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Abstract

Building on earlier work in the high energy and condensed matter communities, we present

a web of dualities in 2 + 1 dimensions that generalize the known particle/vortex duality.

Some of the dualities relate theories of fermions to theories of bosons. Others relate differ-

ent theories of fermions. For example, the long distance behavior of the 2+ 1-dimensional

analog of QED with a single Dirac fermion (a theory known as U(1) 1
2
) is identified with

the O(2) Wilson-Fisher fixed point. The gauged version of that fixed point with a Chern-

Simons coupling at level one is identified as a free Dirac fermion. The latter theory also

has a dual version as a fermion interacting with some gauge fields. Assuming some of

these dualities, other dualities can be derived. Our analysis resolves a number of confusing

issues in the literature including how time reversal is realized in these theories. It also has

many applications in condensed matter physics like the theory of topological insulators

(and their gapped boundary states) and the problem of electrons in the lowest Landau

level at half filling. (Our techniques also clarify some points in the fractional Hall effect

and its description using flux attachment.) In addition to presenting several consistency

checks, we also present plausible (but not rigorous) derivations of the dualities and relate

them to 3 + 1-dimensional S-duality.
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1. Introduction

Duality in quantum field theory refers to two related but distinct phenomena. In one

case we consider two or more presentations of the same theory. Here the different dual

presentations lead to identical physics. Examples of that include the duality between two

free field theories like the 2 + 1 dimensional compact boson1 and the 2 + 1 dimensional

free photon. Typical interacting examples are dual N = 4 supersymmetric theories in

3 + 1 dimensions. The second class of duality is IR duality. Here two or more different

quantum field theories flow to the same IR theory. This latter theory could be free or

interacting. A typical example of IR duality that we will soon review is the 2+1 dimensional

particle/vortex duality. Other examples use supersymmetry and include N = 1 and N = 2

supersymmetric theories in 3 + 1 dimensions and mirror symmetry in N = 2 and N = 4

supersymmetric theories in 2 + 1 dimensions. These 2 + 1 dimensional examples use

particle/vortex duality.

In this paper, we will discuss a number of non-supersymmetric examples in 2 + 1

dimensions. We will explore the relations between them and will discuss their applications

in condensed matter physics.

1.1. Review of the Bosonic Particle/Vortex Duality

Particle/vortex duality relates the 2 + 1 dimensional O(2) Wilson-Fisher fixed point

to a gauged version of that theory [1,2]. We write it as

|DBφ|2 − |φ|4 ←→ |D
b̂
φ̂|2 − |φ̂|4 + 1

2π
b̂dB . (1.1)

1 We use here the high energy physics terminology. A boson ϕ is compact if it parameterizes

a compact target space such as a circle. In condensed matter, it is common to refer to a free

massless boson as non-compact and to call a scalar field “compact” if a codimension two defect

with nonzero winding can have finite action or (depending on the spacetime dimension) energy

or energy density. In 1 + 1 dimensions, this can be achieved by adding to the action a twist

field with nonzero vorticity; these is no close analog of this in higher dimensions, although of

course there are many models that do have defects of the appropriate sort. There is an analogous

difference in terminology for gauge fields. In high energy physics, to call an abelian gauge field

“compact” means that the gauge group is compact. For example, in 2 + 1 dimensions this means

that monopole operators exist (they may or may not be included in the action). In the condensed

matter literature, in 2+1 dimensions, an abelian gauge field is usually called compact if a monopole

operator is included in the action, so that the corresponding magnetic flux is not conserved.
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Here φ and φ̂ are complex scalar fields, b̂ is a dynamical U(1) gauge field and B is a

background U(1) gauge field. DB is the covariant derivative acting on charge +1 fields.

Our notation with the |φ|4 and |φ̂|4 interaction means that the duality is valid only in the

IR as the coefficient of this interaction flows to the IR fixed point. In both sides of the

duality we tune the coefficient r in r|φ|2 and r̂ in r̂|φ̂|2 to the fixed point and define them

to vanish there. As is well known, the theories in the two sides of the duality have a global

U(1) symmetry, which we identify. On the left, the conserved current is iφ
↔

∂ µ φ and on

the right it is ǫµνλ∂
ν b̂λ/2π. We have coupled these conserved currents to a classical U(1)

gauge field B and we refer to the associated symmetry as U(1)B.

The operator φ in the left hand side is charged under U(1)B. It is mapped by the

duality to a monopole operatorM
b̂
on the other side of the duality.

If we perturb the left hand side of (1.1) by the relevant operator r|φ|2, the resulting

theory depends on the sign of r. For positive r the theory becomes gapped by giving φ a

mass and the global symmetry U(1)B is unbroken. For negative r, the global symmetry

U(1)B is spontaneously broken and the spectrum includes a massless Nambu-Goldstone

boson, which is the phase of φ. The same physics is reproduced on the other side of the

duality but with r̂ = −r. Positive r is mapped to negative r̂ and the gauge symmetry of

b̂, which we call U(1)̂
b
, is Higgsed. As before, the spectrum is gapped. It includes vortex

excitations, which carry charge 1 under the unbroken global symmetry U(1)B. They are

identified as the φ particles of the left hand side of (1.1). Hence the name particle/vortex

duality. Negative r is mapped to positive r̂. In this phase, φ̂ is massive and the low energy

spectrum includes a massless gauge field b̂. Its dual is a compact scalar (see the above

footnote), which is identified as the Nambu-Goldstone boson of the broken U(1)B global

symmetry.

It is useful to consider the fate of time reversal and charge conjugation symmetries

under the duality. We will actually keep track of the two anti-unitary symmetries T and

CT . For the left hand side of (1.1), we implement these2 as

T (φ) = φ, T (B) = −B
CT (φ) = φ†, CT (B) = B

(1.2)

2 We use a notation where for gauge fields, the T or CT action is indicated for the spatial

components; the time components will transform with opposite sign
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On the dual side these symmetries are then implemented as

T (φ̂) = φ̂†, T (b) = −b
CT (φ̂) = φ̂, CT (b) = b

(1.3)

Note that under the duality the action of T and CT on φ and φ̂ are interchanged.

This bosonic particle-vortex duality has been successfully tested by numerical simu-

lations of lattice versions of both sides (see e.g, [3,4]).

1.2. Quantum Field Theory Perspective

The duality web that we will explore is actually part of a richer picture that has

emerged in recent studies of relativistic field theory.

Several different lines of research have influenced this development. One of them

originated from level/rank duality in 1+1-dimensional conformal field theories. Roughly, it

relates SU(N)k and SU(k)−N Kac-Moody algebras and their corresponding WZWmodels.

(We say ‘roughly’ because, as we state below, one needs to add certain U(1) factors to

one or the two sides of the duality.) The same level-rank duality has a 2 + 1-dimensional

Topological Quantum Field Theory counter part, where the relation is between different

Chern-Simons gauge theories [5,6,7]. These dualities have been rigorously established in

the sense that all the observables of the dual theories were shown to be identical.

N = 2 supersymmetric theories in 2 + 1d exhibit analogs of particle/vortex duality.

The first examples were found in [8]. These were later extended in various directions and in

particular the authors of [9-12] found such dualities, which relate different Chern-Simons

matter theories. When the matter fields are massive and are integrated out these dualities

go over to the level-rank dualities of the topological theories. Also, it was shown in [12]

that these 2 + 1d dualities follow upon compactification on a circle from the previously

found dualities [13] in 3+1 dimensions. Unlike the topological theories, where the duality

is rigorously established, the dualities in these quantum field theories cannot be proven.

However, using the power of supersymmetry many observables in these theories can be

computed exactly in the two sides of the duality and shown to match. And renormalization

group flows between these dualities lead to additional consistency checks.

Once one has a duality between supersymmetric theories, one can attempt to break

supersymmetry by turning on corresponding relevant operators on the two sides of the

duality to flow to a duality between non-supersymmetric theories. Since supersymmetry is
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broken, there is less control over the renormalization group flow. Assuming that the flow

is smooth, a new duality can be found. It relates a theory of bosons coupled to a Chern-

Simons gauge theory to a theory of fermions coupled to a Chern-Simons theory [14,15].

Since these theories are not supersymmetric, this duality cannot be subject to most of the

tests of the supersymmetric dualities.

Another source of information about these theories arises by takingN and k to infinity

with fixed ratio. Then, one can use large N techniques to compute many observables [16-

28] and they turn out to confirm this duality. Also, these dual large N theories have

the same gravitational dual description [29,30,16,17,18], which involves an unusual type of

theory with almost massless fields of very high spin (for one reference out of many on this

topic, see [31]). This leads to additional evidence for the duality between the different field

theories. Understanding the field theory dual of this unusual sort of gravitational theory

was one motivation for study of these Chern-Simons-matter theories and their dualities.

Going back to finite N and k, the theories with unitary gauge groups have monopole

operators whose properties can be analyzed and matched with operators on the other side

of the duality [32].

Ofer Aharony combined all these elements and spelled out three conjectured Chern-

Simons-matter dualities [33]

Nf fermions coupled to U(k)
−N+

Nf

2
,−N+

Nf

2

←→ Nf scalars coupled to SU(N)k

Nf fermions coupled to SU(k)
−N+

Nf

2

←→ Nf scalars coupled to U(N)k,k

Nf fermions coupled to U(k)
−N+

Nf

2
,−N−k+

Nf

2

←→ Nf scalars coupled to U(N)k,k+N

(1.4)

where the subscript denotes the Chern-Simons level and U(L)M,K ≡ (SU(L)M ×
U(1)LK)/ZL. If there are no matter fields we substitute Nf = 0 and find the rigorously

established well known level-rank dualities.

Here we specialize to N = k = Nf = 1 and interpret SU(1) as trivial. This turns

(1.4) to

A fermion coupled to U(1)− 1
2

←→ A scalar

A fermion ←→ A scalar coupled to U(1)1

A fermion coupled to U(1)− 3
2

←→ A scalar coupled to U(1)2

(1.5)

We interpret these dualities to mean that the fermions are coupled to gauge fields without

additional interactions. In particular, in the second duality the fermion is free. On the
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other hand the scalar in the first duality should be interpreted to be in a Wilson-Fisher

fixed point and in the other dualities this Wilson-Fisher theory is gauged.

Even before we get into the details, the dualities (1.4) and the special cases (1.5)

pose a puzzle. Some of these theories are purely bosonic and can be formulated on non-

spin manifold.3 Their suggested dual theories involve fermions and seemingly can only

be formulated on a spin manifold with a choice of spin structure. For example, the right

hand side of the first and the third dualities in (1.5) involve fundamental bosons and their

Chern-Simons couplings are consistent without a choice of spin structure. (The right hand

side of the second duality in (1.5) involves bosons but with a Chern-Simons coupling that

makes sense only on a spin manifold.) So if the dualities are correct, it must be possible to

formulate the theories on the left hand side without choosing a spin structure, even though

those theories contain fermions.

Below we will extend the dualities (1.5) in several ways. First, we will couple the global

symmetries to background gauge fields and will constrain their Chern-Simons contact terms

[34]. Second, we will change some of the dynamical or background gauge fields to spinc

connections (see section 1.4). This will allow us to place the theories on non-spin manifolds.

Third, we will show that these dualities follow from each other; assuming any one of them

we can derive the other two dualities. Finally, we will derive a number of other dualities

including a fermion/fermion duality that will be discussed in the next section, and we will

explore in detail many of their properties.

1.3. Condensed Matter Perspective

The particle-vortex duality of bosons reviewed in section 1.1 is tremendously useful

in condensed matter physics. It gives a powerful conceptual way to access novel phases

and phase transitions of systems of interacting bosons. It is thus natural to ask if there

are similar dualities for fermionic systems with a conserved global U(1) current. For Dirac

fermions in 2 + 1 dimensions a few such dualities have been proposed over the years. To

3 At least classically, these theories and most theories considered in the present paper can

be defined only on orientable manifolds, as their Chern-Simons couplings require an orientation.

Every oriented three-manifold M admits a spin structure, but generically M may admit multiple

inequivalent spin structures. In this context, when we speak of a “non-spin” three-manifold M ,

we mean a three-manifold without a chosen spin structure. For a detailed explanation of how a

Chern-Simons action can depend on the choice of spin structure, even though naively it is purely

bosonic, see Appendix A.
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set the stage for the results of the present paper we briefly review these proposals. We will

be somewhat telegraphic - more precise statements will be made later in the paper.

We begin with a recently proposed [35,36] duality between two different descriptions,

both involving a single two-component massless Dirac fermion, of the spatial boundary of

a 3+ 1-dimensional topological insulator. We will refer to this below as a fermion-fermion

duality. It is well known that the free massless Dirac theory

L0 = iΨ/DAΨ (1.6)

describes a possible phase for the surface. At the topological insulator boundary, this

theory preserves time reversal symmetry (the parity anomaly of this theory is cancelled

by a bulk contribution). DA is a covariant derivative with A an external background

gauge field. The topological insulator surface also admits a number of other phases which

are stabilized by strong interactions between the underlying electrons. A dual description

of this surface theory capable of describing the possible phase diagram was described in

[35,36] and takes the form

Ldual = iχ /Daχ+
1

4π
Ada (1.7)

This description has had considerable success, but as stated it cannot be precisely correct,

since the coupling Ada/4π is not gauge-invariant mod 2π, assuming that the gauge fields

obey standard Dirac quantization. Moreover, obvious fixes such as a nonstandard Dirac

quantization law for a run into one problem or another. One outcome of the present paper

will be to resolve this situation by slightly correcting the duality statement, roughly by

adding a topological field theory in (1.7). As for whether this refinement is important

for condensed matter physics, this depends on the application that one has in mind. In

general, the refinement is likely to be important for applications to gapped phases4, but

less important for applications to gapless phases.

A rough analogy can be made between the dual Dirac theory in its original version

(1.7) and the effective field theories of flux attachment (such as the HLR theory [37])

popular in the literature on the Fractional Quantum Hall Effect. Some simple versions of

these theories make use of emergent gauge fields with improperly quantized Chern-Simons

couplings, and in that case it is known that a more precise and completely gauge-invariant

4 In particular it allows for a smooth derivation of the topological field theory of gapped phases

where global aspects are automatically correctly captured.
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description can be given by adding additional fields (see Appendix C). Our refinement of

eqn. (1.7) is somewhat similar.

Refs. [35,36] also raised the possibility that (1.6) and (1.7) in fact flow to the same

IR fixed point, and provided some suggestive supporting arguments (see also [38]). A

derivation of the equivalence of these two theories when one spatial direction is discretized

(leading to what is known as a “wire construction”) has also appeared [39].

Given that (1.7) is ill defined, how can these facts be true? We will present a mod-

ified version of (1.7) with properly normalized Chern-Simons terms and will explore its

dynamics. We will recover the above claims in a clearer setting and will relate the duality

between (1.6) and the modified version of (1.7) to similar statements about other dualities

in the web that we discuss. Also, we will embed this statement as part of a larger web

of dualities including supersymmetric and large N dualities that are treated in the high

energy literature.

The dual Dirac theory (1.7) has been related [40,36,41] to the bulk electric-magnetic

duality of 3 + 1-dimensional U(1) gauge theory coupled to the global U(1) symmetry of

a topological insulator. Again, in section 6 of the present paper, we will provide a more

precise framework for arguments of this nature.

The existence of such a dual Dirac description leads to a number of fundamental

results in the theory of strongly interacting electronic systems. We sketch these briefly.

A synthesis with more details is in [42]. Introducing a uniform magnetic field at the

topological insulator surface5 leads to a mapping to the famous problem of the half-filled

Landau level of two dimensional electrons in the quantum hall regime. The existence of

the dual Dirac theory gives a theoretical basis for a recently proposed description by Son

[43] of the metallic state found in experiments in the half-filled Landau level. The classic

theory [37] for this state – due to Halperin, Lee, and Read (HLR) – has long been known to

not incorporate a symmetry present when the Hamiltonian of the electron gas is restricted

to the lowest Landau level. The proposed new description – dubbed the Dirac composite

fermion theory – provides an elegant alternate to the standard HLR theory that includes

this symmetry. The Dirac composite fermion theory makes some specific predictions for

5 This requires a topological insulator of charged fermions with a time-reversal symmetry under

which the electric charge is odd. (In relativistic terminology, this corresponds to a CT rather than

T symmetry.) A material of this type is called a class AIII topological insulator in the condensed

matter literature.
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numerical calculations which seem to be verified in recent work [44]. Further the theory

makes predictions [43,45,46] for experiments that may distinguish it from what is expected

within the HLR theory.

