
MIT Open Access Articles

High-speed bounding with the MIT 
Cheetah 2: Control design and experiments

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Park, Hae-Won, Patrick M Wensing, and Sangbae Kim. “High-Speed Bounding with 
the MIT Cheetah 2: Control Design and Experiments.” The International Journal of Robotics 
Research 36, no. 2 (February 2017): 167–192. © 2017 The Authors

As Published: http://dx.doi.org/10.1177/0278364917694244

Publisher: SAGE Publications

Persistent URL: http://hdl.handle.net/1721.1/119686

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/119686
http://creativecommons.org/licenses/by-nc-sa/4.0/


High-Speed Bounding with the MIT
Cheetah 2: Control Design and
Experiments

The International Journal of Robotics
Research
XX(X):1–26
c⃝The Author(s) 0000
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Hae-Won Park1, Patrick M. Wensing2, Sangbae Kim2

Abstract
This paper presents the design and implementation of a bounding controller for the MIT Cheetah 2 and its experimental
results. The paper introduces the architecture of the controller along with the functional roles of the subcomponents. The
application of impulse scaling provides feedforward force profiles that automatically adapt across a wide range of speeds.
A discrete gait pattern stabilizer maintains the footfall sequence and timing. Continuous feedback is layered to manage
balance during the stance phase. Stable hybrid limit cycles are exhibited in simulation using simplified models, and are
further validated in untethered 3D bounding experiments. Experiments are conducted both indoors and outdoors on various
man-made and natural terrains. The control framework is shown to provide stable bounding in the hardware, at speeds of
up to 6.4 m/s and with a minimum total cost of transport of 0.47. These results are unprecedented accomplishments in
terms of efficiency and speed in untethered experimental quadruped machines.
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1 Introduction
Quadrupedal animals exhibit an unmatched ability to
perform high-speed, agile, and robust locomotion. Their
morphology affords the ability to traverse unstructured
terrains, and their varied gaits provide versatility across a
wide range of scenarios in nature. Whether running down
a rocky hill or weaving through a dense forest, they are
able to move dynamically in even the most challenging
environments. Replicating such remarkable mobility and
robustness has long been a goal for legged robotics
research.
Recent advances in quadrupedal robots have shown

a great potential to realize these capabilities. BigDog
(Raibert et al. 2008), the Legged Squad Support System
(LS3), WildCat, and Spot developed by Boston Dynam-
ics have demonstrated dynamic walking and fast running
in outdoor environments with great robustness. Bound-
ing, trotting, and pronking gaits shown by StarlETH
(Gehring et al. 2013, 2014) and trotting gaits in HyQ
(Semini et al. 2011, 2015) are other exemplary recent
advances in quadrupedal robotic locomotion. Recently,
the Massachusetts Institute of Technology (MIT) Cheetah
robots have achieved efficient trotting in planar experiments
(Hyun et al. 2014; Seok et al. 2015) and dynamic bounding
in untethered 3D tests (Park et al. 2014, 2015a), with results
of this current work shown in Figure 1.

(a) Treadmill (b) Paved surface (c) Indoor track 

(d) Grassy field (e) Dirt track (f) Artificial turf field 

Figure 1. MIT Cheetah 2 running on a variety of terrains without
any tethers or support. The control system described in this work
enables the robot to stably accelerate from 0.0 m/s up to 6.4 m/s
with a minimum total cost of transport of 0.47. A snapshot of from
the maximum speed gait is given in the top left subfigure.
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Various approaches in model-based control system
design substantially contributed to such advancement. The
work at University of Southern California (USC) on
Little Dog demonstrated the importance of managing force
interactions within the technical framework of floating-base
inverse dynamics (Righetti et al. 2013). The distribution of
foot forces has also been shown to benefit operational-space
control of more dynamic gaits, including recent results for
quadruped trotting (Palmer and Orin 2007; Wensing et al.
2015). In the control systems of StarlETH, hierarchical
operational-space control has been employed specifically
considering the effects of contact interactions on the
presence of underactuation in the constrained system
dynamics (Hutter et al. 2014b). Footstep planning in this
platform (Hutter 2013) has been inspired by Spring-Loaded
Inverted Pendulum (SLIP) based (Blickhan and Full 1993)
methods similar to those introduced in (Raibert 1986).
These planned motions have then been encoded in the
robot through solutions to a constrained operational-space
control problem - a problem also commonly addressed
in the humanoid robot community (Park and Khatib 2006;
Sentis et al. 2010). With this approach, researchers at ETH
Zurich have successfully achieved dynamic trotting with
speeds of up to 0.7 m/s (Froude number∗ of 0.12) in
StarlETH. The robot has achieved a minimum total cost of
transport of 1.7 in a trotting gait at 0.5 m/s (Hutter et al.
2014a).
Other dynamic trotting gaits have been demonstrated in

(Barasuol et al. 2013) for the hydraulic robot HyQ using
bio-inspired nonlinear oscillators. Desired trajectories of
the robot’s foot were calculated by employing a Central
Pattern Generator (CPG) and implemented using feed-
forward torques from floating-base inverse dynamics with
PD control. Currently, HyQ is able to run with a speed of
2.0 m/s (Froude number of 0.42) with off-board power. As
opposed to StarlETH, which includes physical springs in its
actuators, the control of HyQ uses active impedance control
(Hogan 1985) of its passively stiff hydraulics to compliantly
handle impacts and environmental disturbances.
The development of gait-specific controllers across

these robots has begun to enable great versatility in the
locomotion capabilities of modern quadrupeds. Walking
control in Little Dog has served as a foundation for
learning algorithms applied to foothold selection to traverse
a variety of uneven terrains (Kalakrishnan et al. 2011).
In HyQ, walking algorithms have been integrated with
the Microsoft Kinect (Winkler et al. 2014) and stereo
vision (Bazeille et al. 2014) to enable the negotiation of
irregular terrain. Reliable gait-level control architectures
will continue to be important building blocks for this
emerging class of robots.
In this paper, control for the MIT Cheetah is based in

large part on realizing feedforward force profiles at the

contact interface. This strategy for the Cheetah is enabled
in-part by its proprioceptive force control actuators, which
deliver high-fidelity control of ground applied forces. The
Cheetah robot includes high air-gap radius brushless DC
motors which enable the use of low-gear-ratio reductions,
prevents the need for series compliance, and improves
motor torque density and force bandwidth (Wensing et al.
2016; Seok et al. 2012). This unique actuation scheme
provides high-fidelity rendering of desired forces at the
foot without requiring foot force sensors and has a force
bandwidth of 100 Hz. This high-bandwidth authority allows
the control design presented here to view the ground
reaction forces effectively as control inputs. This feature
helps to simplify the design and regulation of limit cycles
for running across a range of speeds from 0− 6.4m/s, with
a maximum Froude Number 7.1.
This performance across speed is significant, as most

published control algorithms have still only demonstrated
gaits in a slow speed range (Froude numbers below
1.3). In order to obtain running with different speeds,
control parameters have had to be re-obtained by
hand tuning or iterative and computationally expensive
optimization processes (Hyun et al. 2014; Coros et al.
2011; Herr and McMahon 2001). This need for detailed
tuning makes it further difficult for robots to transition
stably between adjacent controllers for two different speeds.
Work in this paper shows the capability of impulse-

scaling principles in particular to automatically adapt
control across speeds without the need for parameter
retuning. The main idea behind impulse scaling is that
the vertical impulse from gravity is counteracted through
an equal and opposite vertical contact impulse during
stance. Indeed, an unavoidable consequence of fundamental
physics dictates that, in the long run, the average net vertical
contact force must balance gravity for momentum to
remain bounded. Further, periodic gaits must admit impulse
balance from step to step. The use of impulse scaling to
generate physics-based feedforward force profiles across
speeds has been an important departure from our previous
work, which used high-impedance position control to
perform 2D-constrained trotting with the MIT Cheetah
1 (Hyun et al. 2014). Through impulse scaling, the gait in
this current work is dominantly created with feedforward
forces, enabling robust locomotion in 3D over a range of
terrains and speeds.

∗The Froude number if given through Fr = v2/gl where v is the forward
velocity, g the gravitational constant, and l the nominal leg length.
This nondimensional quantity allows for speed comparison in robots of
different scales.
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1.1 Contribution
The main contribution of the paper is to present a control
design process that has enabled untethered 3D bounding
in the MIT Cheetah 2 at speeds from 0-6.4 m/s without
retuning any control parameters. The algorithms developed
through this process, in a sense, bridge the gap between
heavily model-based methods (Hutter et al. 2014b) and
model-free heuristic methods (Raibert 1986). In order to
promote applicability to dynamic experiments, where exact
dynamic model details are difficult to obtain, we instead
focus on a reduced set of model-based control actions which
address the most salient aspects of locomotion.Namely, this
includes selecting ground reaction forces patterns which
admit zero net linear and angular impulse from step to
step. While exact model-based details may be difficult to
identify, parameters which roughly determine the effects
of these momentum profiles are easily identifiable as
aggregate parameters (total mass, lumped rotational inertia)
of the machine. It is conjectured that this macro view
of the control problem has promoted the success of the
experimental implementation of our algorithm.
Portions of the contents in this article have appeared

previously in other publications by the authors. A
preliminary version of the vertical impulse scaling
principles (Section 4) appeared in (Park and Kim 2015).
These ideas have led to experimentally verified controllers
as applied to in place bounding (Park et al. 2014)
and variable-speed running (Park et al. 2015b) which
have appeared at recent conferences. These conference
contributions have reformulated the control originally
presented in (Park and Kim 2015) to include only the most
important components of model-based control. This article
builds from (Park et al. 2014; Park and Kim 2015) and
provides an updated version of the controller which has
enabled the platform to reach the speed of 6.4 m/s (Froude
number of Fr = 7.1). We further expand upon these
previous conference papers and present additional analyses
of the control system stability, and describe additional
implementation details which have been necessary to
transition the simulation work in (Park and Kim 2015)
into a controller which enables robust high-speed running
experiments.

1.2 Organization
The remainder of the paper is organized as follows.
Section 2 briefly overviews the control design process and
Section 3 describes a simple hybrid bounding model that is
extensively used throughout the study. Section 4 introduces
the impulse scaling principles used to generalize nominal
force profiles across a range of speeds. Periodic orbits
are guaranteed to exist for our controller parameterization
when vertical and angular momentum are conserved
from step to step. When force profiles for bounding are

executed in purely open-loop however, such limit cycles
are guaranteed to be unstable. The instability is remedied
through the addition of two main components, impedance-
based feedback and a gait pattern stabilizer as described in
Section 5. Section 6 describes a series of control systems
details which are important to the implementation of the
algorithm in hardware. Results of the bounding experiments
are described in Section 7 and further discussed in Section
8. Section 9 provides concluding remarks. Three main
appendices provide formal proof of the existence of
periodic orbits in the simple hybrid bounding model, the
instability of these orbits in open-loop, and asymptotic
stability of the gait timing under an intuitive gait pattern
stabilizer design.

