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Abstract

Chapter 1 offers a new equilibrium concept for finite normal forn games motivated by
the idea that players may have preferences which display uncertainty aversion. Un-
certainty aversion occurs when individuals have a dislike of uncertainty (not knowing
the relevant probabilities in a given decision environment) and is distinct from their
attitude towards risk (not knowing which outcome will occur, but knowing the prob-
ability of each outcome). More specifically, this chapter examines and interprets the
representation of uncertainty averse preferences presented in Gilboa and Schmeidler
(1989). Then an equilibrium with uncertainty aversion is defined and applied to a
number of simple games. This equilibrium concept generalizes both Nash equilibrium
and maxmin play. One interesting feature of the equilibrium is that it provides a new
justification for some mixed strategy equilibria based on hedging. It also admits a
natural channel through which some unmodelled aspects of the game can influence the
analyst’s choice of equilibrium. A refinement of equilibrium with uncertainty aver-
sion incorporating the notion of common knowledge of rationality is introduced. The
notion of weak admissibility is discussed and incorporated into the solution concept.

Chapter 2 develops a dynamically consistent theory of decision making that in-
corporates the notion of uncertainty aversion. A large body of experimental work has
demonstrated the existence of uncertainty averse behavior. The theory developed here
is needed if uncertainty aversion is to be used in modelling many interesting economic
problems, as the existing static theory of uncertainty aversion cannot be extended in
a dynamically consistent manner simply by updating beliefs. Additionally, this paper
proves an extension to the case of an uncertainty averse searcher of a reservation-price
rule result of Rothschild(1974) and Bikhchandani and Sharma (1989) in a model of
price search without recall from an unknown distribution.

Chapter 3 investigates the interaction between externalities and uncertainty aris-
ing through private information in a decentralized setting. Uncertainty is treated in
the traditional manner, assuming uncertainty neutrality.

In the competitive model, externalities lead to inefficiencies, and inefficiencies in-
crease with the size of externalities. However, as argued by Coase, these problems
may be mitigated in a decentralized system through voluntary coordination. Chapter
3 shows how coordination is limited by the combination of two factors: respect for
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individual autonomy and the existence of private information. Together they imply
that efficient outcomes can only be achieved through coordination when external ef-
fects are relatively large. Moreover, unlike many previous mechanism design models of
bargaining, there are instances in which coordination cannot yield any improvement
at all, despite common knowledge that social gains from agreement exist. This occurs
when external effects are relatively small, and this may help to explain why coordina-
tion is so seldom observed in practice. When improvements are possible, we describe
how simple taxes or subsidies can be used to implement second-best solutions and
explain why standard solutions, such as Pigouvian taxes, cannot be used. Possible
extensions to issues arising in the structure of research joint ventures, assumptions in
the endogenous growth literature, and the location of environmental hazzrds are also
described.

Thesis Supervisor: Drew Fudenberg
Title: Professor of Economics, Harvard University

Thesis Supervisor: Jean Tirole
Title: Professor of Economics
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Chapter 1

Uncertainty, Decision, and

Normal Form Games

1.1 Introduction

Traditional decision theory and game theory have treated uncertainty (situations
in which probabilities are unknown or subjective) with the same formalism as they
have treated risk (situations where probabilities are known. or objective); indeed, the
word “uncertainty” is often used to describe both. This continues despite the fact
that there is strong evidence which suggests that thoughtful decision-makers react to
uncertainty differently than they react to risk.! The classic reference is the Ellsberg
Paradox (Ellsberg 1961) a version of which may be demonstrated by the following
choice situation:

An urn contains ninety balls, identical except for their color. Thirty of these balls
are black. The remaining sixty are either red or yellow in unknown proportion. One
ball will be drawn at random from the urn. You are asked to consider the six bets
shown in the figure (see next page), whose payoffs depend on the color of the drawn
ball.

The preference ordering of many decision-makers when faced with these bets is

1Knight (1921) and Shackle (1949, 1949-50) were among earlier economists who argued for a
distinction between uncertainty and risk.



Bets
Black Red Yellow

1 $100 S0 $0
2 %0 §$100 $0
3 %0 $0 $100
4 $100 S0 $100
5 $100 $100 $0
6 $0 $100 $100

6 >5~4and 1 > 2 ~ 3. This ordering cannot be reconciled with any subjective
probability assessment. Moreover, as Ellsberg (1961) recounts:

“The important finding is that, after rethinking all their ’offending’ decisions in the
light of the azioms, a number of people who are not only sophisticated but reasonable
decide that they wish to persist in their choices. This includes many people who
previously felt a ‘first-order commitment’ to the azioms, many of them surprised and
some dismayed to find that they wished, in these situations, to violate the Sure-thing
Principle.” [p. 656]

I may note in passing that I count myself among those who display the Ellsberg
preferences and who maintain these choices after contemplation of the axiomatic argu-
ments in Savage (1954) and elsewhere. (Whether I am sophisticated and reasonable,
I leave for others to decide.) Further, the fact that many people do not change their
behavior even when confronted with their violation of the standard axioms distin-
guishes this behavior from some other types of violations such as intransitivity in
choice.? Although intransitivities are observed experimentally, when the violations of
transitivity are pointed out subjects often wish to change their choices so as to make
them transitive. I would argue that theories of reasoned or rational behavior as well
as purely descriptive theories should try to incorporate those types of violations which
persist. The fact that many thoughtful people are not convinced by the arguments
for the standard axioms should cause us to at least question their predominance in

economic analysis.

2For experimental evidence on this point see e.g. Slovic and Tversky (1974).



Fortunately, Gilboa and Schmeidler (1989) (See also Schmeidler 1989, 1986 and
Gilboa 1987) have recently developed an axiomatic decision theory which allows for
Ellsberg-type preferences.* A common explanation for the Ellsberg preferences is
that decision makers dislike uncertainty or ambiguity. This is consistent with the fact
that bet 1 (which has a known probability of one-third of paying $100) is preferred
to bets 2 and 3 and bet 6 (which pays $100 with probability two-thirds) is preferred
to the uncertain bets 4 and 5.* Thus Gilboa and Schmeidler view their theory as
allowing for uncertainty aversion on the part of the decision maker. In the next
section, I briefly present the Gilboa-Schmeidler theory, put forth an interpretation
and show how the theory applies to the Ellsberg example. In the third section I
present a new solution concept for normal form games in which players are Gilboa-
Schmeidler decision makers. This section also contains examples to which the concept
is applied. The fourth section presents a refinement of the solution concept and some
more examples. The fifth section reconsiders the theory and proposes a modification
which is then applied to games. The sixth section concludes. An Appendix contains

some proofs.

1.2 Decision Theory

The workhorse of decision theory in economics since von Neumann and Morgenstern
(1947) has been axiomatic representation theorems. The Gilboa-Schmeidler theory
is in this spirit and adopts the “lottery-acts” framework of Anscombe and Aumann
(1963). Let X be a set of “prizes” (e.g. cash rewards). Let Y be the set of distributions
over X with finite support. We call elements of Y lotteries. Let S be a set and let ¥

be an algebra on S. Elements of £ are called events, while elements of S are states

3Some alternative theories and further experimental evidence are described in the survey paper
by Camerer and Weber (1992).

4One important question which Ellsberg's example does not address is whether this uncertainty
aversion is more than lexicographic. In other words, would a decision maker be willing to give up
anything to avoid uncertainty? Ellsberg himself (1961, p.664) provides evidence for this when he
reports that many subjects :naintain the above preferences even after one black ball is removed
from the urn. Many subsequent studies (cited in Camerer and Weber (1992)) have found ambiguity
premia which are strictly positive and are typically around 10 — 20% in expected value terms.



of the world. Let Ly be the set of ¥-measurable finite step functions from S to Y.
Let L. be the set of constant functions in Lg. Let L be a convex subset of Ys which
includes L.. We call functions from S to Y acts. Preferences will be defined over
acts. Consider the following axioms on the preference relation > on L:

A.1 (Weak Order) (2) Vf,g€ L,f > g or g == f or both.

(b) Vf,g,h € L,{f = gand g = h} = f = h.

A.2 (Certainty Independence)

Vfige Land h€ L. and a € (0,1),f = g & af + (1 ~ @)k > ag + (1 — a)h.

A.3 (Continuity)

Vf,g,h€ L,if f > g and g = h then 3, € (0,1) such that

af + (1l —a)h > gand g > B8f + (1 — B)h.

A .4 (Monotonicity)

Vf,g€ L,if f(s) = g(s) on S then f > g.

A.5 (Uncertainty Aversion)

Vf,g€ L and a € (0,1), if f ~ g then af + (1 —a)g = f.

A .6 (Non-degeneracy)

Not for all f,g€ L, f = g.

The only non-standard axioms are Certainty Independence and Uncertainty Aver-
sion. Note that Certainty Independence is a strict weakening of the traditional In-
dependence axiom when applied to the lottery-acts framework, as it requires that
strict preference be preserved only under mixtures with constant acts. Gilboa and
Schmeidler defend Certainty Independence by the argument that the decision maker
can more easily visualize mixtures with a constant act than with an arbitrary one
and the fact that this axiom allows for hedging whereas the standard Independence
axiom in this context would not. How are we to understand what is meant by hedging
here? I interpret hedging in this context to mean that, even if bets (or assets) paid
off in utility terms (so that risk-aversion is controlled for) a bettor (or investor) might
prefer to spread the payoffs over several states of the world than have them all lumped
in one state. In this light, the axiom of Uncertainty Aversion can be interpreted as

saying that the decision maker does not dislike hedging.
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The main result of Gilboa and Schmeidler is the following representation theorem:

Theorem 1 (Gilboa and Schmeidler 1989)

Let > be a binary relation on Ly. Then the following are equivulent,

(1) = satisfies A.1 - A.5 for L = Ly

(2) 3 an affine function u : Y — R and a non-empty, closed, conver set C' of
finitely additive ?robabilz'ty measures on ¥ such that Vf,g € Lo, f = g if and only if
minpec [u o fdp > mingec [ u o gdp.

Furthermore, the function u is unique up to a positive affine transformation and,

if and only if A.6 holds, the set C is unique.

The reader is referred to the paper for the proof.® It is also shown there that
the theorem can be extended to preferences over all ¥-measurable bounded acts.
Gilboa and Schmeidler do not interpret the set of measures, C, which appears in the
representation. For reasons which will become clear later on, I would like to interpret
C as the closure of the convex hull of the set of “possible” subjective probability
distributions from the decision maker’s point of view. Is there any justification for
this in the way that C is constructed in the proof? I believe that there is. Imagine
a fixed choice environment (i.e. a set S, and an algebra £). Now consider the space

B of bounded, X-measurable functions from S to R. These functions can be thought

5The first step in the proof is to observe that, as constant acts may be identified with the choice
set in the von Neumann-Morgenstern setting, axioms A.1-A.3 applied to constant acts give the
function u through the von Neumann-Morgenstern expected utility theorem. For this reason, I
interpret this theory as implying that a decision maker behaves as an expected utility maximizer in
situations where the probabilities are objective (i.e. where only risk but not uncertainty is present).
This is not the only possible interpretation of the Gilboa-Schmeidler theory. Other researchers (see
Quiggin 1982, Yaari 1987, Wakker 1990, among others; Fishburn 1988, chapt. 2 has a survey)
have interpreted representations which are special cases of the related non-additive representation
of Schmeidler (1989) as models of decision making under risk where the probabilities are distorted
by the decision maker. As the representation considered above is isomorphic to the Schmeidler
(1989) representation under certain conditions, such an interpretation could also be applied here.
However, although these interpretations are attractive from a descriptive point of view (e.g. are
consistent with the Allais Paradox (Allais 1953)), they do not seem normatively compelling as they
operationally require a decision maker to take perfectly known, objective probabilities and distort
them before using them to weight outcomes. This seems much mor: objectionable than allowing that,
in situations where probabilities are not known, the decision maker may not act as if he subjectively
“knows” the probabilities (i.e. has a unique subjective probability distribution in mind). More
importantly for our purposes, perhaps, this interpretation does not allow for Ellsberg-type behavior.
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of as a superset of the utility payoffs from acts (i.e. functions of the form u o f).
Thus, if we can find a functional I on B such that, Vf,g € Lo, f >~ ¢ if and only
if I(uo f) > I(uo g), where u is as described above, then this functional can be
said to represent preferences. The key to the Gilboa-Schmeidier proof is showing
that if preferences satisfy the axioms, there exists an I that has the nice property
that, for each b € B, there exists a finitely additive probability measure P, such that
I(b) = fbdP, and I(a) < [adP, for all @ € B. The set C is then defined as the
closure of the convex hull of these P,.6 Thus, C is the closure of the convex hull of
exactly those probability measures which are used in place of an objective probability
measure in valuing some subset of mappings from events to payoffs. In what sense then
is C the set of “possible” subjective probability measures? In the standard theory
of decision under uncertainty, a probability measure ¢ is said to be the subjective
probability measure of a decision maker when she behaves as if she were maximizing
the expectation of her affine utility function on lotteries (elicited using standard
techniques and objective probabilities) where the expectation is taken with respect
to g. Here, a set C is the set of “possible” subjective probability measures when it is
the closed, convex hull of those measures which are used to calculate expected utility
for some acts and when the choice of which possible measure to use for which act is
governed by which possible measure gives the minimum expected utility for that act.
Notice that in expanding from a single measure to a set of measures I have had to
specify a rule for assigning measures to acts. This is very important in obtaining a
notion of the (i.e. unique) set of possible measures. If one were to allow both the
set of measures and the assignment rule to vary, then there would be different sets of
“possible” measures for different assignment rules even though the preferences being
represented were not changing. Thus we must keep in mind that my interpretation
of “possible” is contingent on the adoption of the G-S assignment rule.

Why consider the closed, convex hull? Considering the convex hull makes sense in

the framework of possible beliefs or multiple priors since the crux of the individual’s

8This is not quite correct, in that their construction of C uses only those measures that correspond
to b such that I(b) > 0. However, properties of I can then be used to show that for any b the resulting
set contains elements which satisfy the integral representation for that b.
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problem is that h= does not know how much to weight the different priors. If he
knew this he could combine them into one prior as in the standard theory. Further-
more, even if C were not convex, the preferences under C' would be identical to the
preferences under the convex hull of C. Thus the two are not distinguishable in this
setting. Closure seems like a more technical requirement although it does not seem
unreasonable.

Now that we have adopted an interpretation of the Gilboa-Schmeidler result we
can begin to explore the consequences of relaxing the standard theory in this way.
Although the main focus of this paper is on the consequences for game theory, it is
worthwhile to briefly explore some decision theoretic concerns. Does the G-S theory
resolve the Ellsberg paradox and if so does it suffer from the traditional criticisms
of Ellsberg’s work? Recall the thought experiment described above. Suppose that
the decision maker in the experiment is uncertainty averse and thus is unwilling to
use a unique probability measure in situations where uncertainty is present. In the
experiment as described, there is certainly substantial uncertainty in that the decision
maker is given no information about the relative proportions of the three colors aside
from the fact that one-third of the balls are black. A very natural candidate for the
set C in this case is the set of all probability distributions over the three colors which
assign probability one-third to black. Given this set, the reader may verify that a
Gilboa-Schmeidler decision maker will display precisely the Ellsberg preferences. In
fact, as long as the decision maker’s set of possible probability measures includes at
least one in which Prob(red) > Prob(yellow) and another in which the reverse is true
(assuming that all assign one-third to black), the decision maker will have these same
preferences. Thus, in this very clear sense, it is the uncertainty about whether there
are more red balls or yellow balls combined with the individual’s dislike of uncertainty
which results in the Ellsberg behavior.

Some observers have argued that the Ellsberg Paradox simply points out the need
to teach people to obey the axioms of Savage-Anscombe-Aumann decision theory
by presenting them witk compelling examples that will persuade them that treating

subjective probability differently than objective probability is a mistake. A leading
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proponent of this position is Howard Raiffa. In a comment (Raiffa 1961) published
along with Ellsberg’s original article, he uses two examples similar to ones offered
by Ellsberg to make his argument.” In the first example, two questions are asked of
a decision maker. First, the decision maker is asked to consider an urn containing
fifty red balls and fifty black balls and to name the dollar amount that he would
pay to be allowed to name a color and receive one hundred dollars if a ball drawn
at random is of the named color. Raiffa reports that the amounts given clustered
around thirty dollars (thus displaying risk aversion). These same decision makers
were then asked to say how much they would pay for the same opportunity with
an urn which contains red and biack balls in unknown proportion. The answers in
this case typically involved much smaller dollar amounts, thus violating the standard
axioms. In subsequent discussion, Raiffa finds that the following argument convinces
people to change their answer to the second question so that it matches their answer
to the first question: Suppose that in the second setting you draw a ball at random
and do not examine its color. Then flip a coin and say “red” if heads and “black”
if tails. Notice that this results in an objective probability of winning of one-half
independent of the true proportions of red and black balls. Certainly, it should not
matter whether the ball is drawn before or after the coin is flipped since the processes
are physically independent. Thus the second option (unknown proportions) should
always be worth at least as much as the first option (known 50-50) since a coin flip
can transform the second into the first.®

[ find this argument compelling, and fully agree that an individual who values the
second option less than the first is not acting rationally in the sense that once she
thinks the problem through carefully (and either discovers or has pointed out to her
the strategy of flipping a coin to decide) she will revise her decision. My complaint
with this argument is that it does not contradict the results of Ellsherg in a similar
experiment. In Ellsberg’s version the set-up is the same but individuals are not given

as much freedom in that they are asked to make specific pairwise comparisons be-

7See also chapter 5 in Raiffa 1968.
8Throughout this paper, as in decision theory and game theory generally, it is assumed that
participants have costless access to independent, privately-observable randomizing devices.
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tween bets. Thus many individuals say they prefer betting on red in the known urn
to betting on red in the unknown one and prefer betting on black in the known urn
to black in the unknown urn. Notice that these responses clearly violate the standard
axioms but cannot be remedied by randomizing since subjects are asked to compare
two fixed bets, whereas Raiffa is asking them to compare two betting environments.
Specifically, the reader can check that a decision maker whose preferences are con-
sistent with the Gilboa-Schmeidler axioms will always value Raiffa’s unknown urn
option at least as much as they value the known urn option, and may at the same
time prefer any fixed bet on the known urn to the same bet on the unknown one.

Similarly, Raiffa argues that the Ellsberg preferences in the thought experiment
in section 1.1 imply that the decision maker would prefer a 50-50 lottery between acts
1 and 6 to a 50-50 lottery between acts 3 and 5. He then points out, correctly, that
these two lotteries result in objectively equal outcomes. Again, Raiffa’s assumption
is that each act in a lottery can be evaluated independently of the acts it is being
mixed with. Thus, for this example to be convincing, the decision maker must have
already accepted the independence axiom for acts, or no contradiction is implied. A
Gilboa-Schmeidler decision maker is indifferent between the two lotteries even if she
prefers 1 to 3 and 6 to 5.

The reason for this is simply that randomization between bets which pay off in
different states of the world helps to reduce uncertainty by spreading the utility over
more states, which is exactly what an uncertainty averse decision maker would like to
do. Thus it is possible for such an individual to strictly prefer the randomization over
two bets to either of the bets themselves. This feature of uncertainty aversion will play
an important role in our discussion of game theory. We note that such a preference
for randomization raises the issue of dynamic inconsistency, in the sense of wanting to
randomize again once the outcome of the original randomization is known. However,
Machina (1989) surveys many such dynamic inconsistency objections to non-expected
utility theories and argues that this notion of comsistency is inappropriate for such
decision makers. The flavor of his argument can be expressed here by the notion that

strictly preferring a randomization over two acts, A and B, includes the preference
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for act A over any mixture conditional on having borne a risk of B. Thus if the result
of the randomization was A, the individual would indeed be willing to perform A.
A similar argument is made for B. The reader who is unconvinced by Machina’s
arguments may want to think of the decision and game situations we will look at as
situations in which the participants have available some means of committing to a
mixed strategy. For exampie, they may be giving instructions to agents, or may be
able to buy shares of more than one asset, or place a bet on more than one outcome.

Now that we have discussed and interpreted the preferences, some implications

for game theory can be explored.

1.3 Game Theory with Uncertainty Aversion

Game theoretic situations are rife with uncertainty. Almost never can a player pub-
licly commit to playing a given strategy. Thus, from the point of view of his op-
ponent(s), there will often be great uncertainty about what this strategy will be.
Much of game theory can be viewed as the search for concepts which narrow this
uncertainty in convincing ways. Nash equilibrium, the leading solution concept for
non-cooperative games, does this by combining two fundamental ideas. First, it bor-
rows from decision theory the idea that rational players will choose a strategy which
is the most preferred given their beliefs about what other players will do. Second, it
imposes the consistency condition that all players’ beliefs are, in fact, correct. One
major criticistn of Nash equilibrium has been the strength of the conmsistency con-
dition. In many settings it is far from clear that players will have exactly correct
beliefs about each other.® Moreover, even if it is common knowledge that all players
in a game believe that Nash equilibrium is the proper concept to use in determining
their beliefs about play, the problem of multiple Nash equilibria remains. In a game
with multiple Nash equilibria, even if the players themselves accept (and are com-

monly known to accept) the Nash solution concept they may still face substantial

®For some work which has investigated conditions under which this will be true in particular
repeated game settings see Fudenberg and Levine 1990 and Fudenberg and Kreps 1991.
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uncertainty about the play of their opponents. Thus, there is wide scope for players’
behavior under uncertainty to affect the conclusions of game theory. In this vein, I
propose a solution concept for normal form games which generalizes the notion of
Nash equilibrium and allows for players whose preferences can be represented as in
theorem 1 above.

In related work, Dow and Werlang (1991) use Schmeidler’s (1989) non-additive
measure formulation to put forth a generalization of Nash equilibrium. Although the
motivation for their work is similar, both the equilibrium concept and its implications
differ from the ones proposed here. Additonally, they focus on the implications for
backwards induction while I limit myself to static settings due to the difficulties
with dynamic consistency inherent in Gilboa and Schmeidler’s (1989) or Schmeidler’s
(1989) preferences (see Epstein and Le Breton (1993) and Klibanoff (1993a, b)).

Fix a finite normal form game G (i.e. a finite set of players {1,2,...,I}, a pure
strategy space S; for each player ¢ such that S = x;S; is finite, and payoff functions
u; : X;8; — R which give player ¢’s von Neumann-Morgenstern utility for each profile
of pure strategies).

Definition: An equilibrium with uncertainty aversion of G is a 2 x I-vector
(¢1,-..,01,B1,Ba,...,Br) where o; € I; (the set of mixed strategies for player 1,
i.e. the set of probability distributions over S;) and the B; are closed, convex subsets
of P_; (the set of probability distributions over Xj4;Sk) such that, for all 4,

(1) o; satisfies

mingep; 3, wi(8iy $-i)0i(8:)p(s-i) > minpep: 12, wi(si, s-i)oi(s:)p(s-:)

for all o} € ¥;, and

(2) Tk ok(sk) € Bi.

