
MIT Open Access Articles

A Distributed Robot Garden System

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Sanneman, Lindsay, Deborah Ajilo, Joseph DelPreto, Ankur Mehta, Shuhei Miyashita, 
Negin Abdolrahim Poorheravi, Cami Ramirez, Sehyuk Yim, Sangbae Kim, and Daniela Rus. 
“A Distributed Robot Garden System.” 2015 IEEE International Conference on Robotics and 
Automation (ICRA) (May 2015).

As Published: http://dx.doi.org/10.1109/ICRA.2015.7140058

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/119685

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/119685
http://creativecommons.org/licenses/by-nc-sa/4.0/


A Distributed Robot Garden System

Lindsay Sanneman, Deborah Ajilo, Joseph DelPreto, Ankur Mehta, Shuhei Miyashita,
Negin Abdolrahim Poorheravi, Cami Ramirez, Sehyuk Yim, Sangbae Kim, and Daniela Rus

Abstract— Computational thinking is an important part of
a modern education, and robotics provides a powerful tool for
teaching programming logic in an interactive and engaging way.
The robot garden presented in this paper is a distributed multi-
robot system capable of running autonomously or under user
control from a simple graphical interface. Over 100 origami
flowers are actuated with LEDs and printed pouch motors, and
are deployed in a modular array around additional swimming
and crawling folded robots. The garden integrates state-of-the-
art rapid design and fabrication technologies with distributed
systems software techniques to create a scalable swarm in
which robots can be controlled individually or as a group.
The garden can be used to teach basic algorithmic concepts
through its distributed algorithm demonstration capabilities
and can teach programming concepts through its education-
oriented user interface.

I. INTRODUCTION
In addition to research and industry, robots have been

seeing increasing use in art and education [1]–[6]. Electrome-
chanical systems can capture the attention and imagination
of all audiences by employing motion, lighting, and other
sensory feedback. Programs such as US FIRST [7] and the
AFRON design challenge [8] are helping to promote and
expand the reach of such robotic applications.

However, an issue with such systems stems from the
difficulty of designing, fabricating, and programming com-
plex electromechanical devices. They often require teams
of dedicated engineers to create the finished product, for
instance with amusement park animatronics [9]. Alternately,
the engineers can create kits to allow more general creation,
e.g. Lego Mindstorms [10], but these kits become expensive
and offer limited customizability.

This work presents the rapid prototyping design, fabrica-
tion, and operation of a robot garden system. This system
comprises a heterogeneous, distributed, multi-robot swarm,
and is a scalable platform on which to demonstrate and
evangelize robotics and computation. The creation of the
system employed a number of rapid design and fabrication
tools and techniques to create several distinct robots, which
then operate together in a unified aesthetic display. This
installation can operate autonomously or be controlled from
an integrated user interface. It can be used as a showcase
for robot design and fabrication processes, a testbed for
distributed algorithms, or a launchpad for computational
education.

The contributions of this work are as follows:
• the application of printable fabrication techniques to

create a variety of distinct robots,
• distributed computation and control for the heteroge-

neous robot swarm,

Fig. 1. The Robot Garden is a heterogeneous collection of distributed
robots, including 100 actuated origami flowers and mobile foldable insects.

• the presentation of a fully functional robot garden, and
• analysis of the system in terms of educational and

broader impact.
A high level description of the garden is outlined in

section II, followed in section III by the process by which its
mechanical system was realized. Section IV contains a de-
scription of the electrical and electromechanical systems used
to imbue the robots with actuation, and the algorithms and
software used to control the robots are presented in section
V. Section VI presents some results from the operation of the
robot garden, followed by an analysis of its behavior in terms
of education in section VII, and more general conclusions in
section VIII.

II. ROBOT GARDEN OVERVIEW
The Distributed Robot Garden System is a multi-robot

system consisting of flower robots, crawling robots and
swimming robots. In contrast to the robot garden in [11],
not only are there robots amongst the plants in the garden,
but the plants themselves are robotic devices. This is similar
to the artistic sculpture “Electronic Garden #2” described
in [1] and the interactive display of [12].

The robots in this garden interact with a user through
a user interface on a Bluetooth-enabled device and robots
can either be controlled individually or as a group. The
robot garden integrates printable robot and pouch motor
technologies with distributed software techniques to produce
a visually captivating educational tool.

