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Linear Matrix Inequalities for Physically-Consistent
Inertial Parameter Identification: A Statistical
Perspective on the Mass Distribution

Patrick M. Wensing', Sangbae Kim?, and Jean-Jacques E. Slotine?

Abstract—With the increased application of model-based whole-
body control in legged robots, there has been a resurgence of
research interest into methods for accurate system identification.
An important class of methods focuses on the inertial parameters
of rigid-body systems. These parameters consist of the mass,
first mass moment (related to center of mass location), and
rotational inertia matrix of each link. The main contribution
of this paper is to formulate physical-consistency constraints on
these parameters as Linear Matrix Inequalities (LMIs). The use
of these constraints in identification can accelerate convergence
and increase robustness to noisy data. It is critically observed
that the proposed LMIs are expressed in terms of the covariance
of the mass distribution, rather than its rotational moments
of inertia. With this perspective, connections to the classical
problem of moments in mathematics are shown to yield new
bounding-volume constraints on the mass distribution of each
link. While previous work ensured physical plausibility or used
convex optimization in identification, the LMIs here uniquely
enable both advantages. Constraints are applied to identification
of a leg for the MIT Cheetah 3 robot. Detailed properties of
transmission components are identified alongside link inertias,
with parameter optimization carried out to global optimality
through semidefinite programming.
Index Terms—Dynamics, Calibration and Identification

1. INTRODUCTION

DVANCES in whole-body control of legged robots

[0, 120, [3], [4] have led to increased use of model-
based methods in experimental hardware [S], [6], [7], [8].
Commonly, state-of-the-art controllers perform optimization
over actuator torques to generate desired motions in the robot.
Recent strides in torque-controlled actuation have provided
wide benefit to these techniques, and emerging actuator
designs [9] suggest that performance will continue to improve.
Despite these advances, the performance of whole-body con-
trol methods remains dependent on accurate dynamic models.
Thus, recent trends in control have been accompanied by
many parallel developments in the area of system identifica-
tion [10], [IL1]], [12]], [13]], [14]]. This recent work follows a
rich history of research into inertial parameter identification,
with seminal work in [15]. Classically, studies have focused
on challenges such as designing trajectories for optimal
identification [16]], [17], limiting bias from structured noise
[L8], [19], and verifying robustness bounds on the identified
parameters [20], [21]. By comparison, recent work in the
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Fig. 1. Setup for system identification on the MIT Cheetah 3. This work
provides new constraints to identify physically plausible masses m, center
of mass locations ¢, and rotational inertias I~ through convex optimization.

legged locomotion community has focused on challenges
from the floating-base structure of legged robots [10]], [1L]]
and the use of constrained optimization to limit the search
space to physically realistic parameters [12], [13]], [14].

The floating-base structure of legged systems introduces
challenges and opportunities to system identification. Pucci
et al. [10] addressed coupling between the limbs and body to
extend methods of Slotine and Li [22] for underactuated adap-
tive control. Other work has exploited the fact that the Newton
and Euler equations of the entire robot are embedded in the
dynamics of the floating base. With this property, Ayusawa et
al. [[L1l], [23] demonstrated that full-body inertial parameters
can be estimated from contact forces and kinematics alone.
These advances open the door for application to systems
where joint torque measurements are not available, such as
for identifying inertial parameters in humans.

Other recent work has concentrated on using constrained
optimization in identification. Often, parameters are known a
priori to exist within some predefined set. Such restrictions
may come from considerations of physical plausibility, from
bounding volumes in CAD models, or from known symmetry
of a mechanism. Regardless of the source, prior knowledge
can be applied to increase robustness to noisy sensors, and to
accelerate model convergence [24], [25]. Convex constraints,
in particular, provide desirable structure that can be naturally
exploited in parameter identification and adaptive control
alike. For identification, Jovic et al. [12] formed bounding
constraints on the center of mass (CoM) of each link, and en-
forced symmetry of mirrored limbs. Sousa and Cortesao [13]]
formulated LMIs to enforce positivity of the kinetic energy.
This constraint alone does not guarantee physical consistency.
Recently, Traversaro et al. [14] described tight conditions for
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physical consistency of inertial parameters using a nonconvex
parameterization. Optimization on manifolds was required to
enforce these conditions.