1.3 Notation
Throughout the text, the set of real and complex numbers
are denoted by R and C respectively. The set of non-
negative reals is R+ := {x ∈ R s.t. x ≥ 0}, while the set
Rn represents the set of n-tuples in R - that is, Rn :=
{(a1, . . . , an) s.t. ai ∈ R ∀i ∈ {1 . . . , n}}. Similarly
Rm×n represents the set of all m× n matrices with real
valued entries. Unless otherwise specified, scalars and
scalar valued quantities are denoted with italics (a, b, c, . . .)
while vectors and vector valued functions are denoted
with upright bold (a,b, c, . . .). Matrix quantities are
denoted with upright bold capitals (A,B, . . .). For a square
matrix, A ∈ Rn×n, the characteristic polynomial of A is
defined by pA(λ) = det(λIn×n −A) where In×n is the
identity matrix in Rn×n. The roots of this polynomial
(the eigenvalues of A) are denoted by the set σA := {λ ∈
C s.t. pA(λ) = 0} , with the spectral radius specified as
ρ(A) := max({|λ| s.t. λ ∈ σA}). The tangent bundle of
a manifold Q is denoted as TQ. Table 1 details common
symbols, subscripts, and superscripts used throughout the
text.

2 Overview of the Control Design Process
This section provides an overview of the control design
process for the bounding gait of the MIT Cheetah 2. The
control design process is divided into a sequence of three
steps, shown in Figure 2: (1) impulse-based gait design that
provides periodic orbits across a wide range of speeds, (2)
gait stabilization to add feedback on top of the periodic
orbits, and (3) incorporation of implementation details that
take into account complex details of the hardware platform
which are not captured in the simple bounding models.
Each control design step is pursued for a corresponding

system model as described in Figure 2. The system models
that are considered in the process are (1) a time-switched
model, (2) an event-switched model, and (3) the hardware
platform itself. When proceeding to the next control design
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Table 1. Notation describing common variables and the
qualifications provided through their sub/superscripts throughout
the text.

Symbol Definition

m, I
Total mass and pitch moment of inertia
about CoM

p = (x, z) CoM position in the sagittal plane
ψ, θ, φ Roll, pitch, and yaw angles.

q = (x, z, θ) Sagittal plane state
F = (Fx, Fz) Force applied in Sagittal Plane

τ Torque about CoM
T Fixed gait timing parameter
t Time since beginning of current phase
s Normalized phase time

α
Ground reaction force/torque scaling
coefficient

β Bézier coefficient vector
x State of abstract bounding model
ξ Controller parameter vector
vd Desired speed
L Nominal stride length

k,κ Gain

Sub/superscript Definition
f, b Front and back legs

x, y, z Components in x, y, and z directions
d Desired quantity

st, sw, ai Stance, swing, and aerial phases
P, D Proportional and derivative gain

sh, kn, ab
Shank, knee, and ab/ad degree of
freedom within a leg

L, R Left and right legs
B Body
∗ Nominal value

corr Corrected desired value

process step, more control components are added on top
of the previous design to address increasingly complex
dynamic characteristics. This sequential design process
allows control based on fundamental principles to be
developed on the simplest models, while realized in the
full complexity of the hardware. In a sense, this design
methodology is philosophically in line with the templates

Time-switched model  

(Fx, Fz)

Event-switched model 

(Fx, Fz)

Step 2: Gait stabilization 

•! 3D stabilization 
•! Hybrid events 
•! Foot/ground 

speed mismatch 

Step 1: Impulse-based gait design 

Step 3: Hardware implementation 

Net force and torque profile 
Temporal gait pattern 

Hardware platform 

Gait pattern stabilizer 
Body-state feedback 

3D force-to-joint torque mapping 
Impact detection algorithm 

Swing leg trajectory adaptation 

Instability in  
gait pattern  

and trajectory 

Low                    System/Controller Complexity                    High 

Figure 2. Proposed sequential control design process to take
into account the complexity of the experimental platform. The
process has three main steps. It starts with impulse-based gait
design as introduced in Section 4, is followed by gait stabilization
as described in Section 5, and ends with incorporation of
implementation details as given in Section 6. Each design step
is carried out with a corresponding system model that provides
a hierarchical level of abstraction. The challenges addressed by
each following step are outlined in red.

and anchors hypothesis of neuromechanical locomotor
control (Full and Koditschek 1999).
The most fundamental step in the control design process,

impulse-based gait design, is proposed based on the
simplest time-switched model. In the time-switched model,
the robot is represented as a single rigid body with ground
reaction forces acting on the body as an external force
at a virtual foot point. This model captures the fact that
contact forces (ground reaction forces) are the only external
forces which are able to shape the motions of the center
of mass of the mobile articulated system (Wieber 2006;
Ostrowski and Burdick 1996). For each running speed, a
temporal gait pattern is defined, alternating between phases
of flight and stance, to assign the scheduling of the ground
reaction forces applied to the body. Due to the simplicity
of the model and fixed temporal gait pattern for each speed,
periodic orbits are guaranteed to exist when impulse scaling
principles are followed based on Proposition 1 in Section 4.
Application of the impulse scaling provides periodic orbits
across a wide range of running speeds in this simplest
model. The orbits, however, are proven to be unstable
in Corollary 1.1 when driven by open-loop force profiles
alone.
The next step in the control design is gait stabilization, as

explained in Section 5, which adds discrete and continuous
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feedback on top of the periodic orbits obtained in the
previous step. For this step, an event-switched hybrid
model is introduced wherein the effects of swing leg
motion on gait timing are added for closer approximation
of the hardware platform. In this model, transitions from
flight to stance occur when the vertical position of swing
foot crosses the ground plane. Two main components,
continuous body-state feedback and a discrete gait pattern
stabilizer, are introduced. The body-state feedback is
included to promote convergence to a nominal trajectory
during stance, while the gait pattern stabilizer is introduced
to enforce the temporal gait pattern. The stability of the
system is analyzed and verified with the event-switched
hybrid model.
The final step is the addition of platform-specific details

to take into account the complex nature of the experimental
robot, which are not addressed in the above conceptual
models. Section 6 introduces a method to compute joint
torques which provide the designed forces from the
conceptual models. Since the simple models do not include
leg mass, this section also describes methods for on-
line modification of the swing leg trajectories to address
practical considerations of ground and foot speed matching
around hybrid transitions.
The first two steps of the control design, the impulse-

based gait design and gait stabilization, use simple hybrid
models extensively in design and validation. The following
section provides a detailed specification of the time-
switched hybrid model which is used to develop an
impulse-based gait.

3 A Time-switched Hybrid System Model of
Bounding

Hybrid System Model. In a quadrupedal bounding gait,
the front and hind leg pairs act in parallel. As a result, the
quadruped can be modeled as a two-legged system in the
sagittal plane, as shown in Figure 3. The model alternates
between phases of stance and flight, and between periods of
front and back stance.
The dynamics of this simple model can be described as a

hybrid system, with periods of continuous dynamics punc-
tuated by discrete maps. Front Stance phase (numbered,
1) is modeled with only the front leg in contact with the
ground, the First Aerial phase (2) has both legs in the air,
Back Stance phase (3) has only the back leg is in contact
with the ground, and the Second Aerial phase (4) has both
legs airborne. Other cases, such as double support phases
where both front and back pair of legs are in contact, as well
as other transitions are not considered in the analysis with
this simplified bounding gait model. Section 6 provides a
practical solution to handle these other transitions which
may occur in hardware. Each numbered phase j ends when

Front Stance (1) 

First Aerial (2) 

Back Stance (3) 

Second Aerial (4) 

x̂
ẑ

θ

(Fx, Fz)

(Fx, Fz)

(x, z)

(x, z)

S4,∆4

S1,∆1 S2,∆2

S3,∆3

Running Direction 

Figure 3. A simplified hybrid quadrupedal bounding model.
Assuming massless legs, the quadruped is abstracted by a planar
rigid body evolving under the influence of ground reaction forces
and gravity. A fixed horizontal foot placement relative to the
hip at the beginning of stance is used to determine the point of
application for the ground reaction force.

the system reaches a guard set Sj and subsequently follows
a discrete map ∆j to transition to the next state. Further
details of the model are provided in the paragraphs to
follow.
Coordinates and Actuation. Across each phase, the
configuration space for the model is abstracted as Q =
SE(2). This abstraction is made considering an assumption
of massless legs. Within each phase, the configuration
is described in coordinates as q = (x, z, θ) ∈ Q where
x (z) ∈ R locates the horizontal (vertical) position of the
center of mass (CoM) relative to the most recent/current
stance foot, and θ provides the pitch angle of the body
(clockwise positive) relative to the horizontal about a ŷ axis
into the page. Further details are provided in Fig. 3.
Under the assumption of massless legs, the

forces/moments exerted by each leg onto the body
are statically equivalent to the horizontal and vertical
ground reaction forces Fx and Fz on the foot in stance†.
As a result, sets of admissible controls for each phase are
described by

U2 = U4 := {(0, 0)} (1)
U1 = U3 := {(Fx, Fz) s.t. |Fx| ≤ µFz} (2)

where µ ∈ R+ is the coefficient of friction. Although these
forces are not direct control inputs for the robot, in practice,
the design of the Cheetah enables effective proprioceptive
control of the ground reaction forces without the need for
force sensing at the foot (Wensing et al. 2016).

†Note: This assumption is reasonable as the legs of the quadruped are very
light, composing approximately only 10% of the total mass of the system.
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Domains, Guards, and Reset Maps. In this simple
model, transitions between states are assumed to happen
on a pre-defined timing schedule. That is, after entering
each state j, the system transitions to the adjacent state
after a pre-defined dwell time Tj ∈ R+. To capture this
characterization, the continuous dynamics in each phase
take place on TQ× R+ with x := (q, q̇, t), where t
represents the current dwell time. Under this specification,
the guard sets are given as Sj = {(q, q̇, t) s.t. t = Tj}.
The total time to complete one full cycle is specified as
T =

∑

j Tj .
Reset maps following each stance state follow identical

structure:
∆j(x) := (q, q̇, 0)

for j ∈ {1, 3}. Following each flight state, the reset maps
enforce a fixed initial horizontal offset xf

0 of the stance foot
relative to the current stance hip. Thus, for j ∈ {2, 4}

∆j(x) := (q+, q̇, 0) .

where q+ = (x+, z, θ), and the new horizontal position x+

follows

x+ =

{
ℓ
2 cos(θ)− xf

0 if j = 2

− ℓ
2 cos(θ) + xf

0 if j = 4 .