The garden consists of 100 printable robotic flowers of
eight different varieties. The movement of each flower is



Fig. 2. A self-folding crane is magnetically controlled across the surface
of a pond.

controllable using a printable pneumatic actuator called the
pouch motor [13]; by inflating and deflating a polyethylene
pouch, flowers can open and close. At least one flower per
tile also features RGB LED lights and can therefore change
color on demand. The robotic flowers span 16 separate tiles
in the garden structure, and control of flower movement and
color can be per flower, per tile, or distributed across the
entire garden.

We expanded our distributed system to integrate additional
different types of printable robots on the same platform.
These robots include an insect-type crawling robot (Fig. 3)
[14] and a remotely controlled swimming crane robot on a
pond placed in the center of the garden (Fig. 2).

The insect robot shown in Fig. 3 is fabricated using a
print-and-fold technique. The insect’s structural, electrical,
and software designs were auto-generated using a robot
compiler [14]. The insect crawls around the garden, and its
speed and direction are managed by an embedded Arduino
Pro Mini and can be remotely modified by an operator using
a smartphone user interface.

Control of the swimming robot is managed by applying
a magnetic field remotely. We fabricated an origami-crane
robot equipped only with a permanent magnet for actuation
and fabricated using a print-and-self-fold technique [15]. The
design utilizes a crease pattern proposed in [16], and was
folded by applying heat in an oven. The remote magnetic
control is implemented by four electromagnetic coils situated
under the pond. Each coil is tilted 45 degrees relative to
a central symmetric axis [17]. This configuration enables
the crane robot to move in an arbitrary x-y direction while
floating on water.

III. ROBOT GARDEN DESIGN AND FABRICATION

All garden components are modules that can be easily
added or removed from the system. These modules include
the tiles that comprise the garden structure, each of the 100
robotic flowers, and other robots in the garden. The garden
bed is 86⇥170cm and has six rows and three columns for a
total of 18 tiles. Tiles are 28⇥28cm. Two tiles in the center

Fig. 3. An insect manufactured using print-and-fold techniques can crawl
around the flowers.

of the garden are empty and are reserved for display of the
swimming crane robot and the insect robot. The other 16
tiles (Fig. 4 (a)) are full of the robotic flowers and some
empty connectors that are camouflaged with the tiles to
avoid overcrowding in the garden. Each robotic flower in the
garden is fabricated using print-and-fold mechanical design
and novel printed pouch motor actuators [13]. Each of the 16
operational tiles has eight holes for interchangeable flower
connectors, allowing the garden to be easily reconfigured
(Fig. 4 (b)).

One tile of robotic flowers has eight primary mechanical
and electrical components (Fig. 5), which are as follows:

• Origami flower: Flowers are made of thin color papers
or thin acrylic sheets, 0.2 mm in thickness. The designed
flowers are manually cut and folded.

• Pouch motors: Pouch motors are soft pneumatic actu-
ators used to actuate the blooming motion of petals.
Their shape, dimension and patterns are programmed
on a desktop computer and manufactured using a heat
sealing method [13].

• Tubes and wires: Tubes and wires provide air pressure
and electrical signals to the flowers. They are coated
with green-colored liquid rubber, which is cured at
room temperature for a day after application. The rubber
coating increases the stiffness of the stem so the flower
and stem can maintain their pose.

• Connector: The robotic flower connector has three main
functions. First, it fixes the rubber-coated stem to the
plate. Second, it connects the air pressure and electrical
signals from the system below the tile to the air pouches
and LEDs on the flower. Finally, it allows flowers to be
interchangeable throughout the garden. This accommo-
dates multiple configurations of flowers in the garden
and allows a broken flower to easily be exchanged for
a new flower (see the right flower in Fig. 5). Connectors
are made by using a 3-D printer or rubber molds.

• Acrylic plate: The plate has eight holes to support
robotic flower connectors. The position of holes can be
programmed using a CAD tool and rapidly manufac-



Fig. 4. Robot Garden Tiles (a) The robotic garden bed consists of 16
identical modular tiles. (b) Each modular tile can hold 8 flowers.

Fig. 5. A schematic figure (side-view) of a pouch-actuated robotic flower.
Each robotic flower has one connector, wires, a tube, a printable and
inflatable pouch, and some flowers have LEDs. The pneumatic and electrical
system below the acrylic tile provide air pressure and electric signals to the
pouch and LEDs in the flower. Flowers are interchangeable throughout the
garden.

tured by using a laser cutter.
• Pneumatic and Electrical System: Each tile has one

pneumatic and electrical setup to actuate the pneumatic
pouches and LEDs inside the flowers. These flower
actuation and control systems are detailed further in
sections IV and V.

