respective smart contract platforms.

The clients abstract out the differences between the underlying platforms, such that

a given operation is only either supported or not supported by a particular platform.

For example, in the case of the EthereumClient, the client provides a wrapper

around Ethereum’s standard Web3 JavaScript library to manage interactions with

the Ethereum blockchain, including the ability to directly deploy the smart contracts

used to peg the exchange of questions and answers. The Bismuth multi-blockchain

clients further support using the same keypairs on-chain as are used for signing data

within the OPAL system.

59

6 Open questions and future work

This thesis present a design, mechanism and program for verifying responsible data

usage, yet many open questions remain. These open questions provide the basis for

future work and investigation, and fall into three broad categories: (1) the use of

trusted parties, (2) verifying off-chain action, and (3) cryptographic protocols and

quantum computing.

6.1 Trusted parties

Particularly in the cryptography and cryptocurrency environments, trusted parties

are viewed as security vulnerabilities. A primary design goal for public blockchains

is achieving “trustless” cooperation and consensus. Apparent from the previous dis-

cussion of the OPAL question-and-answer system, trusted parties play a critical role

in verifying the attributes associated with questions. This work acknowledges that

the claim of ensuring responsible data usage through pre-vetted code designed to pro-

mote “safe” questions and answers is contingent upon the competency of the trusted

parties providing attestations of attributes. Unfortunately, the challenge of verify-

ing attributes is even more difficult than it initially appears when only considering

questions in isolation.

The difficulty arises from the often unexpected and unpredictable interactions

between questions. Anonymized datasets are most typically de-anonymized not be

cracking the underlying anonymization scheme, but rather by pulling in additional

data from other sources to add dimensionality to ostensibly “anonymized” dataset. A

question asked in isolation might be accurately represented by its verified attributes,

however, the original verification of the attributes might not well-account for how the

question could be combined with seemingly unrelated questions, potentially invalidat-

ing the risk functions associated with the attributes. This could result in the risk of

an attribute not holding true for a given dataset dramatically increasing. Even taking

60

into consideration all the currently available, pre-vetted questions when determining

the appropriate attributes and associated risk functions to assign to a proposed ques-

tion is insufficient. The pool of proposed questions grows over time, so any analysis

that considers the possible interactions with previously vetted code quickly becomes

outdated.

Luckily, setting an upper-bound on how out of date the analysis of a question’s

attributes might be is straight-forward. JWDs can optionally include an exp field

which provides an expiration time, after which the JWD is invalidated. The expiration

time chosen provides the upper-bound on how long a question can remain available

and valid in the context of the question-and-answer exchange before the JWD storing

the question (the Question Document) is invalidated and the question and its

attributes must be re-visited. At this time, the attributes can be re-evaluated taking

into consideration newly approved questions.

6.1.1 Formal verification

The ideal solution to replace trusted parties verifying attributes of the code being

executed against sensitive data is a robust formal verification system. An ideal for-

mal verification system would be able to deterministically analyze guarantees about

the results of executing a given piece of code on different dataset schema, taking

into consideration all previously analyzed questions to check for undesirable interac-

tions. Some work has been done in this area, in particular work verifying differential

privacy guarantees for interactive systems, but the research has a long way to go

[Tschantz et al., 2011].

6.2 Unverified actions off-chain

Hinted at in Section 4.4.1, the issue of verifying the off-chain actions taken by par-

ticipants in the question-and-answer system is significantly more challenging than

verifying their statements or on-chain actions. Digital signatures can provide secure,

cryptographic guarantees over messages and documents, yet these represent state-

61

ments rather than explicit actions. In comparison, a blockchain transaction is an

action. Technically, Bismuth pegs messages (such as hashes or encrypted values) and

signed JWDs to blockchain transactions, rather than pegging physical-world actions

involved in exchanging questions and answers to blockchain transactions. The chal-

lenge arises in matching signed messages and documents to physical-world actions as

rigorously as possible so that the corresponding blockchain transactions are accurately

represent physical-world behavior.

In Section 4.4.1, a data provider is able to receive payment for computing the

question’s code after providing the encrypted URI specifying where the questioner

can retrieve the results. However, unlike a digital signature, this does not provide a

verifiable guarantee. The data provider could provide any arbitrary value; no mech-

anism validates that (1) the provided value is properly encrypted, (2) the provided

value is in fact a URI, (3) the URI exists, (4) computed results are stored at the URI,

and (5) the computed results represent the accurate answer to the original question.