The quantity ℓ ∈ R+ represents the distance between the
two hips of the quadruped. Note that due to the assumption
of massless legs, q̇ remains unchanged. This update law
assumes that the CoM of the robot is located in the middle
of the body.
Effects of Controls. The dynamics of the system can be
described using the same equations of motion across each
phase. The dynamic equations take a simple form:

m p̈ = F+m ag

I θ̈ = F ∧ p

ṫ = 1 (3)

where, p = (x, z)T , F = (Fx, Fz)T , and ag = (0,−g)T

is the gravitational acceleration vector. ∧ is the wedge
product‡ defined by a ∧ b := a2b1 − a1b2, andF ∧ p is the
moment at the center of mass from the ground reaction
forces. As a result the system dynamics can be written
commonly as:

ẋ = f(x) + g(x)F . (4)

Simple Model Parameters. Throughout the paper, the
model parametersm, I, ℓ used are estimated from the MIT
Cheetah 2 robot. The body’s mass m and inertia I are
assumed 31 kg and 2.9 kg ·m2 respectively, with body
length ℓ = 0.7 m.

Hybrid Trajectories. Throughout the paper, any trajectory
of the hybrid system will be assumed to start in a state x0 =
(q, q̇, 0)T in front stance at t = 0. Closed-loop feedback
controllers are parameterized by a set of parameters Ξ

such that for ξ ∈ Ξ, F := F(x, ξ). Notationally, x(t;x0, ξ)
represents the state of the system at time t given x0 as
an initial condition. Due to reset maps, x(t;x0, ξ) is only
piecewise C1 in time. At any reset time τ left and right limits
are specified according to x(τ−;x0, ξ) and x(τ+;x0, ξ)
respectively. Dependence of x(t) on x0 or ξ is often
dropped for convenience when not required for clarity.

4 Impulse-Based Gait Design
This section describes the impulse-based gait design
which parameterizes a class of periodic orbits for the
simple hybrid model through arguments based on first
principles of momentum conservation. The use of linear
and angular momentum has recently received a great deal
of attention in the humanoids community for applications
to balance control (Orin et al. 2013; Wensing and Orin
2016; Macchietto et al. 2009; Hopkins et al. 2015), and
to accelerate trajectory optimization (Dai et al. 2014).
Momentum warping by hand has also been found to be
a powerful tool for motion editing to produce physics-
based character animations (Sok et al. 2010). The impulse
scaling approach taken here is more similar in spirit to
applications in motion editing.We note that for any periodic
limit cycle, the linear and angular momentummust undergo
zero net change from the beginning to end of the cycle.
Warping force trajectories in order to ensure this condition
across changes in gait timing enables a impulse-based
parameterization of hybrid limit cycles for this system.

4.1 An Impulse Principle in Periodic Bounding
The ground reaction forces F during front and back stance
affect both the linear momentum in the sagittal plane as
well as the pitch angular momentum about the CoM. Due
to the importance of pitch stabilization during high-speed
bounding, a change of variables is applied to the control
input F = (Fx, Fz). Letting τ = F ∧ p, we can instead
view (τ, Fz) as control inputs when z ̸= 0 to more directly
control the pitch momentum evolution. Under this change
of variables,

mẍ = Fx =
xFz + τ

z
, z > 0

m z̈ = Fz −mg

I θ̈ = τ . (5)

‡The wedge product effectively provides a cross product for vectors in R2.
The cross product operator × is reserved for application to vectors in R3,
producing result in R3.
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With the formal description of the system, the following
proposition introduces conditions on Fz and τ which are
sufficient to admit a periodic orbit for the hybrid system
with continuous dynamics (5).

Proposition 1. (Existence of a Periodic Orbit) For the
simple hybrid bounding model (5), suppose that the time-
dependent force and torque profiles Fz(t) and τ(t) satisfy

∫ T

0
(−mg + Fz(t))dt = 0 (6)

∫ T

0
τ(t) dt = 0 (7)

Fz(t) ≥ 0, ∀t ∈ [0, T ], (8)

for some constant T > 0. Then, the hybrid model has a
periodic orbit with the period of T .

Proof. The proof is given in Appendix B.

Remark 1. The force Fz(t) satisfying (6) means vertical
forces cancel gravity on average, and torques τ(t)
satisfying (7) means average rotational acceleration is
zero. These together imply conservation of vertical linear
momentum and pitch angular momentum from step to step.
Thus, conservation of momentum in these two directions
alone from step to step can be seen as sufficient conditions
for the existence of a periodic orbit in this model.

Remark 2. While condition (8) requires unidirectional
forces as inputs, the Proposition does not guarantee that the
resultant orbit will require lateral forces |Fx(t)| ≤ µFz(t).
Frictional feasibility of the orbits is verified in a post-
processing step in this work.

Remark 3. Periodicity in the x coordinate does not imply
that the system returns back to an original displacement
following its orbit. Rather, since x measures the position
of the CoM relative to the foot, the reset maps ∆2(x) and
∆4(x) reset x to a value x+ which is a function of θ only
and regardless of the exact forward progress.

Corollary 1.1. Any periodic orbit obtained from the
result of open-loop controls τ(t) and F (t) satisfying the
conditions of Proposition 1 is orbitally unstable.

Proof. The proof is given in Appendix C.

Corollary 1.1 demonstrates the necessity of feedback to
stabilize these orbits. This result may come as a surprise
to some, as work by Mombaur (2009) demonstrated the
existence of open-loop stable running behaviors in more
complex (10-DoF) articulated characters.
In the following sections, we propose a specific selection

of force and torque profiles which satisfy the conditions
in Proposition 1 for the existence of periodic orbits. These

nominal forces will be used as a feedforward command in
the robot, with additional feedback forces as addressed in
Section 5.

4.2 Gait Timing Simplifications for Bounding
The gait pattern in this work is selected to provide
front/back symmetry. That is, at each running speed, the
stance durations T1 and T3 are set to a common value Tst

while flight durations T2 and T4 are set to a common value
Tair. For a desired velocity vd, stance time is set as

Tst = L/vd (9)

where L ∈ R+ represents the stride length and nominally
takes value L = 0.4 m in experiments (approximately 0.57
body length). The duration of swing time for each leg
Tsw := Tst + 2Tair is chosen to be fixed across speeds at
Tsw = 0.22s which is taken from the swing duration of
the Cheetah and Greyhound during galloping (Maes et al.
2008; Hudson et al. 2012). The two phases of duration Tair

are then calculated as,

Tair =
Tsw − Tst

2
. (10)

4.3 Vertical Force Profiles - Duty Cycle
Modulation via Vertical Impulse Scaling

This subsection presents the selection of vertical force
profiles to modulate the duty cycle of bounding while
balancing the net vertical impulse from gravity.
Selection of Force Profile. The vertical forces F f

z and F b
z

are chosen as time-dependent profiles shown in Figure 4(a),
which are parametrized as,

F i
z := F i

z(α
i
z , sst), sst =

t

Tst
for i = f, b, (11)

where αi
z ∈ R+ represents the magnitude of the force

profile, as depicted in Figure 4(a). sst ∈ R+ is the
normalized phase time representing percentage of the
stance phase completed.
The force profile (11) of the front leg is made up of

two concatenated 3rd-order Bézier polynomials, where the
Bézier coefficients are given by,

βz =

{

αz [0.0 0.8 1.0 1.0] for sst ≤ speak
αz [1.0 1.0 0.8 0.0] for sst > speak

(12)

where, speak ∈ (0, 1) is the parameter to change the
position of the peak. Here, we set speak = 0.5 to provide
a force profile that is symmetric about midstance, but
will adjust this value to speak = 0.3 during the running
experiments explained in Section 7. The coefficients in (12)
are chosen to ensure continuity between the two Bézier
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Figure 4. Example force and torque profile shapes that satisfy
the conditions in Proposition 1. In this work, the shape of these
profiles is fixed, and their magnitudes are scaled by αz and ατ

across speeds in order to satisfy linear momentum and angular
momentum conservation from step to step.

polynomials up to first order derivatives in time, and
for easy scaling of the force profile. To further enforce
front/back symmetry of the bounding gait, we fix αf

z =
αb
z = αz .
Modulation of Stance Duration. From the previous
section, we can see that only two parameters are required
to describe the vertical force profile, the duration of stance
Tst, and the magnitude of the force profile αz . Here, we will
draw the relation between those two parameters using (6)
which is rewritten as,

∫ T

0
Fz dt =

∫ T

0
mg dt = mgT. (13)

Thus, the physical principle of vertical impulse scaling is
that the ground applied vertical impulse must scale with the
gait period, irrespective of the time spent in stance. Because
the area under any Bézier curve can be simply calculated by
averaging the Bézier coefficients multiplied by the length of
duration, (13) is rewritten as,

2 cαz Tst = mg T, (14)

where the average Bézier coefficient:

c = mean([0.0 0.8 1.0 1.0]) (15)

gives the area under the force profile when αz = 1 and
Tst = 1. From (14), αz is then given by,

αz =
mg T

2 c Tst
(16)

to enforce periodicity in vertical momentum. Equation (16)
will be used to calculate the magnitude of the force profile

αz when Tst is given. Now, given Tst, either directly or
indirectly through vd using (9), all remaining parameters
associated with the vertical force profile are specified
uniquely. Figure 4(a) shows an example of force profile
when Tst = 0.133 sec.

Remark 4. The principle of vertical impulse scaling
should be viewed as designing vertical forces which satisfy
(13) across changes in gait timing. The choice to fix
force profile shape and apply force scaling represents an
effective, yet simple, design choice to satisfy (13).

4.4 Torque Profiles for Direct Control of Pitch
Oscillation

Pitch torques about the Center of Mass, τf and τb, caused
by the front and back legs are similarly chosen to be time-
dependent profiles as shown in Figure 4(b). These torques
are parametrized as,

τi := τi(ατ , sst), for i = f, b, (17)

where, ατ is the magnitude of the torque profile and is
applied for both the front and back legs. Torque profiles
are selected as concatenated 3rd-order Bézier polynomials,
with Bézier coefficients of the front leg given by,

βf
τ =

{

−ατ [0.0 0.8 1.0 1.0] for sst ≤ 0.5

−ατ [1.0 1.0 0.8 0.0] for sst > 0.5
. (18)

The Bézier coefficients of the hind leg are given by,

βb
τ =

{

ατ [0.0 0.8 1.0 1.0] for sst ≤ 0.5

ατ [1.0 1.0 0.8 0.0] for sst > 0.5
. (19)

Because the areas of front and back leg torque profiles are
equal and opposite, as shown in Figure 4(b), (7) is satisfied.
In the next section, we will search for periodic orbits for
different desired speeds vd and torque scalings ατ applied
to the simplified model.

Remark 5. Note that smaller values for ατ may seem
universally desirable, since minimizing ατ minimizes pitch
excursion during the gait. However, when ατ is small,
ground forces must be angled closer to the center of the
body. Thus, reducing ατ increases friction requirements
and hip torque requirements. In contrast, high values of
ατ increase pitch magnitude and correspondingly increase
knee torque requirements through deeper knee bends.
Managing these tradeoffs, while satisfying friction limits,
is left as a design freedom to the control developer.