The above components are mass-producible using a laser
cutter, a 3-D printer, a computer-controlled heat sealing
machine, and molds. Using these tools, we can manufacture
garden components quickly and in large quantities.

We developed a pouch-motor manufacturing method to
allow rapid design, fabrication, and iterative design modifi-
cation of the pouch motors [18]. The detailed process is as
follows: a 2D pouch motor CAD design is converted into
Numerical Control (NC) codes, which are then sent to a
custom-made CNC machine to make the pouch systems. This
machine “draws” pouch patterns onto two layers of 4mm
thick polyethylene film simultaneously using the heat sealing
machine which incorporates a heated soldering iron [18].

Our versatile fabrication process also enables multilayer
pouch motors to be made simply layer by layer. We added

Fig. 6. Fabrication method of a two-layer pouch motor.

four alignment features to the CNC machine mounting board
to support this capability. We make the multilayer pouches
by creating “air doors” in between neighboring pouches first,
and then thermally bonding the top pouch while fiberglass
separates it from the bottom pouches. Using this rapid
fabrication technology we created 100 flower robots that can
be used as modules populating a control and programming
environment consisting of 16 tiles. The flower robots can be
used to visualize physically classical graph and networking
algorithms (e.g. to visualize depth first search or broadcast,
see section V part E), or programmed to display specific
global behaviors (e.g. to create waves.)

IV. ROBOT GARDEN DESIGN AND ACTUATION

The robotic flowers exhibited in the garden are all actuated
by pouch motors [13]. We made eight types of flowers, seven
made by folding origami paper and one made with an acrylic
sheet and decorated with LEDs. The robotic flower types
and numbers of each type of flower in the garden are as
follows: robotic tulip (20) , robotic lotus (25), robotic lily
(15), robotic spiral flower (11), robotic bird of paradise (2),
robotic fireworks flower (3), robotic clematis (3) and robotic
LED flower (40). In order to facilitate different foldings
and to achieve different blossom effects, pouch motors were
tailored to the different designs and actuation mechanisms.
The flower and pouch motor types are shown in Fig. 7. Each
robotic flower has one pouch actuator, allowing one degree
of freedom. Additionally, we have included the crane robot
and insect robot in the center of the garden. The following
list describes each type of robot in the garden and its motion:

• Robotic Tulip: The robotic tulip has a pouch hidden
inside the side petals. When the pouch is inflated, the
originally folded pouch unfolds and opens up the flower.
Some robotic tulips have an LED in the center that allow
these flowers to light up and change colors. See Fig. 7
(A).

• Robotic Lotus: Inside the robotic lotus, a smaller square
pouch is stacked on top of a larger square pouch. When
the pouches are inflated, they push up the stamen and
pistils. See Fig. 7 (B).



• Robotic Flower Lily: The robotic flower lily has mul-
tiple pouches connected in a cross beneath the petals.
Although the design looks like a linear mode pouch
system as introduced by Niiyama et al. [13], it acts like
a discrete rotational mode single pouch. This is because
the entire pouch is adhered to the flower petals, not only
the ends of each of the pouch stems. When pouches
are inflated, the individual pouches on the pouch stems
“bend” the adhered paper petals to open the flower.
Some robotic flower lilies have an LED in the center
that allow these robots to light up and change colors.
See Fig. 7 (C).

• Robotic Clematis: The robotic clematis uses the same
pouch motor design as the robotic lotus. The stamen
and pistils are pushed outward with pouch inflation. See
Fig. 7 (D).

• Robotic Spiral Flower: Unlike other robot flowers on
which pouch motors are adhered onto folded origami
structures, we took a very different approach to make
spiral flowers. For each spiral flower, we folded 12
simple petals and adhered them onto a spiral shape
pouch. When the pouch inflates, the length of the spiral
changes and presents a twisting effect on petals. See
Fig. 7 (E).

• Robotic Bird of Paradise: The actuation mechanism on
the robotic bird of paradise is similar to the method
used for the robotic lotuses in that pouches are stacked.
In this case, the bottoms of the individual pouches are
bonded together. When they are inflated, the pouches
separate and open the petals. See Fig. 7 (F).