A main contribution of this paper is to show how physical-
consistency constraints can be expressed as LMIs on the
inertial parameters. It is shown that manifold constraints from
[14] can be reformulated as convex constraints through LMIs.
The proposed LMIs uniquely enable globally-optimal least-
squares parameter identification while enforcing plausibility
of the result. From the form of the constraints, it is critically
observed that physical consistency depends only on the co-
variance of the mass distribution.

This main observation stems from mathematical common-
ality between mass measures of rigid bodies and probability
measures of random variables. This is not to say that a rigid-
body has inherent stochasticity. But rather, that certifying
the plausibility of moments falls to the same mathematics
in both domains. This connection enables results from the
classical problem of moments [26] to yield new bounding-
ellipsoid constraints on the mass distribution. Formulation of
these constraints is a second main contribution of the work.
Although constraints are placed on the mass distribution, itself
an infinite dimensional mathematical object, LMIs enable this
restriction to be imposed directly on the 10 standard inertial
parameters during system identification.

The paper is laid out as follows. Section [l provides mathe-
matical preliminaries. Section reviews [13] and [14], with
a high-level comparison in Table[I] Section [[V] presents LMIs
for physical consistency, highlighting connections with prob-
ability and statistics. Section [V]draws on these connections to
introduce bounding-volume constraints. Section |VI| describes
application to identify a leg from the MIT Cheetah 3, shown
in Fig. [I] Section provides concluding remarks.

II. PRELIMINARIES
A. Notation and Definitions

The set of real and natural numbers are denoted by R
and N respectively. Ry represents the set of non-negative
reals. Scalars are denoted with italics (a, b, ...), vectors with
bold characters (a,b,...), and matrices with bold capitals
(A,B,...). The n X n identity is noted as 1,,. The Special
Orthogonal group of rotations is denoted SO(3), with its Lie
algebra, the set of 3 x 3 skew-symmetric matrices so(3). The
Special Euclidean group is denoted SE(3) with its Lie algebra
se(3). The set of symmetric n X n matrices is represented as
S™, the positive semidefinite cone S, and the positive definite
cone S | [27]]. The shorthand A > B indicates A —B € S"
for some n € N. A > B similarly indicates A — B € S% .

Definition 1 (LMI Representable). A convex set S C R"™ is
called linear matrix inequality (LMI) representable if there

exists m € N and constant matrices {A;}?_, € S™ with
S={xeR" : Ag+z1A1+ - +2,A,, =0}

A set is called strictly LMI representable when the inequality
can be tightened to hold strictly.

As a main benefit, a convex set S being LMI representable
has favorable implications for optimization. Constraints of the
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Physical Discrete  Uses
Consistency  Convex  Approx. LMIs
Sousa et al. [13] v No v
Traversaro et al. [14] v No
Ayusawa et al. [23] v v Yes
This Paper v v No v
TABLE I

FEATURE COMPARISON.

form x € S can be enforced using semidefinite program-
ming [27]. Such techniques are mature, and admit guarantees
of global optimality. We refer the interested reader to [28]] for
further background on LMIs and their applications.

Definition 2 (Moment of a Measure). Consider a positive
Borel measure i on R", a = [ag,.. .,an]T € N7, and let
x© -x%n for any x = [21,...,7,]" € R"™. Then

[ x* du(x)

— o1,

is called a moment of p, of order |a| = > a;  [26].
i=1

Any function f : R™ — R, can be used to define a
measure through the association du(x) = f(x)dx, where dx
represents a differential volume. The general concept of a
moment is applicable to both probability measures and mass
measures. This commonality will be used for intuition into
the LMIs that enforce plausibility of inertial parameters.