Condition (2) relaxes the consistency condition imposed by Nash equilibrium. It
says that each player’s beliefs must not be mistaken, in the sense that they contain
the truth. More specifically, the truth must be contained in the closed, convex hull of
the set of possible subjective probability distributions over the strategies of the other
players. Condition (1) simply says that each player’s strategy is optimal given her

beliefs, assuming that her preferences can be represented as in theorem 1.
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One important thing to note about the sets of beliefs is that eiements of these sets
may allow for correlation between the strategies of the other players even though we
require the true strategies to be independent. To see how this might arise, consider a
three player game where each player may move either right or left. Player one might
well believe that either two and three will both play right or two and three will both
play left (because, for example, one knows that two and three grew up with the same
social norm but one does not know what that norm is). Any convex combination
of these two priors could only arise from correlation between two and three. In this
way, one’s uncertainty introduces subjective correlation into his beliefs even though
he knows that only independent mixing is allowed.

Two polar special cases of this definition — when all the B;’s are singletons and
when all the B;’s equal P_; - yield familiar concepts as we observe in the following

theorem.

Theorem 2 (a) In any finite normal form game, a strategy profile o is part of an
equilibrium with uncertainty aversion where B; is a singleton for all i if and

only if o is a Nash equilibrium profile.

(b) In any finite normal form game, a strategy profile o is part of an equilibrium
with uncertainty aversion where B; = P_; for all i if and only if, for all ¢, 0; is
a mazimin strategy (i.e. a strategy which mazimizes i’s minimum payoff given

that any opponents’ play is possible).

Proof: (a) and (b) follow directly from the definition of equilibrium with uncer-
tainty aversion. QED

Theorem 2 shows that equilibrium with uncertainty aversion spans the continuum
between all players playing maximin strategies, a criterion often advocated in situa-
tions of complete ignorance, and Nash equilibrium where all players behave as if they
had perfect knowledge of their opponents’ strategies. Exactly when preferences in
Theorem 1 coincide with subjective expected utility maximization, equilibrium with

uncertainty aversion coincides with Nash equilibrium. Existence of an equilibrium
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with uncertainty aversion follows from the existence of a Nash equilibrium (Nash

1950).
The next observation shows that equilibria with uncertainty aversion are not often

unique. This is to be expected as they are, by construction, very dependent on beliefs.

Observation 1 A finite normal form game has a unique equilibrium with uncertainty
aversion only if it has a unique Nash equilibrium and that Nash equilibrium consists

of each player playing their unique mazimin sirategy.

Proof: Any Nash equilibrium is an equilibrium with uncertainty aversion. From
theorem 2, each player playing a maximin strategy is an equilibrium with uncertainty
aversion. QED

Note that the converse is false, as is shown by the game in figure 1.

Player 2
X Y Z
Al12| 4,3 1,4
Player 1 B |1,2 3,3 3,1
Cl2,2] 4,1 2,1

figure 1

In this game, the unique Nash equilibrium is (C, X), which is also the unique
maximin profile. However, (B, Y) is an equilibrium with uncertainty aversion if
player 1 has a belief set consisting of all distributions over Y and Z, while player 2
has a belief set consisting of all distributions over A and B.

The best way to see the implications of this definition is through some examples.
To keep things simple I will focus on 2 x 2 games. Consider the pure coordination
game in figure 2.

This game has three Nash equilibria, (U, L), (D, R), and (1/3 U, 2/3 D; 1/3 L,
2/3 R). Let us focus on the mixed equilibrium. Notice that in the Nash setting, each

player is indifferent between any pure or mixed strategy given their beliefs. Thus
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L R
U[2,270,0
D[0,0]1,1

figure 2

there is no affirmative reason to mix with these proportions. This need not be true
with uncertainty aversion. For example, if each player’s belief set, B;, consists of all
mixtures over their opponents’ pure strategies (as it would, for instance, if players are
uncertainty averse and their sets of possible subjective probability measures include
the Nash beliefs) then each player will strictly prefer to play the mixed strategy. This
is true because by equalizing the payoff to, say, U and D under any distribution over
L and R, the uncertainty is eliminated and the maximin payoff is achieved. In fact, as
long as player 1 has some belief which assigns Prob(L) < 1/3 and some belief which
assigns Prob(L) > 1/3, the mixed strategy is his strict best response. Similarly, if
player 2 has some belief which assigns Prob(U) < 1/3 and one which has Prob(U) >
1/3, the mixed strategy is the strict best response. Thus equilibrium with uncertainty
aversion can justify mixing as a response to strategic uncertainty. In contrast with
Harsanyi’s (1973) view of mixed equilibria as the limits of pure strategy equilibria
in perturbed games, our setting allows common knowledge of payoffs to be taken
seriously. Another advantage of this view of mixed strategies is that it can provide
information about the likelihood or robustness of a mixed strategy outcome. Consider

the game in figure 3, which has been commented on extensively in the literature.

L R
U[9,9]0,8
D[8,0(7,7

figure 3

In this game, unlike the game in figure 2, a mixed strategy will never be strictly
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preferred in equilibrium. This can be seen by noting that if any subjective distribution
gives weight more than 1/8 to D (or R) then the best response is to play R (or D)
and if all distributions give weight less than 1/8 to D (or R) then the best response is
L (or U). The only beliefs for which mixing can occur in equilibrium are those which
include giving weight 1/8 to D(or R) and possibly include some distributions which
give weight less than 1/8 to D(or R). However mixing is not strictly preferred for
these beliefs.

These two examples suggest that equilibrium with uncertainty aversion highlights
mixed equilibria in some games but not in others. We would like to understand
what it is about the game in figure 2 which leads to the possibility of a strict mixed
equilibrium. Observe that, for player 1, U does better if 2 plays L while D does better
if 2 plays R. Thus, as long as U does not weakly dominate D or vice-versa, a mixture
over U and D will do better than D against L and will do better than U against R.
Since an uncertainty averse individual cares about the minimum expected utility over
her belief set, it is easy to see that mixing can raise this minimum as compared to
either pure strategy for some beliefs.

In the game in figure 3, however, both U and D do better if 2 plays L. In this case,
since both pure strategies are lower under R than under L, a mixed strategy will never
raise the minimum expected utility compared to each of the pure strategies. More
generally, if the expected payoffs to any two pure strategies are minimized (over B;)
by the same distribution p € B;, a mixture of the two will never be strictly preferred
to each pure strategy by an uncertainty averse decision maker. This condition is
only sufficient, however. This ic easily seen by considering one strategy which strictly
dominates another, but which is not minimized by the same distribution as the other.
No mixing involving the dominated strategy will ever be preferred to the undominated
strategy, yet these two strategies are not minimized by the same distribution. The
following theorem gives necessary and sufficient conditions for not strictly preferring
a mixture of two strategies to each strategy itself. In other words, these conditions

characterize exactly when there is no gain to hedging between twc strategies.

Theorem 3 Fiz a player i and two strategies o; and o) such that o; > ol (i.e. the
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minimum ezpected utility of o; is at least as big as the minimum ezpected utility of
o!). No mizture over o; and o! will be strictly preferred to both o; and o] if and only

if there ezxists some q € B; suck that ¢ minimizes the ezpected utility of o; and such

that 3, wi(si, s-:)0i(s:)a(s—:) 2 2, wi(siy s-i)oi(si)q(s-:)-

Proof: (sufficiency) Let there be such a g. Then the minimum expected utility
of o; = T, ui(si,8-:)0:(8:)q(s=:) > T, ui(8i,8-:)0(s:)g(s-;) > minimum expected
utility of o!. Therefore 3, ui(s;, s-:)(aoi(s:) + (1 — a)oi(si))a(s-i) <

>, ui(8i,8-:)0i(8:)g(s-;) = minimum expected utility of o;. This implies that
o; = ao; + (1 — a)o! for all a € (0,1).

(necessity) Assume that no mixture is strictly preferred and suppose, to the con-
trary, that for all ¢ € B; such that ¢ minimizes the expected utility of oy it is
true that 3, wi(si,s-:)oi(s:)g(s-i) < ¥, ui(8i,3-:)0%(si)g(s-i). Then for any such
g5 ¥, ui(8iy8-i)(aoi(s:) + (1 — a)al(s:))g(s=i) > T, ui(8i,8-i)0i(si)g(s-;) for all @ €
(0,1). Now consider any ¢* € B; that does not minimize the expected utility of
o;. By uniform continuity, there exists a § > 0 such that if ||¢* — ¢q|| < 6 for
a g which minimizes the expected utility of o;, then ¥, ui(si,s_i)oi(si)g*(s-i) <
Y, ui(8i,5-:)0%(5:)g*(s—:). For any such g* (i.e. one within é of a minimizer),

¥, wilsi, s-i)(@oi(si) + (1 — @)ol(s:))g"(s-:) > T, ui(si;s-i)oi(si)g(s-:) for all
a € (0,1).

By definition of a minimizer, there exists an ¢ > 0 such that for any ¢* € B;
such that ||g* — gq|| > & for all ¢ which minimize the expected utility of oy it is true
that 3, ui(si,5-:)0:(8:)g"(5=:) > &, ui( 84, 5-:)0i(8i)q(s-:) + €. Thus, for a such that
ae+(1—a)(minpes, 3, wi( i s-:)0i(s:)p(s-:) — T, wi(8iy 8-:)oi(s:)g(s-:)) = 0, (which
exists and is strictly less than one since the first term is positive and the second
term is non-positive), it is true that for all @ > @, ao; + (1 — a)o} = o; = of. This
contradicts the assumption that no mixture of o; and o} is strictly preferred to both
strategies. This proves necessity. QED

In applying Theorem 3, it is often easier to check the sufficient condition mentioned
above and given in the following corollary.

Corollary 3.1 Fiz a player i and two strategies o; and oi. No mizture over o; and
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o! will be strictly preferred to both o; and o} if there ezists some q € B; such that q
minimizes the ezpected utility of both o; and o}.

Proof: Assume without loss of generality that o; > o!. Such a q then satisfies
the conditions of Theorem 3. QED

This sufficient condition becomes even easier to check in 2 x 2 games, as reference
to particular beliefs B; can be omitted.

Corollary 3.2 Fiz a player i in a 2 = 2 game. If there is a pure strategy of i's
opponent which minimizes the payoff to both of i's pure strategies, then ¢ will never
strictly prefer a mized strategy to both of i's pure strategies.

Proof: Call the pure strategies of i’s opponent a and b. Suppose that a minimizes
the payoff to both of i’s pure strategies. No matter what ¢’s set of beliefs is, each of
i’s pure strategies will have its expected utility minimized by the distribution in the
belief set which puts the most weight on a. Therefore the existence of a g satisfying
the conditions in Corollary 3.1 is guaranteed for any belief set. QFED

In the special case of 0; ~ o, the sufficient condition of Corollary 3.1 is also
necessary.

Corollary 3.3 Fiz a player i and two strategies o; and o! such that o; ~ o{. No
mizture over o; and o! will be strictly preferred to both o; and o} if and only if there
ezists some q € B; such that g minimizes the ezpected utility of both o; and 0.

Proof: If o; ~ ¢! then the minimum expected utilities of o; and o} must be equal.
The only way to satisfy 3, ui(s:,s-:)0i(si)q(s-:) > X, ui(8i,5-:)07(s:)q(s-:) for a q
which minimizes the left-hand side is to have the same q also minimize the right-hand
side. QED

We can illustrate Theorem 3 (and Corollary 3.2 in particular) by again considering
the game in figure 2. Suppose we modify this game by increasing player 1’s payoft by
one util when 2 plays L and increasing player 2’s payoff by one util when one plays
U. The modified game is as in figure 4.

Noting that each players’ pure strategies now have their payoffs minimized by the
distribution placing the most weight on R (or D), Corollary 3.2 tells us that a mixed

strategy will never be strictly preferred. This contrasts with the earlier analysis of the

23



L R
U[3,3]0,1
D[1,0[1,1

figure 4

game in figure 2, in which mixed strategies were strictly optimal for a wide range of
beliefs. In comparing the two garaes, the reader can check that not only are the Nash
equilibria unchanged, but each player’s best response correspondence is unchanged
as well.1® However the equilibria with uncertainty aversion are affected.

What has happened, intuitively, is that the change in payoffs has turned a game
in which mixing helped hedge against uncertainty into one where it cannot play
that role. On a more formal level, these changes have no effect in the standard
theory because the independence axiom requires that preference between two acts
(strategies) be preserved when they are mixed with a common third act. In the
setting of Theorem 1 however, the independence axiom need only hold for mixing
with constant acts, whereas adding one to player 1’s payoff if 2 plays L, for example,
is mixing the existing acts with a non-constant act. Thus such a transformation may
change behavior.

The notion that this generalization of the Nash concept may allow for a natural
way of refining predictions about the outcome of a game is another advantage of this
approach. I view this equilibrium notion as allowing sharper prediction in the sense
that it allows the use of information about players’ beliefs in a way that the Nash
concept does not. For example, in figure 3, if the players were known to be uncertainty
averse and there was no compelling unmodelled feature of their environment which
would lead each to include the mixed Nash strategy in their beliefs but not include

any distribution which puts more weight on R (or D) (than the mixed Nash strategy),

10] yse best response correspondence in the standard sense of a player’s optimal strategy as a
function of the opponents’ strategies. An alternative notion of best response correspondence, defined
as a player’s optimal strategy as a function of that player’s beliefs about the opponents’ strategies,
would, of course, give different correspondences for the two games.
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I would be very reluctant to predict the mixed Nash equilibrium as the outcome of the
game. Furthermore, in situations where the players are likely experiencing substantial
uncertainty about others’ play (for example, if they have never previously met their
opponent and have not played the game before), I would be tempted to predict (D,R)
as the outcome of the game in figure 3. The reasoning behind this is that greater
uncertainty will be reflected in a larger set of beliefs, and thus (D, R) becomes more
likely in the sense that if any belief assigns Prob(D) (or R) > 1/8, the player’s
best response switches to R (or D).!! Thus a compelling feature of equilibria with
uncertainty aversion is that “comparative statics” in uncertainty becomes possible in
a well-defined sense.!?

The set of equilibria with uncertainty aversion has been contained in the set of

rationalizable!® outcomes in the examples we have seen so far. This is not necessarily

the case. Consider the game in figure 5.

L P
U[3,0] 1,2
D [0,4]0,-100

figure 5

1There are other reasons why (D, R) is an attractive prediction in this game. Both the risk-
dominance criterion of Harsanyi and Selten (1988) and Aumann’s (1990) argument that pre-play
communication is not likely to assist in coordination on (U, L) also lead to a prediction of (D, R).
Note that the notion of risk-dominance in 2x2 games shares some of the flavor of uncertainty aversion
but differs in important ways. Risk-dominance always produces a unique prediction, while equilibria
with uncertainty aversion depend on players beliefs and uncertainty aversion. Furthermore, although
figure 3 and heuristic considerations might lead one to think that the risk-dominant equilibrium is
always the same as the equilibrium with uncertainty aversion when there is maximal uncertainty
(or ignorance), this is not true. In figure 2, (U, L) is risk-dominant while the mixed strategy pair is
picked out under ignorance and uncertainty aversion.

12This aspect of the theory could conceivably be tested in an experimental setting. After assessing
subjects’ utility functions (using objective probabilities) and using examples like those of Ellsberg
to detect aversion to uncertainty, the experimenter would have the subjects play simple games. The
level of uncertainty in their beliefs about their opponent could be manipulated by, say, providing
or not providing a record of past games the opponent played; allowing or not allowing pre-play
discussion or face-to-face contact etc. Subjects might also be asked to explicitly describe (ex-ante
or ex-post) their beliefs about their cpponent’s play.

13For a definition of rationalizability see Bernheim (1984) and Pearce (1984) who introduced the
concept, or Fudenberg and Tirole (1991), chapter 2.



In this game the unique Nash equilibrium is (U, R). This outcome can also be
found by iterated strict dominance and is thus the unique ra.tipnaliza.ble outcome as
well. However, if any of player 2’s subjective probability measures assigns weight at
least 1/53 to D, then (U, L) will be an equilibrium with uncertainty aversion. In fact,
letting 2’s payoff from (D, R) approach —oo, 2 will have to put an arbitrarily high
minimum probability on U to be willing to play R.

This example makes several important points: (1) the set of equilibrium outcomes
with uncertainty aversion is not in general contained in the set of rationalizable out-
comes; (2) as Fudenberg and Tirole (1991, chapter 1) discuss, predicting (U,R) in a
game like figure 5 relies crucially on the assumption that it is common knowledge that
dominated (or non-rationalizable) strategies will never be used; and (3) to the extent
that this common knowledge assumption is appropriate, the concept of equilibrium
with uncertainty aversion may be too weak. In the next section, I pursue this line of

reasoning by proposing a refinement of equilibrium with uncertainty aversion.

1.4 Adding Common Knowledge of Rationality

Consider the following definition that is motivated by the concept of correlated ra-
tionalizability (Pearce 1984, Brandenburger and Dekel 1987, Fudenberg and Tirole
1991, chapter 2). It is a natural generalization to the context where players can be
described as in Theorem 1. The idea is to start from the whole set of strategies and
eliminate, in each round of iteration, those strategies which are never a best response
in the sense of Theorem 1 when the set of beliefs B; is restricted to those beliefs
which are compatible with the knowledge that other players only play best responses
to the restricted sets of beliefs derived in the previous round. Thus, in the first round
of iteration, those strategies which are never best responses to any beliefs are elim-
inated. In the second round, any strategies from the remaining set that are never
best responses to any beliefs concentrated on that remaining set are eliminated, and
so on. The successive rounds of iteration capture successive layers of knowledge of

the rationality (in the sense of Theorem 1) of the players. Assume that all payoffs
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are common knowledge. Then the first iteration cerresponds to the assumption that
each player is rational. The second iteration corresponds to the assumption that each
player is rational and knows that the other players are rational. The nth iteration
corresponds to the assumption that each player is rational and knows that the other
players know that the players know ...that the players are rational, where n-1 levels
- of knowledge are assumed.

Definition: Set £? = ¥;, P, = the set of probability measures on Xjx;Sk such
that for each k # ¢ the marginal distribution over Sy is an element of ¥;. Recursively
define for each integer m > 0:

£m = {o; € £™! such that there exists a closed, convex subset, B;, of PT™*
such that o; satisfies condition (1) in the definition of equilibrium with uncertainty
aversion with £7~! replacing ¥;.}, and

P™ = the set of probability measures on XSk such that for each k # ¢ the
marginal distribution over Sj is an element of the convex hull of X7'.

The uncertainty aversion rationalizable sirategies for player ¢ are R; = Ny X7".

The uncertainty aversion rationalizable belief set for player ¢ is Q; = Np—o P

An alternate and often more useful characterization can be given in terms of

iterated deletion of dominated strategies.

Theorem 4 In finite normal form games the uncertointy aversion rationalizable
strategies for player i, R;, are ezactly those strategies for player © which survive iter-

ated deletion of strictly dominated strategies, (denoted by I;).

Proof: The definition of uncertainty aversion rationalizable stratcgies is equiva-
lent to that of correlated rationalizable strategies when the set B; is restricted to be
a singleton. Since the set of correlated rationalizable strategies for player i is iden-
tical to the set of strategies for player ¢ which survive iterated strict dominance (see
Fudenberg and Tirole’s (1991, chapter 2) modification of a proof by Pearce (1984)),
R; is a superset of I;. As no strictly dominated strategy is a best response in the
sense of condition (1) of the definition of equilibrium with uncertainty aversion, R; is

a subset of I;. QFD
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Interpreting Q; as the beliefs which are not ruled out by common knowledge of pro-
cedural rationality (i.e. maximization given beliefs) when preferences are restricted to
obey the axioms in Theorem 1, a refinement of equilibrium with uncertainty aversion
is offered.

Definition: An equilibrium with uncertainty aversion is an equilibrium with un-
certuinty aversion and rationalizable beliefs if and only if B; is a subset of Q; for all
players .

Note that equilibrium with uncertainty aversion and rationalizable beliefs can
be viewed as a refinement of correlated rationalizability (and thus, using a result
of Brandenburger and Dekel (1987), of a posteriori equilibria) in that it takes the
rationalizability restrictions and adds to them a consistency requirement (condition
(2) in the definition of equilibrium with uncertainty aversion). Note that correlated
rational’ "ability already requires a condition equivalent to (2) in the case B; = Q.
Imposing the consistency condition for beliefs which are subsets of Q; allows for knowl-
edge about the other players, besides knowledge of their rationality, to be reflected in
beliefs, and thus in the equilibrium. Condition (2) is an appropriate consistency con-
dition for equilibrium in the sense that it requires that players not rule out strategies
incorrectly. The basic idea is that the Nash consistency condition makes sense if you
are sure of the distribution over strategies (i.e. B; is a singleton), but the i-lea of not
being surprised (i.e. not ruling out the strategy profile that is played) is more general
than this, in that knowledge that rules out some, but not all, other options can be
incorporated. For example, suppose I am a baseball player and I know that the op-
posing pitcher does not know how to throw a split-fingered fastball. Any outcome in
which the pitcher does, in fact, throw this pitch is surely not much of an equilibrium.
On the other hand, I may be unable or unwilling to summarize my beliefs in the form
of a single distribution over the remaining pitches. Thus, a slider or a curveball or
any randomization between the two might not surprise me, and could be part of what
might be reasonably called an equilibrium.

To see that the set of equilibria with uncertainty aversion and rationalizable beliefs

can be strictly smaller than the set of rationalizable outcomes, consider the “battle-
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of-the-sexes” game depicted in figure 6.

U D
U[2,1]0,0
D[0,0]1,2

figure 6

In this game, (U, D) is rationalizable but is not an equilibrium with uncertainty
aversion and rationalizable beliefs.!4 To see this, observe that player 1 plays U only if
he has no subjective beliefs which assign weight less than 1/3 to 2 playing U. Similarly,
2 plays D only if she has no subjective beliefs which assign weight less than 1/3 to
1 playing D. These beliefs fail the consistency condition (2). Thus this condition
shares some of the flavor of Rabin’s (1989) point that we might not want to assign
an outcome a higher probability then either of the players could given that they are
playing best responses. Another example where the set of equilibria with uncertainty
aversion and rationalizable beliefs is strictly larger than the set of Nash equilibria is

given in figure 7.