• Robotic Fireworks Flower: Like the robotic flower lily,
the pouch motors for the robotic fireworks flower are
hidden beneath the petals of the flower. The change in
shape of the pouch during inflation pushes the flower
open. See Fig. 7 (G).

• Robotic LED Flower: Unlike the other flowers, the LED
flower is made with acrylic sheets. There is one LED
on each petal. The blooming motion of the petals is
actuated by rotational mode single unit pouch motors,
discussed in detail by Niiyama et al. [13]. The wires
connecting the LEDs are wrapped around the stem and
attached to the plug connector. See Fig. 7 (H).

• Robotic Crane: The robot crane is printable and self-
folding using a small oven. The crane contains a magnet
and is actuated using four electromagnetic coils below
the pond section of the garden where it swims. See
Fig. 2.

• Robotic Insect: The robot insect is a robot developed
using a robot compiler [14] and is fabricated using a
simple print-and-fold process. The insect comprises a
chassis, an Arduino Pro Mini board and continuous
rotation servos for control and actuation of the legs.
See Fig. 3.

We use electrical pumps and valves to control the actuation
of robot flowers. Each tile has 8 flower connections, 4
pneumatic solenoid valves, and a single pump; pairs of flower

Fig. 7. Pictures of inflated flowers and corresponding pouch motor designs.
The locations of the pouches are marked in yellow. (A)Tulip (B) Lotus
(C) Flower Lily (D) Clematis (E) Spiral Flower (F) Bird of Paradise (G)
Fireworks Flower (H) LED Flower

Fig. 8. Pneumatic connections. The ports on the valve from top to bottom
are: exhaust, supply and output.

ports are linked together through a solenoid valve to the air
supply. The valve connects the supply port to the output
port during the inflation phase to allow air to come into the
pouch from the pump. It connects the exhaust port to the
output port during the deflation phase to allow air to exhaust
in order to deflate the pouch. Fig. 8 shows the pump and
valve connections.

V. ROBOT GARDEN CONTROL
Each of the 16 tiles in the garden can support control

of up to eight flowers with LEDs and pouch motors. Each
tile in the garden is controlled using an Arduino Mega2560
microcontroller equipped with additional custom PCBs de-
signed to service all flower pumps and LED connections.
Each Arduino board can be connected to a serial Bluetooth
chip to allow Bluetooth communication between the tile
and a computer or smartphone device running a Graphical
User Interface developed in Python. We use the PyBluez
library [19] for Python to facilitate communication between



the Bluetooth-connected device and the Bluetooth chips in
the garden. Additionally, the Arduino boards are connected
in a wire mesh network; each Arduino can communicate
with each of its adjacent neighbors via a one-wire serial
protocol. This design therefore allows for both distributed
communications as well as centralized control. The intent is
that a limited number of tiles will have Bluetooth connec-
tions to the controller, and all other tiles will react solely
to inter-tile communications and thus create a distributed
mesh network. Algorithms are discussed below for tile self-
addressing, communication, and demonstration of distributed
behaviors - in these examples, only a single tile is equipped
with Bluetooth functionality.

A. Computational Hardware

The hardware components required for computation and
control of the garden include the following for each tile: an
Arduino Mega2560 board, two custom printed circuit boards,
a Bluetooth chip, and wired connections to pumps, valves,
LEDs and to other Arduino boards. In addition, a power
supply is required to provide power to all Arduinos and
pumps and a bluetooth-enabled computer that can run Python
is required for external control of the garden using the GUI.

The computational hardware used for the robot garden
is extensible. The custom printed circuit boards allow the
Arduino to service additional flowers or sensors, so hardware
can be reused if there are design changes in future versions
of the garden.

B. Graphical User Interface

We developed a Graphical User Interface (GUI) in Python
so that inexperienced users can easily control the garden.
The Graphical User Interface shows the layout of the garden
and has two components: the “Control by Click” component
and the “Control by Code” component. The two components
of the GUI are shown in Fig. 9. Each tile begins by running
in “Automode” in which flowers inflate, deflate and change
LED colors in a uniform pattern across all tiles. Once
a command is sent to a tile through the GUI, that tile
exits “Automode” and is controllable only through the user
interface.

The “Control by Click” component has buttons that allow
the user to open and close the flowers using the pouch
motors, a color wheel that allows the user to select a color
for LEDs on the flowers, and buttons to turn the LEDs
off and on. Additionally there are buttons that allow users
to demonstrate distributed behaviors throughout the garden.
Users can select one or multiple flowers or tiles to control
and then select a command on the interface, and the selected
tiles or flowers will execute the provided command.