In a different direction, the dual Dirac theory resolves a number of puzzling conceptual

questions about possible surface states of topological insulators in 3+1-D. In the presence

of strong interactions between the electrons, the surface of the topological insulator may be

gapped while preserving all physical global symmetries. Such a symmetric gapped bound-

ary state supports anyon excitations and is described by a Topological Quantum Field

Theory. However the symmetries are realized anomalously, i.e, in a manner not possible in

a strictly two-dimensional system. Such gapped boundaries were originally constructed in

[47-50] and were shown to have non-abelian anyons. One such symmetric gapped state –

known as the T-Pfaffian – was obtained through soluble lattice models in [49]. A different

gapped boundary state (with twice as many distinct quasiparticles as the T-Pfaffian) was

constructed in [47,48] through a procedure known as vortex condensation by starting with

the surface superconductor (which spontaneously breaks the U(1) but preserves time rever-

sal). A recent field theoretic description of the topological insulator surface based entirely

on clearcut considerations of weak coupling [51] also finds this more complex state and

not the simpler T-Pfaffian state. (It was also possible to find T-Pfaffian×U(1)2, but not

T-Pfaffian by itself.) Despite its appearance in the solvable lattice model, the T-Pfaffian

was previously hard to fit into the understanding of the possible phase diagram at the

topological insulator surface. In particular its relation with several conventional boundary

states (such as the free Dirac fermion, or the superconductor) was obscure. Further [49]

found two versions of the T-Pfaffian distinguished by the action of time reversal of which

only one corresponds to a possible surface state of the conventional topological insulator

but it was not clear which one. The dual Dirac liquid constructs [35,36] the T-Pfaffian

as a simple paired state of the dual fermions, thereby “explaining” its existence in the

lattice constructions. Further the ambiguity on which of the two T-Pfaffians corresponds

to the conventional topological insulator could be resolved [41]. Again after refining the

dual Dirac theory in the way that we propose here, the relation of this theory to T-Pfaffian

can be described via clear-cut arguments at weak coupling. (We will prefer to replace the

“paired state” treatment of these theories by an explicit and concrete description in terms

of fundamental scalars.)
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Many years ago, it was shown [52,53,54] that coupling to a U(1) gauge field at level 1

can shift the spin of a quasiparticle by 1/2, converting bosons to fermions. We schematically

write

A fermion ←→ A scalar coupled to U(1)1 (1.8)

This was originally formulated for coupling of gapped quasiparticles to U(1)1. In the

present paper, we will, in a sense, extend this relationship of massive particles to a critical

point where the particles are gapless and the theory with the scalar coupled to U(1)1

becomes equivalent to a free fermion theory.

There is another version of this in which the fermion is coupled to a U(1) gauge field

and the scalar is at its Wilson-Fisher critical fixed point. In fact, the literature contains

proposals for such a duality [55,56]. We will state it in a more precise way and we will

loosely write it as

A fermion coupled to U(1)−1/2 ←→ A scalar (1.9)

(We note, however, that the meaning of U(1)−1/2 is often expressed in an oversimplified

way. See the discussion in the next subsection.)

We refer to dualities such as (1.8) or (1.9) as boson-fermion dualities. They may be

thought of as relativistic versions of the flux attachment transformation familiar from the

theory of the quantum Hall effect.

There are a number of fundamental questions that these various dualities raise. In

both (1.8) and (1.9), time-reversal symmetry is manifest on one side and not on the other.

What implications does time-reversal have for the understanding of these dualities? How

are these boson-fermion dualities related to each other, and to particle-vortex duality for

bosons and to the corresponding duality for fermions that was discussed above? Finally

how are these dualities related to electric-magnetic duality in 3 + 1 dimensions?

In this paper we will address all of these questions. We will find a web of dualities

that contains all of these dualities and additional ones. Assuming one of the boson-fermion

dualities leads to a derivation of all of the other dualities in the web. As a bonus, under-

standing the duality web leads to the refined version mentioned above of the dual Dirac

theory. We will also learn that on one side of the boson-fermion dualities, time-reversal

itself acts as a duality transformation that interchanges particles and vortices of the same

statistics. The relation to electric-magnetic duality gives an appealing way to understand

this rather subtle realization of time-reversal.
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1.4. Review of Some Background Material

In preparation, we review here some general properties of gauge fields, Chern-Simons

terms, fermion path integrals, topological insulators, and monopole operators.

Our conventions are that upper case letters denote classical gauge fields and lower

case letters denote dynamical fields. A and a are spinc connections, while other letters

denote ordinary U(1) gauge fields.

In condensed matter systems made from fermions of odd charge, there is a spin/charge

relation which states that all local operators of integer spin carry even charge and all

operators with half-integer spin carry odd charge. The consequences of this relation can

be subtle. An elegant although formal way to capture these relations is to introduce a

spinc connection6 A that couples to the conserved charge carried by the fermions [41,51].

(We introduce A as a background classical field, or if the fermions are naturally coupled to

a U(1) gauge field, we reinterpret this as a spinc connection.) A spinc connection is locally

the same as a U(1) gauge field, but its Dirac quantization is different. Its fluxes satisfy

∫

C

dA

2π
=

1

2

∫

C

w2 mod Z, (1.10)

where C ⊂ X is an oriented two-cycle in our spacetime X and w2 is the second Stieffel-

Whitney class [57] of X .

Let us consider a single spinc connection A and a number of U(1) gauge fields Bi.

Then, the properly normalized Chern-Simons terms are

kij
4π
BidBj +

qi
2π
BidA+

k̂

4π
AdA+ (2k̂ + 16n)CSg

kij , qi, k̂, n ∈ Z

kii = qi mod 2 ,

(1.11)

where CSg is a gravitational Chern-Simons term. See Appendix B and [51] for more

details.7 Below we will use such expressions where some of these fields will be dynamical

(and will be denoted by lower case letters).

6 Condensed matter physicists might find the discussion of this concept in [41] accessible.
7 Though not necessarily deduced from well-definedness of Chern-Simons couplings, these con-

straints will be familiar to condensed matter physicists well-versed in the K-matrix description of

topological ordered states of fermionic matter. Local (“transparent”) operators (i.e, ones creating

particles that braid trivially with other particles) couple to Bi with charges li =
∑

j
kijmj where

mj are integers. These have self statistics θm = πmT km where we have used an obvious matrix
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Consider a 2+1dDirac fermion coupled to a background gauge field or spinc connection

A via the Dirac operator /DA

iΨ/DAΨ . (1.12)

This theory needs regularization. One choice of regularization leads to the partition func-

tion [59,60]

Z2+1d = | det /DA|e−
iπ
2
η(A) . (1.13)

It is common instead of exp(−iπη/2) to write here exp(−iCS(A)/2) (or a similar and

more complete expression with a gravitational correction) where CS(A) = (1/4π)
∫
AdA

is a properly normalized Chern-Simons coupling. This is adequate for many purposes but

is not entirely correct as CS(A)/2 (even with the gravitational correction) is only gauge-

invariant mod π, so that exp(−iCS(A)/2) is not gauge-invariant. A careful treatment of

the path integral of Ψ leads instead, with one regularization, to eqn. (1.13). The relation

between this description with πη/2 and the more familiar but slightly less precise one with

CS(A)/2 is as follows. Although CS(A)/2 is not gauge-invariant mod 2π and so is not a

satisfactory term in an effective action, its variation δCS(A)/2 is perfectly well-defined and

gauge-invariant. Moreover, the Atiyah-Patodi-Singer index theorem implies that as long

as the Dirac operator has no zero-modes, δ(πη/2) = δCS(A)/2. Because of this, unless one
asks certain delicate questions (the theory of a topological insulator is the most obvious

place where such questions arise) one can proceed informally with CS(A)/2 rather than

πη/2. In effect this is done in most of the literature and the theory regularized as in eqn.

(1.13) is commonly called U(1)−1/2. We will follow that terminology here.

Eqn. (1.13) is only one possible regularization of the fermion path integral. Other reg-

ularizations can be parameterized by adding well-defined local counterterms. Specifically,

notation. Choosing the ith entry of m to be 1, and the rest 0, the self-statistics will be πkii.

This is a boson if kii is even and a fermion if kii is odd. Requiring that bosons (fermions) carry

even (odd) charge under A gives kii = qi mod2. The AdA and CSg terms may be interpreted

as combining the TQFT described by the first two terms with another 2 + 1-D gapped system

(made out of the same microscopic fermions) which has no non-trivial quasiparticles. This added

system will then have an integer electrical Hall conductivity σxy = k̂, and a chiral central charge

(equal to the thermal Hall conductivity κxy in units of κo = π2T
3

where T is the temperature) of

edge modes = k̂+ 8n. The mismatch between the thermal and electrical Hall conductivities by a

multiple of 8 in such a system can be understood through the arguments in the Appendix of [58],

and references therein.
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we can add properly normalized Chern-Simons terms (1.11). For example, for A a spinc

connection, we can add k
4πAdA+2kCSg with integer k. (We then call the resulting theory

U(1)k−1/2.) The parity anomaly is the statement that the partition function (1.13) cannot

be made real by adding such a counterterm.

When we add a mass term for the fermion and integrate it out, the low energy interac-

tion includes the phase from (1.13) and an additional factor exp(i sgn(m)π2 η(A)). So for m

positive the phase is canceled and for m negative it is exp(−iπη(A)) = exp(− i
4π

∫
AdA−

2i
∫
CSg). Part of the subtlety of the subject is in the last statement; the Atiyah-Patodi-

Singer theorem can be used to replace exp(−iπη(A)) with exp(− i
4π

∫
AdA − 2i

∫
CSg),

but there is no such replacement for exp(−iπη(A)/2).
Next, we would like to review various ways to cancel the phase in (1.13) and make

the theory T -invariant. First, if A = 2B for some U(1) gauge field B, then we can add

the counter term 2
4π
BdB to make the answer real and T -invariant. Clearly, this violates

the spin/charge relation.

The topological insulator instead restores T -invariance by making A a 3 + 1d field.

Then we can add a bulk term π
∫
bulk

(Â(R) + 1
8π2 dAdA) (see Appendix B) and write the

Lagrangian

iΨ/DAΨ+
1

8π
AdA+ CSg , (1.14)

where the improperly quantized Chern-Simons terms of A and the metric are shorthand

notation for the bulk term. Then the partition function

Z3+1d = | det /DA|e−
iπ
2
η(A)+iπ

∫
bulk

(
Â(R)+ 1

8π2 dAdA
)

(1.15)

is real and T -invariant.8

The main examples in [51] combined these two mechanisms. There A = 4nb+A with

A a classical 3 + 1d spinc bulk field and b a 2 + 1d gauge field on the boundary. In this

case the “bulk” contribution in (1.15) can be written as

e
iπ
∫
bulk

(Â(R)+ 1

8π2 dAdA)
= e

i
4π

∫
boundary

(8n2bdb+4nbdA)
e
iπ
∫
bulk

(Â(R)+ 1

8π2 dAdA)
. (1.16)

The second factor is from the bulk. The first factor involves properly normalized Chern-

Simons terms that depend only on the fields at the boundary. This is consistent with

8 In fact, by the Atiyah-Patodi-Singer index theorem, it equals |det /DA|(−1)I, where I is the

index of the four-dimensional Dirac operator, computed with APS boundary conditions [60].
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b being a boundary field. The genuine bulk term in (1.16), which depends on A, is a

classical term. Therefore, the Abelian sector in the examples in [51] can be interpreted as

a counterterm that must be added to the classical theory in order to make it T -invariant.
Returning to (1.12), an interesting background field A can be constructed by removing

a point P from our 2+1d manifold and specifying “monopole boundary conditions” [61,62]

on an S2 surrounding P,
∫
S2 dA = 2π. Both Ψ and Ψ have zero-modes leading after

quantization to two different states differing by a factor of Ψ (or Ψ). These two states

have spin zero and their electric charges differ by 1. One way to determine the charges is

to add, as in (1.14), a bulk term 1
8πAdA . Then the theory is T and CT invariant. This

determines the charges to be ±1
2 . The charges without this bulk term can be determined

by noticing that in a monopole background the bulk term shifts the charges of all monopole

states by +1
2 . Therefore, in the theory (1.12) without that term the charges are 0 and

−1.9

We will denote such an insertion by MA. But strictly, this is not a simple local

operator in the theory (1.12). One way to understand this assertion is that this insertion

changes the background far from the point P. This can also be seen by noting that the

operator Ψ is not single valued in that background and correspondingly its angular modes

have integer spin (rather than half-integer spin). Below we will slightly abuse the notation

and will denote the two spin zero monopoles with charges 0 and −1 asMA and ΨMA, as

if these were local operators.

1.5. Outline of the Paper

In section 2 we present our web of dualities. Assuming one boson/fermion duality we

derive many other dualities including the known boson/boson particle/vortex duality and a

fermion/fermion duality. We discuss some of the properties of these dualities, emphasizing

the action of time-reversal, which is often subtle.

In section 3 we give a plausible argument (which falls short of a proof) for the dualities.

We present it first for the particle/vortex duality and then for one of the boson/fermion

dualities.

9 It is common in the literature to view the fermion determinant as real and to “add by hand”

− 1
8π

∫
AdA as an approximation to − iπ

2
η(A). In this presentation the charges of the monopole

receive a contribution of − 1
2
from this Chern-Simons term and ± 1

2
from the fermion zero-modes.

This leads to the charges 0 and −1. Here we do not add such a term by hand and we do not

approximate η by a Chern-Simons term.
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Section 4 is devoted to a detailed analysis of a special T -invariant fermion/fermion

duality. We explain its subtle T reversal symmetry and how it can be used in a topological

insulator. As a check, we match the global symmetries and the operators between the two

sides of the duality.

In section 5 we deform that fermion/fermion duality and gap it. This way we derive

the known T-Pfaffian state of a topological insulator.

Section 6 clarifies the relation between these dualities and S-duality in 3+1 dimensions.

Viewing the 2+1-dimensional theory as living on the boundary of a 3+1-dimensional space

and coupled to a U(1) gauge field in bulk provides a nice context for the 2+1-dimensional

dualities.

In section 7 we describe some applications of our work to condensed matter physics.

In particular, we discuss the role of CT symmetry in a half filled Landau level.

In Appendix A we discuss some subtleties of spin Chern-Simons theory that are im-

portant in our work. Appendix B describes the almost trivial U(1)1 Chern-Simons theory.

And Appendix C shows how some of the techniques we use clarify some issues in flux

attachment.

After completing this work, we became aware of two forthcoming papers [63,64], which

partially overlap with our work.

2. A Web of Dualities

2.1. A Free Fermion is Dual to Gauged Wilson-Fisher

We assume the duality in (1.8) (i.e, the second duality in (1.5)) between a free fermion

theory coupled to a classical spinc connection A and a gauged version of the O(2) Wilson-

Fisher fixed point also coupled to A

iΨ/DAΨ ←→ |Dbφ|2 − |φ|4 +
1

4π
bdb+

1

2π
bdA . (2.1)

We would like to make several comments about this assumed duality.

1. The theory in the left hand side is free, while the theory in the right hand side appears

interacting. The assumed duality states that the theory in the right hand side is in

fact free and describes a free fermion.

2. The free fermion theory is T -invariant with an anomaly, so that if we attach it to a

bulk and add to the Lagrangian + 1
8πAdA+ CSg, it is T -invariant. Then it describes
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the boundary of a topological insulator. The assumption of the duality (2.1) states

that the same is true for the right hand side.

3. The monopole operatorMb in the right hand side carries U(1)b charge 1 and U(1)A

charge 1 because of the classical Chern-Simons couplings. This means that φ†Mb

is U(1)b gauge-invariant. It has spin 1
2
because of the relative angular momentum

between the electrically charged φ† and the magnetically charged Mb, and we can

identify it with the free fermion of the free theory

Ψ = φ†Mb . (2.2)

4. The free fermion theory can be gapped be perturbing it by a T -violating mass term

mΨΨ. Depending on the sign of m, the gapped theory has a Chern-Simons contact

term for A with coefficient 0 or −1. In the latter case, integrating out Ψ also generates

a gravitational Chern-Simons couplings −2CSg, where CSg is described in Appendix

B. So the effective action for this sign of m is − 1
4πAdA − 2CSg. The corresponding

operator in the bosonic theory is m|φ|2 and it leads to a gapped spectrum. For one

sign of m the field φ condenses and Higgses the U(1)b gauge symmetry making the

IR theory completely trivial. For the other sign, φ becomes massive but the U(1)b

symmetry remains. Then the low energy theory is 1
4π bdb+

1
2π bdA = 1

4π (b + A)d(b +

A) − 1
4π
AdA. As explained in Appendix B, the U(1)1 theory 1

4π
(b + A)d(b + A) is

nearly trivial and can be replaced with −2CSg. (We will call this process “integrating

out b.”) So we reduce to − 1
4πAdA− 2CSg , as in the free fermion theory.10 Although

the U(1)1 factor is trivial, its couplings change the massive φ particles from being

bosons to fermions. This is known as flux attachment [52,54]. Here we extend this

phenomenon to the massless theory.

