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Background: The relative avascularity of 

cartilage has made it a promising source of 

angiogenesis inhibitors. 

Results: MATN-1, identified by mass 

spectrometry, suppresses capillary endothelial cell 

proliferation and migration.  

Conclusion: MATN-1 is a novel inhibitor of 

neovascularization in vivo and in vitro. 

Significance: This is the first demonstration that 

MATN-1 is an inhibitor of both normal and 

pathological neovascularization. 

 

ABSTRACT 

In the course of conducting a series of 

studies whose goal was to discover novel 

endogenous angiogenesis inhibitors, we have 

purified Matrilin-1 (MATN-1) and have 

demonstrated, for the first time, that it inhibits 

neovascularization both in vitro and in vivo.  

Proteins were extracted from cartilage using a 

2M NaCl, 0.01M HEPES buffer at 4°C, 

followed by concentration of the extract. The 

concentrate was fractionated by size exclusion 

chromatography and fractions were then 

screened for their ability to inhibit capillary EC 

proliferation in vitro. Fractions containing 

endothelial cell (EC) inhibitory activity were 

pooled and further purified via cation exchange 

chromatography. The resulting fractions from 

this step were then screened to isolate the anti-

angiogenic activity in vitro.  This activity was 

identified via tandem mass spectrometry 

(MS/MS) as being MATN-1. Human MATN-1 

was cloned and expressed in Pichia pastoris and 

purified to homogeneity.  Purified recombinant 

MATN-1, along with purified native protein, 

was shown to inhibit angiogenesis in vivo using 

the chick chorioallantoic membrane assay via 

the inhibition of capillary EC proliferation and 

migration.  Finally, using a MATN-1-deficient 

mouse, we showed that angiogenesis during 

fracture healing was significantly higher in 

MATN-1-/- mice in comparison to the wild type 

mice as demonstrated by in vivo imaging and by 

elevated expression of angiogenesis markers 

including PECAM1, VEGFR, and VE-cadherin.  

 

INTRODUCTION 

Cartilage is an avascular and relatively tumor-

resistant tissue that is composed predominantly of 

proteoglycans, several types of collagen, and non-

collagenous matrix proteins (1-3). The resistance 

of cartilage to capillary invasion has long been 

postulated to be a function of the presence of 

endogenous inhibitors of angiogenesis, which 

inhibit new blood vessel formation from pre-

existing vessels. The first of these inhibitors 

purified to homogeneity was a cartilage-derived 

tissue inhibitor of metalloproteinases (TIMP),  a 

protein that was demonstrated to be a potent 
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inhibitor of capillary EC proliferation and 

migration in vitro, and angiogenesis in vivo in both 

the chick chorioallantoic membrane (CAM) assay 

and the corneal pocket assay (4,5). Shortly 

thereafter, a chondrocyte-derived angiogenesis 

inhibitor, a 35.5 kDa protein isolated from 

chondrocyte primary cultures, was shown to 

inhibit angiogenesis in vitro in EC proliferation 

and migration assays and in vivo in the CAM 

assay (6).  Chondromodulin-I (ChM-I), a 25 kDa 

protein isolated from bovine epiphyseal cartilage 

was shown to inhibit capillary tube formation in in 

vitro (7-9) and tenomodulin (TeM), another 

protein that shares homology with ChM-I, was 

shown to inhibit angiogenesis in vitro as well (9-

12) .  Troponin I (TnI), a 23 kDa contractile 

protein typically found in muscle, was isolated 

from bovine cartilage, and demonstrated to inhibit 

EC proliferation in vitro, angiogenesis in the CAM 

and mouse corneal pocket assays in vivo, as well 

as tumor metastasis in vivo (13).   

Non-mammalian cartilage has also been 

studied as a potential source of angiogenesis 

inhibitors.  Lee and Langer were the first to 

demonstrate that an extract of shark cartilage 

could significantly inhibit tumor 

neovascularization (14).  Since then, several 

laboratories have isolated partially purified 

fractions from this type of cartilage that have been 

shown to inhibit at least one of the processes 

associated with angiogenesis.  For example, U995, 

a fraction containing 10 and 14 kDa peptides 

isolated from the blue shark, Prionace glauca, 

interfered with HUVEC proliferation and 

migration (15).  SCF2, a glycosaminoglycan 

whose principal component is keratan sulfate, is a 

10 kD proteoglycan that has been reported to 

inhibit EC proliferation in vitro, as well as tumor-

induced angiogenesis in the cornea of rabbits and 

angiogenesis in CAM assays in vivo (1).  