4.5 Periodic Orbits
The analysis of periodic orbits through the lens of Poincaré
has enabled many previous studies on gait analysis and
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control design within legged locomotion (Poulakakis et al.
2006; Remy et al. 2010; Sreenath et al. 2011). In a similar
manner here, the existence and stability of orbits in the
hybrid bounding model can be reduced to studying the
discrete results of trajectories successively passing through
a Poincaré section P . The Poincaré section is selected as
one of the guards from the hybrid system model

P = {(q, q̇, t) ∈ D1 s.t. t = 0} . (20)

We let ξ = (vd,ατ ) represent a vector of parameters
which characterize the controlled system behavior. Then,
given a fixed selection of ξ ∈ Ξ, periodic orbits can be
found by numerically searching for fixed points of the
following Poincaré return map P : P × Ξ → P defined by

P(x0, ξ) := x(T+;x0, ξ) . (21)

A large number of fixed points x∗ ∈ P with x∗ = P(x∗, ξ)
have been computed for vd ∈ [3, 6.5] m/sec and ατ ∈
[0, 200] Nm using MATLAB’s lsqnonlin function to
solve the nonlinear least-squares problem

min
x

∥x−P(x, ξ)∥2 (22)

with P(x, ξ) evaluated through forward simulation. For
this simple model, fixed points are guaranteed to exist,
as shown in Proposition 1. Figure 5 shows obtained
periodic orbits for v ∈ {3.0, 4.0, 5.0, 6.0}m/sec and
ατ ∈ {0, 50, 100, 150}Nm.
From Fig. 5, it is shown that each fixed selection of

ατ results in lower peak-to-peak pitch amplitude as speed
increases. In order to maintain a more consistent peak-to-
peak pitch amplitude over speed, ατ is scaled proportional
to the vertical force magnitude αz . This is accomplished
by scaling ατ with αz , which relates ατ to the gait timing
through

ατ = α̃τ
T̃stT

TstT̃
, (23)

where tilde values represent fixed selections for a nominal
speed of 3 m/s. Figure 6 shows the results across speed with
this scaling for ατ over various selections for α̃τ .
When α̃τ = 0, all ground reaction forces intersect the

center of mass, which may not be possible given the
limitations of friction. In practice, the magnitude α̃τ was
chosen so that the body pitch angle θ does not oscillate
more than 12 deg for all speeds 0− 6.5 m/s. A value of
α̃τ = 100 Nm met these requirements over all velocities
vd ∈ [3, 6.5] m/sec and resulted in a minimum allowable
friction coefficient of µ = 0.56. This the scaling law (23)
represents one of many possible selections. More complex
modulation of ατ could be sought to manage the tradeoffs
presented in Remark 5.
LinearizingP about a fixed point x∗ results in a discrete-

time linear system for the approximate dynamics of local
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perturbations around the orbit

δx[i+ 1] = Ψ δx[i], (24)

where δx = x− x∗

Ψ =
∂P

∂x
(x∗, ξ) . (25)

If all eigenvalues of Ψ are strictly within the unit circle,
local perturbations around the orbit will diminish over
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time (Nersesov et al. 2002). In contrast, the existence
of an eigenvalue with absolute value beyond the unit
cycle precludes orbital stability (Nersesov et al. 2002).
Numerically evaluating the eigenvalues of the matrix Ψ
for vd ∈ [3, 6.5] m/sec and ατ ∈ [0, 200] Nm verified
that the obtained periodic orbits are unstable, as proved in
general by Corollary 1.1.

5 Gait Stabilization
The impulse-based force profiles from the previous section
scale across speeds and are guaranteed to give rise to
periodic orbits. The instability of these orbits, however,
motivates the development of gait stabilization control
components. This section describes the addition of body-
state feedback and a gait pattern stabilizer in order to
admit new periodic orbits which enjoy asymptotic orbital
stability. These additional controllers are layered on top
of the impulse-based force planning and continue to be
developed for simple planar models. Their implementation
with experimental hardware is further detailed in Section 6.

5.1 Continuous body-state feedback
To stabilize the gait, additional feedback forces are
considered beyond the impulse-based forces from the
previous section. Forces F are selected to include an
impulse-based feedforwardF∗ with three other components
layered on top: vertical hip position feedback FHip,
horizontal speed feedback Fv , and pitch feedback Fθ .

F = F∗ + FHip + Fv + Fθ (26)

The feedforward forces provide nominal profiles, again
parameterized by ατ and αz as

F∗ :=

[
1
z
(τ∗(ατ , sst) + xF ∗

z (αz , sst))

F ∗
z (αz , sst)

]

(27)

where F ∗
z and τ∗ are given by (11) and (17) respectively.

The three feedback components are defined through
impedance-based control laws

FHip :=

[

0

gfb(sst)
(

−kPz (ziHip − zd)− kDz żiHip

)

]

(28)

Fv :=

[

−kDx (ẋ− vd)

0

]

(29)

Fθ :=
1

x

[

0

kPθ (θ − θd) + kDθ θ̇

]

(30)

where, ziHip ∈ R is the hip height for i ∈ {f, b}. The
feedback-activation function gfb(sst) in (28) is a piecewise

Bézier polynomial function that starts at zero and increases
to 1.0 until 20% of the stance phase is complete. It then
remains constant at 1.0 until 80% of the stance phase
completes, and decreases to 0 when stance terminates.
Bézier coefficients of [0, 1, 1, 1] and [1, 1, 1, 0] are used to
provide a smooth activation and deactivation of feedback
in these periods of transition. This feedback-activation
approach ensures that the total vertical direction force does
not become negative near either end of stance when F ∗

z =
0. The 1

x
term in (30) takes into account the moment arm

of the vertical direction force from the center of mass. Prior
to application in simulation, the resultant forces Fx from
(26) are clamped based on a maximal assumed coefficient
of friction µ = 0.7.

Remark 6. Time-dependent trajectories for zd(t), θd(t),
and vd(t) could be constructed from open-loop periodic
limit cycles, resulting in different desired trajectories with
changes in speed. However, the main focus here is to obtain
robust bounding for various speeds rather than to follow
exact trajectories. Thus, a fixed desired set point was used
for θd and zd across speeds, while vd was set to match the
nominal commanded speed. These fixed selections serve as
spring and damper setpoints that bias the motion toward
desired states through stabilizing feedback.

Stability Analysis. Through this addition of feedback, the
parameter set is expanded such that ξ ∈ Ξ is defined with:

ξ := (vd,ατ , θd, zd, k
D
x , kPz , k

D
z , kPθ , k

D
θ ) . (31)

Many of these parameters were fixed from preliminary
experimentation in hardware and are given in Table
2. For instance, damping coefficients were selected
as the maximum values possible before the hardware
become unstable due to noise caused from numerical
differentiation of the encoder signals. Figure 7 shows the
stability results on the spectral radius of the Monodromy
matrix (Parker and Chua 1989; Hiskens and Pai 2000;
Hiskens 2001), ρ(Ψ), for a range of fixed points that
were computed with speeds vd ∈ [3, 6.5] m/s and gains
kPz ∈ [0, 2000] N/m. Over a large set of parameters, this
additional feedback gives rise to orbitally stable dynamics
for the time-based simple model.

5.2 A Gait Pattern Stabilizer to Enforce
Temporal Footfall Sequencing

In the simple model from Section 2, we assumed that
the transition between phases occurred on a fixed timing
schedule. Thus, this simple model effectively assumes
perfect footfall timing. However, in the real robot this is
not the case, as transitions from aerial to stance phase occur
when a swing leg touches the ground. As a result, footfall
timing may be disturbed by swing leg movement and or
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Table 2. Fixed parameter values for the simple hybrid model with
feedback. Results for varying kP

z with these parameters are given
in Figure 7. Experimens in the MIT Cheetah were performed using
kP
z = 800 N/m.

Parameter Nominal Value
ατ 100 Nm
θd 0

zd 0.48 m
kDx 60 Ns/m
kDz 120 Ns/m
kPθ 30 Nm/rad
kDθ 15 Nm/rad/s
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Figure 8. Swing foot trajectory with respect to the hip during its
aerial period of motion.

the body state in flight. This subsection presents a discrete
controller to address these effects, and an extended model
to quantify pattern stabilization in simulation.

The trajectory for the swing foot’s position relative to
the hip is calculated using a Bézier curve with coefficients
βsw
x ∈ R10 and βsw

z ∈ R10 as obtained in (Park and Kim

Time (sec)
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With Gait Pattern Stabilizer 
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Back Legs in Stance 

Figure 9. Temporal gait shifting with gait pattern stabilizer (top),
and without gait pattern stabilizer (bottom) during 6 m/s running.
Shaded regions indicate periods of stance.

2015).

xi,d
foot := xi,d

foot(β
sw
x , si) (32)

zi,dfoot := zi,dfoot(β
sw
z , si), si =

tisw
Tsw

(33)

where, tisw ∈ R+ represents the duration of time that leg i
has been in flight and si ∈ R+ is a phase variable indicating
the percentage of the swing phase completed. Figure 8
shows the swing foot trajectories relative to the hip. Bézier
parameters are set as given in Appendix D.
Gait Pattern Stabilizer. Considering these swing
trajectories, the desired symmetric gait pattern of bounding
can be disrupted from step to step due to improperly timed
impact events for the swing foot with the ground. Figure 9
illustrates this effect.
In order to enforce the desired temporal evolution of

footfalls, a simple gait pattern stabilizer is introduced. The
main idea is to adjust the duration of the stance phase
to compensate for footfalls which are spaced too closely
together or too far apart in time. A compensation gain
κ ∈ [0, 1] is proposed to approximately specify how much
error will be corrected in the current step. At each impact, a
modified stance time for the next foot is updated as

T+
st =

L

vd
− κ (T−

st + t
−
− T/2) . (34)

The term T−
st is the stance time for the previous foot and

t
− is the most recent aerial time. Thus, T−

st + t
− measures

the time since the previous impact and T−
st + t

−
− T/2

represents the gait timing error for a symmetric footfall
pattern. If each following footfall happens at the end of the
nominal swing time, it can be shown that this control law
provides asymptotic tracking to the desired gait pattern, and

Prepared using sagej.cls



12 The International Journal of Robotics Research XX(X)

is applicable more broadly to other footfall sequences as
described in the following proposition.

Proposition 2. (Asymptotic Stability of the Gait Pattern
Stabilizer Under Nominal Conditions) For an N beat gait,
let T i

st[k] represent the stance duration for foot i following
its k-th footfall, T i∗

st the nominal stance time, and ei[k] the
error in footfall timing between foot i and its predecessor.
Suppose that each subsequent swing period lasts T i

sw =
T − T i∗

st and stance durations are updated as

T i
st[k] = T i∗

st − κei[k]

for some κ ∈ (0, 1). Then following any initial gait timing
errors ei[0], the footfall timing errors satisfy ei[k] → 0 as
k → ∞.

Proof. The proof is given in Appendix E.