Some of the missing checks result from the public nature of computing on blockchains

and the resulting limitations on the type of data that can be processed, while some

might simply be intractable. On the other hand, guaranteeing that the questioner

will pay for their question is a more tractable concern due to the escrow abilities

offered by smart contracts which moves the off-chain payment action on-chain.

Answer verification presents an additional unsolved question. Ideally, upon re-

ceiving an answer the questioner should be able to verify that the answer is in fact

correct. However, this check is incredibly difficult to make without access to the raw

data. In the current design, the questioner must blindly accept the answer provided.

6.2.1 Reputation management system

Although not a complete solution, the concerns arising from unverified actions off-

chain can be mitigated with an effective reputation management system. A reputa-

tion management system would strengthen the claims made by participants in the

question-and-answer system by incorporating a participant’s historical actions and

behaviour. For example, if a data provider submits an invalid URI to a smart con-

62

tract peg and proceeds to withdraw payment, the questioner will soon discover that

the URI is invalid and the results are not available. The questioner can then report

the data provider’s bad behavior. Consistent use of digital signatures associated with

digital identities provides the primitives required for managing reputation. Good ac-

tors are incentivized to continue using the same digital identifiers so that their positive

reputations follow them, while bad actors are forced to constantly adopt new identi-

ties in an effort to shed bad reputations, resulting in a perpetually short transactional

histories—a possible warning sign for other participants.

6.3 Cryptographic guarantees

The work presented in this thesis relies heavily on cryptographic digital signatures.

Unfortunately, there are known flaws with the Elliptic Curve Digital Signature Al-

gorithm (ECDSA) implemented in both Bitcoin and Ethereum, in particular with

respect to resiliency against quantum computing attacks. Transactions are signed

using ECDSA, and when a transaction is sent the sender’s public key is revealed.

Quantum computer compromise ECDSA, making it easy to derive the private key

associated with a public key. It is highly possible that quantum computers will be

able to work faster than transactions can be confirmed. If signatures can be broken

faster than transactions can be confirmed, an attacker could sign a transaction that

spends coins from an account with a pending transaction before the original transac-

tion is ever accepted, possible draining the original sender’s funds. In Metropolis, the

next release of Ethereum, accounts will be able to specify their own security scheme

for validating transactions. The change permits opt-in, quantum-resistant mecha-

nisms, such as Lamport signatures, to be used to improve the security of Ethereum

transactions.

63

7 Conclusion

The OPAL paradigm, and the extensions presented in this thesis, enable the data

collected and stored by geographically disparate individuals, organizations, compa-

nies and governments to be productively utilized in a responsible manner through

the verified exchange of vetted questions and answers. Each individual, organiza-

tion, company and government represents a potential data provider with a unique

set of data and responsibilities—stemming from legal, ethical, and/or business re-

quirements—that the provider must maintain. Access to an open store of pre-vetted

questions enables data providers to be confident that the answers they provide are

safe from inaccuracy, abuse and misuse. Data providers can publicly commit to only

using their data to answer questions that conform to a high ethical and legal standard,

fostering an environment of responsible data usage.

The design for verified question attributes proposed in this thesis utilizes JWDs to

enable multiple trusted parties to each provide signed attestations of unique attributes

and/or risk functions over the same question—optionally using different signing algo-

rithms. JWDs additionally permit questions to be invalidated after a specified expi-

ration time, encouraging frequent re-evaluation of each question’s assigned attributes.

Pegging the exchange of safe questions and answers through blockchain transactions

further produces immutable, time-stamped and audit-able records, which can be used

to observe the attributes and associated risk levels that data providers accept when

answering the questions posed to them. The Bismuth program developed as part of

this work supports the aforementioned ideas through a general interface, and a specific

implementation of a blockchain client for the Ethereum smart contract platform.

A paradigm that emphasizes collaborative and productive consideration of the

answers revealed by data and their implications helps promote responsible data usage.

The realization of an open and thoughtful question-and-answer system allows data

owners to profit from the information they hold, while simultaneously encouraging

the data to be used to foster data-driven decisions and to improve society.