SCAIF80, an 80 kDa protein isolated from shark 

cartilage, has been shown to significantly suppress 

EC proliferation and migration in a dose 

dependent matter in vitro (16), and SCP1, a 13.7 

kDa protein with sequence similarities to 

parvalbumin, was reported to inhibit angiogenesis 

in the rat aortic ring assay (17).  AE-941, an 

‘angiogenic mixture’ (18) isolated from Squalus 

acanthias cartilage, has been shown to inhibit 

angiogenesis in vitro in the rat aortic ring vessel 

assay (19) and in vivo in the CAM assay (20).  In 

addition, the shark tissue inhibitor of 

metalloproteinase 3 (sTIMP-3), has been cloned 

and characterized from the cloudy dogfish, 

Scyliorhinus torazame (21).  It was later shown to 

inhibit migration and tube formation in bovine 

aortic endothelial cells (22).   

In this study, we have purified and identified a 

novel inhibitor of angiogenesis, matrilin-1 

(MATN-1). Having demonstrated its ability to 

inhibit angiogenesis in vivo, we determined that 

MATN-1 exerted this suppression of 

neovascularization by inhibiting angiogenesis 

growth factor-driven capillary endothelial cell 

proliferation and migration. These studies 

weresupported by both in vitro gain of function 

studies and in vivo loss of function experiments 

using MATN-1 KO mice. MATN-1, formerly 

known as cartilage matrix protein (CMP), is an 

abundant component of cartilage (23).  A modular 

protein, MATN-1 mediates interactions between a 

variety of matrix components (24) and, as a 

structural protein, it binds to biglycan and decorin 

(25), collagen (26), cartilage oligomeric matrix 

protein  (27) as well as to itself (28). To our 

knowledge, this report is the first to document the 

ability of this structural protein to suppress new 

capillary growth in vivo and suggests that its 

targeting may be of potential clinical significance. 

 

EXPERIMENTAL PROCEDURES 

Extract preparation--The chondrocranium 

cartilage of the spiny dogfish (Squalus acanthias) 

was harvested and scraped free of muscle and 

connective tissue as described previously (4,14).  

The prepared cartilage (250 g) was homogenized 

and extracted in 4L of a 2M NaCl, 0.01M HEPES, 

3mM EDTA, 0.02% NaN3 extraction buffer for 4 

days under constant agitation, utilizing a 

modification of a previous procedure (4).  The 

extraction solution was filtered with gauze, 

centrifuged at 6,500 x g for 2 hours to remove 

particulates, then concentrated using a Vivacell 

250 (Sartorius Stedim Biotech) to a final volume 

of approximately 5 ml.  The concentrated cartilage 

extract (CCE) had a final protein concentration of 

7.8 mg/ml.  All procedures were performed at 4ºC. 

Purification and identification of MATN-1--A 

40 mg sample of CCE, dialyzed against Biogel A-

1.5M buffer (4 M guanidine HCl, 20 mM Tris, pH 
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7.6) overnight, was applied to a Biogel A-1.5M 

Sepharose size exclusion column (5x50) at a flow 

rate of 1.0 ml/min; fractions were collected every 

5 minutes. Fractions were screened for their ability 

to inhibit both EC proliferation and matrix 

metalloproteinase (MMP) activity (Fig. 1A).  

Given that cartilage had already been reported to 

contain an anti-angiogenic activity that was 

identified as being an MMP inhibitor (4), fractions 

were screened for both of these activities in order 

to identify a novel inhibitor of neovascularization.  