Proposition 2 assumes that each following footfall
happens at the end of the nominal swing time, but this is
not guaranteed when the gait pattern stabilizer is actually
applied to the system with drift vector fields and impact
events. Therefore, an extended hybrid model, described in
the following paragraphs, is introduced to demonstrate the
existence of asymptotically stable footfall timing when this
gait pattern stabilizer is layered on top of the impulse-based
controller with body-state feedback designed so far.

5.3 An Extended Model for Gait Pattern
Stability Analysis

In order to check stability of the full hybrid feedback system
with the gait pattern stabilizer (34), auxiliary variables
are added to the Simple Hybrid Bounding model from
Section 2. Phase variables sf and sb are added for swing
foot trajectories defined in (33) and the stance time Tst is
included to capture the effects of the pattern stabilizer. The
extended state x := (q, q̇, t, sf , sb, Tst) is applicable across
phases.
In this extended model, stance phases end when the

stance time is reached. The transition out of stance affects
only the phase time and swing phase variables:

S1 = S3 := {x s.t. t− Tst = 0} (35)
∆1(x) := (q, q̇, 0, 0, sb, Tst) (36)
∆3(x) := (q, q̇, 0, sf , 0, Tst) (37)

Flight phases end when the swing foot touches the ground.
It is noted that the position of the body relative to the swing
foot, denoted (xi

sw, z
i
sw) for i ∈ {f, b} can be specified

through the phase si and pitch angle θ directly. Thus,
transitions occur at

S2 := {x s.t. zbsw(θ, sb)− z = 0} (38)
S4 := {x s.t. zfsw(θ, sf )− z = 0} (39)

Following this definition, it is observed that all guards
Sv can be defined such that they are the kernel of an
appropriately chosen function sv : Dv → R.
Following impact, the model transitions to a state with

updated body position x, which reflects the coordinate
origin at the new stance foot. As a result,∆2(x) and∆4(x)
are given as

∆2(x) :=
[

xb
sw(θ, sb) z θ q̇T 0 sf sb T+

st

]T

∆4(x) :=
[

xf
sw(θ, sf ) z θ q̇T 0 sf sb T+

st

]T

respectively where T+
st follows (34). The 0 after q̇ in each

reset map sets the dwell time to zero whenever a transition
happens, and the last entry of∆2(x) and∆4(x) comes from
the gait pattern stabilizer in (34).
In the extended model, the system dynamics (4) are

changed to depend on the gait phase,

f1 =

⎡

⎢
⎢
⎢
⎣

f

1/Tsw

0

0

⎤

⎥
⎥
⎥
⎦
, f3 =

⎡

⎢
⎢
⎢
⎣

f

0
1/Tsw

0

⎤

⎥
⎥
⎥
⎦
, f2 = f4 =

⎡

⎢
⎢
⎢
⎣

f

1/Tsw

1/Tsw

0

⎤

⎥
⎥
⎥
⎦

(40)

and

g1 = · · · = g4 =

[

g

03×1

]

(41)

where, the elements with 1/Tsw come from si = ti
sw/Tsw

in (33).
Investigating Periodic Orbits with Gait Pattern Stabi-
lization. The inclusion of the gait pattern stabilizer adds a
single additional parameter κ to the parameter vector ξ.

ξ := (vd,ατ , θd, zd, k
D
x , kPz , k

D
z , kPθ , k

D
θ ,κ) . (42)

With this addition, new fixed points x∗ were found for
the return map P(x, ξ). First-order sensitivity information
along the orbit associated with each fixed point was
derived through computation of the Monodromy matrix
(Parker and Chua 1989; Hiskens and Pai 2000; Hiskens
2001).
Figure 10 shows the spectral radius of Ψ, ρ(Ψ), with

three different selections of κ and over a range of speed and
gain values. As shown in the figure, smaller values of κ pose
parameter regions where fixed points do not exist. These
regions occur at low speeds and correspondingly have a
higher duty factor with less flight time. In these cases,
without strong gait pattern stabilization, the system tends
towards bounding gaits with periods of double support that
are not captured in the current hybrid model. This effect is
shown in the bottom of Figure 9 for the extreme case of no
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Figure 10. Largest eigenvalue norms of the Poincaré return map linearization for the extended bounding model with different values
of κ. White areas indicate regions where a fixed point was not found to exist for the hybrid mode schedule considered in this work.
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pattern stabilization (κ = 0). Experimental validation of the
algorithm is performed using κ = 0.3 and kPz = 800 N/m.
While periods of double support are not captured in the
event-driven simple bounding model, the following section
provides further details on an experimental application of
the algorithm which is flexible to handle these scenarios.
The analysis of gaits which may switch mode sequences is
beyond the scope of the current analysis.

6 Controller Implementation Details
The impulse-based force profiles from Section 4 and lay-
ered feedback from Section 5 gives rise to asymptotically
stable periodic orbits for the event-driven simple bounding
model. This simple model is an appropriate abstraction
for the MIT Cheetah robot in bounding. However, the
experimental hardware is not constrained to the plane and
has light legs which do require careful treatment in order to
realize the foot-force centered controllers developed in the
previous section. This section presents the implementation
details to realize the control design on the real robot
hardware.

Figure 11 shows the overall control system for the
Cheetah robot, with many of the control system blocks
detailed further in this section. The MIT Cheetah 2 has
3D kinematics which extend beyond those captured in the
planar simple model. As shown in Figure 12(a), each leg
of the MIT Cheetah 2 consists of three links beginning
from the shoulder joint. The motions of first and last link
from the shoulder are kinematically tied to be parallel to
each other, resulting in two degrees of freedom in the leg
swing plane. The first actuator torque ush rotates the link
represented by the thick solid black line in Figure 12(a),
providing rotation of all three links relative to the body.
The second actuator torque ukn rotates the link represented
by the dashed red line, yielding rotation of the second
link while the first and third links are kept in parallel.
Because the first and third links are parallel, the original link
structure can be kinematically converted to a mechanism
with only two links shown in Figure 12(b). In addition to
the actuators for the knee and shoulder angles, there is one
more actuator to create ab/adduction torque uab for each leg
(see Figure 12(c)).

6.1 Specification of Leg Forces and Joint
Torques for 3D Bounding

To realize the force profiles from the simple model
controller using available actuators, this subsection presents
a solution to the static force-production problem. More
specifically, we obtain a relationship based on kinematics
only, which is used to realize horizontal, lateral, and vertical
forces, as well as a net rolling torque (Fx, Fy , Fz, τx
in Figure 13) through available actuators. Solution of
this problem is used to stabilize the posture during 3D
bounding.
This force-production problem is closely linked

to closed-chain-constrained operational-space control
of body posture (Sentis et al. 2010; Hutter et al.
2014b; Wensing et al. 2015). The procedure used here
approximates these previous approaches through assuming
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Figure 12. (a) MIT Cheetah’s leg consisting of three links. First
and third links are kept in parallel each other by parallelogram
mechanism. (b) Two links kinematic conversion of original link
structure. Using the torques ush and ukn at shoulder and knee
joints, forces Fx′ and Fz′ are generated. (c) An actuator to create
ab/adduction torque uab for each leg.
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Figure 13. Coordinates system and control forces of MIT
Cheetah 2. ψ, θ, and φ are roll, pitch, and yaw angles representing
rotations about x, y, and z axis, respectively. The horizontal force
Fx, lateral force Fy, vertical force Fz , and rolling torque τx are
generated using actuator torques of each pair of the legs (see
Figure 12 and 14).

massless legs, and symmetry in the production of fore-aft
force. This former approximation is reasonable, as the
robot’s legs are relatively light compared to the body (less
than 10% of total mass). The procedure for solving the
force-production problem is two-fold and is depicted in
Figure 14.
Reduction To a Frontal-Plane Force-Production Prob-
lem. In the first step, an auxiliary coordinate system and
a force-symmetry assumption are used to reduce the 3D
force-production problem to one in the frontal plane. An
auxiliary planar coordinate system x′z′L rotated from the
xz coordinate system by ab/adduction angle qLab is attached
on the shoulder joint (see Figure 14(a)). In this planar
coordinate system, we can obtain a mapping of the forces
FL
x′ andFL

z′ at the left foot shown in Figure 14 to the torques

uL
sh and uL

kn which is given by,
[

uL
sh

uL
kn

]

= JT
x′z′

L

[

FL
x′

FL
z′

]

, (43)

where, Jx′z′

L
∈ R2×2 is the manipulator Jacobian obtained

by taking the partial derivative of the position of the foot
relative to the shoulder in x′z′L coordinates with respect to
the knee and shoulder joint angles. For the right leg, the
same procedure is followed. Then, the horizontal force Fx

is just the summation of left and right horizontal forces
FL
x′ and FR

x′ as shown in Figure 14(a). In order to avoid
unnecessary yaw torque, FL

x′ and FR
x′ are chosen to be the

same, thereby obtaining,

FL
x′ = FR

x′ =
1

2
Fx. (44)

Solution of the Frontal-Plane Force-Production Prob-
lem. In the second step, we design a linear operator Π ∈
R4×3 which produces the desired net force/torque vector
FB := (Fy Fz τx)T on the floating base in the frontal plane
through a set of leg forces ufrt = (FL

z′ FR
z′ uL

ab u
R
ab)

T (see
Figure 14(b)) as,

ufrt = ΠFB . (45)

The mapping Π is designed such that the leg forces
result in the correct net force on the floating base when
considering the effect of closed-chain kinematic constraints
of the legs with the ground. To systematically obtain the
mapping, we define generalized coordinates of the floating
base frontal dynamics as,

qfrt := [qT
B,q

T
ℓ ]

T ∈ R
7×1 (46)

where, body DoFs qB = [yB, zB,ψ]T , and leg DoFs qℓ =
[zL, zR, qLab, q

R
ab]

T . Variables yb and zb provide the position
of the body in the frontal plane, ψ is the roll angle, zL and
zR are the length of the left and right legs in frontal plane,
qLab and qRab are ab/adduction angles of left and right legs
(see Figure 14(b)).
To take into account the constraints of ground contact,

let pfoot ∈ R4×1 be the vector which has the elements of
horizontal and vertical foot position of the left and right legs
in the frontal plane. Then, the constraints can be written as,

ṗfoot = Jfootq̇frt ≡ 0. (47)
p̈foot = Jfootq̈frt + J̇footq̇frt ≡ 0. (48)

To aid the following development, the foot Jacobian Jfoot

is partitioned as
Jfoot = [JB Jℓ] .

Derivation of the constrained dynamics of the planar
mechanism reveals how the actuation ufrt affects the body
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Figure 14. Generation of the lateral force Fy, vertical force Fz ,
and rolling torque τx using forces FL

z′ , FR
z′ and torques uL

ab, and
uR
ab in two legs contacting with the ground. yB and zB are the
position of the center of the left and right shoulder joints in frontal
plane, and ψ is the rolling angle of the body, qabL,R are ab/adduction
angles of the left and right legs.

dynamics. Letting IB = diag(m,m, Iφ) the spatial inertia
tensor for the body in the frontal plane, and approximating
legs as massless, the dynamics of this planar frontal system
are given through

⎡

⎢
⎣

IB 0 −JT
B

0 0 −JT
ℓ

JB Jℓ 0

⎤

⎥
⎦

⎡

⎢
⎣

q̈B

q̈ℓ

λ

⎤

⎥
⎦ =

⎡

⎢
⎣

0

ufrt

−J̇footq̇frt

⎤

⎥
⎦

where λ is a Lagrange multiplier associated with the
constraint. The three zeros in the upper-left block of the
mass matrix are due to the assumption of massless legs.
From the second row,−JT

ℓ λ = ufrt, and it follows that the
body dynamics are given as:

IBq̈B = −JT
BJ

−T
ℓ ufrt .