B. Rigid-Body Dynamics
The dynamics of a system of n; € N rigid bodies follows

H(q)v +C(q,v)v+g(q) =T ¢))

where H € R™¢*™ the mass matrix, ng € N4 the number
of degrees of freedom, q € Q the configuration with Q the
configuration manifold, v € R™ the generalized velocity,
Cv € R™ and g € R™ the Coriolis and gravity forces, and
T € R™ the generalized force [29]. For legged systems, the
generalized force T has contributions from n; € Ny joint
actuator torques 7; € R™ and n, € N external contact
wrenches {f., }7¢, C R® according to

Ne
=871+ kz I £,
=1

where S; € R %™ is an actuated joint selector matrix and
J., € R6%na the 6D Jacobian for contact k.

It is commonly known that (I)) can be represented linearly
in system inertial parameters 7 € R0 [[15]

H(q)» +C(q,v)v+g(q) =Y(qv, )7 (2

where Y is the regressor matrix. The parameters 7 have
contributions from each body such that = = [=r,... 7} ]T.
The body inertial parameters ; € R are composed as

™ = [ma h.’E?hy7hzyI.’I;.’IHIQL‘yaI.’L’szyy7IyZaIZZ]T € Rlo

with m the body mass, h = [k, hy, h.]T = mc the first mass
moment with ¢ € R? the vector to the CoM in a body-fixed
coordinate system, and
— I.na. Imy Ia:z
I = Toy Tyy Iy-
Iz Iyz 1.2


HTTP://DX.DOI.ORG/10.1109/LRA.2017.2729659

WENSING et al.: LINEAR MATRIX INEQUALITIES FOR PHYSICALLY-CONSISTENT INERTIAL PARAMETER IDENTIFICATION 3

the rotational inertia about the coordinate origin. These pa-
rameters also describe the 6D (spatial) body inertia [29]

[ L omS@e)] _[ L S
Il o miS(ci)T m,‘lg :| o |:S(hz)T mi13] (3)

with S(x) € so(3) such that S(x)y =x x y, Vx,y € R3.
The regressor matrix provides a simple method to pursue

inertial parameter identification. Given ny, € N, samples, a

least-squares identification problem can be formulated [13]]

min 3 Y™ 7 — 702 (4)
™ m=1

This optimization problem is efficiently solvable to global op-
timality. However, without including constraints, the optimal
parameters may not correspond to any physical system.
Inertial parameters in any physical body are determined
by a distribution of density p;(-) : R® — R,. The inertial
components for each body i are a functional of p;(-) [14]

ml-:/ pi(x) dx ®)
R3
hi:/ x pi(x) dx (6)
R3
_ y2+z2 —Ty —Tz
. / [_wy ey | pdx @)
RS | —zz  —yz 22442
S(x)S(x) T

The moments of inertia within I; are not moments of p(-) in
the sense of Definition 2} While I; is convenient to describe
dynamics, the physical plausibility of inertial parameters will
be more directly addressed with moments as in Definition [2]

Definition 3 (Density Realizable). Given a set X C R?, a 6D
inertia I is called X-density realizable if 3p(-) : R3 — R
such that p(x) = 0 when x ¢ X, and the components of I,
(m,h, I), satisfy B)-(7). When X is not specified, X = R?
is assumed.

Remark 1. Given any X C R3, the set P defined by P} =
{m € R : m(m) > 0, I(m) is X—density realizable}
is a convex cone. Previous work [23|] provided a discrete
approximation to this cone. Without discretization, the work
here provides cases wherein the cone is LMI representable.

III. PREVIOUS RESULTS

This section focuses on physical consistency for a single
rigid body. As such, body indices will be dropped. Attempts to
enforce physical consistency focus on the rotational inertia I~
about the CoM. The parallel axis theorem in 3D establishes
a correspondence between I- and I, the rotational inertia
about a body-fixed coordinate origin, through

I=1Ic+mS(c)S(c)’ (8)

A. Physical Semi-consistency: An LMI Parameterization

Positive definite constraints on Ic(m) have been com-
monly enforced on the inertial parameters 7 [13[], [30]. In
a rigid-body system, when each m; > 0 and Iy, > O,
it can be shown that H(q) > 0 Vq € Q [30]. However,

these constraints are not alone enough to ensure physical
consistency of the inertial parameters [14]].