Fractions 22-34 from the column were enriched in 

the ability to inhibit EC proliferation and were 

pooled, dialyzed overnight to remove the 

guanidine HCl, and then applied to a Bio-Rex 70 

column (Bio-Rad) and fractionated, as previously 

described by us (4).  Fractions 2 and 5 (Fig. 1B), 

which contained the anti-proliferative activity, 

were pooled and dialyzed to remove excess salts, 

then subjected to electrophoresis on 12% SDS-

PAGE gels (BioRad) or 12% Bis-Tris NU-PAGE 

gels (Invitrogen) run under denaturing conditions 

followed by visualization by either silver or 

SYPRO Ruby (Invitrogen) staining (29). Protein 

bands were excised from the gel, subjected to 

tryptic digestion, and analyzed by MALDI-TOF 

mass spectrometry (Perceptive STR, Applied 

Biosystems, Framingham, MA) to determine the 

molecular weights of the proteins and for peptide 

mapping of the tryptic digests using a 337-nm 

wavelength laser for desorption and the reflectron 

mode of analysis. Using the MSFit 

(http://www.prospector.ucsf.edu) and SEQUEST 

(30) search programs, the peptide maps generated 

were searched against a FASTA data base of 

public domain proteins constructed of protein 

entries in the non-redundant data base held by the 

NCBI and Swiss-Prot. Peptide matches identified 

by MSFit were filtered according to their MOWSE 

(molecular weight search) score, percentage of 

masses matched, molecular weight, and number of 

observations of peptides and proteins  

Cloning, expression and purification of 

MATN-1--The cMATN-1 gene was cloned using a 

pcDNA3.1 vector with cMATN-1 insert (31) and 

primers specific for the mature form of chick 

MATN-1.  The human MATN-1 (hMATN-1) gene 

was cloned from normal adult human lung and 

trachea first strand cDNA (Biochain Institute, Inc.; 

Hayward, CA).   For the cloning of both the chick 

and human MATN-1 into the pPICZC 

expression plasmid, the cDNAs for MATN-1 were 

amplified by PCR using two primers that covered 

the translation start codon (primer 1) and the stop 

codon (primer 2) of CMP cDNA, respectively. 

The two primers were designed in such a way that 

primer 1 contained a XhoI site and primer 2 

contained a poly His tag (to aid in purification) 

and a XbaI site (for hMATN-1, primer 1, 5'  

CCGCTCGAGATGAGGGTCCTCTCTGGC A3'; 

primer 2, 5' GCTCTAGATCAATGATGATGA 

TGATGATGTTAGACAACTGTGTTC 3'; for 

cMATN-1,  primer 1, 5’ CCGCTCGAGAAA 

AGACCTCCTCAGCCCAGAGG 3’; primer 2,  5’ 

GCTCTAGATCAATGATGATGATGATGATG

GATGATCTTATTCTC 3’).  The full-length 

MATN-1 PCR products were subcloned into 

pCR4-TOPO vector (Invitrogen).  After 

confirmation of the sequence, the MATN-1 genes 

were ligated into the yeast expression vector 

pPICZC (Invitrogen).  Linearized vectors (PmeI) 

were electroporated into the yeast Pichia pastoris 

for expression (Invitrogen), and integrants were 

selected by culturing on YPDS (2% peptone, 1% 

yeast extract, 2% glucose, 1M sorbitol, 2% agar) 

plates with 100 g/ml zeocin (Invitrogen) for 3 

days.  Successful insertion of chick and human 

genes of interest into the Pichia genome were 

verified by PCR using Pichia specific primers, 

which also verified that recombination occurred at 

the correct site.  Expression of the gene of interest 

is under the control of the methanol-inducible 

AOX1 promoter. 

Five Pichia clones each of cMATN-1 and 

hMATN-1 were tested for their expression levels 

and the clones from each set expressing the 

highest amount of protein were chosen for 

subsequent studies.  The expression conditions 

were as follows: 25-ml overnight cultures were 

grown at 30 °C in yeast extract peptone dextrose 

medium (YPD,  1% yeast extract, 2% peptone, 2% 

dextrose) containing 100 g/ml zeocin.  Cell 

pellets were collected after 24 h by centrifugation 

at 1500 x g.  Cultures were induced to express the 

recombinant proteins by resuspending the cell 

pellets in 250 ml of buffered methanol-complex 

medium (BMMY,  2% peptone, 1% yeast extract, 

100mM potassium phosphate, pH 6.0, 1.34% yeast 

nitrogenous base, 1% methanol), and allowed to 

grow for 24 h at 30 °C with constant shaking.   



 Matrilin-1 Inhibits Neovascularization  

 

 

 4 

Medium containing the secreted expressed protein 

was cleared of cell content by centrifugation at 

5000 x g. 

Purification of recombinant MATN-1--

Expressed recombinant chicken and human 

MATN-1 proteins were initially purified from the 

yeast media using histidine affinity binding to a 

nickel-nitrilotriacetic acid-agarose (Ni-NTA) resin 

(Qiagen, Valencia, CA) under native conditions. 