Further, Jℓ is guaranteed invertible by the choice of
coordinates. In order to impart the desired body force FB,
we seek

− JT
BJ

−T
ℓ ufrt = FB . (49)

Thus, as one of many possible solutions, Π is selected as
Π = −(JT

BJ
−T
ℓ )† where (·)† provides the Moore-Penrose

pseudoinverse.

Remark 7. It is interesting to note that the quantity
−JT

BJ
−T
ℓ maps leg actuations to effective forces on

the floating base under considerations of contact. Thus,
it plays an analogous role to the transpose of the
dynamically-consistent Jacobian pseudoinverse associated
with a floating-base postural task in closed-chain-
constrained operational-space control (Sentis et al. 2010;
Wensing et al. 2015). However, the legs are assumed
massless in this current model, resulting in a static mapping
(i.e. one that is a function of kinematic parameters alone).

This result is in contrast to the required inversion of the
mass matrix in other task-space methods which include leg
mass (Hutter et al. 2014b; Wensing et al. 2015).

Remark 8. For the frontal plane system with massless
legs, the problem of floating-base task-space control is
equivalent to floating-base inverse dynamics. As a result,
the above development may be seen as a special case of
previous methods (Mistry et al. 2010; Righetti et al. 2011,
2013). The previous remark, concerning the benefit of not
requiring a mass matrix inversion, can be interpreted to
flow from the benefits of these more general approaches.
It is important to note, however, that even with massless
legs the full 3D force-production problem cannot be cast as
one of floating-base inverse dynamics, since 3D bounding
is underactuated.

Use of the 3D Force-Production Solution for Postural
Stabilization. This solution to the 3D force production
problem is combined with the 2D force profiles and
feedback fromSection 5.1 as well as additional out-of-plane
forces to stabilize bounding in 3D. The forcesFx andFz are
selected as,

[

Fx

Fz

]

= F+

[

−kPx (x− xd(t))

0

]

(50)

where, F is from (26), xd(t) is a desired horizontal motion
with velocity fixed at the desired speed ẋd(t) = vd (reset
each step), and kPx is chosen as 1500N/m. To regulate the
lateral sway and rolling motion of the body, Fy and τx are
chosen as,

Fy = −kPy yB − kDy ẏB , and (51)

τx = −kPψ ψ − kDψ ψ̇ . (52)

To regulate yaw motion, the following feedback is
calculated,

F i
y,φ = σ

(

−kPφ (φ− φd)− kDφ φ̇
)

(53)

where, φd is the desired yaw angle, and σ = 1 and −1 for
front leg and hind leg. This feedback is added to the force
Fy in (51). Following this specification desired forces and
torques Fx, Fy, Fz , τx, the solution to the force production
problem through (43), (44), and (45) is used to determine
joint torques uL

sh, u
R
sh, u

L
kn, u

R
kn, u

L
ab, u

R
ab.

6.2 Swing Foot Trajectory Tracking
In order to track the desired swing foot position in flight,
a Cartesian impedance controller is employed nominally
around the trajectory specified through (32) and (33). This
subsection details a set of Beziér curve based methods
which provide online adaptation of the desired trajectory
for experimental implementation.
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Regardless of running speed, the nominal swing foot
trajectories are based on the same set of Beziér coefficients.
Two modifications to the Beziér trajectories are pursued
to improve swing leg performance. First, it is important
to touchdown with a ground-matched velocity as speed
increases. This ground speed matching can occur through
early retraction, and provides decreased impact losses. This
is important to address as an implementation issue, as leg
mass was not previously captured in the simple models of
the previous sections. Second, while tracking the nominal
trajectory around the impact event is important, a smoother
leg repositioning response can be obtained if tracking
requirements are relaxed for the first half of swing.
Phase warping for early retraction. In order to achieve
the desired retraction speed at the end of swing, a 3rd-order
phase-warping Bézier polynomial ssw(βsw

s , s) is employed
to provide:

xd
foot := xd

foot(β
sw
x , ssw(β

sw
s , s)) (54)

with the following Bézier coefficients

βsw
s =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
1
3

(

ẋd
foot(β

sw
x , 0)

)−1
ẋfoot(τ)

1− 1
3

(

ẋd
foot(β

sw
x , 1)

)−1
vd

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(55)

where, τ is the time at the end of the stance phase.
It can be verified that this phase warping provides the

following.

ẋd
foot(0) =

∂xd
foot

∂ssw
ṡsw

∣
∣
∣
∣
s=0

= ẋfoot(τ) (56)

ẋd
foot(1) =

∂xd
foot

∂ssw
ṡsw

∣
∣
∣
∣
s=1

= vd (57)

which matches the actual horizontal velocity at liftoff and
desired horizontal velocity at touchdown.
Correction Polynomial For Smooth Early-Flight Track-
ing. At the beginning of flight, the actual leg configuration
may be far from the nominal swing trajectory, causing a
high-jerk response from the flight-leg impedance control.
To improve the smoothness of the closed-loop response, the
desired trajectory is modified through the addition of a 3rd-
order Bézier polynomial hcorr

x (scorr), hcorr
z (scorr) with the

following characteristics:

hcorr
x (0) = xfoot(τ) − xd

foot(0)

hcorr
z (0) = zfoot(τ) − zdfoot(0)

hcorr
x (1) = 0

hcorr
z (1) = 0

A zero rate-of-change was enforced at the beginning and
end of this polynomial, which determines the polynomial
uniquely. We call this polynomial a correction polynomial
(Chevallereau et al. 2009), as it captures the tracking error
at the beginning of flight and smoothly decays to zero.
In order to ensure accurate touchdown foot position, it is
desired for any correction to decay to zero by 50% of the
way through the swing phase. An effective approach is to
specify scorr as,

scorr(ssw) :=

{

2ssw if scorr ≤ 1

1 o.w.
(58)

Then, the on-line corrected swing foot trajectory
becomes,

xcorr
foot = xd

foot(β
sw
x , ssw) + hcorr

x (scorr(ssw))

zcorrfoot = zdfoot(β
sw
z , ssw) + hcorr

z (scorr(ssw)) (59)

Note that this choice of swing foot trajectory does not
provide matching on vertical velocity zfoot at the start of
the swing phase, but this is intentional. Rapid response to
eliminate foot lift velocity errors is critical for consistent
ground clearance.

6.3 Accounting for Swing-Leg Effects in Flight
In the experiments, the effects of swing-leg mass cause
nose-down pitch of the Cheetah in comparison to the
massless leg model used in analysis. To address this effect,
the nominal force profiles are modified during stance in
experiments. More specifically, the force profiles in (12)
employ a modified value of speak = 0.3. This value causes
the peak vertical force to occur earlier in stance, which has
been found to correlate with a nose-up pitch in simulations.
Thus, the effect of speak roughly compensates for the nose-
down pitch from swing-leg effects.

6.4 Impact Detection
Impact with the ground is detected by proprioception,
observing the force in the z direction created by joint
actuators. The required nominal z direction inertial force
to create the desired swing motion is logged from prior
swing leg motion experiments during which the robot is
hanging in the air. This data is used to create a table of
phase-dependent inertial forces required for leg swing. In
the bounding experiment, if the z direction force during
swing phase is larger than this phased-dependent inertial
force by some margin, this additional force is assumed to
be caused by the impact with the ground and touchdown is
declared. As a drawback, this approach may lead to a delay
in the detection of ground impact during bounding which
acts as a persistent disturbance to the gait pattern stabilizer.
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Figure 15. In the hardware experiments, separate state machines
are employed for each pair of legs. Coupling is provided indirectly
through the dynamics of bounding and the gait pattern stabilizer.

6.5 Indirectly-Coupled Leg-Dependent Finite
State Machines

The last step of the implementation process is to introduce
a state machine to manage transitions between stance and
swing phase for each leg. Two independent finite state
machines for each pair of front and hind legs are proposed.
That is, each state machine governs the transition of a
pair of legs, left and right, which occur together. Timing
synchronization between the front pair of legs and hind pair
of legs is accomplished by indirect coupling through the
gait pattern stabilizer alone. The state machine is illustrated
in Figure 15. As in the simple hybrid bounding model,
transition from swing to stance occurs when the leg strikes
the ground. Transition from stance to swing takes place
when the leg leaves the ground. This approach is effective in
experiments to handle periods of double support which are
not captured in the simple hybrid models from the previous
sections.

7 Experiments and Results
This section documents the experimental results of the
controller applied in 3D bounding trails. The experiment
starts with the robot standing on four legs until an operator
initiates bounding. At the first step for each leg, a time-
dependent open-loop force profile is applied as specified in
Section 4. Once airborne, a finite state machine for each pair
of legs is started. Feedback is applied in every stance phase
thereafter. In order to apply the stance time specified in (9),
an additional scaling parameter γ ∈ [0 1] is introduced:

γ := min

(
vd

3m/s
, 1

)

with the nominal stride length then set as

L = γL∗ (60)

with L∗ = 0.4m. The trajectory of the swing leg in the
horizontal direction is similarly scaled by γ such that
when γ = 1, the leg moves in a full horizontal stroke. The
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Figure 16. Velocity tracking over time for max speed experiment.
Actual velocity was estimated from the average speed of the stance
hips relative to the feet. A video of the experiment is available in
Extension 1.

nominal trajectory of the leg in the vertical direction is not
scaled by this parameter.
The experiment starts with vd = 0 and the desired speed

increased from step to step as shown in Figure 16. The
speed of the treadmill is adjusted by a human operator
independently from the desired speed in order to prevent
nonsmooth increases in the treadmill speed which may
destabilize the robot. In the experiment, the MIT Cheetah
2 increases its speed from 0m/s up to a max speed of
6.4m/s when roll instability leads to the end of the run
(see Extension 1). At lower speeds, the extension shows
fully unconstrained 3D bounding. However, challenges
in steering on a narrow treadmill at the highest speeds
necessitated partially leaning against the side wall during
portions of the gait phase. During the experiment, the
minimum and maximum pitch for each stride stay within
the range [−0.26 rad, 0.13 rad] as shown in Figure 17.
Figure 18 shows the mean and standard deviation for the
min and max pitch versus speed. Beyond 3.5m/s, the
controller uses the same nominal stride length within each
step and exhibits less variability from the average pitch.
For the binning shown in Figure 16, bins with speeds
under 3.5m/s have a mean standard deviation of 0.027 rad
while bins above 3.5m/s had a mean standard deviation
of 0.014m/s. While faster gaits are expected to have a
smaller peak-to-peak magnitude at higher speeds due to the
pitch moment scaling from (23), it is interesting that these
faster speeds also have more consistent pitch performance
in hardware.