5. Consider the two theories in a background of A corresponding to a monopole. We

discussed it in the free theory above and we saw that there are two such spin zero

objects MA and ΨMA with U(1)A charges 0 and −1. In terms of the a monopole

background in the interacting bosonic theory M̃A they are identified as

MA = φ†M̃A , ΨMA =M†
bM̃A . (2.3)

10 This may be interpreted physically by saying that one phase has Hall conductivities σxy =

κxy = 0 while the other has σxy = −1,
κxy

κ0
= −1.
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2.2. Time-Reversal Symmetry and Particle/Vortex Duality

Assuming the duality (2.1), we can easily derive additional dualities. First, applying

T (with T (A) = −A, T (b) = −b̂ and T (φ) = φ̂) to both sides we find

iΨ/DAΨ+
1

4π
AdA+ 2CSg ←→ |Dbφ̂|2 − |φ̂|4 −

1

4π
b̂db̂− 1

2π
b̂dA. (2.4)

On the left hand side, we have included c-number couplings AdA/4π + 2CSg to the back-

ground gauge and gravitational fields (CSg is a gravitational Chern-Simons coupling, de-

scribed in Appendix B). These couplings are generated by the usual time-reversal or “par-

ity” anomaly of the fermion Ψ. Equivalently, we may move these couplings to the right

hand side and write

iΨ/DAΨ ←→ |D
b̂
φ̂|2 − |φ̂|4 − 1

4π
b̂db̂− 1

2π
b̂dA− 1

4π
AdA− 2CSg . (2.5)

We have added hats to the transformed fields to highlight that they are not the same as

the original fields; the relation between the original fields and the transformed fields could

be complicated and nonlocal.

The two dualities (2.1) and (2.5) imply a purely bosonic duality

|Dbφ|2−|φ|4+
1

4π
bdb+

1

2π
bdA ←→ |D

b̂
φ̂|2−|φ̂|4− 1

4π
b̂db̂− 1

2π
b̂dA− 1

4π
AdA−2CSg .

(2.6)

This purely bosonic duality can be derived by starting with the particle/vortex duality

(1.1), adding 1
4πBdB + 1

2πBdA to both sides (A is a spinc background field), and turning

B into a dynamical field b. This leads to

|Dbφ|2−|φ|4+
1

4π
bdb+

1

2π
bdA ←→ |D

b̂
φ̂|2−|φ̂|4+ 1

2π
b̂db+

1

4π
bdb+

1

2π
bdA . (2.7)

The Chern-Simons terms on the right hand side can be written as 1
4π

(b+ b̂+A)d(b+ b̂+

A) − 1
4π (b̂ + A)d(b̂ + A). The first term is a decoupled trivial U(1)1 sector, which can

be replaced by −2CSg. Then (2.7) becomes (2.6). This proves that T -invariance of (2.1)

follows from particle/vortex duality (1.1). In particular, the scalar field φ transforms to its

vortex field φ̂. Since the mass of the boson and the vortex are opposite in sign according

to the charge-vortex duality, the boson mass term mb|φ|2 breaks time-reversal symmetry.

This is consistent since the boson mass term is dual to the Dirac mass term mfΨΨ, which

also breaks time-reversal symmetry.

Alternatively, this shows that the assumed boson-fermion duality (2.1) implies the

known particle/vortex duality (1.1). At any rate, landing on our feet in this way gives us

more confidence in (2.1).
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2.3. More Dualities

Another duality is obtained from (2.1) by turning A into a dynamical field. We write

A = a and add 1
2π
adB− 1

4π
BdB, where B is a classical U(1) background gauge field. The

duality (2.1) becomes11

iΨ/DaΨ+
1

2π
adB− 1

4π
BdB ←→ |Dbφ|2−|φ|4+

1

4π
bdb+

1

2π
bda+

1

2π
adB− 1

4π
BdB .

(2.8)

We can integrate out a on the right hand side using the path integral identity

∫
Da exp

(
i

2π

∫
adc

)
= δ(c), (2.9)

where δ(c) is a properly normalized delta function that sets c = 0 up to a gauge transforma-

tion (here “properly normalized” means that with appropriate gauge-fixing,
∫
Dc δ(c) = 1).

This often-useful identity, which depends on the fact that a couples precisely via adc/2π

for some U(1) gauge field c, can be described by saying that a behaves as a Lagrange

multiplier setting c to 0. It leads in the present instance to a constraint setting b = −B,

and thus to

iχ /Daχ+
1

2π
adB − 1

4π
BdB ←→ |D−Bφ|2 − |φ|4 . (2.10)

On the left hand side we see a theory which is usually referred to as a single fermion

coupled to QED with Chern-Simons level −1/2; on the right hand side we find the O(2)

Wilson-Fisher fixed point theory. Both of them are coupled to a classical U(1) gauge field

B. Here we can identify the scalar φ of the bosonic theory (which has charge −1 under B)

as the operatorM†
a in the left hand side.

It is interesting that the right hand side of (2.10) is purely bosonic and can be formu-

lated on a non-spin manifold. If a had been a U(1) gauge field, the left hand side of (2.10)

11 An important fact needs to be clarified here. The gauge theory of the fermions can be de-

formed by a fermion mass term m. In many situations the point m = 0 is preferred by symmetries

and then it is natural to set m to zero. Because of the parity anomaly, this is not the case here.

More precisely, if we give the gauge field a a kinetic term and flow to the IR a fermion mass term

can be generated. We know that the theory is in different phases for m positive and m negative

(see also below). And we will assume that as we vary m these two phases are separated by a

second order phase transition. We define m = 0 to be that critical point and the Lagrangians

that we will write will be shorthand notation for that critical point.

17



could be placed only on a spin manifold with a given spin structure. This would have led

to a contradiction, showing that the duality (2.10) could not be true. However, with a a

spinc connection, as we have assumed, this contradiction does not exist and both sides of

the duality can be formulated without a choice of spin structure.

The duality (2.10), which was the first one in (1.5), has antecedents in [55,56], as was

described in the introduction. We have extended previous statements to make a a spinc

connection and to add the classical gauge field B with its Chern-Simons contact term.

Below we will see how the time-reversal symmetry that is obvious on the right hand side

acts on the left hand side. This has been mysterious.

Starting with (2.10), we can add a Chern-Simons contact term k
4πBdB to the two

sides and turn B into a dynamical gauge field b. For k even, we couple the new conserved

current db/2π to a background U(1) gauge field C, and for k odd we couple it to a spinc

connection A. This way we can find many dualities, most of them new.

For example, with k = 2 we have

iχ /Daχ+
1

2π
adb+

1

4π
bdb+

1

2π
bdC ←→ |D−bφ|2−|φ|4+

2

4π
bdb+

1

2π
bdC . (2.11)

The left hand side can be written as iχ /Daχ+
1
4π (b+a+C)d(b+a+C)− 1

4π (a+C)d(a+C).

The second term is a decoupled U(1)1 sector, which can be replaced with −2CSg, and we

end up with

iχ /Daχ−
1

4π
ada− 1

2π
adC− 1

4π
CdC−2CSg ←→ |D−bφ|2−|φ|4+

2

4π
bdb+

1

2π
bdC .

(2.12)

This duality is the third one in (1.5). We extended a to be a spinc connection and we have

added the background U(1) gauge field C with its Chern-Simons contact term.

2.4. A Fermion/Fermion Duality

Another interesting case is obtained with k = −1. Here (2.10) becomes

iχ /Daχ+
1

2π
adb− 2

4π
bdb+

1

2π
bdA ←→ |D−bφ|2−|φ|4−

1

4π
bdb+

1

2π
bdA . (2.13)

Here A is a spinc connection. Using (2.4) in the right hand side we find a duality between

two fermionic theories

iχ /Daχ+
1

2π
adb− 2

4π
bdb+

1

2π
bdA ←→ iΨ/DAΨ+

1

4π
AdA+ 2CSg . (2.14)
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We can couple (2.14) to a bulk and add − 1
8πAdA− CSg to find a T -invariant theory

iχ /Daχ+
1

2π
adb− 2

4π
bdb+

1

2π
bdA− 1

8π
AdA−CSg ←→ iΨ/DAΨ+

1

8π
AdA+CSg .

(2.15)

Below we will analyze this duality in detail. This is a more precise version of the basic

fermion-fermion duality proposed in [35,36]. It retains many of the same physical features,

as we elaborate later.

We have derived all these dualities with the assumption of (2.1). Most of the other

boson-fermion dualities above could be taken as an equally good starting points. However,

although the duality (2.1) implies all these dualities including the known bosonic duality

(1.1) and the new fermionic duality (2.15), purely boson or fermionic dualities do not imply

boss-fermi dualities. So the assumption (2.1) is stronger than (1.1) or (2.15). The latter

dualities could be true and the former false.

2.5. More on Time-Reversal Symmetry

All the dualities discussed so far can be derived starting from the basic duality (2.1).

Since we showed in the discussion following (2.5) that time-reversal symmetry is compatible

with the basic duality (2.1), all the other dualities should also be compatible with time-

reversal operation. In particular, when one side of a duality is manifestly time-reversal

invariant, the other side should also be time-reversal invariant. There are two such ex-

amples: the boson/fermion duality (2.10), and the fermion/fermion duality (2.15). Below

we illustrate how time-reversal symmetry works out for the boson/fermion duality (2.10).

The basic idea is the same as in (2.5), namely time-reversal transforms the theories to their

duals. We discuss time-reversal properties for the fermion/fermion duality separately in

later sections.

We first look at the left hand side of (2.10) , using the fermion/fermion duality (2.14):

L = iχ /Daχ+
1

2π
adB − 1

4π
BdB

←→ iχ̃ /D
ã
χ̃+

1

2π
ãdc− 2

4π
cdc− 1

4π
ada+

1

2π
ad(c+B)− 1

4π
BdB − 2CSg

←→ iχ̃ /D
ã
χ̃+

1

2π
ãdc− 1

4π
cdc+

1

2π
cdB

←→ iχ̃ /D
ã
χ̃+

1

4π
ãdã+

1

2π
ãdB +

1

4π
BdB + 2CSg,

(2.16)

where the second line comes from applying the fermion/fermion duality (2.14) to iχ /Daχ,

the third line comes from eliminating a, and the last line comes from eliminating c. Each
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step of elimination uses the equivalence of U(1)±1 to a multiple of the c-number coupling

CSg (see Appendix B).

Time-reversal can now be implemented as

T : χ↔ χ̃, a↔ ã, B ↔ −B. (2.17)

The action on T generates extra terms 1
4π ãdã + 2CSg associated to the usual “parity”

anomaly. A precise formulation is as follows. Instead of (2.17), what we should really say

is T : χ→ χ̃′, where χ and χ̃ are regularized through (1.13) with phase factor e−
iπ
2
η in the

partition function, while χ̃′ is regularized with the conjugate phase factor e
iπ
2
η. The theory

iχ̃′ /D
ã
χ̃′ with the natural regulator for χ̃′ is equivalent to the theory iχ̃ /D

ã
χ̃+ 1

4π ãdã+2CSg

with the conventional regulator for χ̃.

We conclude that the theory U(1)− 1
2
has a quantum T symmetry, which is not visible

classically. This fact trivially follows, if the duality (2.10) is true, simply because the right

hand side has such a classical symmetry. The conclusion (2.17) shows that this symmetry

does not act simply on the fundamental fields χ and a but maps them to some dual fields

χ̃ and ã.

Notice that the Dirac mass term is time-reversal invariant here: the mass of the dual

fermion χ̃, according to the duality, is opposite to the original mass of χ. Therefore the

mass term, which naively breaks T , is actually T -invariant. This is fully consistent with

the Dirac mass being dual to the boson mass in Wilson-Fisher theory.

3. A “Derivation” of the Dualities

In this section we will present “derivations” of the the boson/boson and boson/fermion

dualities. The reason for the quotation marks is that the derivation is not rigorous. We

will have to make some plausible qualitative assumptions. Using these assumptions the

duality will follow.

3.1. Deriving the Boson/Boson Particle/Vortex Duality

We begin with a discussion of the standard bosonic particle-vortex duality from a

standpoint that enables easy passage to the boson-fermion duality in the next subsection.

We start with the Lagrangian

|Dbφ|2 + |Db̂φ̂|
2 − V (|φ|, |φ̂|) + 1

2π
bdb̂+

1

2π
bdB (3.1)
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Gapped Massless b 

Gapped  Massless   

Massless b 

Gapped 

Figure 1.The left panel represents the four phases of (3.1). The right panel is a sug-

gestion about the behavior when a monopole operator of b̂ is added to the Lagrangian.

where B is a classical field.

This model has two global U(1) symmetries associated with conservation of db and

db̂. However we will soon break the conservation of db̂ explicitly by adding a monopole

operator to the Lagrangian.

This theory has four phases depending on whether b or b̂ are Higgsed (see Figure 1).

These are as follows.

In the phase with 〈φ〉, 〈φ̂〉 6= 0, the two U(1) gauge symmetries are Higgsed and the

spectrum is gapped.
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In the phase with 〈φ〉 = 〈φ̂〉 = 0, the two U(1) gauge symmetries are not Higgsed.

φ and φ̂ are massive and can be integrated out. The two gauge fields couple through
1
2π bdb̂+

1
2πdbB making the spectrum gapped and the low energy TQFT is trivial.

In the phase with 〈φ〉 = 0 with 〈φ̂〉 6= 0, the gauge symmetry U(1)̂
b
is Higgsed and

U(1)b is not Higgsed. Then the low energy spectrum includes a massless boson, which is

the dual of b. It couples to B.

The fourth phase is obtained from the previous one by exchanging the hatted and the

un-hatted fields.

Next we explicitly break the global symmetry whose current is db̂. (Since we planned

to do that we did not include in (3.1) a coupling db̂B̂.) The monopole operatorM
b̂
carries

charge 1 under the gauged U(1)b and therefore we add to the Lagrangian the operator

O = φ†M
b̂
. (3.2)

How does this affect the four phases? The two gapped phases are not changed. The

phase with massless b is also not affected. In that phase the massless b is the Nambu-

Goldstone boson of the spontaneously broken global symmetry whose current is db. The

only difference is in the phase with 〈φ〉 6= 0 with 〈φ̂〉 = 0. Here the massless b̂ boson is

lifted by the operator (3.2). We see that we are left with two phases. One of them has a

massless boson and the other is gapped.

We suggest that the phase diagram is simply the right panel in Figure 1 with a single

smooth transition line between two phases and with no additional structure.

Let us describe the phase transition between the two phases. For 〈φ̂〉 → ∞, we can

integrate out φ̂ and b̂. After tuning the potential V , we describe the critical point by

|Dbφ|2 − |φ|4 +
1

2π
bdB. (3.3)

We recognize here a gauged version of the Wilson-Fisher fixed point coupled to a classical

gauge field B. The other limit has 〈φ〉 = 0 and φ is very massive. Integrateng out φ and

again tuning the potential, we find

|D
b̂
φ̂|2 − |φ̂|4 + 1

2π
bd(b̂+B) . (3.4)

Integrating out b via (2.9), we end up with

|D−Bφ̂|2 − |φ̂|4 . (3.5)

We recognize this as as the Wilson-Fisher fixed point coupled to a classical gauge field B.

We conclude that (3.3) and (3.5) are two limits of the same transition, thus establishing

the particle-vortex duality between them.
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3.2. Deriving the Boson/Fermion Duality

Next we similarly study the duality between the free Dirac theory, and the massless

boson theory coupled to a level 1 Chern-Simons gauge field (2.1) or its T -image (2.5).