Expressed protein in 800 ml of pooled, cleared 

medium was allowed to bind to 5 ml of resin in a 

pre-packed column by gravity flow at 4 °C.  The 

resin was washed with 50ml (10 volumes) of 

buffer containing 10mM imidazole (50mM 

NaH2PO4, 300mM NaCl, 10mM imidazole, pH 

8.0) to reduce nonspecific binding. Protein was 

then eluted using 25ml (5 volumes) of elution 

buffer containing 100mM imidazole (50mM 

NaH2PO4, 300mM NaCl, 100mM imidazole, pH 

8.0) and concentrated by centrifugation using 

membrane concentrators with 10-kDa molecular 

mass cutoff (Centriprep, Amicon, Beverly, MA).  

Purity was confirmed by silver staining of SDS 

PAGE gels and MS/MS.  

Cell culture--Capillary EC, isolated from 

bovine adrenal cortex, were a kind gift of Dr. 

Judah Folkman and Catherine Butterfield (Boston 

Children’s Hospital).  Cells were maintained in 

Dulbecco’s modified Eagle’s medium (DMEM; 

Invitrogen) containing 10% calf serum (HyClone) 

and 3 ng/ml basic fibroblast growth factor (bFGF) 

in 10% CO2 at 37 °C, as previously reported (4). 

Endothelial cell proliferation assay-Capillary 

EC proliferation was measured as reported 

previously (4,6,13). Briefly, capillary EC were 

plated on pregelatinized 96-well plates at a density 

of 2000 cells per well in Dulbecco’s modified 

Eagle’s medium supplemented with 5% calf serum 

and allowed to attach for 24 h. The next day, cells 

were treated with fresh medium with or without 1 

ng/ml bFGF and challenged with the test proteins 

at various concentrations. All samples were tested 

in duplicate. Control wells contained cell treated 

with medium alone or medium with bFGF. After 

72h, the medium was removed, and the cells were 

lysed in buffer containing Triton X-100 and the 

phosphatase substrate p-nitrophenyl phosphate. 

After 2h incubation at 37 °C, NaOH was added to 

each well to terminate the reaction and cell density 

was determined by colorimetric analysis using a 

SpectraMax 190 multiwell plate reader (Molecular 

Devices, Sunnyvale, CA). All samples were tested 

in duplicate in at least three independent 

experiments. 

Capillary endothelial cell migration--

Capillary EC migration was studied using a 

modified Boyden chamber as previously described 

(4,32). The upper half of transwell (8µM pore; 

Costar) membranes were coated with fibronectin 

(10µg/ml; Becton Dickinson) overnight at 4 °C to 

facilitate cell adhesion. Coated membranes were 

rinsed with PBS and allowed to air dry 

immediately before use. Cells were detached by 

trypsinization, and resuspended at a final 

concentration of 0.5 × 106 cells/ml in serum-free 

DMEM containing 0.1% BSA. Cells were added 

to the upper chamber of the transwell and allowed 

to migrate toward the bottom chamber containing 

DMEM, or DMEM supplemented with the 

chemoattractant bFGF for 4h in a humidified 

incubator containing 5% CO2.  Transwell filters 

were rinsed once with PBS and fixed and stained 

using a Diff-Quik kit (Baxter) following the 

manufacturer's protocol. Stained filters were cut 

out of the chamber and mounted onto slides using 

Permount (Sigma). The number of migrated cells 

were counted (three fields from each membrane 

were captured using a 10× objective), and images 

were captured with a CCD camera using SPOT 

software. Total migration per membrane was 

quantified from the captured images using Scion 

Image software (National Institutes of Health). All 

experiments were run in triplicate. 

MMP inhibitory activity--MMP inhibitory 

activity was assessed using a quantitative [C14] 

collagen film assay, as described previously 

(4,32).  An IC50 unit was defined as the amount of 

protein necessary to inhibit the proteolytic activity 

of collagenase by 50%. 

Angiogenesis inhibitory activity in vivo-- The 

CAM assay was conducted as reported previously 

(4,32).  Three day old chick embryos were 

removed from their shells and incubated in plastic 

Petri dishes for 3 days. On embryonic day 6, 

samples and controls were mixed into 

methylcellulose and allowed to dry.  The discs 

were applied to the surfaces of developing CAMs, 

above the dense subectodermal plexus. After an 

incubation of 48 h, the eggs were examined for 

vascular reactions under a dissecting scope and 



 Matrilin-1 Inhibits Neovascularization  

 

 

 5 

photographed. All samples were tested in triplicate 

for each treatment.  