The “Control by Code” component of the GUI allows
users to select a flower or tile and a command from a drop-
down menu. Users then add their selected tile and command
to the text by clicking the “Add Selection to Code” button
and can run the commands they have chosen in sequence
using the “Run Code” button.

Fig. 9. The robots can be controlled via a GUI over Bluetooth using either
(A) an intuitive “Control by Click” component or (B) a “Control by Code”
component for more advanced users.

Both components of the GUI can be run on a tablet
computer, allowing use of a touch screen interface for control
of the garden. Additionally, we developed a simple Android
application to allow users to send commands directly to the
garden over Bluetooth using a smartphone.

C. Mesh Network and Addressing
Control of the garden through the GUI requires commu-

nication between a computer and all tiles in the garden.
To support maximum scalability, we decided to establish
a minority of tiles (in this implementation, a single tile)
as Bluetooth tiles with connection to the computer and to
create a mesh network including the remaining tiles in the
garden using one-wire serial connections for information
distribution. In this setup, new tiles are easily added to or
removed from the garden network. Each tile in the garden is a
node in the mesh network and is connected to the orthogonal
neighboring tiles in the garden grid structure, shown in
Fig. 10. The two center tiles are not included in the network
to allow the pond with the crane robot and the insect robot
to be displayed. The SoftwareSerial library for Arduino [20],
modified to allow communication over a single wire and
to manage multiple simultaneous connections, is used to
implement the communication between Arduino controllers
in the network.

To allow tile-to-tile communication and relay of com-
mands throughout the garden, we developed a distributed
automatic addressing scheme so each node in the network
determines a unique address. On startup, each tile deter-
mines its local connectivity (which neighbors are present)
in the mesh network and communicates with its neighbors
to determine an appropriate address such that each tile in
the network ends up with a different address. Currently we
use a specific addressing pattern for communication with the
graphical user interface, so we give one tile a seed value



Fig. 10. Each tile in the garden can communicate with its immediate
neighbors via serial. One tile can communicate with an external GUI via
Blueooth.

which provides the basis for all other assigned addresses in
the garden. For our current addressing scheme, the number
of required exchanged messages scales linearly with the size
of the garden.

D. Arduino-to-Arduino Communication
When a specific flower or tile and a command are selected

using the GUI, the command is routed through the Bluetooth-
connected tile to the appropriate tile in the mesh network.
When a tile receives a command, if it is its own, it will simply
execute the command. Otherwise it will send the command
to the next tile it thinks is in the optimal path to the goal
tile given its local knowledge. If that chosen tile is in the
direction from which the message was sent, the tile can infer
there was an obstacle along the optimal path and can choose
the next best route. With the current garden structure and
using this routing algorithm, any tile can be reached in a
maximum of eight hops (this includes rerouting around the
pond obstacle).

E. Distributed Algorithms
The robot garden can be used to introduce young students

to programming, networking, and robot control in a colorful
way. The garden can be used to visualize the behavior of
classical graph algorithms and distributed graph algorithms.
The execution sequence of such algorithms can be visualized
by carefully programming the color of the flowers in the
garden. The over 100 robots in this system (which can be
easily extended to larger numbers) provides a large scale plat-
form for experimenting with robot control. We implemented
a flooding algorithm, a graph coloring algorithm, depth first
search (DFS), breadth first search (BFS), and a distance
coloring algorithm in the garden as examples. Six buttons
in the GUI, a “Flood” button, a “Graph Coloring” button, a
”DFS” button, a ”BFS” button, a ”Distance Coloring” button
and a ”Reset” button allow users to observe the behaviors of
these algorithms throughout the garden and reset the flowers
afterwards.

When the “Flood” button is selected in the GUI and the
flooding algorithm is called, a command is first sent to the
Bluetooth-connected tile to trigger the start of the flooding
behavior. On the first tile, all flowers are inflated, and the
tile sends the “flood” command to all of its neighbors. When

the neighbors receive the command, they inflate all of their
flowers and pass the command on again. A boolean value
is used to keep track of whether or not a tile has already
received a flooding command to prevent infinite looping in
cycles in the garden. After 30 seconds, enough time for the
algorithm to traverse the entire garden, the boolean value on
each tile is changed back to its original value, allowing the
tile to receive the “flood” command if it is sent again.