Consider a field theory12 with

L = iχ /D
b̂+A

χ+mχχ+ |D
b̂
φ̂|2 − V (|φ̂|2) (3.6)

As written, this theory has two global U(1) symmetries: one is simply UA(1), and the

other is associated with the conservation of db̂. As in the previous subsection, soon we will

explicitly break the latter symmetry by including a monopole operator in the Lagrangian.

The fermionic operator ψ = φ̂†χ is invariant under the gauge U
b̂
(1) symmetry and

carries charge 1 under the global UA(1) symmetry. We will refer to this operator as the

electron.

Let us study the phases and phase transitions of this continuum theory and start

without the added monopole operator. Clearly, the system has four phases corresponding

to the two values of sgn(m) and to whether 〈φ̂〉 = 0 or 〈φ̂〉 6= 0. The phases are depicted

in the left panel of Figure 2.

When 〈φ̂〉 6= 0, the gauge field b̂ is Higgsed and can be integrated out. Then we can

identify χ with the electron ψ. (Note that ψ ∼ 〈φ̂†〉χ.) As m changes sign, we go from a

12 For condensed matter physicists, this may be motivated as follows. Consider electrons in a 2d

system undergoing an “integer quantum Hall” phase transition from a trivial insulator (σxy = 0)

to an integer quantum Hall state (σxy = −1). It may be useful to keep in mind lattice models of

free fermions where we go from a filled band with Chern number 0 to one with Chern number

−1. This phase transition is captured by a continuum field theory model of a single massive Dirac

fermion ψ. The transition occurs when this Dirac mass passes through zero. Note that weak short

ranged interactions added to this system do not change the universal low energy physics of the

transition or the two phases.

We introduce a “parton” description of the electron operator by writing ψ = φ̂†χ. This

representation has a U(1) gauge redundancy, and a reformulation in terms of χ and φ̂ comes

with a U(1) gauge field b̂. Both χ and φ̂ carry charge 1 under Û
b
(1) (so that the electron ψ is

gauge-invariant). On a lattice we assume that the χ has the same structure of hopping matrix

elements as the original electrons. The φ̂ will be described by a model of bosons hopping on the

lattice with some short ranged repulsion (a bose Hubbard model). Note that in this construction

we must include monopoles of b̂. In a suitable continuum limit we will then get the field theory

we study.
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Gapped  
Gapped 

Gapped Massless 

Figure 2. The left panel represents the four phases of (3.6). The right panel is a

suggestion about the behavior when a monopole operator of b̂ is added to the Lagrangian.

In the phases with a Chern-Simons term we suppressed the gravitational Chern-Simons

term.

trivial phase with no induced Chern-Simons terms to a different phase, where there is an

induced term − 1
4πAdA − 2CSg. In condensed matter physics, this is an integer quantum

Hall phase transition of non-interacting electrons. The critical point is described by the

free massless Dirac fermion theory:

L = iψ /DAψ (3.7)

What about the phases with 〈φ̂〉 = 0? Here b̂ is not Higgsed. Since φ̂ is massive we

can integrate it out. When m > 0, we integrate out χ and there is no Chern-Simons term
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induced. We are left with a theory with a massless gauge field b̂, which can be dualized to a

massless scalar. It can be interpreted as the Nambu-Goldstone boson of the spontaneously

broken global symmetry, whose current is db̂.

When the mass of χ changes sign tom < 0, the integral of χ induces the Chern-Simons

terms

− 1

4π
(A+ b̂)d(A+ b̂)− 2CSg , (3.8)

giving a mass to b̂. According to the analysis in Appendix B, the U(1)−1 path integral

cancels the −2CSg, and we end up with a trivial gapped phase.13

These four phases are depicted in the left panel of Figure 2.

Next, we add a monopole operator of b̂ to the Lagrangian. As in the previous subsec-

tion, the three gapped phases are not modified. But since this operator explicitly breaks

the global symmetry whose current is db̂, the massless b̂ Nambu-Goldstone boson acquires

a mass. It is reasonable that the system has only two phases, as depicted in the right panel

of Figure 2. In condensed matter terminology, these two phases are the trivial insulator

and the quantum Hall insulator.

When m is small and 〈φ̂〉 is large the transition is described by a massless fermion

and the Lagrangian (3.7). The other limiting case is m large and negative and 〈φ̂〉 small.

There the transition can be described by

|D
b̂
φ̂|2 − |φ|4 − 1

4π
(A+ b̂)d(A+ b̂)− 2CSg . (3.11)

Assuming there is a unique fixed point controlling this transition, we conclude that the

critical point of (3.11) is described by the free massless Dirac theory. This establishes the

duality (2.5). As in section 2, this also leads to its T -image duality (2.1).

13 Since we are planning to add to the Lagrangian a monopole operator of b̂, we did not include

in (3.6) a term of the form 1
2π
B̂d̂b. But since so far we have not yet added this monopole operator,

we could ask how such a term would have changed our conclusions. In that case (3.8) would have

been replaced by

−
1

4π
(A+ b̂− B̂)d(A+ b̂− B̂) +

1

4π
B̂dB̂ −

1

2π
B̂dA− 2CSg . (3.9)

This leads effectively to
1

4π
B̂dB̂ −

1

2π
B̂dA (3.10)

and therefore in the presence of B̂ this phase is not completely trivial.
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4. Properties of the Fermion/Fermion Duality

In this section we discuss in detail the fermion/fermion duality (2.15)

iχ /Daχ+
1

2π
adb− 2

4π
bdb+

1

2π
bdA− 1

8π
AdA−CSg ←→ iΨ/DAΨ+

1

8π
AdA+CSg ,

(4.1)

where we include the bulk term 1
8πAdA + CSg to make the theory T -invariant. This

invariance is manifest in the free fermion side, but it is not manifest in the interacting

fermion side. Below we will demonstrate that the left hand side is indeed T -invariant, we
will present more checks of this duality, and we will show how to use the theory on the left

hand side of the duality to construct the T-Pfaffian state.

4.1. Using the U(1)2 × U(1)−1 theory

Around (1.15), we discussed how to turn the 2+1d free fermion theory to a T -invariant
theory. Here we will present another way to do it. The known semion/fermion theory [65]

can be made explicitly T -invariant with an anomaly by writing it as a U(1)2 × U(1)−1

theory [51]
2

4π
bdb− 1

4π
b′db′ − 1

2π
Adb′ − 1

2π
(A+ A′)db , (4.2)

where b and b′ are dynamical U(1) gauge fields, and A and A′ are classical spinc connec-

tions. (We could have used B = A+ A′, which is a classical U(1) gauge field.)

Consider the T transformation

T (A) = −A
T (A′) = A′

T (b) = b− b′ − 2A

T (b′) = −b′ + 2b−A′ − A ,

(4.3)

which is consistent with the spinc property of A and A′. On-shell this transformation

squares to one. Under this transformation the theory is invariant up to a shift by the

“anomaly”
1

4π
A′dA′ − 1

4π
AdA . (4.4)

As always, the anomaly is well defined as a 2 + 1d term, but it cannot be described as the

transformation of a 2 + 1d term.

Let us go back to a theory of fermions χ coupled to some A′ with the usual action

iχ /DA′χ. Our conventions are that the time-reversal anomaly in this theory is + 1
4πA

′dA′+
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2CSg (see (1.15)). So the anomaly can be canceled by subtracting (4.2) from the fermion

theory and adding the standard bulk term + 1
8πAdA+CSg. Next, we make A′ dynamical

and denote it by a. This leads to the T -invariant Lagrangian

iχ /Daχ−
2

4π
bdb+

1

4π
(b′ + A)d(b′ +A) +

1

2π
adb+

1

2π
Adb− 1

8π
AdA+ CSg . (4.5)

The term 1
4π (b

′ +A)d(b′ +A) can be replaced with −2CSg according to Appendix B, and

we end up with

L = iχ /Daχ−
2

4π
bdb+

1

2π
adb+

1

2π
Adb− 1

8π
AdA− CSg . (4.6)

We recognize it as the left hand side of the fermion/fermion duality (2.15). The discussion

above shows that this theory is T -invariant, just like the free fermion theory in the right

hand side of (2.15). The equation of motion of b in the theory based on L of (4.6) is

2db = da+ dA . (4.7)

If we naively integrate out b by using this equation of motion to set b = (a + A)/2 and

suppress the gravitational term, we find

LNaive = iχ /Daχ+
1

4π
adA+

1

8π
ada . (4.8)

Taking into account the meaning of the fermion path integral used in this paper, this is

essentially the dual Dirac theory appearing in [43,35,36,44-46]. However this process of

eliminating b is not strictly valid as it does not take into account the fact that the gauge

fields can have nontrivial fluxes satisfying Dirac quantization. In particular, in general

(a+ A)/2 does not satisfy Dirac quantization and therefore we cannot set b = (a+ A)/2.

Indeed, as detailed in Appendix C, exactly the same issue arises in the relationship of the

standard flux attachment theories (such as HLR) of quantum Hall systems with a more

precise version that does not involve fractional coefficients of Chern-Simons terms. For

the present theory likewise the attempt to integrate out b leads to the troubling fractional

coefficients of the two Chern-Simons terms in (4.8). So here we will not integrate b and

will work with (4.6). Nevertheless we will see that this more precise formulation retains

many of the physical features that follow formally from (4.8).
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4.2. Matching the Symmetries and the Operators in the Fermion/Fermion Duality

Here we will study the symmetries and operators in the theory (4.6) and will compare

them with those of the free theory (1.14).

The theory (4.6) has three conserved currents, the fermion bilinear χ†χ and the two

monopole currents da and db. Two linear combinations of these are gauged because they

couple to a or b. This leaves us with a single global U(1) symmetry, which couples to A.

We will denote it as U(1)A. This conclusion about the global symmetries matches with

the free theory (1.14), which also a single global U(1)A symmetry coupled to A.

We see that the theory (4.6) does not have well defined monopole number symmetry.

In order to explore this issue in more detail, let us attempt to construct monopole operators

for a and b and denote them Ma and Mb. These objects are not gauge-invariant. The

Chern-Simons terms in (4.6) lead to the gauge U(1)a×U(1)b charges and to global U(1)A

charges
U(1)a U(1)b U(1)A

Ma 0 1 0
Mb 1 −2 1
χ 1 0 0

(4.9)

where for completeness we added also χ. From these we can form gauge-invariant local

operators

M2n
a Mn

b χ
n, (4.10)

where in χn we mean an operator with n fermions and some derivatives, which are necessary

because of Fermi statistics. Note that the equation of motion (4.7) implies that the a flux

is twice the b flux, which is consistent with (4.10). This is not surprising because the b

equation of motion guarantees invariance under U(1)b. We see that the local operators

must have an even monopole charge of a. The simplest such operator has n = 1

Ψ =M2
aMbχ . (4.11)

Its U(1)A charge is +1. We identify it with the free fermion Ψ of (1.14).

We can also make operators gauge-invariant by attaching them to open Wilson lines.

Using the charges (4.9), our building blocks are

Mae
i
∫
b

Mbe
i
∫
(a−2b)

χei
∫
a .

(4.12)

28



And we can construct other objects using polynomials in these and their conjugates.

Let us understand these objects in more detail, starting with Mae
i
∫
b. An S2 that

surroundsMa is pierced by the open line at a point p. The equations of motion of a and b

show that db = 0 and that the total flux
∫
S2 da = 2π must be localized as a delta function

at p. This monopole has a single χ and a single χ zero-mode both localized around p,

because that is where the flux is. Their quantization leads to to two states with U(1)a

charges 0 and −1. They correspond to

Mae
i
∫
b , χMae

i
∫
(b−a) . (4.13)

We could also multiply these by powers of Mbe
i
∫
(a−2b), or add fermions by multiplying

by χei
∫
a, or their conjugates.

Next we move to monopole number two and construct such operators usingM2
a. Here

there are two χ zero-modes and two χ zero-modes leading to states with U(1)a charges q,

q − 1, q − 2 for some q. The value of q is determined by the background b flux. First, as

with the single monopole (4.13), we can simply attach a Wilson line, leaving the b flux to

vanish. This leads to q = 0 and the operators

M2
ae

2i
∫
b , χM2

ae
i
∫
(2b−a) , χ2M2

ae
2i
∫
(b−a) . (4.14)

These operators are products of the ones in (4.13). We could also change the background b

flux by multiplying the operator by powers ofMbe
i
∫
(a−2b) or add fermions by multiplying

by χei
∫
a, or their conjugates. A special case is the local operator (4.11).

Comparing with the free fermion (1.14), both theories have only a single global symme-

try U(1)A and the gauge-invariant local operators match (4.11). As we have just discussed,

the interacting theory also has operators that are ends of lines. But since they cannot be

characterized by quantum numbers, their identification in a dual description is difficult. In

the dual free theory (1.14), they could correspond to complicated line operators constructed

out of the free fermion.

Just as in the free theory, we can also consider a monopole of A. We denote such an

insertion by M̃A to distinguish it from the monopole insertion MA of the free fermion

theory, which will be identified below. Because of the term 1
2πAdb in (4.6), M̃A is not

gauge-invariant and carries U(1)b charge. This can be canceled by attaching a line. An-

other, more interesting possibility is to make M̃A gauge-invariant by multiplying it with
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M†
a or χMaMb. This gives objects that we can identify with the monopole insertions of

the free theory:

MA = χM̃AMaMb(P) , ΨMA = M̃AM†
a(P). (4.15)

4.3. Time-Reversal Properties of Monopole Operators

We now study how monopole operators transform under time-reversal. We focus on

two operators: the operatorMa and the local fermionM2
aMbχ.

Let us first considerMa. In the previous version of the Dirac duality (4.8) discussed in

the literature, a manifestation of the fact that the path integral is not really gauge-invariant

(because the Chern-Simons couplings are not properly quantized) is that the monopole

operatorMa cannot be made gauge-invariant. Since time-reversal acts as T :Ma → χMa,

we have no choice but to assign U(1)a gauge charge ±1/2 to the two operators obtained

by quantizing zero-modes.

It is instructive to see how this issue is cured in the more properly defined theory

(4.5). Here the gauge-invariant operator is Mae
i
∫
b. The crucial point is that the flux

configuration of Ma is not time-reversal invariant. Rather, according to (4.3) (setting

A = 0 for simplicity), the fluxes should transform as

∫
da = 2π →

∫
da = 2π

∫
db′ = 0 →

∫
d(−b′ + 2b− a) = 0

∫
db = 0 →

∫
d(b− b′) = 0,

(4.16)

for which the solution is simply
∫
da =

∫
db =

∫
db′ = 2π. Therefore the monopole

operatorMae
i
∫
b should transform to

χMaMb′Mbe
i
∫
(−b+b′) =

(
Mae

i
∫
b
)(
Mb′e

i
∫
b′
)(

χMbe
−i

∫
2b
)
. (4.17)

All the three factors in the above line are separately gauge-invariant (notice thatMb

carries U(1)a charge, which is canceled by χ). The second and third factor both carry

spin-1/2, so the total spin is still 0 which is consistent. Therefore unlike for the old theory

in (4.8), gauge-invariance is fully compatible with time-reversal symmetry on the monopole

operators in the properly defined theory.
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We now consider the local fermion operatorM2
aMbχ. Using the time-reversal trans-

formation (4.3), it is straightforward to see that the flux configuration associated with

M2
aMb is time-reversal invariant. In fact, for local operators such as the physical fermion,

it suffices to use a simplified version of the time-reversal transformation: we can take the

on-shell condition for b′ (namely b′ = −A) in (4.3), to get

T (A) = −A
T (a) = a

T (b) = b−A.
(4.18)

The flux configuration of M2
aMbχ is obviously invariant under this T -transformation,

since the A-flux vanishes.

There are two fermion zero-modes χ1, χ2 associated with this flux configuration. Since

time-reversal T acts like CT on χ, we have

T :M2
aMb → χ1χ2M2

aMb. (4.19)

Therefore T acts on the local fermion as

T : χ1M2
aMb → χ2M2

aMb → −χ1M2
aMb, (4.20)

which gives T 2 = (−1)F , fully consistent with the free fermion theory.

5. Gapping the Interacting Fermion Theory

In this subsection we will add scalars to the interacting fermion theory (4.6) and

consider a gapped phase of the system. (In the condensed matter literature this is discussed

as the condensation of a Cooper pair formed out of the dual fermions. As we said above,

we prefer to describe it by adding an elementary scalar field.) It was suggested in [35,36]

in the original version of the dual theory (1.7), that this leads to the T-Pfaffian state.