Mice tibia fracture model--Animals were 

studied at Coro Center Facilities of Rhode Island 

Hospital. NIH guidelines for the care and use of 

animals were observed and the study was 

approved by Rhode Island Hospital IACUC. Six to 

eight week-old male mice were used in the 

experiments.  MATN-1 -/- (n=5) mice and WT 

mice (n=5) of the same genetic background 

(C57BL/6J) were genotyped using PCR.  The 

animals were used to create fracture models as 

previously described (33)(1,33). In brief, animals 

were anesthetized by intraperitoneal injection of a 

Ketamine (Bioniche Pharma USA) and 

Medetomidine (Orion Corporation Espoo, 

Finland) cocktail (75 + 1 mg/kg).  The animals 

were prepared for surgery by shaving and 

scrubbing of both hind limbs. A longitudinal short 

incision was made at the knee, and a 0.5mm hole 

was drilled above the tibial tuberosity. A 30G 

stainless-steel needle (Hamilton, Reno, Nevada, 

USA) was introduced into the intramedullary canal 

of the tibia. The wound was closed, and the 

procedure was repeated on the contralateral side. 

A closed transverse mid-diaphyseal tibia fracture 

was created by three-point bending in the right 

tibia, and the animal was allowed to move freely 

after recovery from anesthesia with the 

intraperitoneal injection of Antisedan (Orion 

Corporation Espoo, Finland) (1mg/kg). A 

preoperative cefadroxil (25mg/kg) was 

administered subcutaneously to prevent infection. 

Buprenex (Reckitt Benckiser Healthcare, UK; 0.03 

mg/kg) was given once preoperatively and two 

times per day during the first 3 days after surgery 

to relieve pain. 

Fluorescence molecular tomography 

measurements of angiogenesis--The commercially 

available fluorescent probes, AngioSenseTM 

(FRFP750, excitation 750t10 nm; emission 780t10 

nm) (VisEn Medical Inc., Woburn, MA) was used 

in this study. The AngioSenseTM750 is a 

fluorescent in vivo blood pool imaging agent 

which enables imaging of blood vessels and 

angiogenesis. The adult mouse dose of 2 nmoles in 

150mL saline (13.3mM) or approximately 80 

nmoles/ kg body weight was utilized. The probes 

were delivered to the animals via IP injection 24 

hours before taking the images with Fluorescence 

Molecular Tomography (FMT) system (VisEn 

Medical Inc., Woburn, MA) on day 4 post-surgery. 

Twenty-four hours after the probe injection, mice 

were anesthetized with a solution of ketamine and 

medetomidine, and imaged using the VisEn’s 

FMT system, as described previously (34). Three-

dimensional regions of interest were drawn around 

the tibial fracture limbs and control limbs and a 

threshold was applied equal to 10% of the 

maximum value of fluorescence in each 

reconstructed volume. The peak concentration (in 

nanomoles per liter) and total amount (in 

picomoles) of fluorochrome were automatically 

calculated relative to internal standards generated 

with known concentrations of appropriate dyes. 

Callus mRNA expression--The RNeasy 

Fibrous Tissue Mini kit (Cat.No.74704, Qiagen, 

Valencia, CA) was used to extract RNA from the 

fracture calluses 14 days post-surgery with the 

following modification. After the mice were 

sacrificed, the fracture calluses were placed in 

RNA later (Qiagen, Valencia, CA) and stored at 

−80°C until RNA extraction. The calluses were 

ground into a fine powder using mortar and pestle 

with liquid nitrogen, and extracted according to 

the instructions provided with the kit. Quality and 

quantity of RNA were determined using a Nano-

drop (Ambion, Austin, TX). mRNA was 

determined by real-time quantitative reverse 

transcriptase PCR (RT-PCR). Total RNA (1 μg) 

was transcribed into cDNA using iScripTM (Bio-

Rad, Hercules, CA) with (40ng/µl) of the resulting 

cDNA used as the template to quantify the relative 

content of mRNA by RT-PCR using Sso Fast 

EvaGreen Supermix (Bio-Rad, Hercules, CA) with 

CFX 96 Real Time PCR system (Bio-Rad, 

Hercules, CA). To normalize the data, mRNA 

expression of a housekeeping gene, 18S was also 

determined. The cycle threshold (Ct) values for 

18S RNA and that of samples were measured and 

calculated by Excel (Office 2007, Microsoft, 

Redmond, WA). Relative transcript levels were 

calculated as x= 2-△△Ct, in which △△Ct = △E – △C, 

and △E = Ctexp-Ct18s; △C = Ctctl-Ct18s. 