U D
U[2,1]0,0
D[1,1]1,2

figure 7

This game is a modification of the "hattle-of-ihe-sexes” game which makes D more
attractive to 1 and U more attractive to 2 than before. (D, U) is an equilibrium with
uncertainty aversion and rationalizable beliefs. Any sets of beliefs that include any

measures which put weight greater than 1/2 on 2 playing D will lead player 1 to play

14]n fact, (U, D) is not even an equilibrium with uncertainty aversion. This, together with the
example in figure 5, makes it clear that there is no general containment relation between the set
of rationalizable (or correlated rationalizable) outcomes and the set of outcomes of equilibria with
uncertainty aversion.
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D. Similarly, if player 2 has any measures which assign probability greater than 1/2 to
1 playing U then 2 will play U. However, (D, U) is not a Nash equilibrium.'® In fact,
if we replace the payoff of (1, 1) with a payoff of (k, k) where 0 < k < 2, (D, U) fails to
be Nash but is an equilibrium with uncertainty aversion and rationalizable beliefs for
an ever wider class of beliefs as k approaches 2. Of course the mixed Nash equilibrium
does approach (D, U) as k approaches 2, but it seems that ailowing for a wider range of
beliefs is much more helpful in assessing which outcomes would be expected in which
environments. From the point of view of equilibrium with uncertainty aversion, the

mixed strategy Nash outcome for 0 < k < 2 will never be strictly preferred.

1.5 Weak Admissibility

Consider the game in figure 8.

U D
1,110,1
0,0]0,2

v e

figure 8

In this game no strategies are eliminated by iterated strict dominance, thus the
restriction to rationalizable beliefs makes no difference. There are lots of Nash equi-
libria (a continuum in fact). Thus there are also many equilibria with uncertainty
aversion. Notice, however, that as long as player 1 thinks that U is possible, player
1 should play U in response. Similarly, as long as player 2 thinks that D is possible,
player 2 should play D in response. This reasoning leads one to think that in any
equilibrium with uncertainty aversion where 1 plays D (or 2 plays U) all beliefs in

the belief set must assign probability 0 to 2 playing U (1 playing D). That this is not

15Note that (U, D), as in figure 6, is rationalizable but is not an equilibrium with uncertainty
aversion and rationalizable beliefs. Thus the game in figure 7 demonstrates that the set of equilibria
with uncertainty aversion and rationalizable beliefs can lie strictly between the set of rationalizable
profiles and the set of Nash equilibria.
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true is easily seen by censidering the case where both players have belief sets which
contain all possible distributions. In this case, each player is indifferent between any
two strategies since all strategies give a minimum expected utility of 0. This is one
aspect in which I feel that the Gilboa-Schmeidler axioms are too weak.

A similar point can be made by reconsidering the Ellsberg example. Consider
again the thought experiment of section 1.1, specifically options 1 and 4. It would
seem irrefutable that unless a decision maker is certain that yellow will not be drawn
she should prefer 4 to 1. However if the set of measures C simply includes a measure
which assigns zero weight to yellow, even if other measures in C do not, then a
Gilboa-Schmeidler decision maker will be indifferent between 1 and 4 (assuming that
all measures in C assign one-third to black). Under our interpretation of C, such a
decision maker considers it possible that yellow may occur in the sense that she is
willing to use a measure which implies that in evaluating some acts. The fact that
such a decision maker is indifferent is therefore unreasonable. To remedy this I use
an additional axiom that appears in Schmeidler (1989).

Definition: An event £ € ¥ is null if and only if Vf,g € L such that Vs €
S/E, f(s) ~ g(s), it is true that f ~ g.

Definition: Denote the set of non-null events by NNE = {E € ¥ such that E
not null}.

B.1 (Weak Admissibility)

Vf,g€ L,if for all s € S, f(s) = g(s) then f = g and [f > g if an only if for some
E € NNE, f(s) > g(s), Vs € E|.

Intuitively, a null event is a set of states which is never decisive. To be null in the
context of the Gilboa-Schmeidler theory, an event must never be assigned positive
probability by any measure in C. This can be seen by considering two acts, one of
which gives utility 100 if E occurs while the other gives utility 0 if E occurs and both
of which give utility 200 if E does not occur. The distribution in C used to evaluate
each of these acts will be the one(s) which puts the most weight on E. Thus E has
probability zero according to all measures in C if and only if the decision maker is

indifferent between the two acts. So we conclude that a null event must be assigned
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probability zero by all probability measures in C. Furthermore, any event which is
assigned zero probability by all measures in C is a null event. Weak admissibility
says that state-by-state weak dominance (and indifference) holds on the set of events
which are given positive probability by some measure in C. We obtain the following

representation theorem:

Theorem 5 Let > be a binary relation on Lo. Then the following are equivalent,

(1) = satisfies A.1 - A.3, A.5 and B.1 for L = L.

(2) There ezists an affine functionu:Y — R and a non-empty, closed, convez
set C of finitely additive probability measures on ¥ satisfying [p(E) = 0 if and only
if Vp € C,p(E) = 0] such that Vf,g € Lo,f = g if and only if minpec fu o fdp >
min,ec [ u o gdp.

Furthermore, the function u is unique up to a positive affine transformation and,

if and only if A.6 holds, the set C is unique.

Proof: See Appendix.

The new representation is identical to that in Theorem 1 except for the additional
condition that each event be given either zero probability by all measures in C or pos-
itive probability by all measures in C (i.e. the measures in C are mutually absolutely
continuous). This condition serves to impose the weak admissibility axiom (B.1).
However, this requirement seems too strong. It does not allow a decision maker to
be uncertain about whether a given event will occur with positive probability. In a
two player game, for instance, this representation would not allow a player to include
both a pure strategy and any other strategy (mixed or pure) in her belief set. In order
to permit this type of uncertainty while maintaining weak admissibility, A.3 (conti-
nuity) will be relaxed. The intuitive idea is that weak admissibility is a second-order
criterion, in the sense that A.4 (monotonicity) ensures that weak admissibility is only
used to break ties in the original representation, thus engendering a possibly dis-
continuous preference relation. Unfortunately, simply dropping continuity only when
applying weak admissibility directly to break ties will aot allow us to maintain A.l

(weak order), which is in many ways the most fundamental axiom. To get around this
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problem, we allow for a finite number of hierarchically ordered preference relations,
while placing conditions on these relations.

Consider a finite set of preference relations on L: >;,7 =1,...,N.

Definition: The >; agree on L. if and only if Vy,z € L., [y =1 z if and only if
y >3 z...if and only if y = n z].

Deilinition: The >; display non-increasing valuation of certainty if and only if
Vfe L,y € L, [f ~; y implies y <;4; f] holds for: =1,...,N - 1.

Now consider the fcllowing axiom on the preference relation = on L:

B.2 (N-Hierarchy)

There exist N > 1 preference relations on L: >;,>,,...,>n such that, Vf,g €
L,f = g < [g =i f= 3k <i,such that f >, g]. Furthermore, each >; satisfies
A.1-A.5, and the >; agree on L. and display non-increasing valuation of certainty.

Observe that any preference relation = which satisfies A.1-A.5 will satisfy B.2 for
N = 1. Thus imposing A.1, A.2, A4, A.5, B.1, and B.2 is certainly no stronger
than imposing A.1-A.5, and B.1. B.2 limits the way in which continuity can be
relaxed. It says that there are a finite number of preference relations which are
combined lexicographically to represent >=.!® Furthermore, each of these N relations
must satisfy the original axioms A.1-A.5, must order constant acts the same way. and
reward constant acts versus uncertain ones (weakly) less and less. Thus the recision
maker has first-order G-S preferences, second-order G-S preferences, etc., and aversion
to uncertainty is not as important in breaking ties as it is in the ordering where the
ties occur. One can think of the decision maker “accounting for” uncertainty in the
manner of Theorem 1 with her first-order preferences, and, given that prospects are
equal by this measure, being willing to venture a tie-breaking decision on the basis of
preferences which do not give as much weight to uncertainty, since this weight has,
in some sense, already been given. This type of refinement could continue through
several levels.

An alternate scenario would be to think that instead of reducing uncertainty

16The only restriction beyond weak order in this requirement is that N be finite. See Fishburn
(1974) and Chipman (1971) for more details.
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aversion at each stage, the decision maker actually became more uncertainty averse
in the case of ties. An important drawback to this case, however, is that weak
admissibility would end up imposing precisely the conditions which we wanted to
avoid in Theorem 5. For this reason, I work with the former case.

We obtain the following representation theorem:

Theorem 68 Let > be a binary relation on Lo. Then the following are equivalent,

(1) > satisfies B.1 and B.2 for L = L.

(2) 3 an affine function v : Y — R and N > 1 non-empty, closed, convez sets
Ciyi = 1,...,N, of finitely additive probability measures on L such that Vf,g €
Lo, f > g if and only if (minpec, fu o fdp)¥, >p (minyec, fu o gdp)Y,, where if
p(E) > 0 for some E € T, p € C, then there exists an i such that p(E) > 0, for all
p € C;, and where C; 2 C; 2 ... 2 Cy.1"

Furthermore, the function u is unique up to a positive affine transformation, and,

if and only if A.6 holds, the set C, is unique.'®

Proof: See Appendix.

The following corollary makes it clear that A.3 (continuity) is the only one of the
G-S axioms which is being relaxed:

Corollary 6.7

> satisfies B.1 and B.2 implies =~ satisfies A.1, A.2, A.4, and A.5.

Proof: It is straightforward to verify that the representation in Theorem 6 satisfies
A1,A.2, A4, and A5. QED

This representation satisfies weak adrmissibility, while also allowing the set of pos-
sible probability measures, C1, to include both measures that assign zero probability

to an event and ones that give the event positive weight. An interpretation of the

7For a,b € RN, a>pbe [b; > a; = 3k < i such that ax > b

18]n a context where the independence axiom is assumed to hold for all acts (and thus uncertainty
aversion is ruled out), Blume, Brandenburger, and Dekel (1991) obtain a similar lexicographic rep-
resentation where the belief sets are singletons, N < #S5, and the superset relations are not required
to hold. The added structure provided by independence allows a more attractive axiomatization
than the one here, obviating the need to refer to a hierarchy of preference relations in the axioms.
Unfortunately the properties of an ordered vector space which they use do not seem applicable here.
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subsets C; through C is that the measures in C} are considered infinitesimally more
likely (or more important in terms of the decision) than the measures in Cji_;/Ci
in the sense that if two acts are equally ranked using Ci-; then the decision maker
will use the ranking under Cj to attempt to further discriminate, but if two acts are
strictly ranked under Cj_, then the ranking under C} is irrelevant. Viewed in this
way, weak admissibility requires only that any event which is given positive weight by
some measure in C; be considered at least infinitesimally more likely to occur with
positive probability than to occur with zero probavility.

The definition of equilibrium with uncertainty aversior. can be extended to the
preferences described in Theorem 6.

Definition: An equilibrium with uncertainty aversion of G is a (N + 1) * [-vector
(01y.-.y01,B11y.-.yBiny Ba1y...y Bany. ..y Bny ..., Bin) where o; € X; (the set of
mixed strategies for player 7, i.e. the set of probability distriLutions over S;) and the
B;, are closed, convex subsets of P_; (the set of probability distributions over Xjx;Sk)
satisfying B;; D Bz O ... 2 B;y and [p(s—;) > 0 for some p € B;y = p(s_;) > 0 for
all p € B;, for some n| such that, for all 7,

(1) o; satisfies (mingep, 3, wil 8i, $-:)oi(s:)p(s-:))N.; >1

(mingep; ¥, i(8:,5_:)0i(s:)p(s-:))_, for all ¢! € £;, and

(2) Mexi or(sk) € Bar.

Using this definition, analogues of all of the theorems in sections 1.3 and 1.4 can
be derived, although the results are not as clean as with the simpler definition. To
apply the new definition, we return to the game in figure 8.

Recall that without weak admissibility, there was a great multiplicity in the equi-
libria with uncertainty aversion (with or without rationalizable beliefs) even when no
strategy of the opponent was ruled out by all measures in the belief set. However,
with this restriction, unless all of player 1's beliefs (the set B;;) assign probability
zero to U, 1 should play U. Similarly, unless all of player 2’s beliefs assign probability
zero to D, 2 should play D. Thus, if players are uncertainty averse and any degree of

uncertainty exists in each of their minds, weak ad:nissibility argues that (U, D) will

be the outcome.
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Note that (U, D) is also the outcome picked out by deletion of weak'y dominated
strategies. In general, however, weak admissibility is a much weaker condition than
weak dominance. Weak admissibility allows the play of weakly dominated strategies
when a player always assigns probability zero to the state(s) where the dominance is
strict. The power of weak dominance in the Nash framework is precisely (and only)
that it rules out the play of weakly dominated strategies even when the relevant states
are assigned probability zero. I believe that weak admissibility is a more accurate
formalization of the ideas which are often used to motivate weak dominance. If
the reason that weakly dominated strategies should not be played is that players
will almost never be in a situation where they can be sure that their opponent(s)
will not play a particular strategy or strategies then that idea should be expressed
directly, in terms of beliefs, rather than in a rule which is to be universally applied
regardless of the beliefs in any particular situation. Weak admissibility makes clear
this dependence on beliefs. For example, if only rationalizable beliefs are allowed,
then strategies which would have been eliminated by weak dominance are allowed if
they were strictly dominated only by those actions which rationalizable beliefs must

assign probability zero. For example, consider the game in figure 9.

X Y Z
A[1,170,171,2
B[0,0[0,2]1,1

figure 9

In this game, weak dominance eliminates B for player 1, whereas, since X is
eliminated by iterated strict dominance, B is not eliminated by weak admissibility

under the restriction to rationalizable beliefs.
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1.6 Conclusion

The goal of this paper has been to explore some of the consequences for game theory
of an attractive broadening in the decision theory used to describe the players. The
concept of equilibrium with uncertainty aversion with or without a restriction to
rationalizable beliefs turns out to have some nice features in normal form games. First,
it provides a new justification based on hedging for some equilibria involving mixed
strategies. Second, the flexibility of belief structure points out certain equilibria which
I argue would not make very good predictions unless very definite information about
beliefs were available. Third, this framework allows for oft-mentioned unmodelled
features of the game environment, such as social norms, past experience of the players,
and knowledge of equilibrivin concepts to be incorporated in a natural way through
their effects on the uncertainty which uncertainty averse players experience. When
rationalizable beliefs are imposed, this solution concept can be viewed as a refinement
of correlated rationalizability which is not as restrictive as Nash equilibrium. Finally,
the flexibility of beliefs helps make weak admissibility a relevant condition.

There is obviously much that needs to be done if these ideas are to form the basis
of a complete theory. The biggest missing piece is an extension of these concepts to
extensive form, and thus dynamic, games. One route to follow here is to develop a
satisfactory notion of updating the sets of probability measures. Gilboa and Schmei-
dler (1993) have done some preliminary work on this front. One procedure which they
suggest which seems potentially appealing is, after an event occurs, to rule out some
of the measures and update the rest by applying Bayes’ rule to each one. However, it
is known (see Epstein and Le Breton (1993) and Klibanoff (1993a)) that no update
rule for sets of measures in the G-S framework guarantees dynamically consistent
preferences. Klibanoff (1993b) responds to this by axiomatizing an alternative, ex-
plicitly dynamically consistent, representation of uncertainty aversion. Using such a
theory to analyze dynamic games is a topic of future research.

Another thing missing from the present work is a discussion of games of incomplete

information. However, it should not be difficult to apply a slightly adapted version of
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the present theory to such games. The pbasic change would involve an enlargement of
the state space of playeri, S_;, to S_; x © where O is the space of unknown parameters.
On a more applied level, it would be good to develop a full-blown application using

these equilibrium concepts.
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Chapter 2

Dynamic Choice with Uncertainty

Aversion

2.1 Introduction

In this paper I develop a dynamically consistent theory of decision making that in-
corporates the notion of uncertainty aversion. Uncertainty aversion occurs when
individuals have a dislike of uncertainty (not knowing the relevant probabilities in
a given decision environment) and is distinct from their attitude towards risk (not
knowing which outcome will occur, but knowing the probability of each outcome).
While attitudes towards risk can be captured by varying the shape of the utility
function in expected-utility theory (with either objective probabilities as in the the-
ory of von Neumann and Morgenstern (1947), with subjective probabilities as in the
theory of Savage (1954) or with both types of probabilities as in Anscombe and Au-
mann (1963)), there is no way to incorporate attitudes towards uncertainty in this
expected-utility framework.

A classic example of behavior which is not compatible with standard theory and
is naturally explained by uncertainty aversion is one by Ellsberg (1961). Here an
individual faces an urn which contains 90 balls identical except for color. Thirty of
the balls are black. The other possible colors are red and yellow, and there is no

information about the proportions of these two colors. One ball will be drawn at
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random from the urn. In these circumstances, many decision-makers prefer to bet
on black (i.e. they win 100 dollars if the ball drawn is black, 0 dollars otherwise)
than to bet on red. At the same time, they prefer to bet on [red or yellow] (i.e.
win 100 dollars if the ball is red or yellow) than to bet on [black or yellow|. This is
incompatible with rational choice using any fixed probabilities of the different colors
to weight outcomes. A natural explanation of this behavior is that the individual
assigns a premium to bets for which the odds are known (betting on black or betting
on [red or yellow]) over those for which the odds are not known (betting on red or
betting on [black or yellow]). A large body of experimental work has found support
for this type of behavior (see, e.g., the discussion in Camerer and Weber (1992)).

A static representation theory that allows for uncertainty averse behavior has been
developed by Gilboa and Schmeidler (1989). In their theory, beliefs are represented
by sets of probability measures and individuals choose actions which maximize the
minimum expected utility where the minimum is taken over the measures in the
belief set. While some exploration of the implications of such behavior in economic
settings has been undertaken (e.g. Dow and Werlang (1991, 1992) on portfolio choice
and game theory and Klibanoff (1992) on game theory), progress on this front has
been hampered by the lack of a satisfactory dynamic theory to complement the static
theory. For most interesting ¢conomic problems (for example, any problem modelled
naturally as an extensive form game) we need a dynamic, and not simply a static
theory.

The usual way of extending a static choice theory under uncertainty to a dynamic
setting is to make assumptions about the way in which beliefs (as separated from
utilities in the representation) are updated as new information becomes available. In
the standard subjective expected utility theory (SEU) of Savage or Anscombe and
Aumann, the usual assumption is that beliefs are updated by Bayes’ rule whenever
possible. This has great appeal for at least two reasons, one economic and one aes-
thetic. The economic appeal is that Bayes’ rule is the only updating rule for a SEU
maximizer that will never lead to dynamic inconsistency (see e.g. Brown (1976)).

The aesthetic appeal arises from the agreement with Bayes’ rule for conditional prob-
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abilities which follows from the definition of conditional probability and the axioms
of probability theory.

Unfortunately, there exists no rule for updating beliefs which guarantees dynamic
consistency in general when the decision maker’s static preferences display Gilboa
and Schmeidler’s (1989) formulation of uncertainty aversion. A simple proof of this
fact by way of two examples is contained in Klibanoff (1993).

In fact, a much stronger result is true as has been shown in Epstein and Le Breton
{1993), namely that dynamic consistency and the relatively uncontroversial axioms of
Savage (1954) (in particular, excluding the Sure-Thing Principle (Axiom P2)) imply
that beliefs must be represented by a qualitative probability relation.! In other words,
there must be a weak order on events expressing the relation “at least as likely as”
where likelihood is operationalized by willingness to bet in the Savage sense.

In the uncertainty aversion framework of Gilboa and Schmeidler, this result implies

that, for any events A—and B, if the belief setcontains-one measure-which—assigns
p(A) > p(B) then all measures in the set must assign p(A) > p(B) if dynamic
consistency is to be maintained through updating beliefs.? In particular, requiring
dynamic consistency in this setting rules out the behavior displayed in the Ellsberg
Paradox, which is a major motivation and justification for the whole body of literature
on uncertainty aversion.

Why not then just accept dynamic inconsistency as a price to pay when modelling
uncertainty averse behavior in a dynamic setting? Why not adopt, say, an assumption
of sophisticated behavior in the presence of dynamic inconsistency, as in Pollack
(1968), Laibson (1992), Karni and Safra (1990), and many others? A major reason
is that except in relatively few cases, it is very hard to analyze dynamic problems
using these types of preferences. For example, the standard tools of dynamic and
stochastic dynamic programming are not applicable because of the lack of consistency.
This reason may not be very deep, but it is nonetheless quite important if these

preferences are to be widely used in modelling. Another reason is that dynamic

! Their result relies mainly on a theorem of Machina and Schmeidler (1992).
2This is only a necessary condition for dynamic consistency. It need not be sufficient.
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consistency has appeal as a normative principle. Finally, it is important to know if
dynamic inconsistency is a necessary price to pay for modelling uncertainty aversion,
or whether there are ways to get around this.

The approach I will take is based on the idea of Kreps and Porteus (1978) of
modelling the consequences at each time (or stage) ¢t as composed of an immediate
payoff and an opportunity set from which the action at time ¢ 4+ 1 will be chosen.
However, this approach substantially departs from Kreps and Porteus along several
dimensions.

First, my setting is a “states of the world” Anscombe-Aumann subjective prob-
ability framework as opposed to a world of purely known or objective probabilities.
To my knowledge the only other work which axiomatizes dynamically consistent in-
tertemporal utility in a subjective probability framework is Skiadas (1991), which
axiomatizes recursive utility in a generalized Savage style framework.

Second, at each time t, preferences are not required to conform to the standard
axioms which give rise to an expected utility representation. Chew and Epstein (1989)
is an example of a paper in this vein, as they consider preferences which may violate
the independence axiom but satisfy betweeness in an objective probability framework.
(Betweeness requires a mixture aa+(1—a)b to be “between” a and b in the preference
ordering. (i.e. a > b= a > aa+ (1 —a)b > b) Since I allow for uncertainty aversion,
the preferences here do not even satisfy the analogue of betweeness for uncertain acts
(although they do satisfy it when no uncertainty is present).)

Finally, since I want to represent uncertainty aversion and require dynamic consis-
tency, utilities over payoff/opportunity set pairs must be allowed to be state depen-
dent. This is needed for the same reason that value functions in dynamic programming
are state dependent: the value of an opportunity set will vary depending on how un-
certainty resolves tomorrow. I will discuss this analogy further in an example at the
end of section 2.2. This work is thus also related to the literature on state dependent
preferences (e.g. Karni (1985, 1993)). For the reasons discussed by these authors
and others, allowing state dependence may be important in capturing many decision

problems in a coherent way. Thus, a derivation of static, state dependent, uncer-
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tainty averse preferences, which this paper provides as a step in building a dynamic
theory, may be important in its own right. However, viewed purely as a theory of
state dependent preferences with uncertainty aversion, the results presented here are
not as general as might be desired. The reason is that I require that the preference
overlap between states be complete. In other words, for any outcome in state a, there
is an outcome in state b which is just as good, and vice-versa. As discussed later on,
this assumption is probably a reasonable one in the context of the dynamic theory
that I develop and for the applications that I have in mind. However, it seriously
limits the allowed nature of the state dependence, and thus may not be useful in some
settings that the above-mentioned theories are, such as the analysis of life and health
insurance.