We have emphasized above that especially when discussing topological aspects of gapped

phases, one has to be careful with global considerations and in particular, it is crucial to

use a description of the theory with properly normalized Chern-Simons terms. Here we will

work this out with the refined version (4.6) and we will show that, indeed, the T-Pfaffian

state can be obtained this way.
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Although the theory (4.6) is dual to a free fermion theory, the gapped theory that will

emerge from our manipulations is not dual to something that we could have constructed

starting with the free fermion theory. By adding scalars in the UV of the interacting

fermion theory and by changing parameters in the UV theory to a phase with expectation

values of these scalars, we go beyond the range of validity of the IR duality implied by (4.1).

No obvious manipulation on the free fermion theory will match what we will do in the dual

theory. However, as in [51], if we add the scalars to the dual theory in a T -invariant way
and their expectation value does not break that symmetry, we are assured that the gapped

theory that we derive is T -invariant with exactly the same bulk interactions as the free

fermion theory.

There are various constraints on scalars that might be included. Using T (b) = b− A
(eqn. (4.18)), it is easy to see that if we want a scalar field to transform homogeneously

under T as defined in (4.3) or (4.18), and to preserve the spin/charge relation, it cannot

couple to b. Whether a scalar can couple to a or to A depends on how it transforms under

T . Even without T , the sum of the a and A charges of a scalar must be even, as a and

A are spinc connections. For our purposes, the simplest possibility is to introduce a scalar

Φ with U(1)a charge −2, which can couple as Φχχ. In order to preserve T -invariance,
Φ should transform as T (Φ) = −Φ (in terms of real components Φ = (φ1 + iφ2)/

√
2,

this means that T φk = −φk, k = 1, 2). The expectation value of Φ gives mass to the

fermions and spontaneously breaks U(1)a → Z2. More precisely, the nonzero expectation

value of Φ breaks U(1)a and breaks T , but it preserves a Z2 ⊂ U(1)a gauge symmetry

and another time-reversal transformation T ′, which is a combination of the original T and

a broken gauge transformation. Then, the low-energy theory is gapped and topologically

non-trivial.

As in [51], we describe first the Abelian sector of the theory. To describe the symmetry-

breaking from U(1)a to Z2, we introduce a new U(1) gauge field c, dual to the phase of Φ,

with a coupling 2cda/2π. Adding this to the Chern-Simons couplings that were present

already in (4.6), we have

LAbelian =
2

2π
cda− 2

4π
bdb+

1

2π
adb+

1

2π
Adb− 1

8π
AdA− CSg. (5.1)

Note that we do not include a term of the form 1
8πada from integrating out the fermions.

(The a dependence of the fermion path integral goes into the construction of the Ising

sector that we mention momentarily.) In eqn. (5.1), we recognize a as a Lagrange multiplier
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setting b ∼ −2c (up to a gauge transformation). Eliminating a and imposing the constraint,

we get

LAbelian eff. = −
8

4π
cdc− 2

2π
cdA− 1

8π
AdA− CSg . (5.2)

This is a U(1)−8 theory of c coupled to A. As in [51], we add to this the Ising sector with

its three lines 1, Wψ, Wσ. Performing the Z2 quotient, we find the T-Pfaffian theory.

We can go back to the UV theory (4.6) and, as in [51], identify there the quasi-particles

in the gapped phase. The expectation value of Φ breaks U(1)a → Z2 and leads to vortices

as follows.

v = ±1 The basic vortex has a single fermion zero-mode. It has spin 0 and electric charge

±1
4 . It is represented in the topological theory by Wσe

±i
∮
c.

v = ±2 Two vortices are a monopole operator of a. As we discussed above, this cannot be a

local gauge-invariant operator. Instead, it leads to a quasi-particle. The χ zero-modes

lead to states with spins ±1
4mod1 and electric charges ±1

2 . They are represented in

the topological theory by the lines e±2i
∮
c and Wψe

±2i
∮
c.

v = ±3 Vorticity 3 leads to quasiparticles with spin 1
2
mod 1 and electric charge ±3

4
. They

are represented by Wσe
±3i

∮
c.

v = 4 Finally, the vorticity 4 states are related toM2
a we discussed above. They are e4i

∮
c

and Wψe
4i
∮
c. The first has spin 0 mod 1 and charge 1 and its correlation functions

are nontrivial. The second is a transparent line, which can be interpreted as the world

line of the free fermion Ψ of the T-Pfaffian theory, which in turn is the fermion of

the dual free fermion theory. In the context of a topological insulator, this is the

underlying electron.

6. Relation to S-Duality in the Bulk

The goal of this section is to present a four-dimensional interpretation of the dualities

that have been described in this paper. For every three-dimensional duality that we have

discussed, we will describe a four-dimensional duality from which it follows. We should

stress that this will not be a proof of the dualities.

Concretely, a 3+1 dimensional theory of a free U(1) gauge field exhibits S-duality. It

can be derived using straightforward manipulations in the functional integral, which can

be performed even when the four-dimensional manifold has a boundary. Below we will

review this subject. Then we will show that these known S-duality transformations can be

naturally combined with our assumed 2 + 1 dimensional dualities to lead to a consistent

picture. This will allow us to derive the 2+1 dimensional dualities from a new assumption

about the 3 + 1 dimensional theory.
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6.1. Review Of Electric-Magnetic Duality

First we recall basic facts about electric-magnetic duality in bulk for free U(1) gauge

theory. We consider a U(1) gauge field B with field strength Fµν = ∂µBν − ∂νBµ. The

electromagnetic action in Lorentzian signature is

Iem =

∫
d4x
√−g

(
− 1

4e2
FµνF

µν +
θ

32π2
ǫµνλρFµνFλρ

)
. (6.1)

It is convenient to combine the gauge coupling e and theta-angle θ to a complex coupling

parameter

τ =
θ

2π
+

2πi

e2
(6.2)

that takes values in the upper half plane. Then, in terms of F±
mn = 1

2

(
Fmn ± i

2
ǫmnpqF

pq
)
,

the action is

Iem(B; τ) = − i

8π

∫
d4x
√−g

(
τ F+

mnF
+mn − τF−

mnF
−mn

)
. (6.3)

The basic electric-magnetic duality transformation starts with the action (6.3) with

F expressed in terms of the gauge field B. Using differential form notation, we add to the

action
1

2π

∫
F ′ ∧ (F − dB) , (6.4)

where F and F ′ are arbitrary two-forms. Clearly, this does not affect the theory, since

a path integral over F ′ will just give a constraint setting F = dB. Because of this fact,

once (6.4) is added, we can treat F in the original action (6.3) as an independent variable,

forgetting its original definition as dB. To get something non-trivial, we instead integrate

first over F . Since the action is quadratic in F , the integral over F is Gaussian. It leads

to

− i

8π

∫ (
τ ′ F

′+F
′+ − τ ′F ′−F

′−
)
− 1

2π

∫
F ′dB , (6.5)

with

τ ′ = −1

τ
. (6.6)

Now the path integral of the U(1) gauge field B gives a delta function constraint saying

that F ′ is closed and its periods are integer multiples of 2π, so we can interpret F ′ as the

field strength of a dual gauge field B′. Restoring indices, we find that the dual action is

Iem(B′; τ ′) = − i

8π

∫
d4x
√−g

(
τ ′ F

′+
µνF

′+µν − τ ′F ′−
µν F

′−µν
)
. (6.7)
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In sum, the theory with action Iem(B; τ) is equivalent to a theory with another U(1)

gauge field B′, field strength F ′
mn = ∂mB

′
n−∂nB′

m, and action (6.7) with coupling constant

τ ′. This derivation essentially holds on any oriented four-manifold X , though a little more

care shows that there is a c-number anomaly involving the Riemannian curvature of X

[67].14

What is often called S-duality is the group generated by S(τ) = −1/τ along with

T (τ) = τ + 1. (6.8)

Thus T generates the transformation θ → θ + 2π. S and T together generate an infinite

discrete group called SL(2,Z). An element of SL(2,Z) is a 2× 2 integer-valued matrix of

determinant 1:

M =

(
a b
c d

)
, ad− bc = 1, (6.9)

acting on τ as

M(τ) =
aτ + b

cτ + d
. (6.10)

Note that the element −1 ∈ SL(2,Z) acts trivially on τ (so the group that acts faithfully

on τ is actually the quotient group SL(2,Z)/{±1} = PSL(2,Z)). Accordingly, −1 is a

symmetry for any τ and (taking τ → i∞) must correspond to a classical symmetry. It can

be shown that this symmetry is charge conjugation, which acts by B → −B.15

Actually, as noted in [67], with θ defined as in eqn. (6.1), Iem is invariant mod 2π

under T : θ → θ + 2π only if X is a spin manifold. (One needs to know that the quantity

J defined in Appendix A is always integer-valued.) Without a spin structure, one only

has invariance under T 2 : θ → θ + 4π. So on a four-manifold X that is not necessarily a

spin manifold, U(1) gauge theory is invariant only under the subgroup of SL(2,Z) that is

generated by S and T 2. This subgroup is of index 3. The significance of this was clarified

only recently [41]. In U(1) gauge theory, one can define Wilson-’t Hooft operators with

integer electric and magnetic charges (ne, nm). If we consider the charges mod 2, then

we are left with three basic Wilson-’t Hooft operators, of charges (1, 0), (0, 1), and (1, 1).

14 The definition of τ used in that paper is τ = θ/2π + 4πi/g2, where g2 = 2e2. This choice

was made in order to agree with conventions often used in U(N) gauge theory for N > 1.
15 If instead of adding (6.4) we had subtracted it, this would have changed the sign of F ′ and

B′. We would get a second duality transformation acting as τ → −1/τ but differing from the first

by the element −1 ∈ SL(2,Z), that is by B′ → −B′.
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One can define three variants of U(1) gauge theory in which two of the three basic line

operators are taken to be bosonic and the third to be fermionic.16 These three choices are

permuted by SL(2,Z). In either of the two versions in which the (1, 0) line operator is

bosonic, the gauge field B is an ordinary U(1) gauge field. These two versions differ by

whether the (0, 1) line operator is bosonic, and they are exchanged by T . The third option

is that the (1, 0) line operator is fermionic. For this to make sense on a manifold X that

is not a spin manifold, the gauge field that appears in the action and couples to the (1, 0)

line operator must be a spinc connection rather than an ordinary U(1) gauge field.

In our previous analysis in eqns. (6.4)-(6.7), we transformed one U(1) gauge field B

to another U(1) gauge field B′. One might wonder how one can modify the derivation to

instead transform B to a spinc connection
17 A. For this, we return to the action Iem(B, τ)

of eqn. (6.3), but now we write it as Iem(B, τ + 1) + I ′, where I ′ = − 1
4π

∫
dBdB. Again

we add the term (6.4) with F and F ′ arbitrary two-forms. But now we replace dB by F

only in Iem(B, τ + 1), not in I ′. Integrating out F and including I ′ now leads to

− i

8π

∫ (
τ ′ F

′+F
′+ − τ ′F ′−F

′−
)
− 1

2π

∫
F ′dB − 1

4π

∫
dBdB , (6.11)

with

τ ′ = ST (τ) = − 1

τ + 1
. (6.12)

Now we want to integrate out B. On a spin manifold, I ′ = − 1
4π

∫
dBdB is an integer

multiple of 2π and has no influence on the path integral. In general, it is congruent mod

16 It is not possible for all of the basic line operators to be bosonic, since if two are bosonic,

the angular momentum in the electromagnetic field forces the third to be fermionic. Likewise it

is not possible for two of the basic line operators to be fermionic and only one bosonic. It has

been argued that in a purely 3 + 1-dimensional theory, it is not possible for all three basic line

operators to be fermionic [68,69]. It is also possible to have a version of U(1) gauge theory in

which all of the line operators are allowed to be either bosonic or fermionic. This implies that one

can consider a neutral fermion, so the theory with a full set of line operators in this sense only

makes sense on a spin manifold. This leads to full SL(2,Z) symmetry. In effect, this option was

assumed in [67].
17 A nontrivial theorem says that every orientable four-manifold admits a spinc structure. (In

five or more dimensions, this is not true.) Clearly we will have to invoke this theorem at some

point, since on a four-manifold X that does not admit any spinc structure, a U(1) gauge field

could not be dual to a spinc connection. The theorem will be invoked in the next footnote.
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2π to π
∫
w2 ∧ dB/2π where18 w2 is the second Stieffel-Whitney class of X , which is the

obstruction to a spin structure on X . The path integral over the abelian gauge field B

still gives a constraint saying that F ′ is closed, But now instead of learning that F ′ has

periods that are integer multiples of 2π, we learn that F ′ + πw2 has periods that have

that property. As in eqn. (1.10), this amounts to saying that F ′ is the curvature of a spinc

connection A′. Thus we have shown that the duality transformation ST maps a U(1)

gauge field B to a spinc connection A′.

6.2. Duality On A Manifold With Boundary

Now we consider the case of a U(1) gauge field B that propagates only in “half” of

spacetime, say the half-space x3 ≥ 0 in Minkowski spacetime, where x3 is one of the three

spatial coordinates. We call the half-space X+ and denotes its boundary as M . (X will

denote all of spacetime and X− will be the opposite half-space.) The boundary of X+ is

a 2 + 1-dimensional spacetime M . We assume that the gauge field B on X+ is coupled to

some degrees of freedom that propagate on M . The part of the action that involves B is

generically

1

2π

∫

M

d3x JµBµ −
i

8π

∫

x3≥0

d4x
(
τ F+

µνF
+µν − τF−

µνF
−µν

)
, (6.13)

where Jµ is a conserved current defined only on M and the 1/2π is a convenient normal-

ization.

The duality transformation of this action was anticipated in [70] and was worked out

in [71], section 4.4. Here we will give a derivation by adapting the steps above. We express

the action in terms of the gauge field B, add the term (6.4), and then express the bulk

term in the action (6.13) in terms of the arbitrary two-form F . We cannot do that in the

first term in (6.13) because it depends explicitly on B. Next, we integrate out F to convert

the bulk part of the action to (6.5) and we integrate out the bulk components of B (that is,

we integrate over B keeping its boundary value fixed) to learn that locally F ′ = dB′ is the

18 We are being slightly cavalier, since w2 is a class in mod 2 cohomology rather than a dif-

ferential form. However, using the theorem mentioned in the last footnote, we can replace w2

in this derivation by G/2π, where G is the curvature or field strength of any spinc connection.

The argument then proceeds as in the text, using the fact that with F = dB,
∫
X
F ∧ F/(2π)2 is

congruent mod 2 to
∫
X
F ∧ G/(2π)2 and the fact that periods of G/2π are congruent mod 2 to

periods of w2.
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field strength of a U(1) gauge field. This turns the second term in (6.5) to − 1
2π

∫
dB′dB,

which can be expressed as a Chern-Simons term on the boundary, namely − 1
2π

∫
BdB′. At

this point all that remains of B is its boundary value, which is a purely 2 + 1 dimensional

gauge field. We denote the boundary value by b and we end up with the dual action

1

2π

∫

M

d3x
(
Jµbµ − ǫµνρbµ∂νB′

ρ

)
− i

8π

∫

x3≥0

d4x
(
τ ′ F

′+
µνF

′+µν − τ ′F ′−
µν F

′−µν
)
, (6.14)

with τ ′ = −1/τ .
Let us take stock of this answer. We started with a theory in which a bulk gauge field

B couples to the current J/2π on the boundary. After duality, the original bulk gauge

field B has been replaced by a new gauge field B′ with coupling parameter τ ′ = −1/τ .
And the restriction of B to the boundary, which we denote by b, now behaves as a purely

2+1-dimensional gauge field. It retains its original coupling to J/2π and couples to B′ by
∫
M
bdB′/2π.