 

RESULTS 

Identification of Matrilin 1--The band 

migrating at approximately 52 kDa consistent with 

the molecular mass of MATN-1 was excised from 

the gel (Fig. 1C) and subjected to mass 
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spectrometry analysis as described above. The 

MOWSE score reported by MS-Fit was 547 with 6 

matching peptides (40% coverage); the protein 

was identified as cartilage matrix protein precursor 

(CMP) or Matrilin-1 (Gallus gallus: EMBL-EBI 

Accession# 115555).  SEQUEST also identified 

the protein as Matrilin-1 (Gallus gallus: 

Accession# P05099) with a reported Xcor value of 

3.04 or higher for four peptides; again the protein 

was identified as a cartilage matrix protein 

precursor (Matrilin-1; P05099) (Fig. 1C,D,E). 

Immunoblot analysis using a monoclonal antibody 

to MATN-1 (1:3000) confirmed the identification 

of the 52 kDa protein band as being MATN-1. 

This antibody was a gift from Dr. Paul Goetinck 

(35)  (Fig. 1F). 

MATN-1 inhibits angiogenesis in the chick 

CAM assay--The chick CAM assay was used to 

determine whether MATN-1 could suppress 

angiogenesis in vivo.  We observed significant 

inhibition of embryonic neovascularization in this 

assay as evidenced by the avascular zone elicited 

by representative CAM treatment with  10g (350 

nM) of recombinant chicken MATN-1 or 5g 

recombinant human MATN-1 (Fig. 2).   

MATN-1 inhibits endothelial cell proliferation 

and migration--Given its ability to inhibit 

angiogenesis in vivo, we next asked how MATN-1 

might be exerting this antiangiogenic effect. We 

tested MATN-1 in two different assay systems, 

which measured the inhibition of angiogenic 

mitogen-driven capillary endothelial cell 

proliferation and migration, two processes 

essential for successful angiogenesis.  Purified 

native chick MATN-1 (Fig. 3A), recombinant 

chick MATN-1 (Fig. 3B) and recombinant human 

MATN-1 (Fig. 3C) all suppressed EC 

proliferation.  The IC50 for each of the three 

treatments was approximately 175 nM, 275 nM, 

and 75 nM, respectively.  When purified native 

chick MATN-1, recombinant chick MATN-1, or 

recombinant human MATN-1 (Fig. 4) were tested 

for their effect on EC in a transwell migration 

assay, we found that migration was inhibited in a 

dose-dependent manner with an IC50 of 

approximately 75 nM, 80 nM, and 10 nM, 

respectively.   

MATN-1-/- mice induce angiogenesis in the 

early period of fracture healing—We next 

complemented these in vitro gain of function 

studies by conducting in vivo loss of function 

experiments using MATN-1 KO mice. The FMT 

images and tomographic reconstructions showing 

angiogenesis in the injured site (Fig. 5) provide a 

clear visualization and quantification of 

neovascularization in the fracture site and control 

limb. Figure 5 shows a 3D rendering of the 

vasculature in WT and MATN-1 -/- mice, 

respectively, injected with AngioSenseTM 24h 

before FMT analysis taken on Day 4 post fracture. 

The fractured tibia of MATN-1 -/- mice displayed 

a significant AngioSenseTM signal, which was 

1.76-fold higher than that of the WT mice (p= 

0.0041). There was no significant difference 

between MATN-1 -/- and WT mice in the control 

tibia (p=0.0970). MATN-1 -/- mice had a 1.87-

fold higher AngioSense signal compared to WT 

mice (p=0.0156). These findings from the FMT 

analysis indicated that there was significantly 

more vascularization at the early stage of fracture 

healing in MATN-1 -/- mice. 

To confirm these findings, we analyzed the 

expression of angiogenesis-related gene markers. 