As well as developing a dynamic choice theory, this paper also contains a brief
application of the theory to the question of the existence of a reservation price rule
when searching without recall from an unknown distribution of prices. I extend the
results of Rothschild (1974) and Bikhchandani and Sharma (1989) to the case of an
uncertainty averse searcher. Although the result is of independent interest, the main
point is to demonstrate the fact that the theory developed here is a tractable tool for
economic analysis. Dynamic consistency is a crucial feature in making this true. A
full-blown application of preferences that look like those I characterize is presented
in Epstein and Wang (1992) who examine an intertemporal model of asset demand
with uncertainty averse individuals. This paper provides an axiomatic foundation for
the preferences they assume.

The rest of the paper is laid out as follows. In section 2.2, I set out the notation,
formally describe the decision environment, and present an example. In section 2.3,
axioms for time ¢ preferences are introduced and a static, state dependent, uncertainty
averse representation theorem is presented. In section 2.4, the notion of dynamic
consistency is formalized, and is used to knit the static preferences together. In
section 2.5, a result on searching from an uncertain distribution is presented. Section

2.6 concludes.
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2.2 The Model

Let J be a set of prizes or consequences. These are the ultimate outcomes — for
example amounts of money or consumption goods. Consider a discrete-time, finite
horizon setting with horizon T' > 0. I will now recursively define several constructs
that are important in describing the decision problem. G, is the set of lotteries over
“outcomes” in period ¢. In this setting, outcomes are pairs in which the first element
is an immediate payoff and the second element is an opportunity set from which the
next period’s action will be chosen. S; is the set of states of the world at time ¢. Note
that in this paper I will assume that S; is finite for all £. N, is a set of time ¢ acts.
Acts are the choice variables in the model and each act maps states to lotteries over
outcomes. X, is the set of all non-empty, closed, convex sets of time ¢ acts which
can be generated by taking the convex hull of a finite number of time ¢ acts; thus
X; is the set of opportunity sets of time ¢ acts. I formally define these constructs
iteratively, starting from the end. Let Gr be the set of all distributions with finite
support over J. Let Sty be a singleton set of states of the world. Let Ny be the
set of all bounded functions from Sry; to Gr. For all 0 < ¢t < T, let X, be the set
of all non-empty, closed, convex subsets of N; which can be generated as the convex
hull of a finite number of elements of N;. For all 1 < ¢t < T, let G;~; be the set
of all distributions with finite support over J x X;. Forall 1 <¢ < T, let N, be
the set of all bounded functions from S; to G;_; such that each element of the set
induces a marginal over J which is constant in S;. This last requirement guarantees
that tomorrow’s state realization does not affect the marginal distribution over prizes
received today. This describes the fact that these prizes are “immediate” and thus
unaffected by future uncertainty.

The decision problem is a sequential one starting at £ = 0. Ateachtime0 <¢ < T,
preferences over N, are assumed to exist and these preferences govern the individual’s
choice among the acts in N, that are available. By choosing over acts in N, the
individual makes only that part of the overall dynamic decision which must be made

at time £, namely picking a lottery (possibly degenerate) over immediate payoffs and
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a function which will determine the choice set the individual will face at ¢t + 1 as a
function of the uncertainty that resolves between ¢t and ¢ + 1 (captured by S;y1).

To give these constructions a context and help the reader fix ideas, I now set up
an example of a dynamic choice problem. The example is a problem of sequential
price search without recall from an unknown distribution of prices. I will return to
this example in section 2.5.

Consider the following problem. There is an item which you value at w dollars.
The price of this item is set every day by an independent random draw from a fixed
distribution of prices. You desire only one unit of the item and get no additional
utility from having more than one unit. The process of going on a given day to check
the price gives you disutility ¢ > 0. Each day, you must decide whether to buy at that
day’s price and stop shopping or wait to see what tomorrow’s price will be. Here, the
S; correspond to the possible prices at time ¢. The prizes include the item, the search
cost, and monetary values associated with paying for the item. An example of a time
t act is “stop and buy at the current price p,”. This act gives an immediate payoff
w — p; (assuming risk neutrality). It gives an opportunity set which contains only
what I will call the null act, since the decision problem ends once you have bought.
Another act is “search once more”. This act gives an immediate payoff of —c since
there is a cost to search, and gives an opportunity set which varies across S;4;. If
St+1 = P41 then the opportunity set consists of the time ¢ + 1 acts “stop and buy
at price py4+1” and “search once more” and any convex combination of the two. Note
that a half-half mixture of these two acts yields an act that gives a half-half lottery
over the outcomes of the two acts in each state.

To see why I must allow utility functions to be state dependent, think about
how dynamic programming is used to solve a sequential problem. First, through
backwards induction type arguments I derive a value function which gives the value
of being at time ¢’ with price py and beliefs B, given optimal behavior from then on.
Now consider the utility of continuing to search at time ¢’ — 1. Assuming utility is
time separable and discounted, the value is —c (the immediate payoff) + 6Vi(py, By)
if the state is sy = py. Thus the utility of the opportunity set consisting of “search

49



once more” clearly will depend on the state at time ¢'.

Observe that we don’t usually think of dynamic programming situations as in-
volving “state dependent utility” because utility is usually defined over payofts only.
The reason I use the Kreps-Porteus (1978) approach of considering choice over pairs
of immediate payoffs and opportunity sets is that, as discussed in the introduction,
assuming uncertainty aversion directly over payoffs won’t yield dynamic consistency.
Just as Kreps and Porteus relate their preferences to non-indifference towards the
timing of the resolution of risk, the preferences derived here differ from assuming uu-
certainty aversion directly over payoff streams in that the timing (real or perceived)
of the resolution of uncertainty matters. At each point in time (or at each deci-
sion node) the decision-maker cares directly about only that uncertainty which will
resolve before the next decision. The remaining uncertainty (and aversion to it) is

incorporated only indirectly, through its effect on future utility.

2.3 Axioms and a Static Theory

I will proceed by proposing axioms for the decision-maker’s preferences to obey at
each time ¢ and for each history of prize and state realizations up to ¢, y,. These
axioms imply all of the axioms in Gilboa and Schmeidler (1989) except for state
independence (which is implicit in their monotonicity axiom).

A1 (Weak Order)

For each £ and y; € Y;, there exists a complete and transitive binary relation >,

that represents the decision-maker’s choices among elements of ;.

A2 (Continuity)
For each t and y; € Y}, Vn,,n},n! € Ny if n, >, n; and n; =, n{ then there exists

a,B € (0,1) s.t. an; + (1 — a)n! =, n; and n; >, Bn, + (1 — B)n}.

Axioms Al and A2 are completely standard and serve to guarantee the existence

of a real-valued representation.
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A3 (Uncertainty Aversion)
For each t and y, € Y;, Vn,,n) € N, and all @ € (0,1), ny ~y, n{ implies an, + (1 —

1
a)nl >, n.

This is the uncertainty aversion axiom of Gilboa and Schmeidler (1989). The
interpretation is that mixing two acts can help hedge against uncertainty. As an
example, imagine that are two states, s;41 and s;,,. Imagine further that one act
gives a zero immediate payoff and gives an opportunity set which contains only an
act giving a prize with utility one if the state is s;41, and an opportunity set that
contains only an act giving a prize with utility zero if the state is s}, ,. There is also
another act which again gives immediate payoff zero and the same two opportunity
sets, however this act gives the utility one opportunity set in state s} ; and the utility
zero opportunity set in state s,;. If there is uncertainty about the probabilities of
3¢+1 and s}, then these acts each give uncertain payoffs. However, by mixing these
acts with probabilities half-half, the expected utility in both states becomes one-half.
Thus two uncertain acts have been hedged against each other to make a certain act.
Axiom A3 simply says that hedging between indifferent acts is not disliked. Note
that in standard subjective expected utility (SEU) theory, this axiom holds with
indifference replacing weak preference. For a discussion of hedging in the context of

normal form games see Klibanoff (1992).

I now introduce the concept of a state lottery. State lotteries can be thought of
as acts in a world where the probabilities of the states are known or objective. Thus
state lotteries may involve risk but cannot involve uncertainty. The idea of using
preferences over state lotteries in a state dependent framework to separate utilities
from beliefs is due to Karni, Schmeidler, and Vind (1983).

Definition: A state lottery, 7;, is a measurable map from Si41 x Gy — [0,1] s.t.
2 Seas Ja, 7t(8t41,9:) = 1, and such that 74(Se41,ge) > 0 implies 74(S¢41,9;) = 0 for all
gr # gi. The set of all state lotteries is N,.
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Definition: #, € N, is full-support if, for all states s,4; € Siy1, there exists a

g: € G, for which #,(se41,g:) > 0.

The next three axioms concern preferences over state lotteries, represented by

the binary relation &y on N,. A4-A6 are the standard von Neumann-Morgenstern

t
axioms, thus they impose standard (although state dependent) expected utility be-
havior in choosing over state lotteries. This emphasizes that it is only the effect of
uncertainty which will distinguish the theory developed here from the more standard

theory developed by Kreps and Porteus (1978) under risk.

A4 (Weak Order on state lotteries)
A1l applied to &y‘ over N,.

A5 (Continuity on state lotteries)
A2 applied to &y‘ over N,.

A6 (Independence on state lotteries)
For each t and y, € Y;, VA, 0}, 0} € N, and all a € (0,1), A5y,7) if and only if

afy + (1 — a)h)>yan, + (1 — a)r}.

A7 (Non-triviality of prize preference in each state)

For all ¢, y, € Y,, for any full-support n; € Nt, there exists, for each state s}, €
Si+1, a full-support 74(s},,) € N, such that ny(8;,,) equals 7, outside of s}, and not
A C Y

Axiom AT requires that in each state there be strict preference between at least one
pair of outcomes. This will help insure the uniqueness of beliefs in the representation
since it will allow me to distinguish between a state assigned zero probability and a

state in which all consequences are indifferent by ruling out the latter.

Definition: Define H : N, — N, such that, for all full-support #,, H(#,) gives g;

conditional on state s;y; if and only if 74(3¢41,9¢) > 0.
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Notice that H is the natural transformation from state lotteries to acts. For a
state lottery which places positive probability on each state there is a well-defined
lottery over outcomes conditional on the occurrence of each state. H simply returns
the act that yields these lotteries in the appropriate states. It is as if the probability
distribution over states were “stripped off”, turning a situation of risk into one of
uncertainty. The next two axioms, which give conditions on the relationship between
preferences over acts, >,,, and preferences over state lotteries, &y,, will use H in

establishing this correspondence.

A8 (Monotonicity)

(a)For any full-support #,#! € N, such that #, and 7, are equal outside of
some state s}, H(f;)>y H(7,) implies 7>y, 72}, 72>y, 72y implies H(7,)=,, H(#;), and
Togoy, ity implies H ()~ H(#}).

(b)For any full-support 7,7, € N, such that 7, and 7} have the same distribution
over Si;1, define 2y(s},;) to be the state lottery which equals 7, on s;,, and 7}

elsewhere. If 2(s}, )~y 7} for all s}, € Syy1, then H(7,)>,, H(7}).

Condition (a) of axiom A8 says (in light of the assumptions in axioms A4-A6)
that preferences over acts satisfy a weak monotonicity property, namely that if the
outcomes of an act are, in each state, at least as good as those of another act, then
the first act must be at least as preferred as the second act. Condition (b) says that
strict preference over outcomes in every state implies strict preference between the

acts.

A9 (Cardinal Invariance)
For any n.,n.,n."”,n,"" € N,, consider full-support state lotteries n,,n},n},n}" €
N, defined so that H(n) = ny, H(AY) = n, H(Ry) = n", and H(7}") = n," and so

that 7, and 7} give the same distribution over Siy; and 7] and 7y’

give the same
. . . -~ - ' -~ ” ~ ,’l . -~ ~ o I . . -~ ” ~ ~ ’,’
distribution over S;;,. If all such #,,n},ny, 7" satisfy n,>,,7, if and only if 2{'>-, 2",

then n,>,,n,' if and only if n,">,,n,".
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This axiom says that if the preference between the members of one pair of state
lotteries is always the same as the preference between the members of another pair
of state lotteries whenever the same pair of distributions over states are generated by
each pair, then the preference between the associated acts in each pair must also be
the same. In short, the effect of uncertainty on preference does not depend on the
particalar cardinal transformation of the utility function used to value the outcomes
of acts, thus the name “Cardinal Invariance”. Specifically, this axiom, together with
axioms A4-A6, guarantee that if one pair of acts have a utility representation that is
a positive affine transformation of the representation of another pair, then preference
between the members of the first pair should correspond to preference between the
members of the second pair. If this axiom were violated and A4-A6 held, then some
other aspect of an act would have to matter apart from the preferences over its

consequences.

A10 (Compensability across states)

Consider any degenerate state lottery n, € N, which has a distribution over S,
which puts all the mass on a single state, s;,,. For any such #, and for each s41 €
Si+1, there exists a degenerate state lottery 7} € N, which has a distribution over
Si+1 which puts all the mass on 3441, such that 7,~,,7;.

Axiom A10 says that for any pair of states, and any outcome in the first state, one
can find an outcome in the second state which is just as good. There are circumstances
where this assumption is unappealing - for example, if one state were death and
another were perfect health. However, in the context of a dynamic decision problem or
an extensive form game, where states are typicaily moves by nature or the opponents,
it is reasonable to assume that one could always be compensated by a large enough
change in immediate payoff to make up for any differential value of an opportunity
set due to the action of the opponents.

The following definition is used in the proof.

Definition: A constant-utility act n, € N, is an act s.t. V full-support 7,7} € N,

for which H(n,) = n, and H(7},) = n, it is true that n,~y,7n;.
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With these axioms we can prove a representation theorem for preferences over
acts and state lotteries at each time ¢ and history y,. My proof draws heavily on

techniques used in Gilboa and Schmeidler (1989) and Chateauneuf (1991).

Theorem 1 For every t,y;, the following are equivalent:
(1) =y, and =, satisfy A1-A10

(2) There ezists a function wy, : J X X¢41 X Sep1 — R and a non-empty, closed and

convez set Cy, of additive probability measures on Siyy such that:

(a) ne=y,ny' if and only if
min, o Vs, P(3e+1) Erxxen wul(5) Te41) Se41)(Re(Se41)(0) Ter)) 2
min .o s, P(3e41) T axxeps Wyl (Js Te1)y 8e41)(me' (8e41)(J5 Te1))

(b) #=y 7oy if and only if s, Cixxess Wu((FrTew1)s Se41)e((J) Zew1)s Se41) 2
Yo Sert TIXXepn wy, (7, Ze+1)) Se41 )e((7) Te1), Se41)-

(¢) The w,, above is unique up to a positive affine transformation.
(d) The set C,, above is unique.

(e) The wy,(-,5:+1) have the same range for all 8,11 € S;11.

Proof:

I start by proving that (1) implies (2). Using axioms A4-A6 apply the von
Neumann-Morgenstern theorem to give a utility function wy, : J X X1 X Si41 — R,
unique up to a positive affine transformation, such that for n,n} € N,, 2(b) holds.
Note that summations can be used since S;,; is assumed finite and elements of G,
have finite support, so that elements of N, give lotteries with finite support.

For each act n; € Ny, if ¥ yux,,, Wye((J) Teq1)s Se41)(7e(8e41)(J, Te41)) is constant
over S;;1, define K(n;) = that constant value = 3" wy,n;. By compensability across
states, monotonicity (A8) and the other axioms, for any n, € N, there exist con-
stant utility acts @, and n, € N, such that m,>,n,>,,n,. We can find such acts by
first writing n, as an |S,4,|-vector of utilities, finding the highest utility level, using

compensability across states (A10) to find equivalent outcomes in the other states,

3



and defining 7, as the act with those outcomes. We then do a similar procedure for
the lowest utility to define n,. The preference ordering relative to n, follows from
the weak monotonicity of preference over acts in terms of utility vectors which is
derived from part (a) of monotonicity (A8) and the representation in 2(b). Next, by
continuity of >,, (A2), cardinal invariance (A9), and the other axioms, there exists
a unique a € [0,1] such that n,~,an; + (1 — a)n,. Now define for each act n, € N,
K(ny) = K(am + (1 — a)n,) = aY w7 + (1 — a)wy,n,. As constructed, since
(Z wy,ne) > (T wy,n') (ie. the first vector is strictly greater in every element than
the second vector) implies n,>,,n,' by part (b) of monotonicity (A8), K(-) represents
preferences on N, in the sense that n,>,,n,’ if and only if K(n,) > K(n,').

Fix w,, so that w, > 0 for all ((7,Zi+1),3¢+1). This is possible since wy, is
unique only up to a positive affine transformation. Let V be the space of all bounded
functions from S,;; to R,. Elements of V are thus |Siy1|-dimensional vectors of

non-negative numbers.
Lemma 1 There ezists an I : V — R such that
(i) For all n, € Ny, I((X wy,n:)) = K(ny)
(i1) I is monotonic (i.e. a,b € V,a > b= I(a) > I(b))
(iii) I is homogeneous of degree 1 (i.e. a € V,a > 0 = I(aa) = al(a))
(iv) I is C-Independent (i.e. a€ V, > 0= I(a+(B,...,8)) = I(a)+ I(B,...,B))
(v) I is superadditive (i.e. a,b € V = I(a+b) > I(a) + I(b)).

Proof of Lemma:

Define I on the subset of V which is mapped out by vectors of the form (¥ wy,n.)
for n, € N, by (i). Thus I represents preferences in the sense that n,>,n,’ if and
only if I((X wy,n:)) > I((X wy,n.')). For a constant utility act with constant utility
8 >0, I((B,...,8)) = B. I will now show that I is homogeneous of degree 1 on
this subset of V. Let ny,n,/ € N, be such that (3 wyn:) = o} wyn:'), where
a € (0,1). Now let i, be an act with constant utility 3 w,7, = K(n,'). We know
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that such a 7, exists and is indifferent to n,’ by the construction of K(:). By cardinal
invariance (A9), n,'~,,7; implies n;~,af, where an, is a constant utility act with
utility representation (a Y wy,7:). (Being careful, we must show that such an act
exists. We know that there exists some constant utility act indifferent to n,. If this
act has constant utility less than or equal to a}” w7, then by convexifying between
this and 7; a constant act with the desired utility will exist and A9 will show that
the utilities must have been equal. If, on the other hand, this act has constant utility
greater than a ¥ w,, 7, then we can use A9 and convexity of the set of acts to show
that this constant act is indifferent to an act which has a utility vector which strictly
dominates that of n,. But then, since this strict dominance translates into strict
preference, and preference is transitive, we would have contradicted the assumption
that the constant utility act we started with was indifferent to n..) Now, by (i),
I(a(S wy) = & 5wyt = aI((S wyiie)). Thus, I((£ wynr)) = I(a(Swy,a)) =
al((Cwy,n:)) = al((X wy,ne')). The case a > 1 follows by dividing by a. So, I is
homogeneous of degree 1 on the subset of V containing (3" wy,n.). Now extend I to
the rest of V by homogeneity. Note that this is possible since the construction of
K (-) guarantees that the subset is spanned by constant utility acts, so extension by
homogeneity covers any remaining parts of V. By construction I is homogeneous of
degree 1 on V. As preferences are monotonic in (3 wy,n.) (as shown earlier in the
proof of the theorem) and homogeneity respects monotonicity, I is also monotonic on
V.

Now I show that I is C-independent. Consider ¢ € V and # > 0. In general,
I(a) = rI((B,...,B)) for some » > 0. Assume r > 0. By homogeneity, I can assume
without loss of generality that 4%¢ and (1 + 7)((8,...,0)) are in the subspace of
V which correspond to utility vectors generated by acts. Let n, be an act such that
(X wymn) = 4Ta, and let n,' be an act such that (Cwyn,) = (1 +7)(8,...,8).

!

Now consider the act n,” which is a convex combination of n, and n,’ with weights

r 1 . . . . vy .
7+; and 5 respectively. Since this is a positive affine transformation of the vector

1£r4, cardinal invariance (A9) implies, taking the same positive affine transformation

of (1+7)(B,-..,8)) (which does have an act associated with it, since this gives the
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same vector back again), that n,~yn,’ implies n;"~,n,'. Thus, by preference repre-
sentation, I(a + (8,...,8)) = I((1 + r)(B,...,B)). Using homogeneity and the fact
that I(a) = rI((B,---,8)), I conclude that I(a + (B,...,8)) = I(a) + I((B,...,B)).
The case » = 0 follows from the case above. Thus I is C-independent.

The next step is to show that I is superadditive. Consider a,b € V. Suppose
I(a) = I(b). Since I is always non-negative, if I{a) = I(b) = 0 then it must be that
I(a+b) >0 = I(a) + I(b). Consider, then the strictly positive case. For some a > 0
there must exist acts n¢,n,’ € N, such that a(¥ wyn:) = ¢ and (Y wy,n,') = b.
Preference representation implies n,~yn,'. Uncertainty aversion (A3) then implies
that in, + ne>=ymn.. Thus, I(5;e 4+ 55b) > I(Za). By homogeneity, I(a + b) >
2I(a) = I(a) + I(b). Now suppose I(a) > I(b) (the case I(b) > I(a) follows from this
one by exchanging a and b). Let v = I(a) — I(b), and define ¢ = b+ (7,...,7).

Ila+b)+y = I(a+b+(v,...,7))by C-independence
= I{a+ c) by definition of c
> I(a)+ I(c) by the previous case as I(a) = I(c)

= I(a) + I(b) + v by C-independence.
Thus I(a + b) > I(a) + I(b). QED

Now apply the following lemma stated and proved in Chateauneuf (1991), the key
to which is a theorem of Fan (1956).

Lemma 2 Let A be a o-algebra of subsets of a set S, and let I be a functional on
the set V of bounded A-measurable functions from S to Ry. Then the following are

equivalent:
(1) I satisfies:

(i) Foralla > 0,8>0,X € V: I(aX + 3*) = al(X) + (3, where B* denotes
the function with value B on all of S.

(i) X,Y € V implies (X +Y) > I(X) + I(Y).

(i) X,Y € V,X > Y implies I(X) > I(Y).

(2) There ezists a non-empty, closed, convez set C of additive probabilities on A
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such that I1(X) = minpec [ Xdp, for all X € V. Furthermore, there exists a

unique such closed (in the weak star topology), convez set C.

I have shown that I satisfies all of the properties in (1), thus applying the lemma
to this setting yields the representation in 2(a) of the theorem. The uniqueness of C,,
similarly follows. The condition 2(e) on the range of the w,, follows from axiom A10.
This completes the proof that (1) implies (2). It is straightforward to check that the
representation implies the axioms. QED

The above theorem gives us a characterization of preferences at each point in time
and each history of state realizations and payoff realizations. These preferences allow
for both uncertainty aversion and state dependence. With this as the building block,
the next section will formally define dynamic consistency and impose it in the form
of an axiom which knits together the various representations at different times and
histories. This knitting together leads to a representation theorem for dynamic choice

with uncertainty aversion.