Graph coloring is a well-studied problem which aims to
assign colors to the nodes of a graph such that no two
adjacent nodes have the same color, and to use the fewest
possible colors. This can be implemented as a distributed
algorithm, and lends itself to a visual demonstration. In
the case of the robot garden, each tile is considered a
node and each node is considered connected to its eight
surrounding tiles (the algorithm creates a virtual link between
diagonal tiles since no physical wires link them). Since the
graph formed by the tiles is chordal, a perfect elimination
ordering can be found [21] and a greedy algorithm can
determine an optimal coloring. When the “Graph Coloring”
button is selected, the Bluetooth tile initiates a distributed
implementation of a greedy algorithm; upon receiving the
color command, each tile chooses a color not used by its
neighbors and forwards the command to a new neighbor.
Once all tiles have received the command and chosen a color,
an optimal coloring is achieved as shown in Fig. 11. The
running of this algorithm can optionally be slowed down to
illustrate its procession and the various choices made.

Two common search algorithms can be displayed in the
garden through the selection of either the ”DFS” button
for depth-first search or the ”BFS” button for breadth-first
search. In both cases, a start and goal tile can be specified
by user selection in the GUI, and the selected command is
routed through the Bluetooth tile to the start tile using the
tile addresses assigned during startup. A tree is created with
the start tile as the root node and orthogonally neighboring
tiles as child nodes. All LED flowers begin blue, and as the
search algorithms traverse the garden, flowers on tiles that
have been searched turn red. When the goal tile is found,
its LED flowers turn green all flowers in the path to it turn
green as well, showing the route that was traversed to locate
the goal tile. The series of pictures in Fig. 12 shows how
BFS is visualized in the garden as an example.

The distance coloring algorithm that runs when the ”Dis-
tance Coloring” button is selected in the GUI creates a tree
with the Bluetooth-connected tile as the root node and the
neighboring tiles as child nodes, as in the search algorithms.
When the distance coloring algorithm runs, the LED flowers
on the root node tile turn violet, the LED flowers on tiles in
subsequent levels of the tree turn increasingly redder colors
on the color scale, and the LED flowers on the tiles at the
deepest level of the tree turn red. The distance coloring
algorithm is essentially the same as the BFS algorithm,
except that flowers on searched tiles turn an appropriate color
based on the number of hops they are from the root node
rather than all red.

Finally, the ”Reset” button in the garden changes all the



Fig. 11. A distributed greedy graph coloring algorithm finds an optimal 4-
coloring of the robot garden (each tile is considered connected to its possibly
8 surrounding neighbors).

Fig. 12. Breadth-first Search propagating in the robot garden.

LED flowers in the garden back to their starting blue color,
so a new algorithm can be run in the garden.

VI. SYSTEM PERFORMANCE

To compare our distributed system, which facilitates scal-
ability, with a system using a centralized controller, we
analyzed the total time required to send a command to
each tile in the garden network. If a central controller were
connected to each individual tile, the communication delay
for a given command would be the round-trip time of sending
and receiving a message with one tile over Bluetooth. This
was found to average 42.07ms with a standard deviation of
8.16ms over 30 trials. The extra time incurred by making the
garden distributed rather than centralized can be evaluated
by measuring the round-trip time of sending and receiving a
message between tiles using the command-routing algorithm
mentioned in section V, part D. This added delay, as a
function of the tile hops, is illustrated in Fig. 13. Each
hop currently takes an average of 9.20ms with a standard
deviation of 0.32ms (over 30 trials). This can be reduced in
the future by adjusting the serial baud rate and optimizing
the communication protocol.

VII. EDUCATIONAL APPLICATIONS

The robot garden can act as a platform for education and
art, particularly focused on teaching computational thinking.
The garden allows users to see their commands or code
running in the physical world, linking programming to the
real world. We believe that the robot garden comprises a rich
suite of elements that could be the basis for a programming
curriculum for the age range spanning from young children
to high school students.

Fig. 13. Propagation time was measured as a function of hops to determine
the delay obtained by using distributed communication as opposed to a
central controller. Only even-numbered hops are plotted since round-trips
were evaluated.