Definition 4 (Physical Semi-consistency). A vector of inertial
parameters ™ € R0 is called physically semi-consistent if
m(mw) > 0 and Ic(mw) = 0. The set of physically semi-
consistent parameters is denoted P C R1°.

Theorem 1 (LMI Representation of P). [I3] The set
of physically semi-consistent parameters P is strictly LMI
representable. Its LMI representation is given as P =

{meRY : I(m) - 0}.

Extending the optimization (@) to include physical semi-
consistency constraints results in a semidefinite programming
(SDP) problem. This problem can be solved to global opti-
mality with SDP solvers [27]

min 37 Y0 7 )2
st. I(m;)) =0 Vie{l,...,np}

B. (Full) Physical Consistency: Manifold Parameterization

Definition 5 (Physical Consistency). A vector of inertial
parameters w € R0 is called physically consistent if m(7) >
0 and I(w) is density realizable. The set of physically-
consistent parameters is denoted P*.

In comparison to P, the set of physically consistent inertial
parameters P* C P has been shown to result from only three
additional conditions on I [14]. These additional constraints
arise from considerations regarding the principal moments
of inertia. Suppose R € SO(3) and J = diag(Jy, Ja, J3),
Ji,...,J3 > 0 such that Io = RIJR". Then, the rotational
inertia I is density realizable iff

Ji+Je>J3, Jao+Jz3>Jy, and Ji+J3 > Ja (9)

Definition 6 (Triangle Inequalities). A matrix in S? is said
to satisfy the triangle inequalities if its eigenvalues {J;}3_,

satisfy ).

Theorem 2 (Manifold Parameterization of P*). [[I4] A 6D
inertia I is physically consistent if and only if there exists
m > 0, R € SO(3), J = diag(J1, Jo, J3) = O that satisfies
the triangle inequalities, and ¢ € R3 such that
I RJR" +mS(c)S(c)" mS(c)
- mS(c)" mls
Even for a single rigid body, optimization with this param-

eterization of P* results in a nonlinear optimization problem
over a manifold

i (m) _ ~(m)2
i ;HY m(R,J,c,m) — 7|

s.t. R € SO(3)
m>0, J; >0,i=1,2,3
Ji+Jo>Js, Jo+J3 > Jq, and J1 + J3 > Jo
Solution of this problem is possible using nonlinear opti-

mization on manifolds [14]. However, this approach requires
custom solvers and does not guarantee global optimality.



IV. CONTRIBUTION: AN LMI FOR PHYSICALLY
CONSISTENT INERTIAL PARAMETERS

This section takes a closer look at conditions for physical
consistency. It is shown that the triangle inequalities can be
expressed as an LMI over 7r, without a manifold parametriza-
tion. First, Section describes a matrix inequality for the
triangle inequalities on Ic. Intuition into this result is given
in Section through introduction of the density-weighted
covariance of a rigid body and its covariance ellipsoid. With
this interpretation, Section develops an LMI over m for
physical consistency. As a key benefit, this LMI enables the
use of convex optimization to identify plausible parameters.

A. A matrix inequality for triangle inequalities on I o

Suppose R and J as before such that I =RJR'. The
triangle inequalities on I (9) can be rewritten as

J14+ Jo+ J3 > 2J; 1=1,...,3 (10)
Since J; are the eigenvalues of I, (T0) is equivalent to
%Tr(jC) > )\max(IC) (11)

where Tr(-) is the trace operator, and Ap,q.(-) provides
the maximum eigenvalue of its argument. Separately, the
eigenvalue inequality A4 (Ic) x'x > x' I x implies

)\max(jC)]-B = jC (12)
Thus, through the use of (12), is equivalent to
3Tr(Ic) 15— Ic = 0 (13)

Although (13) is mathematically equivalent to the triangle
inequalities on I, its intuitive meaning is hardly clear in
this form. The next section builds towards this intuition.