2.4 Dynamic Consistency and a Dynamic Repre-
sentation

I now present a dynamic consistency axiom. The fundamental idea of dynamic con-

sistency in a choice setting is that preferences at time ¢ over objects at time ¢ + 1

contingent on any new information that will be available at time t + 1 should agree

with preferences when time ¢ + 1 arrives and the information is realized.
Definition: (Preference over opportunity sets)

zi,, if and only if for each nj,, € z},, there exists a ny4y € @4y

.
Te+1 '“y¢'-7¢'3t.+1

such that n, >

, . , .
2 yienSty T In other words, for any choice in the set z;, there is a

choice in z,4; which is at least as good.

A11 (Dynamic Consistency) For all t,y:, s}, € Sr41,Te41 € Xiy1, and j;, € J,

() If w¢+1ty"j“3tv+1m;+1 then n,>y,n,,Vn,n,' € N, such that
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(a) n; and n,’ give degenerate lotteries (i.e. a single pair j X z4;) in each

St+1 € Sty

(b) the same element j, € J is given by n, and n,’, and

(€) me(st1) = Je X Tegr, e’ (8341) = Je X Thpyy and ne(8e41) = e (Se41), V41 #

*
8t+1'

(2) If zt+1~y"jhs:+1:cg+l then Vn,n,' € N; which satisfy (a), (b), and (c), 7.~y 7
for all full-support #,,7, € N, such that H(#,) = n, and H(#}) = n,’ and such

that 7, and n; have the same distribution over Si4,.

(3) If z¢ 41> lm; +1 and ny~y ' for some ng,n,’ € N, which satisfy (a), (b), and

yhjhst‘+
(c), then for those n,,n,', it must be that n,>=,,n; for all full-support 7,7} € N,
such that H(7,) = n, and H(7}) = n,' and such that 7, and 7] have the same

distribution over S,,;.

This axiom says that, given equal immediate payoffs, choice today over opportu-
nity sets is governed by tomorrow’s preferences over the elements of those sets, except
possibly in cases where the preference is strict tomorrow. In this case, indifference
is allowed today (thus allowing for the possibility of assigning a state zero probabil-
ity) if and only if any correspending state lottery with full support would agree with
tomorrow’s strict preference. This last requirement makes sure that assigning zero
weight to a state is the only reason for such a divergence in preference. Finally, note
that condition (2) clarifies situations of “accidental” agreement, where the acts are
indifferent due to a zero probability and the opportunity sets are ex-post indifferent
as well, and makes sure that preferences would have agreed even under positive prob-
ability. I now show that this axiom allows us to tie together the utility functions for
each time and history that were derived in section 2.3. As might be expected, the
tying together comes in a recursive way: today’s utility of an opportunity set in a
given state is a strictly increasing function of the value (in minimum expected utility

terms) of the best element of that opportunity set tomorrow.
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Theorem 2 Adding aziom A1l to the azioms used in theorem 1, in addition to the
conclusions of that theorem, A1-A11 are equivalent to the ezistence of functions Uy, :
{(7, 8t+1,7) € J X St31 X Rlr =

MaXnyy oo MiNyeCy, o Tseps P(3e42) LaxXegs Wungies (s et2)y se+2)(net1(8e42) (7%
Tyy2)) for some ziqy € Xip1.} — R, which are strictly increasing in their third argu-

ment and which satisfy,

Wy ((7, Te41), Se41) = (2.1)

Uy (7, 8¢41, max min P(8e4+2)
Ne41 €ETe41
+ + PeCyn.‘i.6¢+1 St42

Z wy,,,-,,,“((j, $t+2),5t+2)(nt+1(3t+2)(j X m,+2))),
JXX¢+2

where the w’s and C'’s are the ones derived in theorem 1. For fized wy,’s the Uy, ’s are

unique.

Proof:
Fix w,,’s from theorem 1. Assume that such U,’s exist and are unique. Let
Vie(Te41, Se41,7) be the value of the third argument of U,. Note that, using the

preference representations from theorem 1, zey12, ; z,, if and only if
1/

841
Voe(@egs 81415 7) 2 V(241584415 7). Also, ny=y,n,' if and only if

minpecy‘ Es,“ P(St+1) ZJxX.+1 Wy, ((Jy Te41)s St )(Re(8e41)(Fy Tet1)) 2

mianCy‘ Zst“ P(3t+1) EJXXH.; 'wy‘((j, ‘cH-l)’ 3t+1)(ntl(3t+1)(j$ mt+1))' Thus7 since the

U,, are assumed strictly increasing in the third argument, A1l (1) is verified. Exam-
ining the representation for state lotteries, ﬁt&y‘ n; if and only if
ZSHI EJXXHJ wy,((j, Ti41 )1 St+1 )ﬁ't((]‘l Tet1 )’ 8t+1) 2

Y Sei E.Ixx.“ Wy, (7, Te41), Se41)74((J, Tet1), Se41), We see that All (2) and (3) are

satisfied as well.

Now I must prove the other direction, and derive the U,, from the axioms. Again
fix the wy,. Equation 2.1 uniquely defines the Uy, if V, (z¢11, Se41,5) = Vo (Zh41y Se414 )
implies wy,((J, Te41), Se+1) = wy, ((J, Tiyq)s Se41). This is implied by A1l (2) and the

preference representation properties of V,, and w,, used in the other direction of this
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proof. To show Uy, strictly increasing in the third argument it must be shown that
Vae(@er1, 8e41,5) > V(%415 Se41,7) implies wy, (7, Te41), Se41) > Wy ((J) Thi1)s Se41)-
Since Vi, (Zes1,8e41,7) > Vi (Zhy1) St41,7) implies i1y, 5,004, Tt41 DY the representa-
tion in theorem 1; All (1) and (3) and the representation in theorem 1 imply that
Wy, ((J, Te41)s Se+1) > Wy, ((J, T441), Se41). QED

Notice that, by specifying utilities over J in the final period, beliefs in the initial
period, a rule for the evolution of beliefs, and the functions Uy, this theorem allows us
to derive the rest of the utility functions in a recursive manner. This is very convenient
from an analytical and computational point of view, especially when dependence on
history is assumed to occur only through the evolution of beliefs. In such a case
the U, satisfy U,,(J, st+1,7) = Ui(J,7). Further assuming that immediate and future
utility are traded off in the same way at each time yields Uy(j,7) = U(j,7). In the
next section I will use such preferences to examine the problem of sequential price
search without recall when the distribution of prices is unknown and the searcher
is risk neutral, uncertainty averse, and has a constant rate of substitution between
immediate and future utility.

However, before proceeding to the price search application, I want to briefly men-
tion some circumstances in which the generality of the representation theorem is
useful (but certainly not required for representing uncertainty aversion), in that de-
pendence on history does not naturally occur only through updating beliefs. A classic
example of “direct” (i.e. not simply through beliefs) state dependence occurs when
preferences are defined in US dollar equivalents and part of the state is the cur-
rent, say, French franc/dollar exchange rate. Presumably, the underlying source of
my preferences on dollars is my preferences over what those dollars can buy. If the
franc/dollar rate falls, all else equal, I can buy, for example, less foie gras and thus
the utility of a given number of dollars is lower than it was under the previous ex-
change rate. Thus, preferences are state dependent in that the “prizes” (dollars)
fluctuate in value with the state. In terms of the U, functions derived in the rep-

resentation, adding this prize state dep=ndence to the dependence through updating

gives Uy, (7, 3¢e+1,7) = U(Z4(3, St41),7)-
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Another example of “direct” state deperdence might occur if part of the state
gave the pfobabi]ity of living until the next time. Such a state would likely affect
the weight assigned to utility generated in the future. This type of state dependence
could be exhibited by writing U,,(j, st+1,7) = Ue(4, De(Se41,7)). Note that allowing
time itself to also affect this probability is natural here.

One example of dependence of immediate payoffs on past realizations is the case of
preferences leading to habit formation. In this example, past consumption of a good
might increase the utility of consuming similar levels of the good today. Alternately,
past consumption of gourmet meals may reduce the utility of consuming a gourmet
meal tonight. This could be construed as a preference for intertemporal variety.
Similarly, past and present state realizations could influence today’s utility directly
if, for example, states included information about how addictive past and present
consumption goods were. Adding effects like these leads back to the most general
form: Uy, (j,St41,7).

An interesting question raised by these examples is whether there are easily stated
restrictions ou preferences which would restrict the Uy, to one form or another. This
turns out to be harder to answer than it might appear. A very partial answer is given
in the following results.

First, it is useful to divide a history, v, into a history of past payoffs, z;, and a

history of past state realizations, g;.

A12 (Payoff history independence)
For all ¢,y.(= (2, 4:)),nesne’ € Niy and fiy, 72y € Ny me Z(ang) ™' if and only if

My Z(2lq) Mt and fzt&(th‘)fz; if and only if ﬁt&(,"q‘)fzﬁ, Yz # 2.
Theorem 3 Adding aziom A12 to azioms A1-All yields the conclusions of theorem
1 and theorem 2 with y, replaced everywhere by g;.

Proof: The conditions on preferences combined with the representations proved
previously guarantee that the wy,, U, and Cy, can be chosen so as not to vary with

Zte. QED
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Suppose that the valuation of prizes, J, is independent of time, state history,
opportunity set, and state realization. The following axiom expresses this in terms

of preferences.

A13 (Prize valuation independence)

Fix g, Ts41, and 8;4,. Consider all state lotteries such that probability 1 is attached
to Ter1,Se41- (6. Tyne((F, Te41),8e41) = 1.) Let 7, and 7] be any two such state
lotteries. Pick gj,,z} ., and s}, , arbitrarily and let 2}, and #;’ be state lotteries
which assign probability 1 to g},,z},,, and give the same marginal distribution over

J as 7, and 7; respectively. It is true that A,>,,%; if and only if 75=q 7y

Theorem 4 Adding aziom A13 to azioms A1-A12 is equivalent to the ezxistence of a
function W : J — R and fuctions ag, : X;41 X Sey1 — RY and B, : Xey1 X Sey1 = R
such that

Wo, ((7, Te41)s St41) = Ug(Teg1, St41)W(J) + B (Teq1s Se41), (2.2)
for all t,q, 7, Tet1, St

Proof:

Fix t,q, 41, and si41. Define W(5) = wg,((4, Ze41), Se+1). Axiom Al3 and the
representation for state lotteries proved earlier imply that, for any g,z ,,,5} 1,
wyr,((* T4i41), 841 ) represents the same preferences over lotteries over J as W(-) does.
Thus the ag (z}41,50,1) and By (Tt 41, 804,) are simply the slope and intercept of
the positive affine transformation that relates the two functions. QFED

The theorem shows that adding the assumption of prize valuation independence
limits the role of state history, state, and opportunity set to (a) determining the
weight given to immediate payoff utility relative to the future (through ), and (b)
determining a utility from future opportunities (through £).

64



2.5 Search From an Unknown Distribution

Consider again the example of section 2.2. There is an item which you value at w
dollars. The price of this item is set every day by an independent random draw from a
fixed distribution of prices. You desire only one unit of the item and get no additional
utility from having more than one unit. The process of going on a given day to check
the price gives you disutility ¢ > 0. Each day, you must decide whether to buy at that
day’s price and stop shopping or wait to see what tomorrow’s price will be. You are
risk neutral, have a discount rate §, and have preferences that conform to the axioms
in the previous sections. The uncertainty here concerns the true distribution of prices.
According to the representation, beliefs can be represented by a closed, convex set
of distributions over distributions (which of course translates into distributions over
prices). The question I examine concerns the existence of a reservation price rule in
this setting. In other words, at each time, given the prices realized previously, is there
a price above which you will keep searching and below which you will stop and buy?
Among the reasons for interest in reservation price rules is that they imply that sellers
face well-defined downward sloping demand curves. In a well known paper, Rothschild
(1974) shows that if the true distribution is multinomial, the searcher’s prior over
distributions is Dirichlet, the prior is updated in a Bayesian fashion, and the searcher
is a risk neutral expected utility maximizer, then search follows a reservation price
rule. More recently, Bikhchandani and Sharma (1989) have generalized this result to
any combination of underlying distribution and learning process which results in the
posterior given n observations equalling a convex combination of the prior and the
empirical distribution determined by the n observations, and where the weights in
this combination depend only on 7, not on the specific realizations. Although I will
stick to the case where prices have finite support, as in Rothschild, I will draw on
the insight of Bikhchandani and Sharma that it is the taking of convex combinations
of priors and empiricals which is important. I stick to a finite support of prices to
match the finite state assumption in my representation. The logic of the proof does

not depend in any essential way on this finiteness.
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In particular, I am now in the position to ask whether the reservation price result
extends to the case of an uncertainty averse decision maker who has a set of priors and
who updates each one by taking a convex combination of the prior and the empirical
distribution of the observations. Such a rule fits the mechanics of the preferences I
described earlier since it is easy to show that a convex set of priors updated in this
way gives rise to a convex set of posteriors. A special case would be a decision-maker
with a closed, convex set of Dirichlet priors who updates each prior according to
Bayes’ rule.

Formally, let there be k possible prices. Let B be a non-empty, closed, convex
set of probability measures on the space of distributions over these k prices. Let
the utility of the item be w and the cost of each search be ¢. Fix a finite horizon
T > 0. Let the utility at time T for time T outcomes be monetary value (thus risk
neutrality is assumed). In terms of the representation in theorem 2, assume that the
U,, functions all take the simple form U(j,s,7) = j + ér. In other words, utility
for immediate payoffs is risk neutral at each time, and utility is discounted at rate 6
between periods. All that remains to complete the specification of preferences is to
describe the evolution of beliefs. To this end, it is more convenient to refer to beliefs
by their cumulative distribution functions and to think of B as a set of cumulative
distributions. Note that each distribution on distributicns gives rise to a distribution
on prices through the expectations operator, E|:|. Define the empirical distribution

on prices after observing prices (p1,...,p:) as,
t

Hppo(r) = 3 2 L (1) (23)

1

where 1, 00)() equals 1 if 7 > p; and is 0 otherwise.
[ assume, following Bikhchandani and Sharma (1989), that for each prior cumu-

lative F' € B,

Assumption 1 For all t, and observations pi,...,p:, E[F|p1,...,p)(r) = (1 -
ol )E(F)(r) + af Hp,, ..., p,(r), for af €(0,1].

Thus the posterior distribution is a convex combination of the prior distribution
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and the empirical distribution. I am now ready to state and prove the reservation

price rule result.

Theorem 5 If an individual has preferences which are as described in the preceding
paragraph, and the updating of beliefs satisfies assumption 1, then for the problem of
search without recall when the set of possible prices is finite and the distribution of

prices is unknown, the optimal stopping rule has the reservation price property.

Proof:

I start by writing down V;(B), the utility of searching for one more period given
that there are ¢ periods remaining, that beliefs are B, and given the optimal con-
tinuation from that point on. Vi(B) = w — [maxpep [5° rdE[F](r)] — ¢, Va(B) =
mingep f3° max(w — r,8Vi(B|r))dE[F|(r) — c. Thus, in general we have, V,(B) =
mingep [¢° max(w — 7,8V;_1(B|r))dE[F]|(r) — c.

I now prove a useful lemma about the V;.

Lemma 3 Under the assumptions of the theorem, if y; > y, then Vi(Blz",y;1) <

Vi(B|z",y2),V vectors of n observations z™,t > 1.

Proof of lemma:

Fort =1,

Vi(B|z",y1) — Vi(B|z", 32)
= — max wrdE[F](r)

FeB |:r:",y1 [1]

+ max ” rdE[F](r)

FeB|zmy2 Jo

= —max((1-af,,) [~ rdB[F|(r)
tafy [ rdHany, (7)
+I}lg‘§[(l a"“),[, rdE[F)(r)
+aly, [ rdHon s (7)

max(al, [ [ rdHann(r) = [ rdHon 0 (7))
1

n+1

IN

= o[~ n)]
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< 0, where F* is a maximizing distribution.

Thus Vy(B|z", 1) < Vi(B|z", y2), for all vectors of n observations z" and observations
Y1 2 Y.

Now I proceed by induction. Assume that for t—1, V;_1(B|z",y1) < Vi_1(Blz",¥2),
for all vectors of n observations =" ard observations y; > y,.

I know that

Vt(B|3’n,y1) - V,(B|m", yz)

= _min /m max(w — 7,8V;—1(B|z",y1,7))dE[F](r)
F€B|zn'yl 0

- min /0 max(w — 7, 8Vi_y(Ble™, y2, 7)) dE[F](r).

By the induction hypothesis each integrand is non-increasing in r. Furthermore,
the updating assumption in the statement of the theorem implies that E[F|z",y]
first-order stochastically dominates E[F|z",y,), VF,z",y1 > ¥,.

Thus the expression above is less than or equal to the same expression with the

set Blz",y, substituted for B|z",y, in the first term:

min /ooo max(w — 7, 8V,_1(B|z", y1,7))dE[F|(r)

FeBlz™y,

— min /owmax(w—r,SW_I(B|m",y2,r))dE[F](r)

FGBII",yz

=, min /0 max(w — 7, 6Vi_1(Blz",r,31))dE[F)(r)

— min /oo max{w — 7, 6V,_1(B|z",7,y2))dE[F](r)
FEBlz".yz 0
< 0.

The equality follows since Assumption 1 implies that changing the order of the
observations does not change the set of beliefs. The inequality follows from the induc-
tion hypothesis. This proves V;(B|z",y:1) < Vi(B|z",¥2),V vectors of n observations
z™,t > 1, and y; > y;. QFED
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Using the lemma, I proceed by showing that for all collections of n observations,

z", and for all £ > 1, y; > y, implies
Vi(Blz", 1) — Vi(Blz™,52) > v2 — 1. (2.4)

To see that this suffices, note that it is optimal to stop after observing (z",3;) with

t periods remaining if and only if
w—y 2 §Vi1(Blz",y1)

which is equivalent to

w > Vi1 (B2, y1) + y1.

But equation 2.4 implies that
Vt(Blzn, y1) + % > Vt(Blmna y2) + Y2,

and, using the lemma,
§Vi(Blz"™,y1) + y1 > 8§Vi(B|z",y2) + y2 for any 6 € [0,1].

Therefore, whenever it is optimal to stop after drawing y; it is also optimal to stop if
any lower price, y3, is observed. This is precisely the reservation price property.

In fact, I will prove something stronger than equation 2.4, I will prove that
Vi(B|z™,y*)— Vi(B|z", ¥3") > y2—y1, Vz",t,y2 < y1, and positive integers m (2.5)

where y™ means m observations of y;.

The proof is again by induction on t. Fort =1,

%(BI:B", y;n) - ‘/I(Blmnv y;n)

= Fegll:ﬁ(.y;" A rdE[F](r)
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_Fegllg']'(.y;“ A rdE[F](r)

= ma.x[(l —af, ) /:o +dE[F)(r) + oL, .. /:o rdHyn ym (1))

—max((1 - af,,) [ rdBIF)(r) + oLy, [ rdHon ()

Let F'* € B be a maximizer of the second term.

A%

(1—an+m)(0 +an+m[/ rdHzn ym(7) — / TdHyn ym (7))

F* e .
G|~ +m(yz 1))

I

v

Y2 — Y1,since ¥, < u;.
Now suppose that

Viex(Bla™,y7") — Vie1(Ble™, ¥5") > y5 — 91, V2", 32 < 31, and positive integers m.

Vi(Blz",37") — Vi(Blz", y7")

= pomin || max(w - r,8Viy(Bl",y7, 1)) EIF)(r)

~ pemin 7 max(w - r, 8Veoa( Bl", 43, r)) E[F)(r)

= minl(1 - af,,,) [ max(w = r,8%1(Ble", 47", ))dEIF(r)
+aEyn [ max(w = r,8Vi-1(Ble", 7", 7)) dHom g ()]

—minl(1 - af,,) [ max(w - r,6Via(Bla", 4, 7)) dEIF(r)

+an+m/ max(w — r,8Vi_1(Bl|z", y5", 7)) dHen ym (7))

min((1 — af,,.)( [ max{w - r,8Vii(Bla",y7", v))E(F)(r)

FeB

vV

~ [ max(w - 7, 6%i-1(Ble" yp, ) E[F)(r))
+af, /0 max(w — r,8Vi_1(Bla", ¥, 7)) dHan ym (7)

— [ max(w — 7, 6Vies(Ble™ y', 7)) dHanp ().
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Let F* be a minimizer. Observe that V,_,(B|z",y",7) = Vie1(Blz™, 7,y 7, 4:)-
By the Lemma, V,_;(B|z",r,y1) < Vio1(Blz™,7,y2), Vy2 < 41, so that
Vi-1(Blz™,r,y) < Vi1 (Blz™, r,y7*). Thus, it is true that
max(w — r,8V;_1(B|z",7,yT")) — max(w — 7, §V,_1(B|z™, 7, ¥7*))
> §(Vi-ar(Blz™, 7, y7) — Vit (Blz™, 7, y5')) > 8(y2 — y1) by the induction hypothesis.
Also, since I know what H,nym(r) is, I can explicitly write out the integral over it.

Using these facts yields

min[(1 - oF,..)( /0 max(w — 7, 6V,_1(Blz", y™, r))dE[F)(r)
- jo max(w — 7, 6V;_(Blz", y", 7)) dE[F)(r))

a8l [ max(w =, 8Via(Bla”, ", ) dHon up (1)

= [ max(w - 7, 6Viea(Bla, u, 7)) dHun (7))

= (1= af;)( [ max(w ~ r, 6Veea(Ble",y7", 1)) E[F(r)

n+m

_ /0 ~ max(w — 7, 6Vi_y( Ble", y7', 7)) dE[F)(r))

n

F.
Crtm n m
+n+_+m ;(max(w - 7,8Vi1(Blz™, ziy yT))

- ma.x(w -7, 6Vt—1(B|$na Liy y;n)))
F.
+ %‘_:—'"mm(max(w —r,8Vea(Blz™, 37 t))

— max({w — 7, §Vi1(Blz™, y5th)))

(1 - apym)(6(y2 — 31))
afin
+m(n5(yz - 11))
F‘
a‘n+m
+n 4+ m

> Y2 — .

v

(m(y2 — 1))

This completes the proof of the induction step, thus the result holds for all t. QED
Thus, we see that the reservation price property for beliefs that satisfy Assump-
tion 1 is robust to the presence of uncertainty aversion. At this point at least two

remarks are in order. First, other properties of the optimal search in this situation
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may not be so robust. For example, if we are concerned with properties of the dy-
namic evolution of the value function V; it is true that the dynamic evolution for an
uncertainty averse searcher will in general follow a path which is not possible for an
expected utility maximizer. To see this, observe that if we start with a EU maximizer
whose prior coincides with the particular prior that the uncertainty averse searcher
starts off using to evaluate the utility of continuing (i.e. the prior which initially gives
the minimum expected utility for continuing out of the set of priors), then, in general,
the uncertainty averse individual will stop sooner than the EU maximizer since the
uncertainty averter can only switch to a worse distribution. Second, due to the fact
that the decision at each time in the search problem is a simple “continue” or “stop”,
the search behavior of an uncertainty averse individual, as described above, could be
generated by an individual who has state and state-history dependent preferences,
but is a bayesian. However, the form of state dependence required would b~ rather
strange as it would have to mimic the effects of an uncertainty averter switching be-
tween distributions in the belief set. Furthermore, if the setting were enriched, and
more choices were available at some times, the uncertainty averter’s behavior could

no longer be represented by state (and state-history) dependence alone.