Through the “Control by Click” portion of the user inter-
face, users can either control the garden directly by clicking
on flowers or tiles and choosing commands or they can
click on one of the algorithm visualization buttons to see
algorithms demonstrated in a visual way using actuation and
changing of colors of flowers in the garden. This part of the
GUI acts as a teaching tool for basic algorithmic concepts.
So far, we have visually demonstrated five algorithms in the
garden, and by leveraging the capabilities of the flower de-
sign and infrastructure of the system, many other distributed
and graph traversal algorithms can be depicted in interesting
ways.

Through the “Control by Code” section users are able to
“create art” using basic programming concepts. Currently
users select a tile or tiles and a command and press the “Add
to Code” button, and they can see their commands pop up in
the text box in sequential order. Selecting “Run Code” runs
the commands they have chosen in sequence in the garden,
demonstrating basic sequential programming concepts. In the
future, we envision adding functionality to the “Control by
Code” section that allows users to use logical statements and
looping in their garden code with the aim of teaching these
additional programming concepts through garden use.

In addition to adding functionality to the GUI, we plan to
develop end-to-end programming curriculum materials that
leverage the capabilities of the garden to teach computational
thinking. We have already developed a versatile curriculum
for middle school students that covers basic programming
concepts including reactive behaviors and finite state ma-
chines. We have adapted this curriculum to both Lego
Mindstorms robots [22] and the MIT SEG robot [23]. We
plan to adapt the curriculum to the robot garden by adding
basic sensing to the tiles and using the GUI we have already
created. In addition to using materials we already have, we
will add a unit covering basic algorithms to the curriculum,
making use of the visual algorithm demonstration capabilities
of the garden.

The robot garden has been operational and used regularly
for six months so far, and in that time it has been used
for three major demo events and approximately a dozen



other smaller demo events. In December 2014, the robot
garden was displayed at an ”Hour of Code” event held
at MIT’s Computer Science and Artificial Intelligence Lab.
At the event, 150 high school students interacted with the
garden using both the ”Control by Click” and ”Control by
Code” components of the GUI. Groups of approximately 20
students first took turns selecting tiles in the garden and com-
mands for flowers on each tile using the ”Control by Click”
interface. They then worked together to unscramble high-
level pseudocode for the graph coloring algorithm which
they entered into the ”Control by Code” interface to see the
algorithm run in the garden. In March 2015, another group of
high school students will be interacting with the garden in a
similar capacity, and in the future we plan to invite additional
students from local schools to use the garden and provide
feedback on the garden user interface and curriculum.

VIII. CONCLUSIONS AND FUTURE WORK

An initial goal of the distributed robot garden system was
to showcase state-of-the-art rapid prototyping techniques for
robot creation. The system employs many such technologies
including pouch motor actuators, self-folding robots, and
robots created using the robot compiler. However, though
rapid fabrication techniques were used to produce the pouch
motors for actuation as well as the structures for the LED
flowers, creating the intricate origami flowers called upon
additional manual assembly steps for the sake of aesthet-
ics. Further development of advanced fabrication techniques
could serve to reduce the build time of new robots for the
garden.

Additionally, the overall system was designed to be ac-
cessible to the general public, for use in museum exhibits
or educational installations. We developed an educational
environment that teaches basic programming concepts and
algorithms, and we will continue to work towards an end-
to-end programming curriculum for middle and high school
students. We will also work towards development of an
Android GUI for control of the garden via a smartphone or
tablet, we will incorporate additional sensing for increased
interactivity with users, and we will explore the possibility of
using smaller microcontrollers and different software envi-
ronments for increased portability and compatibility. Finally,
we will work towards developing a more portable version of
the garden made up of smaller flower modules, making the
garden’s benefits as an educational tool more accessible to
schools and the general public.

Overall, the distributed robot garden achieved many of its
objectives, and its extensibility allows for many possibilities
for future additions to the distributed robot system.

ACKNOWLEDGMENT

This work was funded in part by NSF grants 1240383 and
1138967 and NSF Graduate Research Fellowship 1122374,
for which the authors express thanks.

We also thank Xu Sun for his kind and insightful instruc-
tion, and Justin Cheung, Chris Cho, Samantha Castellanos,

and Steven Guitron for helping with manufacturing of the
hardware system.

REFERENCES

[1] E. Kac, “Towards a chronology of robotic art,” Convergence: The
International Journal of Research into New Media Technologies,
vol. 7, no. 1, pp. 87–111, 2001.

[2] L. Pagliarini and H. Hautop Lund, “The development of robot art,”
Artificial Life and Robotics, vol. 13, no. 2, pp. 401–405, 2009.