In general, we may consider on M any theory with degrees of freedom that we generi-

cally call Φ, coupled to a background U(1) gauge field B by some action I(Φ, B). Now let

us suppose that B is actually a dynamical gauge field, propagating on the half-space X+,

with coupling parameter τ . To apply a bulk duality transformation τ → −1/τ , we apply

the procedure that was summarized in the last paragraph. The dual theory is obtained by

replacing B in bulk by a dual gauge field B′, treating the restriction of B to the boundary

as a purely 2 + 1 dimensional gauge field b, and including the bdB′/2π coupling:

I(Φ, b)− 1

2π

∫

M

bdB′ − i

8π

∫

x3≥0

d4x
√−g

(
τ ′ F

′+
µνF

′+µν − τ ′F ′−
µν F

′−µν
)
. (6.15)

As in [70], this explains how to implement the duality transformation

S =

(
0 −1
1 0

)
, τ → −1/τ, (6.16)

in the context of a gauge field on a manifold with boundary coupled to an arbitrary system

on the boundary. The full group SL(2,Z) is generated by S and

T =

(
1 1
0 1

)
(6.17)

with the relation (ST )3 = 1. The action of T is actually more elementary. In bulk, T

shifts the theta-angle by 2π. On a spin manifold without boundary, that is a symmetry
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(in the absence of a spin structure, we can instead consider in a similar way the operation

T 2). In the presence of a boundary, shifting the bulk theta-angle by 2π is not a symmetry,

but we can compensate for this by adding a Chern-Simons coupling −(1/4π)
∫
M
BdB to

the boundary theory. So this gives the action of T on the boundary couplings:

I(Φ, B) −→ I(Φ, B)− 1

4π

∫

M

BdB. (6.18)

The fact that these relations do satisfy (ST )3 = 1 can be demonstrated by a short, formal

calculation.19

Below we will often find it convenient to use −S instead of S. Its action on τ is the

same as the action of S, but it involves also a factor of charge conjugation. Therefore, the

action of −S is obtained by changing B′ → −B′ in (6.15).

The reader may be surprised that in this derivation, we insist that the bulk gauge

field B propagates only in the half-space X+. What happens if B propagates throughout

all of a four-manifold X , in which M is embedded? This question can be answered using

the facts explained above, but the answer may be slightly more complicated than one

anticipates. First, let us interpret a gauge field B that propagates throughout X as a pair

consisting of a gauge field B+ on X+ and another gauge field B− on X−, with a constraint

setting B+ = B− (up to a gauge transformation) along M . As above, we implement the

constraint by including a U(1) gauge field c that only propagates on M with a coupling

(1/2π)
∫
M
cd(B+−B−). It is also a useful abbreviation to write, for example,

∫
X+
L(B+, τ)

for the bulk action of a gauge field B+ on X+ with coupling parameter τ . Then the system

consisting of a gauge field B on X that is free in bulk but has a coupling I(φ,B) along M

can be described by the action:

I(Φ, B+)−
1

2π

∫
cd(B+ −B−) +

∫

X+

L(B+, τ) +

∫

X−

L(B−, τ). (6.19)

(We could equally well replace I(Φ, B+) by I(Φ, B−), because of the constraint that effec-

tively sets B+ = B− along M .) Thus we have a theory with two half-space gauge fields

B+ and B− and boundary couplings Î(Φ, B+, B−) = I(Φ, B+) +
1
2π

∫
cd(B+ −B−). Now,

19 This calculation can be found in [70]. However, note that what we call S and T were called

S−1 and T−1 in that paper. (Exchanging S with S−1 = −S can be understood as combining

S with charge conjugation, and replacing T with T−1 is equivalent to changing the sign of the

theta-angle.) The relation (ST )3 = 1 is unchanged.
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as above, we implement the duality transformation τ → −1/τ for this system by replacing

B± in the bulk by new gauge fields B′
±, denoting the boundary values of B± by b±, and

adding new couplings −(1/2π)
∫
M

(
b+dB

′
+ + b−dB

′
−

)
. Thus we arrive at

I(Φ, b+)−
1

2π

∫ (
cd(b+−b−)+b+dB′

++b−dB
′
−

)
+

∫

X+

L(B′
+,−1/τ)+

∫

X−

L(B′
−,−1/τ) .

(6.20)

The path integral over b− can be performed, and gives a constraint setting20 c = B′
−|.

Denoting b+ simply as b, we are left with

I(Φ, b)− 1

2π

∫
bd(B′

+ −B′
−) +

∫

X+

L(B′
+,−1/τ) +

∫

X−

L(B′
−,−1/τ) . (6.21)

Note that here there is not any constraint setting B′
+| = B′

−| (we cannot get such

a constraint by integrating over b, since b also appears in I(Φ, b)). Thus in the dual

description there are really separate gauge fields propagating in X+ and in X−. This

may come as a surprise, though there is an example involving the D3-D5 system that is

relatively well-known to string theorists.21

Going back to the one-sided case, one may ask what is the physical interpretation of a

U(1) gauge field that only propagates in a half-space. The originally envisaged application

was to the AdS/CFT correspondence. Since free U(1) gauge theory is conformally invariant

and anti de Sitter space is conformally equivalent to a half-space in Minkowski spacetime,

the question of how duality acts on a U(1) gauge field in a half-space has applications

to AdS/CFT duality. In condensed matter physics, one may interpret a half-space gauge

20 By B′
−|, we mean the restriction of B′

− to M .
21 Let X be the 3 + 1-dimensional worldvolume of a D3-brane and M a codimension one

subspace on which X intersects a D5-brane. On X, there propagates a (supersymmetric) U(1)

gauge theory. The U(1) gauge multiplet is coupled on M to a charged hypermultiplet, which one

can think of as the supersymmetric extension of a charged boson. After a τ → −1/τ duality, one

has a D3-NS5 system. Now there are separate U(1) gauge fields B′
+ and B′

− on the two sides of

the NS5-brane. The standard description of the system is that B′
+ and B′

− are coupled on M

to a “bifundamental hypermultiplet” (this is simply a hypermultiplet that couples with charges

(1,−1) to B′
+ and B′

−). Interestingly, this standard description differs from the one we get in eqn.

(6.20) by a supersymmetric version of charge-vortex duality (the relevant duality was originally

developed in [72,73]). Comparing the two descriptions gives a derivation of this supersymmetric

charge-vortex duality from the underlying string theory dualities.
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field B as an emergent gauge field that only propagates in the world-volume X+ of some

material, and may be coupled to boundary degrees of freedom on the surface of the material.

Finally, we would like to point out that, by adapting the analysis of (6.11), we can

similarly describe dualities involving spinc connections rather than ordinary U(1) gauge

fields on a manifold with boundary.

6.3. A Four-Dimensional Interpretation Of Particle-Vortex Dualities

We will use these tools to describe a four-dimensional interpretation of the dualities

studied in the present paper. We start with the standard bosonic particle-vortex duality.

We consider a U(1)-invariant theory of a complex boson φ on M at the Wilson-Fisher

fixed point. We couple φ to a half-space gauge field B via the action
∫

M

d3x
√−g

(
|DBφ|2 − |φ|4

)
+

∫

X+

L(B, τ). (6.22)

As usual, |φ|4 is shorthand for a quartic coupling that is tuned to the Wilson-Fisher fixed

point. For the present purposes, we may set θ = 0 so that τ = 2πi/e2. For e → 0, B

effectively decouples and behaves as a background gauge field coupled to the Wilson-Fisher

theory.

Now instead, let us go to τ = i, that is e2 = 2π. This is a fixed point of the

transformation S : τ → −1/τ . We introduce now the assumption that the combined system

(6.22) is S-invariant at τ = i. We know that this is true in bulk, so the assumption is that

the particular boundary coupling in (6.22) is S-invariant. If so, the relevant operator |φ|2
of the Wilson-Fisher theory must be odd under S, as will follow from the analysis below.

S will exchange the deformation away from e2 = 2π to e ≪ 1 to a deformation to

e ≫ 1. Thus under our assumption, the Wilson-Fisher theory coupled to a background

field, which we get at e ≪ 1, has a dual description that is obtained by taking e ≫ 1 in

eqn. (6.22). The dual theory has coupling parameter −1/τ .
The trouble with this is that a description that involves e≫ 1 is not very useful. To

get a more useful description, we apply an S-duality transformation to the dual theory

found in the last paragraph. This will introduce a new gauge field B′ in X+, now once

again with coupling parameter τ . As we know by now, the duality is implemented on

the boundary by replacing B by a purely 2 + 1-dimensional gauge field b in the original

boundary couplings, and adding a bdB′/2π coupling. So we arrive at

∫

M

d3x
√−g

(
|Dbφ|2 − |φ|4

)
− 1

2π

∫

M

bdB′ +

∫

X+

L(B′, τ). (6.23)
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Actually, here we can drop the prime from B′. Since the bulk action for B′ has the same

coupling parameter τ as the bulk action for B in eqn. (6.22), B′ must coincide with B up

to a classical symmetry of the bulk theory. The only relevant classical symmetry would be

charge conjugation, B → −B. Given that (6.22) and (6.23) are equivalent, by combining

such an equivalence with charge conjugation, if necessary, we can assume that the relation

is B′ = B rather than B′ = −B.

The conclusion is that assuming the theory (6.22) is selfdual at τ = i, it follows that

the two theories (6.22) and (6.23) are equivalent for any τ . Taking τ → i∞, we recover

the standard bosonic particle-vortex duality. (To match with our earlier equations, set

b→ −b.)
Every 2+1-dimensional duality proposal in the present paper can similarly be deduced

from an analogous duality conjecture in 3+1 dimensions. Moreover, the 2+1-dimensional

duality web, wherein one duality conjecture can be deduced from another, has a counter-

part in 3 + 1 dimensions.

To explain this, we start with the basic bose-fermi duality, from which follow all of

the purely 2 + 1-dimensional dualities considered in this paper. We will explain how to

interpret the bose-fermi duality in 2 + 1 dimensions as a consequence of a conjecture in

3 + 1 dimensions.

Let us start with the basic duality of eqn. (2.1), between a Dirac fermion Ψ coupled

to a background spinc connection A, and a Wilson-Fisher boson that is coupled to a U(1)

gauge field b as well as to A:

iΨ/DAΨ ←→ |Dbφ|2 − |φ|4 +
1

4π
bdb+

1

2π
bdA. (6.24)

We observe that the theory on the right hand side can be obtained by applying the oper-

ation −ST−1 to a Wilson-Fisher boson coupled to a background gauge field B:

|DBφ|2 − |φ|4. (6.25)

This suggests the following interpretation. First of all, the inverse of −ST−1 is TS, which

transforms τ to τ ′ = 1 − 1/τ . Now we postulate an equivalence between two half-space

theories. In theory I, the Dirac fermion Ψ on M is coupled to the boundary values of a

half-space spinc connection A; the bulk action for A has coupling parameter τ . The action

is thus ∫

M

d3x
√−g iΨ/DAΨ+

∫

X+

L(A, τ). (6.26)
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In theory II, a Wilson-Fisher boson onM is coupled to the boundary values of a half-space

U(1) gauge field B, but now the coupling parameter is τ ′:

∫

M

d3x
√−g

(
|DBφ|2 − |φ|4

)
+

∫

X+

L(B, τ ′). (6.27)

We postulate that these theories are equivalent for all τ . To try to extract a purely 2 + 1-

dimensional duality from this statement, we take τ → i∞, whereupon theory I reduces to a

Dirac fermion coupled to a background spinc connection A. Unfortunately, when τ → i∞,

we have τ ′ → 1. The description of theory II via the action (6.27) is not useful for τ ′ → 1.

To get something useful, we apply a duality transformation −ST−1 to theory II. This

transforms the gauge coupling parameter from τ ′ back to τ . Following the reasoning of

[41], the −ST−1 transformation in bulk maps the U(1) gauge field B to a spinc connection

rather than an ordinary U(1) gauge field, so we write A′ (rather than B′) for the new bulk

connection. Apart from this, the action of −ST−1 on theory II is obtained in the usual

way: we act with T−1 by adding a new boundary coupling BdB/4π, and then we act with

−S by replacing B in the boundary couplings with a purely 2 + 1-dimensional gauge field

b, with an additional coupling bdA′/2π to the new bulk field A′. As in our discussion of the

bosonic case, since the half-space theories of A and A′ have the same coupling parameter

τ , we can assume that these fields are simply related by A = A′. Thus we end up with

∫

M

d3s
√−g

(
|Dbφ|2 − |φ|4

)
+

1

4π

∫

M

bdb+
1

2π

∫

M

bdA+

∫

X+

L(A, τ) , (6.28)

which should be equivalent to (6.26) for any τ . In the limit τ → i∞, the equivalence of

(6.26) and (6.28) reduces to the purely 2 + 1-dimensional duality of eqn. (6.24).

In section 2, this one duality was used as a starting point to build up a web of

dualities. This was done by successive application of S and/or T transformations and/or

time-reversal T to the left and right hand sides of eqn. (6.24). All these operations have

bulk counterparts, so every statement in section 2 can be “promoted” to a 3+1-dimensional

statement. Since it is particularly elegant, we will give as an example the fermion-fermion

duality of eqn. (2.14). This is a duality between a Dirac fermion Ψ coupled to a background

spinc connection A, and a Dirac fermion χ coupled to purely 2 + 1-dimensional fields a

and b as well as A:

iχ /Daχ+
1

2π
adb− 2

4π
bdb+

1

2π
bdA ←→ iΨ/DAΨ+

1

4π
AdA+ 2CSg. (6.29)
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A bulk theory related to the right hand side of eqn. (6.29) is simply

∫

M

d3x
√−g iΨ/DAψ +

1

4π

∫

M

AdA+

∫

X+

L(A, τ). (6.30)

This theory is T -invariant if Re τ = −1/2, that is if

τ = −1

2
+ ix (6.31)

for some real x. (Taking x→∞, this statement reduces to the statement that eqn. (2.15) is

T -invariant.) On the left hand side of eqn. (6.29), we see the ingredients that are required

to act with ST 2S on the theory of a Dirac fermion χ, successively introducing new fields

a and b with suitable couplings. Imitating the procedure that we used to give a 3 + 1-

dimensional interpretation to eqn. (6.24), this suggests that we should start with a bulk

theory whose coupling parameter is obtained by transforming τ by the inverse of ST 2S.

That inverse is ST−2S, and maps τ to τ ′ = τ/(2τ + 1). We note that if τ = −1/2 + ix,

then

τ ′ =
1

2
+

i

4x
. (6.32)

At such a value of τ ′, the theory

∫

M

d3x
√
g iχ /DA′χ+

∫

X+

L(A′, τ ′) (6.33)

is T -invariant.
We postulate that theory (6.30), with any coupling parameter τ , is equivalent to

theory (6.33) with the corresponding coupling parameter τ ′. As usual, a naive attempt to

deduce from this a purely 2+ 1-dimensional duality runs into trouble. If we take τ → i∞,

then theory (6.30) reduces to the theory of a 2+1-dimensional Dirac fermion Ψ coupled to

a background spinc connection A. But for τ → i∞, we have τ ′ → 1/2, a limit in which the

description (6.33) is not useful. To compensate for this, we apply ST 2S to (6.33), giving a

new description in which the bulk coupling parameter is the original τ and hence the bulk

spinc connection is the original A:

∫

M

d3x
√
g iχ /Daχ+

∫

M

(
− 1

2π
adb− 2

4π
bdb− 1

2π
bdA

)
+

∫

X+

L(A, τ). (6.34)

Now, after a sign change of b, in the limit τ → i∞ the equivalence of (6.30) and (6.34)

leads to the purely 2 + 1-dimensional duality (6.29), as promised.
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6.4. Time-Reversal Symmetry

We now show that the bulk duality between (6.26) and (6.27) is fully compatible

with time-reversal symmetry. This provides further evidence for the bulk duality. It also

gives a simple interpretation of the unconventional time-reversal symmetry in the three-

dimensional dualities (2.1) and (2.10), discussed in (2.4) and (2.17).

Let us start with the equivalence between (6.26) and (6.27) on a closed manifold

without boundary. Consider the case with τ = 1
2
+ i

2
tan(α/2). The naive time-reversal

transform T0, which takes θ → −θ and keeps e2 unchanged, acts on τ as T0 : τ → −τ .
For τ = 1

2 + i
2tan(α/2) this means T0 : τ → τ − 1. This shift can be restored by a T

transform (which is legitimate since A is a spinc connection). Therefore the real time-

reversal symmetry for (6.26) should be TT0. We recognize this as the usual time-reversal

symmetry of the gauged topological insulator.

Now what about the bosonic side (6.27)? For τ = 1
2
+ i

2
tan(α/2) we have τ ′ = TSτ =

1− 1/τ = −e−iα. The naive T0 changes it to τ ′′ = −τ ′ = eiα. But one can make another

S transform to bring it back to Sτ ′′ = −1/τ ′′ = −e−iα = τ ′. So the real time-reversal on

(6.27) should be ST0.
The above statement can be derived more systematically as follows. We want to find

a time-reversal operation gT0, where g ∈ SL(2,Z) and

gT0(TSτ) = TSτ, (6.35)

for any τ that satisfies

TT0τ = τ. (6.36)

A direct calculation shows that T0TS = T−1ST0. After some simple manipulation we get

g = −TSTST = S, (6.37)

which is what we expected.