2.6 Conclusion

In this paper, I have derived a dynamically consistent theory of choice with uncer-
tainty aversion. This theory is needed, as the existing static theory of uncertainty
aversion cannot be extended in a consistent manner simply by updating beliefs. Ad-
ditionally, this paper proves an extension of a reservation-price rule result of Roth-
schild(1974) and Bikhchandani and Sharma (1989) to the case of an uncertainty averse
searcher. Similar preferences are used (without axiomatization) in Epstein and Wang
(1992) to examine intertemporal asset pricing.

Further work will focus on applying these preferences to an analysis of extensive
form games. Another area of potential research is in the testing of this theory through

experiments that may distinguish the dynamically consistent uncertainty aversion
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developed here from other forms of uncertainty aversion.
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Chapter 3

Decentralization, Externalities,
and Efficiency (with Jonathan
Morduch)

3.1 Introduction

Decentralization has many benefits; most importantly, it takes advantage of local
information and gives individual firms, agents or localities control over their affairs.
However, it also has costs; spillovers from one jurisdiction or firm to another can
undermine efficiency in a decentralized system. For example, emissions from factories
in the United States contribute to acid rain in Canada, and New Jersey’s spending
on public schools benefits employers in New York. In the absence of coordination,
societies end up with too much smoke and too little education.! Lessons drawn from
competitive analysis suggest that these inefficiencies become more severe as external
effects increase in size.

We argue, drawing on insights from the literature on mechanism design and bar-
gaining, that these lessons are misleading in more realistic settings in which there

are attempts to coordinate local activities or activities among firms. Given the su-

1See, for example, Laffont [1988] and the survey by Rubinfeld {1987].
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periority of local information and respect for the autonomy of individual localities
or firms, outcomes with coordination will be efficient only when external effects are
relatively large. In contrast, when external effects are relatively small, coordination
cannot yield improvements at all. These results run counter to the classical logic that
small externalities lead to small inefficiencies while large externalities give rise to large
inefficiencies. The contrast arises because the larger is the externality, the greater is
the potential gain from coordination; this makes it easier to design a program which
is acceptable to all parties and within budget.

It is well understood that asymmetric information increases the expected costs of
coordination and that this can make it difficult to obtain efficient outcomes through
bargaining (e.g., Laffont and Maskin [1979], Myerson and Satterthwaite [1983), Cram-
ton, Gibbons and Klemperer [1987], and Farrell [1987].) While the results in the pre-
vious literature are suggestive, there has been little work on the particular problems
associated with introducing externalities into such contexts. 2

The following example illustrates our intuition. Imagine that the state of New
York will benefit from reduced acid rain if Ohio Electric builds a new, cleaner power
plant to replace an existing facility. Since Ohio Electric has the right to decide
whether to build the plant, New York’s only way to affect the decision is to offer to
compensate Ohio Electric in exchange for a promise that the new plant will be built.
However, when the net benefits to Ohio Electric of building the plant are not publicly
known, New York does not know how much it needs to pay in order to secure an
agreement. For example, it might be in Ohio Electric’s interest to build a new plant

anyway, in which case New York need pay nothing.

Farrell [1987] presents a simple example of bargaining in the presence of externalities, in which
private information can lead to inefficiencies. The example highlights the role of the individual ratio-
nality constraint (i.e., autonomy) as in Myerson-Satterthwaite [1983], but he does not consider the
range of issues taken up here. Greenwood-McAfee [1991] address externalities and asymmetric infor-
mation in the context of education; their paper centers on a case in which monotonicity conditions
are binding (e.g., the government wants to devote extra resources to slow and fast learners, but not
to average learners). This yields the inefficiency in their model, rather than individual rationality —
which they do not impose. Pratt and Zeckhauser {1987] also do not consider indivicual rationality
constraints; as above, they show that efficiency can be obtained in a wide range of environments
through taxes and subsidies based on “expected externalities”. In the present context, it is natural to
assume that monotonicity is not a binding constraint, and we highlight the ways in which autonomy
and externalities interact with private information to limit efficient coordination.
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This uncertainty interteres with the ability to reach a mutually acceptable agree-
ment in two ways. First, it increases the expected costs of coordination and, second,
it decreases the expected benefits. Imagine that New York would benefit by $w if
Ohio Elec.ric built the plant. Ohio Electric would surely agree to build in exchange
for an offer of $w if it stood to lose no more than that from the plant. But Ohio
Electric’s net loss on the plant could be a good deal less than $w (it might even have
a net gain), and New York can’t tell. Thus, New York expects to “overpay” Ohio
Electric relative to compensation needed in a world of perfect information. In par-
ticular, suppose that New York offers $z in return for Ohio Electric building the new
plant. New York knows that Ohio Electric will accept this offer if its net valuation
of the plant is above -$z. If Ohio Electric’s net valuation is strictly larger than -3z,
New York will have overpaid and Ohio Electric will get an “informational rent” from
its private information.

The second complication arises from uncertainty about Ohio Electric’s actions
without an agreement. In making its choices, New York considers two scenarios.
In the first scenario, an agreement is reached, payment is made, and Ohio Electric
promises to build the plant. In the second scenario, there is no agreement‘, but Ohio
Electric might choose to build the plant of its own accord (if Ohio Electric’s net
valuation is positive.) The expected net benefit of coordir.ation for New York is the
difference in expected outcomes with coordination and without. When there is a
positive probability that Ohio Electric will take the desired action on its own, New
York’s expected benefit from coordination will always be less than the full value of
eliminating the externality. 2

Taken together, the increase in expected costs and the decrease in expected ben-
efits limits the attractiveness of coordination from New York’s perspective. We can
express these costs and benefits in a straightforward and compact way. Assume that
Ohio Electric’s net valuation of building a new plant to replace the old one is in the

interval (v, %] where v < 0 < %, and that, from the point of view of an outsider, this

380, as is further described in Section 3.3, New York would refuse to make a Pigouvian transfer
to Ohio Electric — i.e. a subsidy equal to the full value of the externality ($w).
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valuation is distributed according to the cumulative distribution function F(-). The
probability that Ohio Electric will build the plant if New York offers $zis 1 — F(—z)
as depicted in Figvre 1. Figure 1 also illustrates the probability (1 — F(0)) that Ohio
Electric will build if no offer (an offer of zero) is made. So, if New York offers to pay
Ohio Electric $z if the plant is built, the expected cost of this offer is $z times the prob-
ability that Chio Electric’s net valuation is above -$z, or z(1— F(—=z)). The expected
benefit to New York of making this offer is $w times the increase in the probability
that Ohio Electric will build the plant compared to the case where New York does not
offer any money. Formally, this is w[(1 — F(—z)) — (1 — F(0))] = w(F(0) — F(—=z)).
For an offer of $z to be beneficial to New York the expected benefits must outweigh

the expected costs. This is true if and only if

w(F(0) = F(~z)) > #(1 — F(~z)). (3.1)

This cost/benefit inequality is central to understanding when coordination will occur

and how much it can accomplish.
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subsidy to produce voluntarily.
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Under autonomy, firm will
produce on its own
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Figure 3-1: Distribution of Private Net Benefits, f(v)
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We show that the combination of asymmetric information and externalities can
increase expected costs and decrease expected benefits to such a degree that, for a
wide range of cases, the cutcome under a coordinated agreement cannot improve
on the autonomous allocation — i.e., it is no better than doing notking at all. For
example, returning to equation (3.1), suppose that F(-) is the cdf for the uniform
distribution on [v,7] (i.e. F(z) = £==). Then the condition for expected benefits to
exceed expected costs becomes w > 7 + z. Thus if the externality, w, is smaller than
the largest possible net benefit, %, no positive offers will be made and no improvement
over the autonomous allocation is possible. This finding may help to explain why
coordination is so infrequently observed in practice. In a sense, our model shows how
asymmetric information and autonomy generate “transactions costs” endogenously,
in the form of informational rents. Commonly cited reasons such as high “exogenous”
transactions costs or ill-defined property rights need not be operative (Coase [1960]).

This result contrasis with bargaining results in contexts without externalities in
which (as long as there is a positive probability of gains from trade ez ante) there
is always a second-best mechanism which offers at least some advantage over the
autonomous allocation. In the example above, if v = —1/2,% = 1, and w = 1 then
there is simultaneously common knowledge that social gains from agreement exist
for all possible net valuations and no mutually acceptable improvement over the no
agreement (autonomous) outcome.

We thus arrive at a fundamental paradox. We argue that the same forces which
make decentralization appealing — respect for the autonomy and superior informa-
tion of localities or firms — conspire to undermine the efficiency of the system in the

presence of externalities.* Previous work has shown that, in the presence of externali-

ties, neither attribute alone necessarily leads to inefficiencies, since efficient outcomes

4Our framework takes as given that the autonomy of localities or firms is inviolable. Presumably,
in framing a constitution, a degree of autonomy is guaranteed in order to protect localities against
the possibility that futire governments will abuse their power (Madison, Hamilton aud Jay [1787]
Federalist X). As a recent example, enhancing local autonomy has been a key point of the political
changes in China; the political reforms have strengthened economic reforms by ceding authority
to provincial and county governments and thus making future reversals more difficult (Weingast
[1993]). An argument of the present paper is to show that these guarantees can have costs in terms
of forsaken efficiency.

82



can be achieved through Pigouvian taxation, where only asymmetric information is
at issue, or through decentralized “Coasian” bargaining, where only autonomy is at
issue. Here, however, we show that in combination these two fundamental elements
of decentralized systems place limits on the ability to internalize externalities.

The next section describes and solves the problem of designing the cptimal coor-
dination policy. Section 3.3 interprets the results in terms of the intuition developed
above, characterizes optimal transfers, and describes when improvements can be made
over the autonomous allocation and when the first-best allocation can be achieved.
Section 3.4 considers extensions of the basic model, and Section 3.5 describes poten-
tial applications to choices by firms about research and development, assumptions
underlying the “new growth theory”, and the siting of environmental hazards like a

waste dump or polluting factory. Section 3.6 concludes.

3.2 The Model

For ease of exposition, we describe the model in terms of two firms rather than a firm
and a state, as in the example of the previous section. The model itself is general
enough to encompass several interpretations. We discuss some of these in Section 3.4.
We begin by assuming that there are two firms, i = 1,2, each solely concerned
with its own welfare. Firm 1 has a project which it could undertake; this might be,
for example, building a new plant or introducing a new worker training program.
The benefits of undertaking the project do not accrue just to the firm which
undertakes it — there may also be spillovers to the other firm. The value of the
spillovers is given by w*. In the case of a worker training program, for example,
there may be positive externalities (w* > 0), as some of the trained workers may
go to work for the other firm. The spillover parameter w* is assumed to be public
knowledge, whereas the private net benefit of the project is known within the firm
that can undertake it only. This information structure arises because the firm has
special knowledge about the cost or profitability of the project, while outsiders do

not.

83



Formally, welfare is determined by the investment, X, in the project. This variable

is binary (either 0 or 1).5 Firm 1’s objective function is given by:

i (X,v,t) =vX +1¢, (3.2)

where v € [v,7] is a parameter which reflects the private net benefit of the project; it
is drawn from distribution F(-) with strictly positive, continuous density f(-) on the
domain v < 0 < 7.6 Net transfers from firm 2 to firm 1 are given by ¢.

Firm 2’s objective function is given by:

up(X,w*,t) = w'X —¢. (3.3)

Given these objectives, we consider the ability to coordinate the activities of the
firms. A government (or mediator) attempts to achieve efficient outcomes by offering
an appropriately designed menu of options to the firms. A given option provides a
subsidy/tax coupled with a production plan (specified as a probability of producing),
based on the announced net benefits of production v.

We model the problem as a three-stage game. In the first stage, the government
proposes the menu of options to the firms. In the second stage, each firm accepts
or rejects the menu. Then, in the third stage, if both accept, the programs are
implemented with enforcement by the government. Otherwise, there is no agreement,
and firm 1 is free to pursue its production decision independently.

Note that this is not the most general proposal that we could allow. Consider
the case of a positive externality. Suppose that the government could sign a contract
with firm 1 (without the approval of firm 2) which required firm 1 not to undertake
the project unless firm 2 agreed to pay a transfer of w*. Firm 1 would agree to sign

such a contract, since if firm 2 believed that firm 1 would not do the project absent

5The assumption that the project is {0,1} is equivalent to assuming constant returns to scale in
production and constant marginal benefits, along with an upper bound on project size — i.e., that
there is a linear objective function with continuous project choice from an interval [0, X].

8Note that we have no inefficiency if v is always less than zero or if v is always greater than zero,
since there is then no ambiguity as to whether firm 1 will produce or not under autonomy. In this
case, either autonomy is efficient or Pigouvian taxes will work.
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an agreement to pay w*, firm 2 would indeed be willing to pay w* contingent on
production. Thus, the socially efficient outcome would result. ?

The key assumption needed here is that the above side-contract is a credible one.
However, the government and firm 1 have an incentive to secretly negotiate an escape
clause which says that if firm 2 does not agree to pay w*, then firm 1 is free to
choose whether to produce or not. For this type of scheme to work, therefore, one
of the parties must be able to credibly commit not to negotiate such a clause. Such
a commitment might be plausible for a long-lived, patient government which knows
that it will be involved in many such mechanisms and can develop a reputation for
not secretly (re)negotiating. However, a reputation story could also work for firm 2
if it was to be involved in many similar circumstances and found it desirable to build
a reputation for not giving in to such contracts. Furthermore, it may be difficult
to verify government enforcement of punishments specified ir the side-contract with
firm 1.

In general, our inclination is that the level of commitment needed to make these
“rent extraction” contracts credible is very high. Consequently, we focus on the no
side-contracts case as an upper bound on what is achievable in most situations.®

Now we proceed to state and solve the problem. As in similar problems of mecha-
rism design, the government’s problem is simplified via the revelation principle, which
states that, without loss of generality, the menu of programs can be limited to direct
revelation mechanisms which induce truth-telling.® We thus consider direct revelation

mechanisms of the form:

(p(v), t(v)), (3.4)

"We thank Eric Maskin for suggesting this type of contract to us.

8The reader may be wondering why our setup requires any less commitment than the one we
are ruling out. The mechanism design modelling makes it seem that, after firm 1 has revealed its
private information, the two firms and the government might have an incentive to renegotiate the
mechanism. In general, this is true; however, for our problem, we show in Section 3.3 that the
optimal mechanism can be implemented by a tax/subsidy contingent on production. Thus, the only
time that any information gets revealed is when firm 1 actually decides to undertake the project or
not. When that decision has been made, the tax or subsidy is the only thing left to negotiate about,
and, since it is simply a transfer between firms there is no scove for renegotiation.

®Fudenberg and Tirole [1991], Chapter 7, e.g., provides a good overview of issues in mechanism
design and the revelation principle.
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which gives the probability of producing the project and the net monetary transfer
from firm 2 to firm 1 as a function of firm 1’s type (the fact that p is a probability
requires that 0 < p(v) < 1,Vv.) By allowing only for a transfer between firms, we are
imposing budget balance. Budget balance is natural in considering a derentralized
setting since it restricts attention to programs which do not require support from
higher authorities.!®

In evaluating a given menu, firms consider expectations of production plans and
net transfers under an agreement. The expectations of firm 1 are conditional on the

private aet benefit v of producing, as this is known to it. Those of firm 2 however are

not. Accordingly, define:

= E(p(v)),
T = E(t(v)).

If there is an agreement, firm 1’s expected probability that it will produce is given
by p(v); P gives firm 2’s expectation that firm 1 will produce under an agreement;
and t(v) gives firm 1’s expected net transfers, while -T gives firm 2’s expected net
transfers. The firms’ expected utility under an agreement as a function of type is
then:

Ui(v) = vp(v) + t(v), (3.5)

Uz = 'w‘P - T (36)

The government maximizes the sum of expected utilities over all firms, weighting

10Note that introducing other firms which are also autonomous — but not affected by these
projects — does not relax budget balance in a way relevant to the present problem. In Section 3.4.3
and Appendix B.5 we analyze a case in which budget balance is not required.
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production according to the valuations of both firms affected :!!

mac [* (Ui(z) + U (e = max [ (s 4w (D) (@)

( ) z z=y

subject to incentive compatibility (IC) and individual rationality (IR) constraints:

(IC) Ui(v) > vp(9) + t(9), Vv,?,
(IR1) Uy(v) > max(v,0), VYo,
(IR2) U, > w*(1 — F(0)).

The incentive compatibility constraint ensures that firm 1 has no incentive to mis-
represent its type, and the individual rationality constraints ensure that expected
utility under an agreement for each firm is at least as great as that without.!?13
Here, we see the role of respect for autonomy, which requires that participation must
be strictly voluntary. Unlike comraon problems of bargaining over control of a single
good without externalities (e.g., Myerson-Satterthwaite [1983]), the autonomous (i.e.,

“no trade”) position can involve utility generated by the actions of the other party

11While we assume here that the government is utilitarian (in that it wishes to maximize the
unweighted sum of utilities over firms), our model applies equally well to decentralized bargaining.
For example, if the objective function puts zero weight on firm 1, this corresponds to a bargaining
process in which firm 2 makes a take-it-or-leave-it offer to firm 1. The results in this case are the
same as those presented in Appendix B.5 except that the Ti—i is replaced by 1. Thus the qualitative
features all carry over from the analysis of the evenly-weighted case.

12nder autonomy (i.e. in the absence of an agreement) firm 1 produces on its own if v > 0.
Since each firm knows this, from the point of view of firm 2, firm 1 will produce with probability
(1 — F(0)) under autonomy. Thus, without coordination, firm 1 will obtain max(v,0) frcm its own
production and firm 2 expects to get w*(1 — F(0)) from firm 1’s production.

13Note that under autonomy each firm has a dominant strategy; thus, we do not need to consider
the possibility that the information revealed in the mechanism approval/disapproval stage will affect

the autonomous outcome.
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even if participation is rejected.!*!®

The problem in equation (3.7) is not easy to solve since there is a continuum of
constraints. The following theorem allows us to reduce the set of constraints to just

two:

Theorem 1 Suppose that p(v) is non-decreasing in v. Then a direct revelation mech-

anism (p(-),t(-)) satisfies (IC), (IR1), and (IR2) if and only if:

(&) L;ﬂn(ruw+§gﬂfuwzza+wu—Fw»

and

(a1 [

z=p

T O\ D
p(e) (= + 0" = 250 fe)de = wa - PO

PRrROOF OF THEOREM 1

See Appendix B.1.

Thus, we can write the central government’s problem as

max [ (= +w)p(a)f(2)dz.

subject to
(A1)
(A1)

and p(v) non-decreasing.

14The framework can be naturally extended to coordination among a number of different firms, as
long as the assumption is maintained that agreement must involve all firms or none. While we have
not formally investigated the case where some firms coordinate their activities while others opt out,
this can only make efficiency more difficult to achieve since the individual rationality constraint will
be made more stringent if a firm expects others to agree even if it opts out. So, again, our results
can be seen as placing an upper bound on what is achievable without extraordinary commitment.
A more complete treatment of the multiple firm case would examine issues of coalition format‘on
and how partial acceptance of mechanisms would affect. the form of the second-best outcome.

15The presence of this type-contingent outside option for firm 1 can create countervailing incentives
(see e.g. Lewis and Sappington [1989] and Maggi and Rodriguez (1993]) in our problem. Whether
the incentive to overstate v or understate v is dominant will determine where (IR1) binds.
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We make the additional assumptions that

£() =0

and

% (1}(—€§”)) < 0. (3.9)

These assumptions are satisfied for many common distributions and ensure that the
monotonicity constraint is satisfied at the solution.'® We can now solve using Kuhn-
Tucker multipliers. Let X > 0 be the multiplier on (A.1) and A > 0 be the multiplier

on (A.1). We can rewrite the maximization problem as:

F(z) | (-14 F(2))
OO
3@+ w*(1 - F(0))) - Mw'(1 - F(0)).

max /j ((1+X+A)(z+w')+x

#(-) =y

)p(z)f(z)dz

The first order conditions yield that production by firm 1 is determined by a simple

“cut-off” rule:

i . X __F(v) A (F(v)-1)
plv) = 1 ifv+w T o T W > 0.

0 otherwise

While the setup allowed that the optimal agreement could incorporate an element
of randomization, the result above is in fact straightforward to implement: firm 1
produces with probability equal to 1 if its announced valuation is above a cut-off
value and does not produce otherwise. We will show that in the case of positive
externalities, firm 1 then receives a simple matching grant for producing, and in the
case of negative externalities, it faces a simple per unit tax.

The first two terms of the cut-off rule, v + w*, give the social benefit of firm 1’s

production. If these were the only terms, we would have the rule: produce if and only

18Bagnoli and Bergstrom [1989]. The distributions include the uniform, normal, expe. wina,
logistic, chi-squared, Laplace, and, with parameter restrictions, the Weibull, gamina, and beia
distributions.
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if social benefits of production are positive, which is the first-best outcome. However,
the presence of asymmetric information leads to the addition of the final two terms
(the first of these terms is positive and the second is negative, with weights given
by which constraints are binding.) These two terms give deviations from first-best
production levels, and in the next section we describe how they affect the limits to
coordination.

First, note that the fact that the solution takes the form of a cut-off rule makes
it easy to see which constraint, (A.1) or (4.1), will be binding. Let & be the cut-off

value defined by the first-order condition. Constraint (A.l) requires that
[I=14 PG+ (2 +w")f(2)dz > w'(1 - F(0))

or, simplifying,
w*(F(0) — F(9)) > —9(1 — F(9)). (3.10)

This condition is the relevant one when externalities are positive — i.e., when more
production is desirable (3 < 0). Notice that this is the same cost/benefit inequality as
equation (3.1) of Section 3.1 except that z is chosen optimally to equal —%. Similarly,

constraint (A.I) requires that
w*(F(0) - F(3)) > 5(F(3). (3.11)

This condition is relevant for negative externalities, when less production is desirable

(v > 0).1" We provide intuition for these conditions below.

3.3 What Can Coordination Achieve?

The conditions above have a simple interpretation in terms of the expected costs

and benefits from coordination and lead to an easily implemented system of optimal

17Note that at the autonomous allocation (# = 0), where production is neither encouraged nor
discouraged by the program, both (A4.1) and (A.1) are binding.