64

A SingleDataProviderEscrowContract.sol

pragma solidity ˆ0.4.13;

contract SingleDataProviderEscrowContract {

address public questioner;

string public algorithmUri;

address public target;

uint public amount;

string public resultsUri;

enum State { Created, Completed, Inactive }

State public state = State.Created;

function SingleDataProviderEscrowContract(string _algorithmUri,

address _target, uint _amount)

payable

{

questioner = msg.sender;

algorithmUri = _algorithmUri;

target = _target;

amount = _amount;

}

modifier onlyQuestioner() {

require(msg.sender == questioner);

_;

}

modifier onlyTarget() {

require(msg.sender == target);

_;

65

}

modifier inState(State _state) {

require(state == _state);

_;

}

event AlgorithmExecuted(address target, address questioner, string

resultsUri);

event PaymentDelivered(address from, address to, uint amount);

function confirmAlgorithmExecuted(string _resultsUri)

onlyTarget()

inState(State.Created)

public

returns(bool success)

{

resultsUri = _resultsUri;

AlgorithmExecuted(msg.sender, questioner, resultsUri);

state = State.Completed;

return true;

}

function withdraw()

onlyTarget()

inState(State.Completed)

public

returns(bool success)

{

uint payment = amount;

amount = 0;

if (msg.sender.send(payment)) {

PaymentDelivered(questioner, msg.sender, amount);

state = State.Inactive;

return true;

} else {

66

amount = payment;

return false;

}

}

}

67

B MultiDataProviderBidContract.sol

pragma solidity ˆ0.4.13;

contract MultiDataProviderBidContract {

struct DataProvider {

uint bid;

bool isTarget;

bool bidAccepted;

bool bidRejected;

bool algorithmExecuted;

string resultsUri;

bool paymentDelivered;

}

address public questioner;

string public algorithmUri;

mapping(address => DataProvider) public targets;

address[] targetIdx;

enum State { Created, Locked, Completed, Inactive }

State public state = State.Created;

function MultiDataProviderBidContract(string _algorithmUri) {

questioner = msg.sender;

algorithmUri = _algorithmUri;

}

modifier onlyQuestioner() {

require(msg.sender == questioner);

_;

}

68

modifier onlyTarget() {

require(targets[msg.sender].isTarget);

_;

}

modifier inState(State _state) {

require(_state == state);

_;

}

event BidSubmitted(address dataProviderAddr, uint bid);

event BidRejected(address dataProviderAddr, uint bid);

event BidAccepted(address dataProviderAddr, uint bid);

event AlgorithmLocked();

event AlgorithmExecuted(address target, address questioner, string

resultsUri);

event PaymentDelivered(address from, address to, uint amount);

function submitBid(address _dataProviderAddress, uint _bid)

payable

onlyQuestioner

inState(State.Created)

returns(bool success)

{

assert(msg.value >= _bid);

DataProvider memory target = DataProvider({

bid: _bid,

isTarget: true,

bidAccepted: false,

bidRejected: false,

algorithmExecuted: false,

resultsUri: "",

paymentDelivered: false

});

targets[_dataProviderAddress] = target;

69

targetIdx.push(_dataProviderAddress);

BidSubmitted(_dataProviderAddress, _bid);

return true;

}

function rejectBid()

onlyTarget

inState(State.Created)

returns(bool success)

{

DataProvider storage target = targets[msg.sender];

assert(!target.bidAccepted);

assert(questioner.send(target.bid));

targets[msg.sender].bidRejected = true;

BidRejected(msg.sender, target.bid);

return true;

}

function acceptBid()

onlyTarget

inState(State.Created)

returns(bool success)

{

targets[msg.sender].bidAccepted = true;

uint8 numAccepted = 0;

for (uint i = 0; i < targetIdx.length; i++) {

if (targets[targetIdx[i]].bidAccepted) {

numAccepted += 1;

}

}

if (numAccepted == targetIdx.length) {

state = State.Locked;

}

BidAccepted(msg.sender, targets[msg.sender].bid);

return true;

}

70

function lock()

onlyQuestioner()

inState(State.Created)

{

uint numTargets = 0;

for (uint i = 0; i < targetIdx.length; i++) {

if (!targets[targetIdx[i]].bidAccepted) {

targets[targetIdx[i]].isTarget = false;

} else {

numTargets += 1;

}

}

if (numTargets > 0) {

state = State.Locked;