7.1 Gait Pattern Stabilization
Figure 19 shows the result of the stabilized gait pattern
during the maximum speed experiment. Following an initial
transient in the first three steps, the relative timing in
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Figure 17. Minimum and maximum pitch angle per step during
the maximum speed experiment. Maximum pitch (nose down)
occurs during front stance and minimum pitch occurs during back
stance.
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Figure 18. First and second moments of the distribution over
min/max pitch vs. speed. The height of the bars represent the
average min/max pitch and the solid lines represent +/- one
standard deviation.

between footfalls has a maximum error of 24.9% and an
average error of 6.0% from the nominal timing. This shows
the effectiveness of the gait pattern stabilizer to couple the
otherwise independent state machines which drive the front
and back legs in the experimental platform.

7.2 Impulse Scaling
The only changes to the controller parameters across speed
are those which are automatically computed using the
principles of impulse scaling. Figures 20 and 21 show
characteristic profiles for the desired forces when running
at 2m/s and 6m/s respectively. The desired forces are
computed through a leg Jacobian transpose from the torques
commanded to the actuators (Wensing et al. 2016). Torque
commands for the shoulders and knees are shown in Figures
22 and 23. Only closed-loop joint torque control to these
values was used to (approximately) render desired forces at
the feet. The accuracy of this method for rendering desired
forces is thus dependent on dynamic conditions which are
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Figure 19. Tracking desired gait pattern timing during the
maximum speed experiment. As speed increases beyond 3m/s, the
stance time and overall period decrease.

not captured in the static mapping. Force-tracking results
for this approach are quantified in (Wensing et al. 2016).
Feedforward forces change significantly across speed

and dominate the total desired forces. Feedforward vertical
forces F ∗

z have a maximum magnitude of 240 N in when
running at 2m/s, compared to 500Nwhen running at 6m/s.
It is observed that the Feedforward force profile (solid)
provides a majority the total force (dashed) indicating the
prominent role of the momentum-based nominal force in
the closed-loop control. In fact, this feedforward force plays
a relatively more important role at higher speeds. At 2
m/s, the vertical force deviates from the feedforward by an
average of 49.5N during stance, which is 20.6% of the peak
force. At 6 m/s the desired vertical force deviates from the
feedforward by an average of 63.3 N, only 12.7% of the
peak force.
This dominant role of these feedforward forces is a main

difference from previous work with Cheetah 1 (Hyun et al.
2014). In that work, the ground reaction forces were purely
the result of interactions between leg impedances and
the ground through high-gain foot position control. For
comparison, the value of the vertical stiffness in prior work
was 5000 N/m for each leg, or effectively 10, 000 N/m in
total with two legs on the ground. The total vertical stiffness
in this current work is kPz = 800 N/m, which enables
robustness to terrain height variations as demonstrated
empirically in Section 7.4.

7.3 Power Consumption
Figure 24 provides data on the power usage of the MIT
Cheetah 2 for a separate experiment which was conducted
with additional instrumentation to measure power flow
out of the batteries. Thus, these numbers quantify the
net energetic losses, not simply positive mechanical work
(Seok et al. 2015). These numbers are provided mainly as
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Figure 20. Desired sagittal plane forces when running at 2
m/s. Solid lines indicate the feedforward forces from vertical
momentum and pitch moment scaling. Dashed lines represent
forces with feedback included.
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Figure 21. Desired sagittal plane forces when running at 6
m/s. Solid lines indicate the feedforward forces from vertical
momentum and pitch moment scaling. Dashed lines represent
forces with feedback included.
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Figure 22. Sagittal plane motor torques when running at 2 m/s.
Torque values are quoted at the motor, prior to amplification by a
5.8:1 gearbox. The motors have a peak torque of approximately
30 N/m.

documentation, as we conjecture they are due more-so
to mechanical design rather than to control design. The
power consumption exhibits significant variability from
step to step at any given speed, as shown in Figure 24.
The average cost of transport per step versus speed is also
shown in Figure 24, with a minimum cost of transport
of 0.47 achieved at 4m/s. This figure represents a slight
improvement over that the MIT Cheetah 1 robot (Seok et al.
2015), which had a cost of transport of 0.51.
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Figure 23. Sagittal plane motor torques when running at 6 m/s.
Torque values are quoted at the motor, prior to amplification by a
5.8:1 gearbox. The motors have a peak torque of approximately
30 N/m.
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Figure 24. Power usage and Cost of Transport (CoT) versus
speed. The height of the bars represent the average and the solid
lines represent +/- one standard deviation.

7.4 Empirical Experimental Stability and
Robustness

In this section, the stability and robustness of the controller
is further demonstrated in environments with ground height
variations, stiffness variations, and perturbations in state.
First, the controller was tested for robustness to ground

height variations by placing various types of obstacles on
the treadmill while running at 2.5 m/sec. The robot was not
provided with any information on the location or geometric
properties of the obstacles. Figure 25 shows screen captures
of an experimental video (see Extension 1). The obstacle
types include 3/8 inch thick rubber tiles (Figure 25(a)),
2 inch thick polyurethane foam (Figure 25(b)), and a
1 x 4 inch wooden board (Figure 25(c)). The obstacles
have different stiffnesses ranging from soft to rigid.
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Obstacle (40 cm tall) 

Figure 26. MIT Cheetah 2 recovering to its nominal bounding gait following an initial state disturbance after a jumping motion.
Snapshots proceed in time from left to right in the top row, then left to right in the bottom row. A full video is available in Extension 1.

(a) 

(b) 

(c) 

Figure 25. MIT Cheetah 2 running over various types of
obstacles, (a) rubber floor mats (b) polyurethane foam, and (c) 1x4
inch wooden boards. A full video is available in Extension 1.

The height perturbations introduced by these obstacles
sometimes affect only a single foot, providing out-of-plane
disturbances. In spite of placement of multiple obstacles,
the robot was successfully able to run over the obstruction
and return to its nominal running gait. A video of these
results is provided in Extension 1.
The robot was also able to handle a wide range of

ground stiffness without changing feedback gains or control
parameters. The control design was tested on surfaces
with different stiffnesses including very stiff grounds - a

treadmill, paved surfaces, and an indoor running track, as
well as soft grounds - a grassy field, dirt tracks, and an
artificial turf field. Figure 1 shows screen captures of the
experimental video, with clips of each terrain type provided
in Extension 1. A preliminary version of the vertical
impulse scaling algorithm has also shown robustness to
handle rolling terrain as well as large steps in simulated
galloping (Park and Kim 2015). These combined results
encourage expanded terrain robustness tests in future work.
The capability of the controller to handle large

perturbations in state is further shown by experiments
where the robot jumped over obstacles with heights up to 40
cm (Park et al. 2015b). While the autonomous jumping is
not the focus of this work, stabilization upon landing, which
includes handling deviations in state as well gait pattern, is
due to the control structure presented in this paper.
Figure 26 shows series of screen captures taken from the

experimental video (see Extension 1) of the robot landing
from jumping over obstacle. The controller successfully
recovered from state deviations away from the nominal
gait as shown in Figure 27. This figure also shows the
corresponding footfall patterns. Large perturbations to the
gait pattern are caused by pitching from the jump. This
leads to periods of double support and instances where
the front feet touchdown twice between the footfalls
of the back feet. These situations were not specifically
addressed by the simple model analysis, yet the gait-pattern
stabilizer and indirectly coupled leg state machines (Figure
15) handle them effectively. The gait pattern stabilizer
successfully brings gait pattern back to steady state within
approximately 5 steps. These results showcase empirical
robustness of the control framework.

8 Discussion
These results represent the state-of-the-art in 3D dynamic
locomotion for electrically actuated quadrupeds. For legged
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Figure 27. Stabilization of the gait pattern and pitch following
a jump over a 40 cm obstacle at t = 65.9 s. The gait pattern
stabilizer applied to the decoupled front and back leg state
machines effectively handles periods of double support, as well
as consecutive impacts by the same pair of legs, returning to the
nominal pattern after approximately 5 steps.

machines to fulfill their intended roles outside of the
laboratory, however, yet higher degrees of robustness,
versatility, and reliability must be pursued. These advances
will undoubtedly occur through strategic and coordinated
advances in actuation and sensing topologies, robust
mechanical design, and a broader re-use of software across
the community. We limit the scope if discussion here to our
methods for control design and systems analysis.
Although the bounding gait is executed in 3D, its

dynamics are dominated by the sagittal plane. Yet, some
of the failures in the experiments were due to instability
in roll and lateral velocity. In order to generate a wider set
of gaits in 3D, the use of more general stability analysis
tools in 3D would be helpful to guide the specification of
control 3D control gains. While the 3D stability should be
more fully studied, it represents little theoretical hurdle to
existing methods for local stability analysis.
A main limiting factor in pushing the performance

envelope in our experiments was a fundamental lack
of analysis tools to diagnose and correct failure modes.
The full controller in experiments (Figure 11) includes
contributions frommany coupled modules, each running on
different schedules. Pinpointing the root cause of failure,
whether from an individual module, or from couplings
represented a significant challenge. Failures in the highest
speed experiments would cost hundreds of dollars in
replacement parts with repairs taking a few hours. Yet,
often the causes of failure and appropriate patches were
unable to be applied due to the challenges described above.
Our existing tools for stability analysis provide only local

guarantees, while predicated on models which will always
be approximate. Moving forward, modular tools for robust
control design and systems diagnosis represent a pressing
challenge for large-scale experimental platforms.
The capabilities of available actuators were not a

limiting factor in the performance of the bounding
controller. Even at the highest speeds Figure 23 shows
that only 66% of the maximum actuator torque was used.
Although our proprioceptive actuators top out at a 100 Hz
control bandwidth (Wensing et al. 2016), the comparatively
low bandwidth of force production in human muscle
(Aaron and Stein 1976) suggests that balance control
strategies should not ultimately be limited by actuator
bandwidth in our platform. Biological locomotors widely
use foot placement (Patla et al. 1999), a characteristically
low-rate control approach limited by step frequency, to
provide balance in response to disturbances or challenging
terrains.
Footstep modification through Capture Point

(Koolen et al. 2012) or Raibert-style heuristics (Raibert
1986) has been used effectively in other legged robots. The
modification of footstep locations shapes the set of forces
and moments (also called the wrench cone) that can be
placed on the body during stance (Escande et al. 2013).
As a result, modification of footsteps allows, for instance,
recovery of the body velocity without determent to body
posture. In this work, the short duration of flight provided
a challenge to track target footstep locations. Without
footstep control, posture and speed were controlled entirely
in stance through producing desired forces on the system.
While this was shown to be effective, including footstep
control represents an opportunity to provide additional
stabilization mechanisms in future work. It is anticipated
that these inclusions would tolerate yet larger disturbances
and would reduce the force-bandwidth requirements in
stance.