90



transfers. Following this interpretation, we show when coordination can mmake any
improvements at all over the autonomous allocation and when the first-best outcome

can be achieved.

3.3.1 Expected Costs and Benefits of Coordination

The constraints (A.1) and (A.1), simplified as equations (3.10) and (3.11), have a
straightforward interpretation. Each says that the expected benefits to firm 2 of
setting the cut-off at type ® must outweigh the expected costs associated with that
cut-off.

Following the intuition in the introduction, in the case of positive externalities,
the right hand side of equation (3.10), —9(1 — F(9)), gives exactly the expected cost
of the subsidies necessary to implement a cut-off of ¥ < 0. This is because if the
cut-off type is paid —¥ all other types that produce must receive the same amount
since net benefits are not observed.

Similarly, with negative externalities, the expected cost of paying the subsidy is
9F (), reflecting the fact that all types v > 9 must be paid not to produce. This cost
is the right hand side of equation (3.11).

Figure 2 illustrates these expected costs for the case of positive externalities. The
horizontal axis gives net costs faced by the cut-off type. The upper curve reflects
expected costs under asymmetric information, —9(1 — F(%)). In contrast, the lower
curve shows expected costs in a world with perfect information. In this “Coasian”
setting, expected costs are just — f5 zf(z)dz for any cut-off type; here, each type,
marginal or’infra-marginal, is paid exactly the smallest amount required to induce
them to produce. The space between the two curves gives the “information costs”
which arise from the informational asymmetry.

The expected benefits of coordination (over and above the autonomous outcome)
are given by the left hand sides of the inequalities in (3.10) and (3.11), w*(F(0) —
F(9)).

This is illustrated in Figure 3, again for the case of positive externalities. Both

curves here are defined for a given positive externality, w*. The upper curve gives the
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expected benefits when firms are prohibited from producing outside of a coordinated
agreement (the “Pigouvian” world), and the lower curve reflects expected benefits
in the decentralized setting of our model. The difference in the curves is exactly
w*(1 — F(0)) in that the lower one accounts for the probability that a firm may make
the desired production choice in the absence of an agreement, while in the higher one

this probability is zero.

3.3.2 Characterization of Optimal Transfers

Once the cut-off type, 9, has been determined, implementing the optimal program
here is simple: we require firm 1 to pay v to firm 2 if firm 1 produces. If o > 0, this
is a per unit tax on production, and if o < 0, this is a per unit subsidy, or matching
grant, on production. We can calculate 9, and thus the size of an optimal tax/subsidy,
by assuming the relevant inequality ((3.10) or (3.11)) holds with equality. Thus, for

example, for a positive externality v solves
w*(F(0) — F(9)) + 9(1 — F(9)) = 0. (3.12)

Observe that this equation will, in general, have multiple solutions (for instance ¥ = 0
(i.e. the autonomous outcome) is always a solution). The optimal 9, i.e. v, will be
the minimum of these solutions (i.e. the smallest tax or largest subsidy), since this
will encourage the most production and will still be acceptable to firm 2.

It is interesting to compare these transfers with standard Pigouvian taxes. In
our framework, Pigouvian taxes correspond to the case where —% = w*. The needed
assumption here is that, in the case of positive externalities, firm 2 is willing to pay
in full for the external benefits, and thus firm 1 is subsidized in exactly the amount
of the externality. In this case the socially optimal level of production is achieved.

In a truly decentralized setting, however, firms do not face involuntary restrictions
on their actions. So, firm 2’s expected benefit from participating in the scheme is
reduced to the extent that these benefits would be forthcoming under autonomy as

well. Firm 2 will thus not be willing to pay transfers as large as w*, as required in the
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Pigouvian case, and a form of second-best “Pigouvian” taxes/subsidies instead involve
transfers equal to v. These second-best taxes/subsidies can be called “Pigouvian” in
the sense that they are paid uniformly to all firms that produce, irrespective of actual
benefits and costs. The fact that these transfers are strictly smaller than w* is proved

in Proposition 1.

Proposition 1 Ifv < 0 < ¥ and w* # 0, transfers will be lower than the “Pigouvian”

level (i.e., |7] < |w*].)

ProOF OF PROPOSITION 1

See Appendix B.2.

3.3.3 Obtaining First-Best Outcomes

When can the first-best, ex post efficient outcome be reached? Consider the case of
positive externalities (w* > 0). Efficiency requires that firm 1 undertake the project
if v > —w*. In light of Proposition 1, therefore, we know that efficiency will not
be possible if w* < —wv, since in this case firm 1 produces if and only if v > o
which is gieater than —w*. This yields too little production. Thus if we are to
achieve efficiency at all, it can only occur when the external effect is greater than
the largest possible cost (w* > —wv) so that in the first-best all possible types of
firm 1 are required to produce. Equation (3.10) tells us when the expected cost of
compensating all possible types of firm 1 to produce (by paying a transfer equal to

the greatest possible cost of producing, —v) is less than the expected benefits:
v(l = F(v)) + w*(F(0) — F(v)) = v+ w*F(0) > 0.

That is, the net benefit of guaranteeing that all types produce, w*F(0), must be

greater than the expected cost incurred by paying —v to firm 1 with probability
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equal to 1.18
So, when externalities are positive, coordination can lead to all localities producing

only when
—v
w* > ——= (3.13
F0) )

To obtain a sense of relative magnitudes, assume that private net benefits are dis-

tributed uniformly on the interval [—k, k]. Then, the condition implies that
w* > 2k

is necessary to obtain the first-best outcome.'® That is, coordination will only achieve
efficiency if external effects are at least twice as large as the largest possible private
net benefit.

While the result suggests that external effects inust be large relative to private net
benefits for the first-best to be achieved, there may be common situations in which
“large enough” externalities exist. For example, if a public service is not very “local”,
such as a waste disposal site which can serve many localities in a region, then the
externalities, ‘taken together, are likely to be very large relative to private net benefits.
Similarly, even with two firms or localities, if production costs are a large fraction of

benefits, then the externality could be iarge compared to private net benefits.

3.3.4 Improvements on the Autonomous Allocation

How large must the externality be in order to obtain an improvement over the au-
tonomous allocation? Again, take the case of positive externalities (w* > 0). Improv-
ing on the autonomous outcome is only possible when the externality, w*, is large
enough so that the weight on the marginal type induced to produce, f(0), multiplied
by the gain from production, w*, is larger than the weight on transfer payments to

all types at least as large, (1 — F(0)). These latter types would have produced any-

18When implementing efficiency it is sufficient ‘o have transfers of size —v < - instead of
requiring larger transfers equal to —7 as in section 3.3.2.
19Appendix B.3 formally derives this result and the symmetric result for negative externalities.
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way without compensation and thus enter only in the cost calculation and not in the
benefits.??
Thus, when externalities are positive, the external effect must be at least as big

.. 1-F(0)
N TO)

to improve on the autonomous allocation.?’ Again, to obtain a sense of relative

(3.14)

magnitudes, consider the case in which private net benefits are distributed uniformly
on the interval [—k, k]. Then, equation (3.14) implies that

w* >k
must hold for any improvements to be implementable. That is, coordination will be
worthwhile only if external effects are at least as large as the largest possible private
net benefit.

Figure 4 illustrates the three regimes (no improvement, some improvement, and
efficiency) in terms of the expected costs shown in Figure 2 and the expected benefits
shown in Figure 3. In order to achieve a gain over autonomy, the expected benefit
curve must be above the expected cost curve at some —% > 0. In other words, there
must be some beneficial tax/subsidy which is acceptable to firm 2. For this to occur,
the slope of the expected benefit curve must exceed the slope of the expected cost
curve at the origin. This is precisely what equation (3.14) captures. The three net
benefit curves in Figure 4 reflect different-sized externalities corresponding to each of
the three regimes.

The lowest expected benefit curve (for w}) is always below the expected cost curve,

20The sharpness of this result arises from considering whether or not firms undertake investments
of a fixed size {0,1}, as in Myerson-Satterthwaite [1983], Cramton-Gibbons-Klemperer [1987], and
much of the bargaining literature. The assumption is equivalent to assuming constant marginal net
benefits of production up to a finite limit. If, instead, firms make continuous, unbounded choices
about levels of production, increasing subsidies induces a firm to raise levels of production and
this has social benefits. Here, however, increasing subsidies to a firm which would have made the
investment anyway do:s not affect their actions.

21pAppendix B.4 formally derives the result, as well as the symmetric result for negative
externalities.
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so that no agreement satisfying the constraints will improve on the autonomous allo-
cation. The middle expected benefit curve (for w}) lies partially above the expected
cost curve but intersects it at a point below that where first-best efficiency (i.e.,
—3, = w*) is obtained. The intersection point identifies the optimal cut-off type (and
thus the optimal subsidy), since there are always gains from increasing the —v as
long as —% < w*, and only cut-off types for which benefits exceed costs satisfy the
constraint. The highest expected benefit curve (for w3) reflects a level of externalities
sufficient to achieve first-best efficiency. Here, although the point of intersection is
below w3, it is greater than --v and thus efficiency is obtained in that all types are

induced to produce.
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Figure 3-5: Summary of Results — Externalities (w*) and Outcomes Implementable
through Voluntary Agreement

3.3.5 Summary of Results

We have argued that larger externalities allow increased efficiency and that for small

externalities no gains from an agreement are possible. Figure 5 shows this result for

both positive and negative externalities when private net benefits, v, are distributed

uniformly on the interval [-k,k].?? When w* is between -k and k, coordination will

not improve on the autonomous outcome. Only if w* is less than -2k or greater than

2k will the first-best outcome be attainable.

221t can be shown that all of the intervals in Figure 5 are well-defined.
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Figure 6 shows efficiency losses (relative to the first-best) associated with positive
externalities in the case in which private net benefits, v, are distributed uniformly
on the interval [-1,1]. Note here that when w* is between 0 and 1, coordination does
not improve on autonomy, so initially larger externalities are associated with larger
inefficiencies. But, beyond this range, coordination does improve on the autonomous
allocation. When w* is between 1 and 2, coordination serves to reduce inefficiencies
so that beyond w* = 2, the first-best outcome can be achieved and no efficiency
is lost. Thus, only when external effects are relatively small does inefficiency rise
with externalities. At its height (w* = 1), the efficiency loss equals one quarter of
social welfare under the first-best allocation. As the size of externalilies increases,
inefficiency falls until is eventually eliminated.

If the private net benefit were instead distributed with an unbounded distribution,
a similar graph would emerge. However, efficiency would only be reached at the limit
as the size of the externality approaches co. In the case in which v ~ N(0,1), the

peak efficiency loss would correspond to an externality of size v/2r = 1.25.

3.4 Interpretations and Extensions

3.4.1 Public Expenditures and Public Goods

There is nothing about our model which is specific to firms. As in our introductory
example, one of the parties might be a government, or, indeed, both parties might
be. For example, consider two localities, one of which can invest in improvements in
its public education system, generating a positive externality. We model each locality
as maximizing the welfare of a representative resident. Our results then characterize
optimal coordination between benevolent governments.

Alternatively, our model can be used to analyze certain public goods problems
where unanimous approval is required to implement a mechanism which wonld de-
termine a provision and funding scheme. A simple example is as follows. Suppose

there are two consumers who may differ in their valuation of the public good. Nor-
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malize production costs to zero, and suppose that the valuations are independently
distributed on [v,%] according to F(-), where v < 6 < 7. Unanimous approval is
required for the public good to be provided. In this situation, if one consumer has a
positive valuation v, they are only willing to subsidize the other consumer for voting
“yes” if v is large enough. This is precisely because the other consumer might vote
“yes” even without a subsidy. Thus the size of the valuations here play the role of

the size of externalities in our model.

3.4.2 Information Structure

We have assumed that the net benefits of investing in projects are only known pri-
vately. The critical aspect of this assumption is that other firms or localities and any
higher level of government or mediator are uncertain about whether investment will
take place under autonomy (i.e., if no agreement is reached).?® To see this, observe
that if externalities are positive and it is publicly known whether v is larger or smaller
than zero, a policy of offering a transfer of w* to any locality which has » < 0, in
return for an agreement to produce, will yield the first-best outcome. This policy
satisfies the incentive, individual rationality and budget constraints.

Similarly, if v is publicly known, but the size of the externality w* is private
information of the firm or locality affected, then the first-best outcome can always be
obtained. For example, if an external benefit w* = } is received by firm 2, it will be
willing to offer firm 1 exactly the smallest subsidy required to guarantee production,
as long as firm 1’s net costs are no greater than the external benefit, —v < ;. This
means that all types such that v4w* > 0 will produce. Thus, we see that asymmetric
information concerning the externalities is not sufficient to create inefficiencies in our
problem.

If asymmetric information about both dircct and indirect effects (i.e., both v and

w*) were considered, the formal analysis becomes more difficult and lies beyond the

scope of this paper. However, we conjecture that the presence of this extra asymmetry,

23The side-contracts we discussed earlier were precisely attempts to remove the uncertainty about
what would happen under autonomy by committing to a particular action.
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beyond the one necessary for our results, can only make it more difficult to improve

on the decentralized outcome.

3.4.3 Budget Balance

A possible argument against imposing budget balance in the model (interpreted as
one of government coordination rather than bargaining) might be that “actual gov-
ernments do not balance their budgets.” There are several responses to this. First, at
the level of state and local governments, budget balance is often mandated through
legislation or constitutional provision. Second, in the long run, all governments must
balance their budgets; i.e., current deficits necessitate future surpluses. Since our
model is purely static, this sort of intertemporal shifting of resources cannot occur.
Presumably, in a more complex model, there would be a trade-off between running
a deficit today and alleviating a current incentive problem versus running a surplus
tomorrow and exacerbating (or mitigating to a smaller degree) another incentive
problem then. However, the fundamental point remains unchanged: a lack of outside
subsidies limits the ability to reach socially desirabie outcomes.

A related criticism of the budget balance assumption is that, although govern-
ments may balance budgets overall, they often have discretionary revenues which can
be shifted among different items in the budget. Thus, in a more complex model
where the government is concerned with many projects beyond the one at hand, it
might subsidize one project by taking funds from another, rendering the assumption
of budget balance too stringent for our framework.

We show in Appendix B.5, however, that the qualitative conclusions of our model
are robust to this type of story as long as diverting funds to the project has some
positive social opportunity cost. Such a social opportunity cost may arise naturally

from distortions introduced by taxation, for example.
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3.4.4 Multiple Projects

Rather than just considering a single producer, we can consider cases in which both
firms have an investment opportunity which generates an externality on the other. If
the effect of each investment is independent, and the private information about the
net benefits of each investment is independent, the problems are completely separable
and our analysis holds for each individually.?* However, if there are complementarities
or substitution effects across projects, the analysis becomes more complex. One
example where such effects might be present is the case of two neighboring states,
each considering whether or not to build a road in the direction of the other. A state
will benefit more from the other state’s road if it has built its own connecting road.
Thus the size of the externality is aifected by the state’s own production decision.
This complementarity lends an aspect of coordination to the problem that is absent
in our setting. Now, the distortion that externalities generate in a state’s investment
decision will vary with the actions of the other state. Therefore the actual autonomous
outcome will depend very much on the beliefs that the states hold about each other.
Thus, the relevant individual rationality constraints will also depend on these beliefs,
and the problem becomes difficult to set up since beliefs can change with actions

taken within the mechanism.

3.4.5 Multiple Spillovers

In some situations more than one firm is affected by the spillovers; several difficulties
may then need to be considered. For example, the assumption that all firms par-
ticipate or not is a much stronger one when there are more than two firms. If we

allow for participation by subsets of the firms while others opt out, the effect will

24Recent work by McAfee and Reny [1992] and Crémer and McLean {1985, 1988], among others,
has shown that when private information is correlated in mechanism design problems, typically the
first-best can be achieved, even with e correlations. These results are striking, but the types of
mechanisms which they require are unrealistic, necessitating very large bets. Auriol and Laffont
[1991] have shown that the results of the independent case go through while allowing for some
correlation if preferences are sdditive in a common component and an idiosyncratic component and
both components are known by the firm. It is then only the idiosyncratic component which matters
in the mechanism design problem.
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be to increase the welfare of firms when they refuse an agreement. This will make
coordination and efficiency harder to achieve than in the model in Section 3.2. This
is closely related to the way that we think about free-rider problems in that assuming
that the other firms will form an agreement if one firm opts out is like assuming that
it is possible for a firm to free-ride.

One issue that arises in a multiple firm setting which carn be easily dealt with
in our framework is the interpretation of externalities. There are two polar cases to
consider. First, externalities can, themselves, have the guality of a public good in that
the total external effect increases proportionally with the number of firms affected.
Second, gross external effects may be fixed. Then considering more firms reduces the
per firm externality.

In the model above, we have defined the external effect w* in per firm terms.
Because the external effect is non-rival in the first case, adding firms does not affect
externalities elsewhere, so, here, the government would want to consider the sum

of external effects across the n firms. If, for example, all firms are equally affected

1
n-1

and equal-sized, a per firm externality equal to w* is required to obtain efficient
outcomes, where w* is the level required for efficiency in the case with two firms.
Thus, when the external effect has the non-rival attributes of a pure public good, the
more firms that are affected, the more likely it will be that an efficient outcome can
be obtained.

In the second case, in which adding firms reduces the per firm externality pro-
portionally, the basic results carry over unchanged from Section 3.3. Doubling the
number of firms affected reduces per firm external effects by half. Thus, the sum of

external effects is invariant to the number of firms involved. Here adding firms does

not change the likelihood of reaching the first-best outcome.
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3.5 Applications

3.5.1 Research and Development

The creation of new products often arises through cross-fertilization of different en-
deavors. Firms often have a range of research and development projects underway,
each overlapping and depending in some way on the other, often through the accumu-
lation of skills or new insights. Without coordination, however, firms will under-invest
in projects with positive spillovers. Our framework extends naturally to help explain
the optimal behavior of firms in this situation.

In particular, the sort of coordination we describe with respect to local govern-
ments has a natural analogue in research joint ventures like Sematech, where micro-
chip manufacturers joined forces to create a new generation of semi-conductors. The
problem of designing the initial agreement involves the sort of individual rationality
and budget constraints considered here, although budget balance is often violated
due to heavy government subsidization. Our analysis in Appendix B.5, where budget
balance is not required, suggests that externalities must be relatively large to make
joint ventures efficient in the presence of private information (about, say, the net costs
of R & D).

One aspect of the joint venture problem which is not present in our model is that
the externalities are often purtly endogenous as a result of output or profit-sharing

agreements. A fully worked-out application would need to incorporate this feature.

3.5.2 Moaels of Long-Run Growth

The renewed interest in models of long-run economic growth has been been spurred by
the explanatory power of new models which feature positive spiliovers in production
(e.g., Lucas [1988]). The spillc vers provide a justification for the assumption that firms
face decreasing returns individually while there are constant or increasing returns to
aggregate production. Thus, equilibria are competitive, keeping the models simple,

but, unlike the standard neo-classical model, growth rates need not converge across
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economies and capital will not necessarily flow from rich to poor economies.

The fundamental assumption of these models is that there is no coordination. If
it were possible to fully internalize externalities, individual firms would face increas-
ing returus, and the non-convexity in the production function would diminish the
likelihood of reaching a competitive equilibrium (Laffont [1988]).2°

The lack of coordination in ihese models is invoked, rather than explained. If there
are an infinite number of producers and no central authority, then presumably coor-
dination would be difficult indeed. Still, even with many producers, there is no reason
that governments cannot create tax and subsidy schemes to address externalities; see,
for example, Barro [1991].

The present paper suggests that if there is asymmetric information about the
direct costs and benefits of production, then even a central authority may not be
able to fully internalize externalities through voluntary programs. While our model
is static, the intuition carries over to a dynamic framework. However, we have shown
that if the gains from coordination, reflected by w*, are large enough, then we would
expect efficient coordination, counter to the assumptions of the new growth literature.
In considering deviations from efficient growth paths, we expect that those gains would

be large, since the benefits to coordination accrue for all time.

3.5.3 Siting a Toxic Waste Dump

Where should toxic waste dumps be situated? Can they be situated efficiently? While
localities understand the need for waste dumps, no one wants one in their own “back
yard”. Ciearly, if no one had to have a dump, under autonomy no one would. But,
given that a site must be chosen, the problem involves determining which locality can
bear the burden at least cost. This choice framework can be captured by adding to
our model the constraint that the sum of probabilities of building a dump must equal
one: the dump must go somewhere, but only one is needed.

Consider the case in which the gross external effect is constant no matter where

25Gtrictly speaking, a competitive equilibrium could be maintained as long as coordination is not
so effective that it introduces non-convexities into firms’ problems.
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the dump is sited. If no single locality accepts the communal dump, then all localities
build private dumps which yield a level of utility equal to zero.?® A simple auction
can be created (e.g., sealed bid, second price) to allocate the dump, such that the n
localities bid to receive a given transfer conditional on building the dump.

if the transfer is at least as large as —wv, the largest possible cost of building the
dump, localities will always participate in the auction. Taus the central government
taxes each locality —u/(n — 1); localities will voluntarily pay these taxes as long as
w* > —v/(n — 1). Thus, the auction is consistent with individual rationality, and it
does not require running a budget deficit — indeed, the program runs at a surplus,
with the central government keeping the money paid by the highest bidder. But,
while the auction will lead to the efficient location of the dump, it will not lead to the
first-best social outcome. This is because the program runs at a surplus, and there is
no return to money in the hands of the government in the present model.

The proportional welfare loss falls as the external effect w* increases beyond
—v/(n — 1), since the gains from having the dump increase with w* while the sur-
plus from the auction stays constant. Although this is not a formal analysis, it gives
some intuition as to how large externalities can help improve this type of allocation

problem.

3.6 Conclusion

The fact that information is known only locally or by individual firms provides a
strong reason for favoring decentralized arrangements. Decentralization is also ap-
pealing for both political and philosophical reasons, in that it limits the coercive
powers of central authorities. However, we have shown that autonomy and private
information together can make it very difficult to internalize externalities. This can
lead to substantial losses in social efficiency.

Respect for autonomy (the essence of decentralization in this paper) is critical for

26More realistically, the level of utility flowing from a private dump would equal v. We do not
address this scenario here.
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this result, since even with private information and externalities, a central government
with coercive powers can implement efficient outcomes. In this case, a system of
Pigouvian taxes and subsidies can be used to achieve efficiency.?”

When autonomy is respected, and when firms or localities decide whether to make
investments of a given size, voluntary agreements may not improve the outcome in a
large range of cases. This occurs when the size of the external effect is relatively smail
compared with net benefits to producers (where “relatively small” may nevertheless
be large in an absolute sense.) This may help to explain why coordination is so rarely
observed relative to the number of activities associated with externalities.