The animals were sacrificed on Day 14 post-

fracture and total RNA was isolated from the 

fracture calluses for RT-PCR analysis. The mRNA 

expression of angiogenesis-relevant factors, 

including PECAM1, VEGFR, and VE-cadherin 

were examined by RT-PCR (Fig. 6). The results 

demonstrated that, 14 days after fracture, MATN-

1-/- mouse calluses expressed significantly higher 

PECAM1 (p=0.0041), VEGFR (p=0.0115), and 

VE-cadherin (p=0.0004) expression levels 

compared to those of WT mice. Taken together, 

these results demonstrate that MATN-1 inhibits 

angiogenesis in the early phase of fracture healing. 

 

DISCUSSION 

In the present study, we demonstrate for the first 

time that MATN-1 is an inhibitor of angiogenesis. 

We have further demonstrated that the mechanism 

by which MATN-1 inhibits angiogenesis is 

through the potent inhibition of growth factor-

stimulated capillary endothelial cell proliferation 

and migration.  These two activities have been 

shown by our laboratory and many others to be 

necessary mechanisms for the formation of new 

capillaries from pre-existing vessels, ie., 

angiogenesis (36).  These in vivo data are 

supported by both the in vitro gain of function 
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experiments (Fig. 3 and Fig. 4) and an in vivo loss 

of function study using MATN-1 KO mice (Fig. 5 

and Fig. 6).This novel activity of MATN-1 may be 

due to structural and/or regulatory roles of 

MATN-1 in cartilage. MATN-1 contains the 

vWFA domain, also called the  I domain in the 

integrin family, which is responsible for the 

MATN-1 interaction with ECM and integrins via 

the MIDAS motif (28).  This interaction may 

affect angiogenesis  which critically depends on 

cell-matrix interaction (4,36). This hypothesis 

remains to be tested in future.   
MATN-1 is a modular matrix protein capable 

of mediating interactions between a variety of 

matrix components through von Willebrand Factor 

type A (vWFA) domains that intervene through 

adhesion via metal ion-dependent adhesion sites 

(MIDAS).  These domains exhibit high affinity 

toward collagen which also possesses vWFA-like 

domains (24), as well as biglycan and decorin 

(25). The discovery of a non-collagenous matrix 

protein as an angiogenesis inhibitor is not 

unprecedented.  Decorin, a small proteoglycan 

composed of a protein core and a covalently linked 

side chain of chrondroitin/dermatan sulfate, has 

been shown to inhibit endothelial cell migration, 

attachment, and the formation of endothelial tube-

like structures (37,38). MATN-1 is the newest 

member of the family of matrix-derived inhibitors 

of neovascularization.  As is the case with 

thrombospondin-1 and -2  (39-41), it distinguishes 

itself from other inhibitors in this family such as 

endostatin (42,43), tumstatin (44,45), arresten (46) 

and canstatin (47) in that these latter inhibitors are 

proteolytically-processed products of larger, 

largely angiogenesis-inert matrix proteins (48,49).  

Our group and others have reported the 

discovery of novel cartilage-derived anti-

angiogenic proteins (4,6,13) and a number of other 

groups have reported the presence of potential 

inhibitors of neovascularization from non-

mammalian sources of cartilage as well.  For 

example, fractionated samples of shark cartilage 

extracts, such as U-995 (15), SCF2 (1), SCAIF 80 

(16), and DCAI (50), have shown preliminary 

promise in inhibiting angiogenesis, however the 

active biomolecule has yet to be purified and 

identified.  SCP1, a low molecular weight protein 

extracted from shark cartilage, with a sequence 

similar to alpha parvalbumin, a calcium-binding 

molecule, has been shown to exert some anti-

angiogenic activity in a rat aortic ring assay (17).  

Neovastat, a purified fraction of shark cartilage 

extract with MMP inhibitory activity (51), was 

developed for clinical use and demonstrated 

limited success in early phase I/II clinical trials as 

treatment for non-small cell lung cancer and renal 

cell carcinoma (52-54).  Ultimately, in phase III 

trials, when coupled with standard chemotherapy, 

Neovastat had no additive effect on the 

improvement of overall survival in patients with 

unresectable stage III non-small cell lung cancer 

(55). Neovastat has had limited success in the 

treatment of renal cell carcinoma (56).   