The above result has a very simple physical picture. For τ = 1
2 + i

2 tan(α/2), the TS

transform maps the charge (1/2, 1) and (1/2,−1) dyons into the basic charge and monopole

particles. Since time-reversal exchanges the two original dyons, after the transform time-

reversal should act by exchanging the charge and monopole particles, namely as an S

operation.

We now turn to manifolds with boundary. The surface Dirac fermion in (6.26) is

not invariant under the naive T0, rather under TT0 – this is simply the physics of the
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topological insulator surface, as we explained in discussing eqn. (1.14). What about the

bosonic side? The bosonic surface state in (6.27) is invariant under T0. It is also invariant

under the surface S operation, as demonstrated by the charge/vortex duality. Therefore

the bosonic side (6.27) with a boundary is also ST0-invariant.
Even though the bosonic surface theory in (6.27) is invariant under ST0, the surface

field φ does not transform classically. Rather, the symmetry transforms it to its vortex

dual φ̂. Physically we can interpret φ and φ̂ as the surface correspondents of the electric

and magnetic particles in the bulk, which correspond to the (1/2,±1) dyons in the dual

fermion theory in (6.26). This offers a simple interpretation of the time-reversal property

of the boson/fermion duality in (2.1), discussed under (2.4).

There is a parallel story when τ ′ = ix. The bosonic side (6.27) is now manifestly T0-
invariant. Here τ = (−S)T−1τ ′ = −1/(τ ′−1) = − 1

−1+ix . T0 takes τ to τ ′′ = −τ = − 1
1+ix ,

which can be restored to τ by −ST−2S, namely τ = −1/(−2− 1/τ ′′). Again formally this

is obtained by asking for a time-reversal implementation hT0 with h ∈ SL(2,Z), such that

hT0(−ST−1)τ ′ = −ST−1τ ′, (6.38)

for any τ ′ that satisfies T0τ ′ = τ ′. This can similarly be solved and we get

h = −ST−2S. (6.39)

There is also a simple physical picture for this result: for the bosonic QED in (6.27)

with τ = ix, the (1,−1) and (1, 1) dyons are fermions and are exchanged by time-reversal

symmetry. After the −ST−1 transform, the (1,−1) dyon becomes the (1, 0) charge, and

the (1, 1) dyon becomes a (q, 2) dyon (0 < q < 1). The exchange operation of the two

fermions becomes the −ST−2S operation.

Now we ask how the surface transforms under such time-reversal. The bosonic side is

trivially T -invariant. For the fermionic side, after the naive T0, the Dirac fermion action

becomes
√−g iΨ/DAΨ+ 1

4πAdA+ 2CSg. The −ST−2S operation further transforms it to

iχ /Daχ+
1

4π
ada− 1

2π
adb+

2

4π
bdb+

1

2π
bdA+ 2CSg. (6.40)

By acting a simple T -transform on the fermion-fermion duality in (2.14), we see that

the above line is exactly dual to the free Dirac fermion
√−g iΨ/DAΨ. Therefore the fermion

theory (6.26) with a boundary is also invariant under ST−2ST0.
The surface fermions Ψ in (6.26) transforms to their dual fermions χ under time-

reversal. Physically they can be interpreted as corresponding to the (1,±1) dyons in the

bulk. This also gives a simple interpretation of (2.17), in which time-reversal also exchanges

the χ fermion with its dual.
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7. Relation to Problems in Condensed Matter Physics

As explained in the introduction, the fermion-fermion duality has many important

applications in condensed matter physics. We have already described how the gapped

T-Pfaffian state appears naturally from (4.6). Thus the fermion-fermion duality allows for

a field theoretic viewpoint on how this state arises at the surface of a topological insulator

in agreement with lattice constructions.

The other important application is to the theory of the half-filled Landau level which

we now turn to. Let us briefly recap the relationship to the topological insulator surface.

More detail may be found, eg, in [42]. We are interested in the physics of electrons in two

space dimensions in a strong magnetic field at Landau level filling ν = 1
2 . Upon projecting

to the Lowest Landau Level, and restricting to a two body interaction (e.g. just Coulomb

repulsion), the Hamiltonian has an extra discrete anti-unitary symmetry not present in

a UV system of non-relativistic electrons. This symmetry is known as a particle-hole

symmetry. It has the effect of exchanging the empty Landau level with the filled one. The

half-filled Landau level can be obtained by either starting with the empty Landau level

and adding electrons or by starting with a filled Landau level and removing electrons. The

particle-hole transformation relates these two ways of reaching the half-filled state.

This same physical situation can be realized by starting with a relativistic Dirac

fermion. Consider a single two-component massless Dirac fermion ψ. This can be rendered

T and CT invariant by placing at the spatial boundary of a 3 + 1-D topological insulator.

Note the both of these are anti-unitary symmetries. The electron is a Kramers doublet

under T . Under CT , the electrical charge density is odd, and the electrical current is even.

An external non-zero uniform magnetic magnetic field breaks T but preserves CT . Now it

is well known that Dirac electrons in a uniform field form Landau levels which famously

includes one at zero energy. The CT symmetry guarantees that this is half-filled. In the

presence of interactions at the UV scale this then maps the low energy physics to that

of the half-filled Landau level with the CT operation playing the exact same role as the

particle-hole transformation mentioned in the previous paragraph.

Thus the particle-hole symmetric half-filled Landau level can be UV completed while

preserving charge conservation and CT symmetries by placing it at the surface of a 3+1-D

topological insulator. Now let us describe this system using (4.6). We note that the duality

interchanges the role of T and CT . In particular χ is now a Kramers doublet under CT .
We need to study (4.6) in the presence of a uniform background magnetic field associated
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with the A gauge field. Before doing so we note that in relating the results to the standard

half-filled Landau level obtained starting with non-relativistic fermions, we need to add

a background Chern-Simons term for A. Specifically, at the TI surface, the empty 0th

Landau Level is assigned a Hall conductivity of −1
2 while the filled one is assigned 1

2 .

In the standard Landau level problem of non-relativistic fermions, the Hall conductivity

assignments are shifted by 1
2 (so that the empty Landau level has zero Hall conductivity).

Similar statements apply to the thermal Hall conductivity. This amounts to adding a

term 1
8π
AdA + CSg to both sides of (4.1). Further in order to connect smoothly with

standard results on composite fermions, we will do a charge conjugation transformation

χ → χ†, a → −a, b → −b on (4.6). This has the effect of changing the sign of the bdA

term while leaving the rest of the Lagrangian unchanged. Thus our proposed theory of the

half-filled Landau level is

L = iχ /Daχ−
2

4π
bdb+

1

2π
adb− 1

2π
Adb . (7.1)

It is understood that there is a non-zero uniform magnetic field B associated with A.

Let us consider the equations of motion. First we note that the physical electric UA(1)

current is

J = − 1

2π
db (7.2)

We denote the average value of the time component as ρ (the physical electron density).

The equation of motion of b (essentially (4.7) after accounting for the sign change of the

bdA term) gives the average effective magnetic field (usually denoted B∗) seen by the

composite fermions

B∗ = B − 4πρ (7.3)

Varying with respect to a0, we get the condition

ρχ −
1

4π
ǫij∂i(aj − 2bj) = 0 (7.4)

Here ρχ is the average density of composite fermions. The second term is the contribution

from the variation of η[a] that is present in our definition of the fermion path integral.

Though η[a] is not identical to the level-1/2 CS term, its variation is identical to the

variation of the level-1/2 CS term. We thus find that

ρχ =
1

4π
B (7.5)
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The equation for B∗ is identical to the HLR theory (and is such that B∗ vanishes at

ν = 1
2). However ρχ (the average composite fermion density) is different. Here it is given

by the external magnetic field rather than by the physical electron density. The finite

average density of composite fermions means that (if we ignore the dynamics of the gauge

fields a and b) they will form a Fermi surface. Further under CT the composite fermions

are Kramers doublets. There will thus be a Berry phase of π when the composite fermion

goes around the Fermi surface.

These are very much the same features as those postulated by Son [43]; thus, not

surprisingly (given that the equations of motion of the refined version (4.6) is the same

as the original version in (1.7)), at this level the present theory retains these features.

Including the dynamics of a and b we obtain a description of the particle-hole symmetric

composite fermi liquid that, while better defined than the previous version, will still lead to

essentially the same predictions in numerics and experiments. For instance the suppression

of 2Kf backscattering of particle-hole symmetric operators [44] will also obtain in the

present theory (assuming that the dynamical gauge fields do not dramatically alter the

essential physics, as is reasonable in the presence of the long range Coulomb interaction

[37]). The electrical and thermal Hall conductivities will take exactly the values required

by the particle-hole symmetry22.

The improvement offered by the present theory is very useful if we wish to correctly

obtain the topological field theory of a Jain state[54] proximate to ν = 1
2 (just like with

the HLR action and its improved parton version discussed in Appendix C). Indeed if we

break particle hole symmetry explicitly then we can add a Dirac mass to (7.1). In the limit

of large mass, it is readily seen that (7.1) goes over to the parton version of HLR while

the original proposal by Son goes over to the original version of HLR.
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Appendix A. Spin Structure Dependence of Chern-Simons Couplings

If M is a three-dimensional spin manifold and b is a U(1) gauge field, then there is a

level 1 Chern-Simons interaction that can be written informally as

ICS =
1

4π

∫

M

bdb. (A.1)

It is well-defined mod 2π. However, this function really does depend on the spin structure

of M ; in general, if the spin structure is changed, ICS is shifted by an integer multiple of

π.

Since a spin structure is not visible in eqn. (A.1), the claim that ICS depends on

the spin structure may come as a slight surprise. Matters become clearer, however, if

we give a precise definition of ICS. The informal definition in eqn. (A.1) makes sense in

a topologically trivial situation, but not if b has Dirac string singularities. For a more

general definition, let X be an oriented four-manifold with boundary M , such that the

spin structure of M extends to a spin structure on X , and the U(1) gauge field b can be

extended over X . Then set

ICS =
1

4π

∫

X

f ∧ f, (A.2)

where f = db is the curvature of b. An X with the properties that we have assumed always

exists, and the Chern-Simons function ICS defined as in eqn. (A.2) is independent mod 2π

of the choice of X and of the extension over X of the spin structure and gauge field of M .

Independence of the choices is proved by first showing that if X is a four-dimensional spin

manifold without boundary and b is a U(1) gauge field on X , then

J =
1

2

∫

X

f

2π
∧ f

2π
(A.3)

is an integer. Here it is essential that X is a spin manifold; without this hypothesis, J

would in general be a half-integer and ICS in eqn. (A.2) would be independent of the

choices only modulo π. Once J is known to be an integer when X has no boundary, the

fact that ICS is independent of the choices mod 2π follows in a standard way.23

23 If X1 and X2 are two oriented manifolds of boundary M over which the spin structure and

gauge field of M have been extended, then by gluing them together along their boundary after

reversing the orientation of X2, one makes a spin manifold X without boundary. The difference

between ICS defined using X1 or using X2 is π
∫
X
f ∧f/(2π)2, and this is a multiple of 2π because

of integrality of J .
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Now that we have given a general definition of ICS, it is clear why this function may

depend on the spin structure of M : this spin structure affects which choices of X are

allowed. For a concrete example, we take M to be a three-torus T 3, which we factorize as

T 2 × S1. We take a gauge field with one unit of magnetic flux along T 2

∫

T 2

db

2π
= 1, (A.4)

and trivial in the S1 direction. (Thus b is a pullback from T 2 to T 2×S1.) Spin structures

on T 3 are classified according to whether fermions are periodic or antiperiodic in going

around the three directions in T 3; we write + ++ and ++− for spin structures that are

periodic in the T 2 directions, but periodic or antiperiodic in the S1 direction.

We claim that in this situation, ICS is equal to 0 for the + + + spin structure, and

to π for the + + − spin structure. Before beginning a technical explanation, we explain

the physical interpretation. We quantize U(1)1, with action ICS, on T 2 and view S1 as

the “time” direction. Having put a unit of flux on T 2, to satisfy the Gauss law constraint

we also need a charge −1 quasiparticle on T 2. On T 2 × S1, we place a single Wilson line,

running in the S1 direction, representing this quasiparticle. In this situation, the space

H of physical states is 1-dimensional, or equivalently TrH 1 = 1. Here in a path integral

approach, TrH 1 is computed by a path integral with + + − spin structure. To decide if

the one state in H is bosonic or fermionic, we compute TrH (−1)F , which we do via a path

integral with + + + spin structure. The fact that shifting the spin structure from + + −
to +++ shifts ICS by π means that it changes the sign of the U(1)1 path integral, so that

Tr (−1)F = −1 and the one state in H is fermionic.

Technically, it is straightforward to compute ICS in this example for the case of ++−
spin structure. We can take X = T 2 × D, where D is a disc with boundary S1. The

+ +− spin structure on T 2 × S1 extends over T 2 ×D, and we can extend the gauge field

b over T 2 ×D by simply taking it to be trivial in the D direction (that is, we take b to be

a pullback from T 2 to T 2 ×D). With this choice, f ∧ f vanishes pointwise on X so the

integral in (A.2) trivially vanishes and ICS = 0.

By contrast, the computation of ICS with +++ spin structure is not straightforward,

because there is no elementary choice of X . It can be shown that any X with boundary

T 2×S1 over which the +++ spin structure extends has signature 8 mod 16, which shows

that any obvious X will not do. For a relatively simple choice of X , let X0 be a rational

elliptic surface. From a topological point of view, X0 is a four-manifold of signature 8 that
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has a surjective map ϕ : X0 → S2 with the generic fiber being a two-torus. Let p ∈ S2 be

a point such that ϕ−1(p) is a copy of T 2. Then this is also so for every point in a small

open ball U0 containing p, and ϕ−1(U0) = U0 × T 2. Let U ⊂ U0 be an even smaller open

ball containing p, and let D be a disc obtained by omitting U from S2. Set X = ϕ−1(D).

The map ϕ when restricted to S1 = ∂D is a trivial fiber bundle with fiber T 2 (because

S1 ⊂ U0) so the boundary of X is ϕ−1(S1) = T 2 × S1. Moreover, X is simply-connected,

with a unique spin structure up to isomorphism, and this spin structure restricts to the

+ + + spin structure on X . It can be shown by fairly standard topological arguments24

that the U(1) gauge field b on M extends over X with
∫
X
f ∧ f/(2π)2 equal to an odd

integer. Using this result in eqn. (A.2), one finds that with the + + + spin structure,

ICS = π mod 2π.

With a little more work, one can show that a similar result holds if one changes the

spin structure on T 2: with a ± ± − spin structure on T 2 × S1 and the same b as before,

ICS = 0, but with ±±+, one has ICS = π.

In contrast to what we have just explained for U(1) gauge fields, for a spinc connection

there is a level one Chern-Simons coupling that is well-defined mod 2π with no choice of

spin structure. It is studied in Appendix B below.

Appendix B. An Almost Trivial Theory

At numerous points in this paper, we encounter an almost trivial theory U(1)1. In

some checks of the consistency of our statements, it is important to know that this theory

is actually equivalent to a purely classical theory in which the dynamics of the U(1)1 gauge

field are replaced by a c-number function of the gravitational background.

24 Because ϕ−1(U0) is a product U0 × T 2, one can pick an extension of the gauge field over

ϕ−1(U0) as a pullback from T 2. After doing this, one can further extend the gauge field over X

and so over all of X0. With this choice f ∧ f = 0 in ϕ−1(U0) and in particular that is true in

X0\X (i.e. the complement of X in X0). Therefore
∫
X
f ∧ f/(2π)2, which we wish to evaluate,

is the same as
∫
X0
f ∧ f/(2π)2. Since X0 is compact, the latter integral can be interpreted as an

intersection number. One can choose the extension of the gauge field so that f/2π is Poincaré dual

to a section s of ϕ : X0 → S2 and since (by standard properties of the rational elliptic surface)

s ∩ s = −1, we get with this choice of extension of the gauge field
∫
X
f ∧ f/(2π)2 = −1. With

any choice, the integral would be an odd integer.
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There are two slightly different versions of this statement, depending on whether we

are on a spin manifold or a spinc manifold. The spin case is slightly easier to explain, so

we begin there. The U(1)1 action is

I1 =
1

4π

∫

M

bdb. (B.1)

It is well-defined mod 2π on a spin manifold, that is on a three-manifold M with a chosen

spin structure.