[3] T. R. Flowers and K. A. Gossett, “Teaching problem solving, comput-
ing, and information technology with robots,” J. Comput. Sci. Coll.,
vol. 17, no. 6, pp. 45–55, May 2002.

[4] H. Kitano, S. Suzuki, and J. Akita, “Robocup jr.: Robocup for
edutainment,” in Proc. IEEE Intl. Conf. on Robotics and Automation
(ICRA 2000), Apr. 2000, pp. 807–812.

[5] X. Yu, D. Assaf, L. Wang, and F. Iida, “A case study in soft-bodied
locomotion,” in IEEE Workshop on Advanced Robotics and its Social
Impacts (ARSO), 2013, pp. 194–199.

[6] D. Assaf and R. Pfeifer, “Embedit - an open robotic kit for education,”
in Eurobot Conference, 2011, pp. 29–39.

[7] “USFIRST.org,” http://www.usfirst.org, 2014, [Online; accessed 01-
Oct-2014].

[8] “Ultra affordable educational robot project,” http://robotics-
africa.org/afron-design-challenges/ultra-affordable-educational-
robot-project.html, 2014, [Online; accessed 01-Oct-2014].

[9] C. Breazeal, A. Brooks, J. Gray, M. Hancher, J. McBean, D. Stiehl,
and J. Strickon, “Interactive robot theatre,” Commun. ACM, vol. 46,
no. 7, pp. 76–85, Jul. 2003.

[10] “LEGO.com Mindstorms,” http://mindstorms.lego.com, 2014, [Online;
accessed 01-Oct-2014].

[11] N. Correll, N. Arechiga, A. Bolger, M. Bollini, B. Charrow, A. Clay-
ton, F. Dominguez, K. Donahue, S. Dyar, L. Johnson et al., “Building
a distributed robot garden,” in Intelligent Robots and Systems (IROS
2009). IEEE, 2009, pp. 1509–1516.

[12] D. Holstius, J. Kembel, A. Hurst, P.-H. Wan, and J. Forlizzi, “In-
fotropism: Living and robotic plants as interactive displays,” in Pro-
ceedings of the 5th Conference on Designing Interactive Systems:
Processes, Practices, Methods, and Techniques, ser. DIS ’04. New
York, NY, USA: ACM, 2004, pp. 215–221.

[13] R. Niiyama, D. Rus, and S. Kim, “Pouch motors: Printable/inflatable
soft actuators for robotics,” in Proc. of IEEE International Conference
on Robotics and Automation, 2014.

[14] B. S. A. M. Mehta, J. DelPreto and D. Rus, “Cogeneration of mechani-
cal, electrical, and software designs for printable robots from structural
specifications,” in IEEE/RSJ International Conference onIntelligent
Robots and Systems (IROS), 2014.

[15] S. Miyashita, C. D. Onal, and D. Rus, “Self-pop-up cylindrical
structure by global heating,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2013.

[16] S. M. Felton, M. T. Tolley, B. Shin, C. D. Onal, E. D. Demaine, D. Rus,
and R. J. Wood, “Self-folding with shape memory composites,” Soft
Matter, vol. 9, pp. 7688–7694, 2013.

[17] S. Miyashita, S. Guitron, M. Ludersdorfer, C. Sung, and D. Rus,
“An untethered miniature origami robot that self-folds, walks, swims,
and degrades,” in IEEE International Conference on Robotics and
Automation (ICRA), submitted.

[18] R. Niiyama, X. Sun, C. Sung, B. An, D. Rus, and S. Kim, “Pouch
motors: Printable soft actuators integrated with computational design,”
International Journal of Robotics Research, submitted.

[19] “PyBluez,” https://code.google.com/p/pybluez/, 2014, [Online; ac-
cessed 25-Jul-2014].

[20] “SoftwareSerial Library,” http://arduino.cc/en/Reference/softwareSerial,
2014, [Online; accessed 25-Jul-2014].

[21] R. E. Tarjan and M. Yannakakis, “Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs,” SIAM Journal on computing, vol. 13,
no. 3, 1984.

[22] “An Expedition in Computing for Compiling Printable Programmable
Machines,” http://ppm.csail.mit.edu/Education%20and%20OUtreach,
2013, [Online; accessed 25-Sep-2014].

[23] “MIT SEG Curriculum,” https://sites.google.com/site/mitprintablerobots
/curriculum, 2014, [Online; accessed 25-Sep-2014].