AlgorithmLocked();

} else {

state = State.Inactive;

}

}

function cancel()

onlyQuestioner

inState(State.Created)

{

state = State.Inactive;

assert(questioner.send(this.balance));

}

function confirmAlgorithmExecuted(string _resultsUri)

onlyTarget()

inState(State.Locked)

returns(bool success)

{

targets[msg.sender].algorithmExecuted = true;

targets[msg.sender].resultsUri = _resultsUri;

71

AlgorithmExecuted(msg.sender, questioner, _resultsUri);

uint numCompleted = 0;

for (uint8 i = 0; i < targetIdx.length; i++) {

if (targets[targetIdx[i]].algorithmExecuted) {

numCompleted += 1;

}

}

if (numCompleted == targetIdx.length) {

state = State.Completed;

}

return true;

}

function withdraw()

onlyTarget

inState(State.Completed)

returns(bool success)

{

uint amount = targets[msg.sender].bid;

// The pending payment for this data provider must

// be zeroed before sending to prevent reentrancy

// attacks

targets[msg.sender].bid = 0;

if (msg.sender.send(amount)) {

targets[msg.sender].paymentDelivered = true;

PaymentDelivered(questioner, msg.sender, amount);

uint numPaid = 0;

for (uint8 i = 0; i < targetIdx.length; i++) {

if (targets[targetIdx[i]].paymentDelivered) {

numPaid += 1;

}

}

if (numPaid == targetIdx.length) {

state = State.Inactive;

}

return true;

72

} else {

targets[msg.sender].bid = amount;

return false;

}

}

function withdrawRemainingFunds()

onlyQuestioner()

inState(State.Inactive)

returns(bool success)

{

assert(questioner.send(this.balance));

return true;

}

}

73

Bibliography

[Back et al., 2014] Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell,
G., Miller, A., Poelstra, A., Timón, J., and Wuille, P. (2014). Enabling
blockchain innovations with pegged sidechains. URL: http://www. opensciencere-
view. com/papers/123/enablingblockchain-innovations-with-pegged-sidechains.

[Buchholtz et al., 2014] Buchholtz, S., Bukowski, M., and Śniegocki, A. (2014). Big
and open data in europe: A growth engine or a missed opportunity. Warsaw
Institute for Economic Studies Report Commissioned by demosEUROPA, 10.

[Buterin et al., 2013] Buterin, V. et al. (2013). Ethereum white paper.

[Butler, 2008] Butler, D. (2008). Web data predict flu.

[CxSci, 2017] CxSci (2017). Opal. https://github.com/CxSci/OPAL.

[de Montjoye et al., 2014] de Montjoye, Y.-A., Smoreda, Z., Trinquart, R., Ziemlicki,
C., and Blondel, V. D. (2014). D4d-senegal: the second mobile phone data for
development challenge. arXiv preprint arXiv:1407.4885.

[Foundation, 2017] Foundation, T. L. (2017). Hyperledger.

[Greenwood et al., 2014] Greenwood, D., Stopczynski, A., Sweatt, B., Hardjono, T.,
and Pentland, A. (2014). The new deal on data: A framework for institutional
controls. Privacy, Big Data, and the public good: Frameworks for engagement,
pages 192–200.

[Nakamoto, 2008] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash sys-
tem.

[Ohm, 2009] Ohm, P. (2009). Broken promises of privacy: Responding to the sur-
prising failure of anonymization.

[Pentland, 2009] Pentland, A. (2009). Reality mining of mobile communications:
Toward a new deal on data. The Global Information Technology Report 2008–2009,
page 1981.

[Tschantz et al., 2011] Tschantz, M. C., Kaynar, D., and Datta, A. (2011). Formal
verification of differential privacy for interactive systems. Electronic Notes in The-
oretical Computer Science, 276:61–79.

[Turner et al., 2014] Turner, V., Gantz, J. F., Reinsel, D., and Minton, S. (2014).
The digital universe of opportunities: Rich data and the increasing value of the
internet of things. IDC Analyze the Future.

[Walport, 2016] Walport, M. (2016). Distributed ledger technology: beyond block
chain. UK Government Office for Science.

74

[Wjst, 2010] Wjst, M. (2010). Caught you: threats to confidentiality due to the
public release of large-scale genetic data sets. BMC medical ethics, 11(1):21.

75