Like most Chern-Simons theories, this one is not quite a topological field theory, since

it has a framing anomaly (which is related to the central charge of the corresponding

conformal field theory in two dimensions). In a sense, the theory is completely determined

by its framing anomaly. In a general U(1)k theory, on a Riemann surface Σ of genus g

(and for any spin structure if k is odd), the number of physical states is kg. So U(1)1

has precisely one physical state Ψ for any Σ. The mapping class group of Σ (its group of

topologically nontrivial diffeomorphisms, modulo trivial ones) can only act on Ψ by phases,

that is by complex numbers of modulus 1, and this action is completely determined by the

framing anomaly. But a knowledge of the physical states and mapping class group action

on any Σ, together with general axioms of topological field theory, completely determine

the path integral on any three-manifold. So the U(1)1 path integral on any three-manifold

is determined by its framing anomaly together with general axioms.

The most relevant axiom is as follows. Suppose a manifold M without boundary is

obtained by gluing together two manifolds M1 and M2 that have the same boundary Σ

(and are oriented so that their orientations match after the gluing). Let Ψα, α = 1, . . . , n

be an orthonormal basis of physical states on Σ in some topological field theory. Let ZM

be the path integral on M in this theory. Similarly let ZMi,Ψα
be a path integral on Mi

with initial or final state Ψα inserted on Σ = ∂Mi. The basic gluing law of topological

field theory says that ZM =
∑
α ZM1,Ψα

ZM2,Ψα
. In the case of U(1)1, there is only one

physical state Ψ on Σ and the formula collapses to

ZM = ZM1,ΨZM2,Ψ. (B.2)

To find a purely c-number theory that reproduces the U(1)1 path integral, we just

need to find a function of the metric of M that has the same framing anomaly and gluing

law as U(1)1. Such a function can be constructed from the gravitational Chern-Simons
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function. This can be defined as follows. Let M be the boundary of the four-dimensional

spin manifold X . Then we define

Ω0 = π

∫

X

Â(R), (B.3)

where Â(R) is a quadratic function25 of the Riemann tensor of X , known as the Â genus.

For a four-dimensional spin manifold X without boundary,
∫
X
Â(R) is an even integer.

This can be used to prove that modulo 2π, Ω0 depends only on the metric on M and not

on the choice of X or of the metric on X . Accordingly, the function exp(iΩ0) is a well-

defined function of the metric of M . Moreover, it satisfies a gluing law just analogous26 to

eqn. (B.2).

The partition function of U(1)1 is, however, not27 exp(iΩ0) but exp(−2iΩ0) =

exp(−iΩ), where
Ω = 2Ω0. (B.4)

The factor of 2 can be verified by comparing framing anomalies. Another route is as

follows. Let us remember first that the action I1 defined in eqn. (B.1) is not gauge-

invariant if M has nonempty boundary Σ. Gauge-invariance can be restored by adding

25 To be precise,
∫
X
Â(R) = 1

48(2π)2

∫
X
trR ∧R.

26 This follows formally from the fact that exp(iΩ0) = exp(i
∫
M

CSg), where CSg is a gravita-

tional Chern-Simons three-form. The factorization analogous to (B.2) is formally exp(i
∫
M

CSg) =

exp(i
∫
M1

CSg) · exp(i
∫
M2

CSg). The subtlety here is that as CSg picks up a total derivative term

under a diffeomorphism, to define the phases of exp(i
∫
M1

CSg) and of exp(i
∫
M2

CSg) requires

some choices. This is precisely analogous to the fact that the factorization in (B.2) depends on

the choice of phase of the state Ψ.
27 Actually, exp(−iΩ0) is the partition function of the Ising spin topological field theory (the

three-dimensional theory that is related to the Ising model in two dimensions). This is explained

in section 3.6 of [51]. In that explanation, exp(−iΩ0) is written as exp(−iπη/2), where here η is

the eta-invariant of the Dirac operator coupled to gravity only. The two can be related via the

Atiyah-Patodi-Singer index theorem. More generally, exp(−inΩ0) is the partition function of the

spin topological field theory SO(n)1. This family of theories is discussed in Appendix C.5 of [51].

If we sum exp(−inΩ0) over spin structures, we get the partition function of the non-spin theory

Spin(n)1, also discussed in the same Appendix. The sign in the exponent of exp(−iΩ) depends on

an orientation convention. For our purposes, we can most easily fix this sign by considering the

spinc case, which is treated below. With the spinc action I ′ as defined later and the argument of

the path integral being eiI
′

, the A-dependence of the path integral is exp
(
− i

4π

∫
M
AdA

)
, so the

partition function of the spinc theory equals e−iΩ′

and that of the spin theory is e−iΩ.
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boundary degrees of freedom, and there is a simple choice of boundary state of U(1)1 such

that a chiral Dirac fermion propagates on Σ. Likewise, exp(−iΩ0) is not diffeomorphism-

invariant on a manifold with boundary. But diffeomorphism invariance can be restored by

incorporating on Σ a single chiral Majorana-Weyl fermion, whose gravitational anomaly

cancels the failure of diffeomorphism invariance of exp(−iΩ0). A chiral Dirac fermion is the

same as two chiral Majorana-Weyl fermions, so the partition function of U(1)1 is actually

exp(−2iΩ0) = exp(−iΩ).
In addition to reproducing the partition function of U(1)1, one may also wish to re-

produce the expectation values of observables. The only observable of U(1)1 is the line

operator Wℓ = exp
(
i
∮
ℓ
b
)
that represents the propagation of a trivial neutral fermion

around a loop ℓ ⊂ M . As is typically the case for line operators in 3d topological field

theory, the expectation value of Wℓ is not a topological invariant, but has a framing anom-

aly, in this case corresponding to spin 1/2. Wℓ has a purely gravitational interpretation

because it is a “transparent line” that has trivial braiding with itself and all other line

operators. To explain the purely gravitational interpretation of Wℓ, we simply make use

of the Riemannian connection of M . Let ω be the Riemannian connection on the tangent

bundle of M . It has structure group SO(3). However, after restricting it to ℓ, we can

project this connection to the Lie algebra of the SO(2) subgroup of SO(3) that rotates

the normal plane to ℓ. Let us write ω′ for the projected connection. Even without a spin

structure onM , we can define the object exp
(
in

∮
ℓ
ω′
)
for any integer n. It describes prop-

agation around ℓ of a particle of spin n. If M is endowed with a spin structure, then the

corresponding parallel transport exp
(
in

∮
ℓ
ω′
)
is defined for half-integral n. The operator

Wℓ of U(1)1 simply corresponds to exp
(
i
2

∮
ℓ
ω′
)
. Note that exp

(
i
2

∮
ℓ
ω′
)
is of modulus 1

but is not a topological invariant; its phase changes continuously when one varies the met-

ric ofM , or the embedding of ℓ in M . This dependence reproduces the framing anomaly28

of Wℓ. Apart from the framing anomaly, the main property of Wℓ is that it is multiplied

by −1 if one changes the spin structure of M in a way that is nontrivial when restricted

to ℓ. This property is shared by exp
(
i
2

∮
ℓ
ω′
)
.

28 This interpretation of the framing anomaly may be unfamiliar, but actually can be seen in an

early calculation [53,74] of bose-fermi transmutation via coupling to Chern-Simons gauge fields.

The study of the self-linking integral (eqn. (3) of [53]) amounts to showing that in U(1)1, the

variation of 〈Wℓ〉 when ℓ is varied is the same as the variation of exp
(

i
2

∮
ω′
)
. The calculation

is done on a flat manifold, but because the considerations involved are local (and on dimensional

grounds, the framing anomaly does not depend on the curvature tensor ofM), this is not material.
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Now let us discuss the analog of this on a spinc manifold. First of all, on a spinc

manifold, there is no generalization of Ω0, but there is a generalization of Ω = 2Ω0,

namely

Ω′ =
1

4π

∫

M

AdA+ Ω, (B.5)

where A is the spinc connection. This expression is well-defined mod 2π (see Appendix

A.3 of [51]), so on a spinc manifold, there is a c-number theory with partition function

exp(−iΩ′). There is also a spinc version of U(1)1 gauge theory, with action

I ′ =
1

4π

∫

M

(bdb+ 2bdA) =
1

4π

∫

M

(b+ A)d(b+ A)− 1

4π

∫

M

AdA. (B.6)

Here b is a U(1) gauge field, A is a background spinc connection, and therefore b + A is

also a spinc connection.

Just like the spin version of U(1)1, this theory has only one quantum state on any

two-manifold, so its path integral is completely determined by the framing anomaly and

the dependence on A. The obvious guess is that this path integral is just exp(−iΩ′).

Since this certainly has the correct framing anomaly, we really only need to verify that

the dependence on A is correct. To show this, we simply pick a spin structure on M , after

which we can make a change of variables from b to b′ = b + A. The b′ path integral gives

the familiar exp(−iΩ), and the last term on the right hand side of eqn. (B.6) gives a factor

exp
(
− i

4π

∫
M
AdA

)
. These combine together to exp(−iΩ′). The subtlety in this derivation

is that although exp(−iΩ′) does not depend on the choice of spin structure that was made

in defining b′, when we factor it as exp(−iΩ) · exp
(
− i

4π

∫
M
AdA

)
, each factor does depend

on that choice.

In the spinc context, the possible line operators that can be defined using only the

spinc connection A and the Riemannian connection ω are exp
(
i
∮
ℓ
(qA+ jω′)

)
, where q

is an integer, j is a half-integer, and q is congruent to 2j mod 2. In particular, the line

operator exp(i
∮
ℓ
b), which represents a spin 1/2 particle of charge −1, corresponds to

exp
(
−i

∮
ℓ
(A+ 1

2ω
′)
)
.

Appendix C. Effective Field Theories With Flux Attachment

Here we briefly describe the effective field theories that arise through flux attachment

in describing quantum Hall phenomena of electrons in two space dimensions. This will

serve as an insightful and familiar venue to discuss the kind of issues (and their cures)
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with quantization of Chern-Simons terms that arise in the less familiar field theory that

arises in the fermion-fermion duality.

As is well known from the theory of anyons [52], flux attachment is a formal procedure

to trade particle statistics in two space dimensions. In the quantum Hall context, the

essential idea is to attach some integer numberm of fictitious flux quanta to the microscopic

electrons (at some Landau level filling ν) to convert them to either bosons [75] (by choosing

m odd) or to fermions [76,37] (by choosing m even). The charge-flux composites thus

obtained are known either as composite bosons or composite fermions depending on their

statistics. A useful approximation is obtained at special filling factors ν = 1
m

in a “flux

smearing” mean field treatment where the attached fictitious flux exactly cancels the flux

of the externally imposed magnetic field. Fluctuations about this mean field are described

by an effective field theory of composite particles moving in zero net field but coupled to

a dynamical U(1) gauge field with a Chern-Simons term.

For concreteness we focus on the composite fermion case [54], and specialize to m = 2,

though everything below carries over straightforwardly to other integer m. The structure

of the resulting composite fermion effective field theory takes the form

LHLR = L[ψCF , c+ A] +
1

8π
cdc . (C.1)

Here c is the internal U(1) gauge field, and A is a background “probe” U(1) gauge field.

L[ψCF , c+ A] is a non-relativistic Lagrangian describing a finite density of the composite

fermions ψCF . For electrons at filling factor ν = 1
2 , this is precisely the famous Halperin-

Lee-Read Lagrangian used to described the observed metallic state.

Note however the wrong quantization of the Chern-Simons term: it is 1/2 the proper

allowed value. However we remember that the flux attachment condition is that the phys-

ical electron density ρ (= composite fermion density) ρCF is given by

ρ = − 1

4π
(∂xcy − ∂ycx) (C.2)

On a compact space integrating this we get

N = −N
φ
c

2
(C.3)

where N is the total electron number and Nφ
c is the total number of flux quanta of the CS

gauge field c.
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Thus Nφ
c is necessarily even and the right flux quantization for c is 4π and not 2π. To

emphasize this let us write c = 2c′ with the usual flux quantization for c′. This transforms

(C.1) to

LHLR = L[ψCF , 2c
′ +A] +

2

4π
c′dc′ (C.4)

This seems to be a properly defined quantum field theory but there is now a physical

problem. To appreciate this consider using this Lagrangian away from ν = 1/2. An

illustrative extreme is to consider the empty Landau level ν = 0 when there are no electrons

(and hence no composite fermions). The composite fermion field may then be safely

integrated out but we are left with a U(1)2 Chern-Simons theory which is a non-trivial

TQFT. Clearly we have a physically incorrect description of the empty vacuum! Thus

though (C.4) is mathematically well-defined it is physically incorrect.

A resolution of this problem may be attempted by noticing that much of the non-

triviality of the U(1)2 theory (degenerate ground states on the torus, semion excitations,

etc) arise from the existence of fields that carry charge 1 under c′. But in the original

Lagrangian (C.1) these will correspond to fields with 1/2 charge under c which are usually

understood to not exist in such flux attachment effective theories. So we might suppose

that (C.4) with the additional restriction that we disallow fields with charge 1 under

Uc′(1) is the sensible physical theory. But does such a restriction spoil the mathematical

consistency of the theory? Clearly a cleaner resolution of the issues with (C.1) or (C.4) is

called for.

A cleaner formulation of the composite fermion theory is known in the condensed mat-

ter literature and is obtained through the following construction (known as slave particle

or parton construction). We represent the microscopic electron operator ψ as a product

ψ = χφ (C.5)

where χ is a fermion field and φ is a boson field. This representation comes with an

internal U(1) gauge redundancy associated with opposite phase rotations of χ and φ. An

effective field theory in terms of the χ and φ fields will faithfully represent the electron

system so long as we include a U(1) gauge field a under which χ has charge 1 and φ has

charge −1. We assign physical UA(1) charge 1 to φ and 0 to χ. As the bosons carry the

physical electric charge their density will match the density of electrons, and they will see

the externally imposed magnetic field. This construction leads to an effective field theory

Lprtn = L[χ, a] + L[φ,−a+ Atot] (C.6)
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Here Atot includes both the vector potential of the background magnetic field, and a probe

gauge field A.

At filling fraction ν = 1
2
we can envisage a state of matter where the average magnetic

flux of the internal gauge field a is zero. Then the bosons see all of the external magnetic

field and hence are themselves at filling 1
2 while the fermions χ move in an average net

zero magnetic field. Then L[χ, a] is the standard Lagrangian of non-relativistic fermions

at finite density coupled to a U(1) gauge field a. The φ will themselves form a quantum

Hall state of bosons at ν = 1/2. An effective field theory for such a bosonic quantum Hall

state is well known, and takes the form

− 2

4π
bdb+

1

2π
(A− a)db (C.7)

Using this in (C.6), we obtain the effective field theory

LHLR−prtn = L[χ, a]− 2

4π
bdb+

1

2π
(A− a)db (C.8)

We note that all Chern-Simons terms are properly quantized. Further if we proceed

naively and integrate out b using its equation of motion, we obtain precisely the standard

HLR Lagrangian in (C.1). However this integration is not strictly valid, and it is more

precise to keep b as a dynamical field. Unlike (C.4), it is readily seen that (C.8) gives

physically sensible answers. For instance if we take the empty Landau level, then we can

again integrate out the χ-fields, and simply be left with (C.7). The integration over a sets

b = 0 and we get a trivial theory exactly as expected.

The Lagrangian (C.8) represents a clean formulation of the flux attachment idea that

is both physically correct and mathematically consistent.

It is instructive to understand the relationship between (C.4) and (C.8). We show

below that the two theories differ precisely by a decoupled U(1)2 factor. To expose this

we replace (C.4) by

L′
HLR = L[ψCF , 2c

′ +A] +
2

4π
c′dc′ − 1

2π
bd(c− 2c′) (C.9)

where b is a Lagrange multiplier that simply sets c = 2c′ (up to a gauge transformation).

Now we are free to replace 2c′ by c in other terms in (C.9). We do this in the first term

but not the second and we substitute c = a− A and c′ = c̃− b to find

L′
HLR = L[ψCF , a]−

2

4π
bdb+

1

2π
bd(A− a) + 2

4π
c̃dc̃ . (C.10)

In this form we see that the (C.10) is equivalent to a sum of (C.8) (after the identification

of χ with ψCF ) and a decoupled U(1)2 theory of c̃. We can now safely drop the U(1)2

decoupled factor to obtain a different mathematically sensible theory.
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