MATN-1 is an inhibitor of both capillary 

endothelial cell proliferation and migration, 

processes which, when driven by endothelial cell 

mitogens, represent critical processes required in 

order to assess angiogenic potential.  It is an 

inhibitor of angiogenesis in vivo in a model of 

normal, embryonic angiogenesis such as the CAM, 

as well as in a model of pathological 

neovascularization and in the mice tibia fracture 

model.  As such, this protein, either alone or in 

combination with other inhibitors, may be useful 

in the treatment of a number of diseases that are 

characterized by dysregulated neovascularization.   
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FOOTNOTES 

 

The abbreviations used are:  CCE, concentrated cartilage extract; MATN-1, Matrilin-1; aFGF, acidic 

fibroblast growth factor; bFGF, basic fibroblast growth factor,;TIMP-1, tissue inhibitor of 

metalloproteinases 1; TnI, Troponin I. 
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FIGURE LEGENDS 

 

Figure 1.   Purification of anti-angiogenic activity in CCE and Identification of anti-angiogenic 

activity as being MATN-1 
Fractions 22-34 of CCE fractionated on a Biogel A-1.5M size-exclusion chromatography significantly 

inhibited mitogen-stimulated capillary EC proliferation.  Fractions 52-75 contained metalloproteinase-

inhibiting activity but had no significant effect on EC proliferation (A).  Fractions 22-34 were pooled, 

concentrated, dialyzed and subjected to further purification on a Bio-Rex 70 cation exchange column. 

Fractions 2 and 5 contained inhibitory activity of FGF-stimulated capillary EC proliferation with no 

significant TIMP activity (B).  The antiproliferative activity from the Bio-Rex 70 column was 

concentrated and electrophoresed on a 12% SDS-PAGE gel followed by staining with SYPRO Ruby (C). 

Bands were excised from the gel and analyzed by mass spectrometry with the band highlighted by the red 

box having two peptide matches identifying it as being matrilin-1 (C,D,E). To confirm this identification, 

a sample of the same fraction from the cation exchange column was electrophoresed on a 12% SDS-

PAGE gel and probed with an antibody to matrilin-1(F).   

 

Figure 2.  MATN-1 suppresses angiogenesis in vivo 

Recombinant chick MATN-1 and human MATN-1 inhibit angiogenesis in vivo as indicated by the 

avascular zones localizing the zones of new capillary inhibition on the chick chorioallantoic membrane 

induced by (B)10 µg of rcMATN-1 and (C) 5 µg of rhMATN-1. 

 

Figure  3.  Inhibition of bFGF-stimulated bovine capillary endothelial cell growth by MATN-1 

Purified cMATN-1 (A), rcMATN-1 (B), and rhMATN-1 (C) were tested for their ability to inhibit bFGF-

stimulated EC growth.  In all cases, MATN-1 was found to inhibit EC proliferation in dose-dependent 

manner.  

 

Figure 4.  Inhibition of bFGF-stimulated bovine capillary EC migration by MATN-1 

Purified cMATN-1 (A), rcMATN-1 (B), and rhMATN-1 (C) were tested for their ability to inhibit bFGF-

stimulated EC migration.  In all cases, MATN-1 was found to inhibit EC migration in a dose-dependent 

manner.  Cells were labeled as described in Experimental Procedures and allowed to migrate through the 

transwell. Representative images of migrated cells treated with (D) 0 nM, (E) 10 nM, (F) 100 nM, and 

(G) 200 nM of recombinant human MATN-1. 

 

Figure 5. In vivo imaging and quantification of AngioSense signal in WT and MATN-1 KO mice on 

Day 4 post fracture. 

Representative volume renderings taken at the same color gating from WT (A) and MATN-1 -/- mice (B) 

injected with AngioSense according to manufacturer’s directions. The total amount of fluorescence 

(pmol) was quantified in specific regions of interest encompassing fracture tibias and control tibias. 

MATN-1 KO mice showed a significant 1.76 fold increase in AngioSense signal (p = 0.0041) in fractured 

tibia compared to WT mice (C). There was no difference between MATN-1 KO and WT mice in control 

tibias (D; p =  0.0970). MATN-1 KO mice had 1.87 fold higher AngioSense signal compared to WT mice 

(E), when the signal amount of fractured tibia was subtracted from that of control tibias 

(p = 0.0156).*p<0.05.n=5.  

 

Figure 6. mRNA expression of angiogenesis-related genes in the fracture calluses of MATN-1 KO 

and WT mice on Day 14 determined by real-time RT-PCR analysis 

MATN-1 KO mice had significantly higher (A) PECAM1 (p= 0.0041) (B) VEGFR (p= 0.0115), and (C) 

VE-cadherin (p= 0.0004) expression levels compared to WT mice. *p<0.05, n=5. 
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