9 Conclusion
This paper has presented high-speed running results for
the MIT Cheetah 2 robot. Results are enabled by impulse
scaling principles to generalize the control of gait across
a range of speeds. With this approach, a single set of
control parameters is able to be used for the cheetah
robot to run at speeds of 0.0 m/s to 6.4 m/s. The main
control approach takes a common form of feedforward plus
feedback control. However, the focus onmomentum scaling
principles enables the time-based feedforward component
to only be based on easily identified system parameters
such as total mass and inertia. When the timing of the
feedforward forces are based purely on foot impacts,
the gait pattern tends to drift. A gait pattern stabilizer
has been presented which enables the robot to smoothly
recover to the desired temporal footfall phasing through
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feedback on the foot impact times. A number of additional
controller subsystems have been briefly presented in order
to realize these algorithms in experimental hardware.
Energetic analysis shows the approach to result in efficient
gaits with a minimum cost of transport of 0.47 at 4 m/s.
This level of speed and efficiency represents new levels for
electrically actuated quadrupedal machines.
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Appendices
Appendix A: Index to multimedia extensions

Table of Multimedia Extension

Extension Media type Description

1 Video A video of experimental
results from Section 7.

Appendix B: Proof of Proposition 1
Conditions (6) and (7) provide periodicity in ż and θ̇. This
can be easily checked by integrating first two equations
in (5). The existence of initial conditions which admit
periodicity in θ and z is also verified by twice integrating

the first two equations in (5) to obtain the expression of θ(t)
and z(t).
Suppose we are given F ∗

z (t) and τ∗(t) such that (6), (7),
and (8) are satisfied. Let θ∗(t), z∗(t) provide any periodic
orbit in θ and z.
Letting β(t) := F∗

z
(t)

z∗(t) and combining phases 1 and 2,
and phases 3 and 4 for the hybrid bounding model, we
view these periodic angular and vertical forced dynamics
as a time-varying input to the remnant dynamics on η(t) :=
[x(t), ẋ(t)]T as:

η̇(t) = A(t)η(t) +

[

0
τ∗(t)
z∗(t)

]

(61)

where

A(t) :=

[

0 1

β(t) 0

]

. (62)

We consider searching for an orbit which begins
immediately before the end of phase 4 and continues
through two reset maps at times t4 and t2. At each of these
times, we can construct a full state before the reset map
x(t−i ,η(t

−
i )) from the remnant dynamic state η(t−i ) and

the periodic z∗(t−i ), θ
∗(t−i ). This lifted state then allows

the consideration of reset maps in the η space defined
according to

η+ = ∆
η
4(η

−) := π ◦∆4(x(t
−
4 ,η(t

−
4 )))

η+ = ∆
η
2(η

−) := π ◦∆2(x(t
−
2 ,η(t

−
2 ))), (63)

where π is the canonical projection selecting remnant the
component of the state. The sensitivity of a trajectory
to initial conditions for this system can be given by a
monodromy matrix

X(t) :=
∂ η(t;η0)

∂ η0

∈ R
2×2 .

The monodromy matrix can be obtained by numerically
integrating the following linear time-varying system,

Ẋ(t) = A(t)X(t). (64)

during the continuous dynamics, with initial condition
X(0) = I2×2. The following discrete map relates the
monodromy matrix after and before any reset map,

X(t+) =
∂∆η

j (η
−)

∂η
X(t−).

where, t+ and t− represent the time after and before the
reset map, respectively. Without loss of generality, we can
consider the sensitivity of a trajectory to initial conditions
before the reset map ∆

η
4 . If we define the state transition

matrix Φ(τb, τa) (Rugh 1996) as the matrix obtained by
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integrating (64) over the interval of interest [τa, τb], then,
the monodromymatrixX(T ) can be given by,

X(T ) = Φ(T, t+2 )
∂∆η

2(η(t
−
2 ))

∂η
Φ(t−2 , 0)

∂∆η
4(η(0))

∂η
,

(65)

for the system in (61). Due to the structure of the reset maps
∆
η
2(η

−) and∆η
4(η

−), the sensitivities across transitions are

∂∆η
4(x

−)

∂x
=
∂∆η

2(x
−)

∂x
=

[

0 0

0 1

]

. (66)

The state transition matrix Φ(τb, τa) used in (65) can be
expressed through the Peano-Baker series (Rugh 1996):

Φ(τb, τa) =
∞
∑

i=0

Pi(τb, τa)

whereP0(τb, τa) = I2×2 and the remainingPi are defined
recursively as

Pi+1(τb, τa) =
∫ τb
τa

A(s)Pi(s) ds .

Since β(t) ≥ 0, it follows that

P1(τb, τa) =

[

0 ζ1(τb, τa)

ν1(τb, τa) 0

]

and

P2(τb, τa) =

[

σ2(τb, τa) 0

0 ρ2(τb, τa)

]

with ζ1(τa, τa) ≥ 0, ν1(τa, τa) ≥ 0, σ2(τa, τa) ≥ 0,
ρ2(τa, τa) ≥ 0. Further, due to the non-negative entries
in A(t), and all functions (ζ,σ, ρ, ν) are monotonically
increasing in time.
In particular, ρ2(τb, τa) =

∫ τb
τa

sβ(s)ds, which provides
ρ2(τb, τa) > 0. The non-negativity of all entires in each
Pi(τb, τa) follows via induction. As a result:

Φ2,2(T, t
+) ≥ 1 + ρ2(T, t

+) > 1

Φ2,2(t
−, 0) ≥ 1 + ρ2(t

−, 0) > 1 (67)

where Φ2,2 represents the entry in the second row and
second column of the state transition matrix. From (65),

X(T ) =

[

0 X1,2

0 Φ2,2(T, t+)Φ2,2(t−, 0)

]

.

From (67), Φ2,2(T, t+)Φ2,2(t−, 0) > 1. Note that due to
the LTV structure of (64) and the linearity of the reset
maps (66), this monodromymatrix provides an exact linear
relationship between non-infinitesimal changes in initial
conditions and their associated change in final state. It
follows that there exists an initial condition η0 that exhibits
T periodicity in the remnant dynamics, which guarantees
an orbit lifted to the x dynamics as well.

Appendix C: Proof of Corollary 1.1
Since horizontal velocity does not affect the pitch and
vertical dynamics, it follows that any unstable horizontal
velocity dynamics from step to step in the reduced state
η would extend to unstable ẋ dynamics from step to step
in the full state x. It was shown in Appendix B that
the monodromy matrix X(T ) corresponding to these η
dynamics contains an eigenvalue Φ2,2(T, t+)Φ2,2(t−, 0)
which is greater than 1 from (67). Thus, the horizontal
velocity dynamics from step to step are unstable.

Appendix D: Bézier Swing Parameters for
Extended Bounding Model

βsw
x = [−0.2,−0.259,−0.275,−0.384, 0.261,

−0.017, 0.248, 0.267, 0.259, 0.2] (68)
βsw
z = [−0.5,−0.45,−0.406,−0.065,−1.031,

0.095,−0.545,−0.374,−0.45,−0.5] (69)

Appendix E: Proof Proposition 2
The gait pattern stabilizer from the main text modifies the
stance time of each foot based on the error in relative
timing between footfalls. Given anN -beat gait, this pattern
stabilizer can be generalized as:

T 1
st[k] = T 1∗

st − κ(t1[k]− tN [k − 1]− td1) (70)
T 2
st[k] = T 2∗

st − κ(t2[k]− t1[k]− td2) (71)
T 3
st[k] = T 3∗

st − κ(t3[k]− t2[k]− td3) (72)
... (73)

TN
st [k] = TN∗

st − κ(tN [k]− tN−1[k]− tdN ) (74)

where T i
st[k] is the stance duration for foot i following its k-

th footfall, ti[k] is the time of its k-th footfall, and tdi is the
desired time between the fall of foot i and its predecessor.
Assuming that each subsequent swing phase lasts T i

sw =
T − T i∗

st in length, the impact times then evolve as

ti[k + 1] = T + ti[k]− κei[k] (75)

where

e1[k] = t1[k]− tN [k − 1]− td1 (76)
ei[k] = ti[k]− ti−1[k]− tdi i ∈ {2, ..., N} (77)

These gait errors have a helpful telescoping property

N
∑

i=2

ei[k] = tN [k]− t1[k]− T + td1 .
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Using this fact, the error dynamics evolve as

e1[k + 1] = T + t1[k]− κe1[k]− tN [k]− td1 (78)

= −
N
∑

i=2

ei[k]− κe1[k] (79)

= −
N∑

i=1

ei[k] + (1 − κ)e1[k] (80)

ei[k + 1] = (1 − κ)ei[k] + κei−1[k] i ∈ {2, ..., N}
(81)

Thus, the gait pattern stabilizer error dynamics follow

e[k + 1] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1 · · · −1

κ 0 0 · · · 0

0 κ 0
...

...
. . . . . . . . . 0

0 · · · 0 κ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

A1

e[k] + (1 − κ)e[k]

(82)
We letA = A1 + (1 − κ)I so that e[k + 1] = Ae[k].
The matrixA1 has a characteristic polynomial:

pA1
(λ) = λn + λn−1 + κλn−2 + · · ·+ κn−1λ0 .

and pA(λ) = pA1
(λ− (1− κ)). We note that 1 /∈ σA since

pA1
(κ) ̸= 0. The characteristic polynomial of A1 further

has a helpful simplifying property:

(λ− κ) pA1
(λ) = λn+1 + (1 − κ)λn − κn (83)

= λn(λ+ (1− κ))− κn (84)

When κ ∈ (0, 1) and λ∗ ∈ σA it follows that |λ∗| < 1. To
show this, suppose instead that |λ∗| ≥ 1.

0 = pA(λ∗) (85)
= pA1

(λ∗ − (1− κ)) (86)
= (λ− κ)pA1

(λ)|λ=λ∗−(1−κ) (87)

= λn(λ+ (1− κ))− κn|λ=λ∗−(1−κ) (88)

= (λ∗ − (1 − κ))n λ∗ − κn (89)

Thus
(λ∗ − (1− κ))n λ∗ = κn (90)

Taking norms and n-th roots in (90) gives

|λ∗ − (1 − κ)| = κ/|λ∗|
1

n ≤ κ .

The set {λ ∈ C s.t. |λ− (1 − κ)| ≤ κ} is a closed region of
radius κ, centered at 1− κ inC. This set is containedwithin
the unit circle, and intersects the unit circle at a single point,

λ = 1. Since |λ∗| ≥ 1, this implies that λ∗ = 1, which is a
contradiction, since 1 /∈ σA.
As a result, the error dynamics (82) have an

asymptotically stable equilibrium at the origin. That is, for
any initial conditions, if each subsequent swing phase takes
its nominal time T i

sw = T − T i∗
st , then the gait timing errors

satisfy e[k] → 0 as k → ∞.
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