While these principles are derived in a fairly general framework, the optimal plan is
easily implementable. When improvements are possible, they can be achieved through
simple unit taxes and subsidies. The results suggest that asymmetric information
can lead to large costs in terms of efficiency. However, we have also shown that when

externalities are relatively large, the first-best outcome can always be obtained.

27That is, a system of taxes/subsidies based on w* and contingent on production.
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Appendix A

Proof of Theorems 5 and 6 of
Chapter 1

Theorem 6 will be proved first, as it will be used to prove Theorem 5.

Theorem 6 Let > be a binary relation on Ly. Then the following are equivalent,

(1) = satisfies B.1 and B.2 for L = L.

(2) 3 an affine function v : Y — R and N > 1 non-empty, closed, convez sets
C;,i = 1,...,N, of finitely additive probability measures on ¥ such that Vf,g €
Lo, f > g if and only if (mingec, fu o fdp)¥, >p (minyec; [u o gdp)Y,, where if
p(E) > 0 for some E € &, p € C, then there ezists an i such that p(E) > 0, for all
p € C;, and where C; 2 C> D ... 2 Cn.!

Furthermore, the function u is unique up to a positive affine transformation, and,

if and only if A.6 holds, the set C, is unique.

Proof of Theorem 6:
We will first prove that (1) implies (2), then that the uniqueness properties of the
representation in (2) are satisfied, and finally that (2) implies (1). The proof of (1)

implies (2) is the most involved. We will use theorem 1 applied to each =; and B.2 to

1For a,b € RY, a > b & [b; > a; = 3k < i such that ax > bi]. This is the reflexive relation
induced by lexicographic ordering.
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derive the basic form of the representation. Then, to show that the superset relations
between the sets of beliefs hold, we will appeal to a construction of suitable sets C;
in Chateauneuf (1991). Finally we use a lemma and B.1 to show that the measures
in the C; must satisfy the conditions stated in (2).

(1) = (2): From B.2 we know that the representation is lexicographic in the ;.
Applying theorem 1 to each >; we have that f >; g if and only if minpec, [ uio fdp >
minpeg, [ u; 0 gdp, for a non-empty, closed, convex set C; and an affine u; : ¥ = R
which is unique up to a positive affine transformation. As B.2 requires all =; to
agree on constant acts, we can take u; = uy,i = 1,..., N. Thus we have the basic
representation.

Now we prove the superset condition holds. Consider the space B of all bounded,
$-measurable real functions on §. By Lemmas 3.1-3.4 of Gilboa and Schmeidler
(1989), there exists, for each i, I; : B — R such that I;(uo0y*) = u(y) for y* € L.
with outcome y € Y; f >; g if and only if Ii(uo f) > Ij(uo g) for f,g € Le; I;
monotonic, superadditive, homogeneous of degree 1, and C-independent. Thus I;
satisfies the conditions of the Fundamental lemma? in Chateauneuf (1991), and thus,
by his constructive proof, we can take C; to be the set {p|p is an additive probability
measure on X; [ bdp > I;(b),Vb € B such that I;(b) > 0}. As B.2 requires f =i41 y*
if f~;y* I(uwo f) > Ii(uo f) if k > 4. Thus for all b € B, Ii(b) > Li(b) if k > 1.
From the definition of C;, we see that this implies C; 2 C; 2 ... 2 Cn. To complete

the proof of (1) => (2) we make use of the following result:

2This lemma says that for I : V — R, where V is the set of all E-measurable functions from S
to the positive reals, the following two conditions are equivalent:

Condition 1. I satisfies:

(i) for all @ > 0,8 > 0,z € V : I(az + B1*) = al(z) + (B, where 1* is a function which takes on
the

value 1 in all states.

(i) z,ye V = I(z + y) > I(z) + I(y).

(ii) If z > y on S, then I(z) > I(y).

Condition 2.

There exists a unique closed, convex set C of additive probabilities on X, such that

(iv) I(z) = minyec [ 2zdp, forall z € V.

To apply this lemma to I; we can simply rescale u so that u takes on only positive values and
consider the restriction of I; to V. Monotcnicity, superadditivity, homogeneity, and C-independence
ensure Condition 1 is satisfied.
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Lemma 6.1

An event E € NNE & p(E) > 0 for some p € Ch.

Proof of Lemma 6.1: (=) : p(E) = 0,Vp € C, implies p(E) = J,Vp € C}, which
implies E null.

(<) : Consider f,g G Lo such that u(f(s)) = u(g(s)) = k on S/E and k >
u(f(3)) > u{g(s)) on E. minpec; fuo fdp # minyec; [ u 0 gdp if and only if p(E) > 0
for some p € C;. Thus p(E) > 0 for some p € Cy implies E not null. QED

For any E € NNE, Lemma 6.1 tells us that p(E) > 0 for some p € C;. For
any such E, consider f,g such that u(f(s)) = u(g(s)) = k on S/E and u(f(s)) >
u(g(s)) > k on E. For each C;, if there exists p € C; such that p(E) = 0 then
mingec, [u 0 fdp = mingec; [u o gdp. Since B.1 requires that f > g, there must be
some ¢ € {1,..., N} such that p(E) > 0, for all p € C;.

Uniqueness: that » is unique up to a positive affine transformation follows directly
from the vNM representation theorem (von Neumann and Morgenstern, 1947). If A.6
fails then any closed, convex set C; will do in combination with a constant u. Suppose
A.6 holds. We adapt an argument of Gilboa-Schmeidler (1989) to our setting. Assume
there exist C! # C!, non-empty, closed, and convex such that (minyec: f u o fdp)iL;,
for some C!,i=2,...,N such that C] 2 C}; D ... 2 C} and (minpecy fu o fap)N,,
for some C¥, i = 2,...,N such that Cy D C¥ D ... D O} represent = on L in the
manner of the theorem. Without loss of generality, assume there exists p' € C{/CY.
By a separaticn theorem [Dunford and Schwartz, 1957, V.2.10], there exists ¢ € B
such that [adp’ < minyecr fadp. Without loss of generality assume a = u o f for
some f € Lo. Let y € Y be such that u(y) = min,ccr fu o fdp. Since CY 2 €7 2
... D C¥, this implies that f = y* where y* is the constant act which results in y. But
w(y) = minpecr fu o fdp > minyecr fu o fdp, which implies y* > f, a contradiction.
Thus C} is unique if and only if A.6 holds.

(2) = (1): We define f >; g & minyec, [ o fdp > minyec; [ u 0 gdp. B.2 is then
easily verified (recall that C; D C; 2 ... 2 Cn). The fact that p(E) > 0 for some
E € £, p € C, implies there is an 7 such that p(E) > 0,Vp € C,, means that all non-
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null events are given positive weight in some element of (min,ec; f uo fap)N.,,Vf € L.
Suppose that u(f(s)) > u(g(s)),Vs € S. Since f and g are X-measurable, uo f —uog
is ¥-measurable and thus {s : u(f(s)) — u(g(s)) > 0} € B. f > g if and only if
{s:u(f(s)) —u(g (s)) > 0} is not null. Therefore B.1 hclds. QED

Theorem 5 Let > be a binary relation on Lo. Then the following are equivalent,

(1) = satisfies A.1 - A.3, A.5 and B.1 for L = L.

(2) There ezists an affine function v : Y — R and a non-empty, closed, convez
set C of finitely additive probability measures on ¥ satisfying [p(E) = 0 if and only
if Vp € C,p(E) = 0] such that Vf,g € Lo, f > g if and only if minyec [u o fdp 2
minpec [ u o gdp.

Furthermore, the function u is unique up to a positive affine transformation and,

if and only if A.6 holds, the set C is unique.

Proof of Theorem 5: First note that B.1 implies A.4 (Monotonicity).

(1) = (2): A.1-A.5 imply B.2 with N = 1 by Theorem 1. B.1 and B.2 with N =1
imply (2) by Theorem 6.

Uniqueness: Follows by the same arguments (vNM theorem, separation theorem)
as uniqueness in Theorems 1 and 6.

(2) = (1): (2) implies = satisfies A.1-A.5 by Theorem 1. (2) implies (by Lemma
6.1) that for all p € C, [p(E) > 0,V non-null E € I which implies B.1 (weak
admissibility) since {s : u(f(s)) — u(g(s)) > 0} is E-measurable. QED
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Appendix B

Appendicies for Chapter 3

B.1 Proof of Theorem 1

We first provide the basic intuition for why we can limit attention to just these two
constraints (the first pertaining to the type with the greatest possible local net benefit
from producing, 7, the second pertaining to the type with the lowest local net benefit,
v.)

Can it be true that the individual rationality constraint for firm 1 binds for types
7 and v, but is violated for other types? First, consider a type with negative net
benefits, v < 0. If the individual rationality constraint was violated, type v could
simply pretend to be the type with the greatest net costs, v, and get U(») + (v —
v) > U(v) if v was producing and U(v) > max(v,0) otherwise. But then incentive
compatibility would be violated at v, so this could not happen. Similarly, can it be
true that individual rationality is violated for a type with positive net benefits from
producing, v > 0?7 If this was the case, type v could pretend to be 7 and would get
U(%) — (v — v) > max{v,0) if 7 was producing and U(v) > max(v,0) otherwise. But,
again, incentive compatibility would be violated, so this could not happen. Thus,
incentive compatibility implies that we need to just consider the types 7 and v when
checking whether individual rationality is satisfied for firm 1. Since firm 2’s individual
rationality constraini does 1.0t vary with v, the same is trivially true of it.

Constraint (A.I) says that total expected social surplus, adjusted for information
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costs which arise from the incentive compatibility constraint, must be as big as the
sum of what both localities would expect to get in the absence of coordination if firm
1 was the high type (but firm 2, of course, does not know this valuation). Constraint
(A.1) gives the analogous condition for the lowest types.

Now we proceed with the formal proof. We first show the “only if” part of the the-
orem: Suppose that the direct revelation mechanism (p(-),t(-)) satisfies (IC), (IR1),
and (IR2). Incentive compatibility (IC) implies

Ui(v) = wvp(v)+t(v)
> up(d) + £(5).

Thus, by the envelope theorem, d—%ﬂ = p(v) almost everywhere. So,

Ui(v) = / z)dz,Vv,v"*,
which implies that

t(v) = t(v*) + v*p(v*) — vp(v) + /:: p(z)dz Vv,v*,

Taking expectations over v, we get:

[ 1)z = Tr) +op(e) = [ ap(2)f(2)dz

L]

+/ (1 — F(z)]p( Z)dz—/: F(2)p(z)d=.

Now we can rewrite (IR2) as

U, p(:)f(2)dz — [ Hz)f(2)dz (B.1)
p(2)f(z)dz — v*p(v*) — t(v*) (B.2)

+ [ opl) ()i = [ 11 - Flolple)is

li
g g
1:\. |¢\.
Q| ]

<l
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+ Lv. F(z)p(z)dz
> w*(1 — F(0)).

Now, since iU—;éﬂ = p(v) and 0 < p(v) < 1 and p(v) is non-decreasing in v, U;(v) —

max(v,0) — w*(1 — F(0)), reaches a global minimum at either v = » or v = 7. Thus,

if (IR1) is satisfied at these two points, it is satisfied everywhere.
So, recalling the assumption that v < 0 < 7, (IR1) implies:

Ui(v) = vp(v) +t(v) > 0and
U,(%) = oP:(v) + t(v) > 7.

This places restrictions on the size of transfers:

t(v) > —uvp(z) and

t(@) > v-—vp(v)).
From (IR2),

vp(v) +t(v) < w* /jp(z)f(z)dz+‘/;zp(z)f(z)dz

[ - F@lpa)e + [ Fa)p(a)dz = w'(1 - F(0))

If we bring all of the v terms to the left-hand side we have,

vp(o) +1(0) + [ 1L F@)p(a)dz — [ Fl2)p(e)dz

< [+ wpa) ()i

In particular, for v = v and v = 7:

t(v) < —wp(v) —w*(l - F(0)) + [ (z bt L -}(1:)(12)

and
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. v ., F(z
) < -op(e) w1 - FO)+ [ (24 + 2E0) 00a) e

For these inequalities to be compatible with the ones in (B.3) and (B.4), we need

42 [ o) (40 A=) fiapa > w1 - (),

and

(A.1) /:‘p(z) (z +w* + {f‘((_j))) f(2)dz > v+ w*(1 — F(0)).

Now, we prove the other direction (“if”). We proceed by considering any non-
decreasing p(v) and constructing transfers which satisfy (IC), {IR1), and (IR2), using
the assumption that (4.1) and (A.1) hold.

Consider the following transfer:

t(v) = c + /_ " p(2)dz + vp(v) — vp(v),

for some constant c¢. Thus,

t(v) — £(v*) = v*p(v*) — vp(v) — /:J. p(z)dz + /: p(z)dz.

Rearranging terms yields:

Ul('v)

Ui(v*) + /:: p(z)dz
2 Ui(v*) + [v - v"]p(v")

vp(v*) + ¢(v"),

where the inequality in the second line follows from the assumption that p(v) is non-
decreasing. As this holds for any v,v*, we have shown that incentive compatibility
(IC) is satisfied.

From the “only if” part of the proof we know that (IC) implies that (IR1) is
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satisfied everywhere if it is satisfied at v and ©. Furthermore we know that (IR1) at

v and 7 is equivalent to

v

—vp(v) and

t(v)

t(w) > v—vp(v)).
For the transfer we have defined,

ty) = ¢
and

t(w) = c+ [ p(2)dz + va(v) - 70(o)
For these transfers to be compatible with the previous two inequalities, we require

¢ > -vp(z)and

c > —Qp(2)+5—/jp(7-)d2-

Let ¢ = max[—vp(v), —vp(v) + T — [, p(z)dz]. Then (IR1) is satisfied.

Since (IR2) is not a function of v, if it is satisfied anywhere it is satisfied ev-
erywhere. Using the analysis in the “only if” part, we can write (IR2) in terms of
v: _

(o) S ~uple) w1~ FO)+ [ (4w - L EED) g e

For the transfers we have constructed,

t(v) = ¢

max|~up(2), ~ep(2) +7 - [ " p(2)dz].

There are two possible cases to check to see if this ¢(-) satisfies (IR2). First, suppose
¢ = —vp(v). Then (A.l) implies that (IR2) is satisfied. Second, suppose that ¢ =
—vp(n) +7 — ft_,'7 p(z)dz. Then (A.1) implies that (IR2) is satisfied. QED
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B.2 Proof of Proposition 1

In Section 3.2, we showed that the inequalities in (3.10) and (3.11) give the constraints
on our problem. We will proceed by examining three cases, corresponding to possible
values of v.

Case 1: Suppose that o > 0. Then rearranging (3.11) yields

As v < 0 < T, the term in brackets is less than one in magnitude. Therefore,
v = [7] < |w*|.

Case 2: Suppose that © < 0. Rearranging (3.10) yields

<[]

Again our assumptions imply that the term in brackets is less than one in magnitude.
Thus, —v = |3] < |w*|.

Case 3: Suppose © = 0. Since w* # 0, || < |w*|.

QED
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B.3 Obtaining Ex Post Efficient Qutcomes

When can we reach the first-best outcome? If w* > 0, we can get the first-best

outcome (produce if v + w* > 0) if and only if:
max(y, ~w')(1 — F(max(z, ~w"))) +w*(F(0) — F(max(s,~w*))) > 0. (B.5)

We look at the two relevant cases. First, we consider the case where max(v, —w*) =

—w*. Here,
—w*(1 — F(—w")) + w*(F(0) — F(—~w*)) = w*(F(0) - 1).

Thus we cannot achieve the first-best outcome unless F(0) = 1 — i.e., unless no firm
will ever produce on their own.

In the second case, max(v, —w*) = v. Here,
o(1 ~ F(2)) +w*(F(0) - F(2)) = v+w"F(0).

Thus, we require

w* > F_(a) (B.6)

in order to achieve the first-best. If externalities are negative (w* < 0), we can get

the first best if and only if
— min(—w*,%)F(min(-w*,7)) + w*(F(0) — F(min(-w*,7))) > 0.
By analogous reasoning, this happens if and only if
~7

A ) (B.7)

and/or F(0) = 0.
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Note that if the v are distributed uniformly and v < 0 < 7, then the conditions

for achieving the first-best outcome become
|lw*| > 7 — 2.

Thus, for v ~ U[—1,1], |w*| > 2 is required for the first-best outcome to be imple-

mentable through decentralized bargaining.
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B.4 Obtaining the Second-Best Outcome

——————————\Ne-areinterested-in the circumstances under-which-the second-best-outcome improves——————
on the autonomous allocation (i.e., when does the second-best mechanism involve a
cut-off type o # 07)
We consider first the case of a positive externality (w* > 0; constraint (A.1) will

bind here.) Thus we want to know if there exists a ¥ < 0 such that:
K(9) = 9(1 — F(9)) + w*(F(0) — F(9)) > 0.

We observe that K(0) =0 and

dK (%)
o

=1 - F(3) - 5f(3) — w* f(3).

Since

sign 4K (%) = sign l—l@—ﬁ—w‘)
B \Ts )T UTe |

and l}gﬁ — 9 — w* is non-increasing in ¥ by our hazard-rate assumption (3.9), such
a v < 0 exists if and only if:

dKEz')) <0
v |._ "
This is equivalent to
1 — F(0)
w* > —, B.8
> —0) (B.8)

We now take up the case of a negative externality (w* < 0; constraint (4.1) will

bind here.) Here, we want to know if there exists a % > 0 such that:

J(3) = =3 F(3) + w*(F(0) — F(%)) > 0.
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Analogous Lo the case above, this happens when

since our hazard rate assumption (3.8) implies that J(-) is single-peaked. This is

equivalent to

. —F(O)
w* < Fo) (B.9)

In the special case of uniform distributions, we find that we must have w* > v
or w* < v in order to improve on the autonomous alocation (v > 0). Thus, for

v ~ U[-1,1], it is necessary that

'] > 1

holds for any improvements to be implementable.
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B.5 Relaxing Budget Balance

In keeping with our focus on decentralization, we have assumed that budgets must
be balanced. However, if there is cross-subsidization of the various activities of gov-
ernments, budget balance may be too restrictive. Here we show that the qualitative
results go through in the more general case in which there is a social cost A to rais-
ing revenues (but no restriction on budget deficits). This section closely follows the
general approach of Laffont and Tirole [1993).

We also note that the problem solved in this section is very similar to the problem
faced in decentralized bargaining where firm 2 can make a take-it-or-leave-it offer to
firm 1. The objective function for that problem is the same as the one here with
A = 0 and an extra —U; term subtracted off (since firm 2 dislikes paying transfers to
firm 1). The solution to the bargaining problem is the same as the solution to the
problem solved in this section with 25 = 1.

14+A

The central government’s problem is
max [((1+X)(z + w")p(z) - Wa(2) — AUp)) f(2)dz

subject to

a0y Ty,

(IR1) Ui(v) > max(v,0), Vv,
(IR2) U, 2 w*(1 - F(0)),
(Monotonicity) p(v) non-decreasing.

The first thing to observe is that U, is not a function of v and enters the objective
function with a negative sign. Therefore, (IR2) will always bind at the optimum and
U, is just a constant which can be ignored. We ignore the monotonicity constraint

for now, and solve using optimal control. Letting p(v) be the Pontryagin multiplier
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on the (IC) constraint we can write the Hamiltonian as,

= [(1+ \)(o + w*)p(v) = AU (0)]£(v) + p(0)p(2). (B.10)

Applying the Maximum Principle we have

i(9) = g0 = M(o).

and
O0H

Sy = (A +w)f0) + k()

Assume for the moment that the (IR) constraint binds only at . Transversality then

requires that u(v) = 0. This gives

u(v) = MF(v) - 1).

So the conditions on production become

(v) {1 if v + w* +1¢A%)'—T‘220
p(v) =

0 otherwise

Similarly, if the (IR) constraint binds only at 7, transversality requires that p(v) = 0.
This gives
p(v) = AF(v)

and the conditions on production are

P(v) =
0 otherwise

{ 1 ifv+w + 2554 >0

Note that these are the same formulas obtained in the corresponding cases in our
model with budget balance, except for the fact that ) is now exogenous rather than
endogenous.

We can now investigate the potential for coordination. To ensure that monotonic-
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ity is satisfied, assume as before that
d (F(v)
—_ >
& (7)

(5 <o

Define 9(w*) as ¥ such that v + w* + 2_F@ _ g (je., the cut-off type if (IR1) binds
1+ (D)

only at 7). Then, the cut-off type if v only binds is greater than (w*); denote it

o(w*).

and

So suppose that v binds. This implies

Ux(!’_) =0
Ui(3) = /ﬁ:w.)ldv
= 7 —o(w*).

The (IR1) constraint will not bind at ¥ if and only if (w*) < 0. That is, if and only
if

A 1-F(0)
1+ f(0) °

Now suppose that 7 binds. This implies

U(@) = @ )
Uy(v) = v L:w.)1d1,
= o(w").

The (IR1) constraint will not bind at v if and only if 5(w*) > 0. That is, if and only
if
A F(0)

1+ X f(0)°

*
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Thus, the constraint binds at both points if

A\ FO) _ . ) 1-F(0)

1+A70) =" =T+ x f(0) °

and coordination cannot improve on the autonomous allocation.

Note that, other than the '1% terms, this is the same condition that we derived
in the model with budget balance. As A approaches +o0, this range approaches the
range that we derived earlier. Intuitively, with budget balance there is an infinite cost
to subsidizing the project when the constraint binds at both points. Here, however,
there is some fixed cost ).

The first-best outcome can be obtained if

A 1
LD
YTV T ITINT®)
or
pY 1
s A
Y Z Tt T )

Notice that here, for the uniform case, if we let A approach 400, we get stronger
conditions than under budget balance. The intuition is that as the (IR1) constraint
binds at only one end as the second-best approaches the first-best, the cost of subsi-
dizing the project is no longer infinite. This reinforces the point that A and X in the
budget balance model are endogenous and depend on the parameters of the model
such as w*, whereas )\ here is exogenous.

Finally, for values of w* which do not fall into either the autonomous or the
first-best ranges, we have a second-best outcome which improves on the autonomous
allocation. As before, the second-best outcome can be described by a cut-off type 9
and can be implemented using second-best Pigouvian taxes and subsidies.

A key here is that reducing the amount of money required for the project at hand
frees money for other (valued) projects elsewhere. So, having negative net subsidies
(i.e., net taxes) is viable in the model here. Since when the gains from leaving the

money in the projects here are small (as we are very close to the first-best) they are
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outweighed (socially) by diverting the funds to other projects it is more difficult to
obtain efficient outcomes. In other words, in this setting, a marginal as well as a
total cost/benefit evaluation is required. This is important in understanding why,
for example, it is harder to get first-best investment when firm 2 makes a take-it-or-
leave-it offer as compared to a mediator or government proposing a balanced budget

scheme.
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