B. The Density-Weighted Covariance of a Rigid Body

It will be shown that the mathematical condition (I3) can
be interpreted as requiring a positive semidefinite covariance
of the rigid-body mass distribution. Towards this insight, I
can be expanded algebraically to verify

Ic= fRS S(XC)S(Xc)TP(X) dx
= Jrs (Tr(Xch)lg - XCXT) p(x)dx (14)

C

where x. = x — c. To simplify this expression, the density-
weighted covariance of a rigid body is introduced as

B0 = Jps Xex/ p(x)dx 15)

Note that c is the mean position of the rigid body, in a
density-weighted sense. Thus, when m = 1, the definition
(T3) matches that of covariance in probability and statistics.
The covariance ¥ and rotational inertia I are related
through a rich set of properties. Algebraically, from (14)),

Ic=Ti(Sc)1s — B¢ (16)

Taking the trace of both sides provides that Tr(Ic¢) =
2Tr(X¢). From (16), this property can be used to show

Yo =1Tr(Ic)ls — Ic (17)

which matches the form of the matrix inequality (I3).
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S = diag(2,5,1)
Ic = diag(6,3,7)

Yo = diag(2,5,0)
I = diag(5,2,7)

Fig. 2. Graphical representation of 3. Point-mass distribution examples
with (a) 3¢ > 0 for a distribution in 3D (all triangle inequalities hold
strictly) (b) 3¢ > O for a distribution on an infinitely thin plate. Since
distribution (b) is degenerate, 3 has one zero eigenvalue, and thus one
triangle inequality is tight. The blue ellipsoid shown is the covariance
ellipsoid £, and captures the shape of the distribution to second order.

Moreover, from (T6)), it can be seen that X and I share
a set of eigenvectors. That is, the principal axes of I are
also the eigenvectors of X . It can further be verified that if
11, k2, g are the eigenvalues of 3¢, then

Jr=po+p3, Jo=p1+ps, J3 =1+ pe (18)

are the eigenvalues of I . Intuitively, 1 /m gives the average
squared distance to the CoM along the direction of the first
principal axis. In comparison, .J; /m gives the average squared
distance to the CoM orthogonal to the first principal axis.
The eigenvalue relationships show that there is a double
counting of sorts when it comes to tallying the rotational
moments of inertia. It is this double counting that is the source
of the triangle inequalities.
To help visualize 3, when 3¢ > 0, we define

En={x B : (x=0)T (Sc/m) ! (x—c) < 1}
More generally, when ¥ > 0 we let
871' = {X € RS : EY7 (Zc/m)y = (X - C)7 (X_ C)Ty < 1}

The set &£, is named the covariance ellipsoid. Mass normal-
ization ¥c/m in this definition allows £ to capture the shape
of the distribution to second order while being invariant to
uniform scaling in mass. The ellipsoid has semi-axes whose
directions match the principal axes of I.. However, the
lengths of the semi-axes are +/p;/m, the root-mean-square
distance to the CoM along each principal axis.

The covariance ellipsoid £, is shown in Figure 2] for two
example point-mass distributions. For simplicity of presen-
tation, both distributions have principal axes that are axially
aligned. When X has a zero eigenvalue, as in Fig. 2b), the
mass distribution is degenerate. For this infinitely thin plate,
the mean-squared distance to the CoM along the z direction
is zero. Thus, 3 has a zero eigenvalue corresponding to
the z principal axis. The corresponding eigenvalue in I
is non-zero, and measures the 2D rotational inertia of the
plate about z. Due to the degeneracy, however, one of the
triangle inequalities holds with equality. More precisely, the
eigenvalue relationships (I8)) verify the following.
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Proposition 1 (Covariance Interpretation of Triangle Inegs.).
Suppose I, & € S3, % = {Tr(I)13 — I. Then ¥ = 0 if
and only if I = 0 and I satisfies the triangle inequalities. An
analogous statement holds with all inequalities strict.

Corollary 1 (Parameterization of P* with an LMI on X().
7w € P* if and only if m(w) > 0 and X (m) = 0.

Stating Corollary (1] plainly, physical consistency is equiv-
alent to the mass being positive and the density-weighted
covariance being positive semidefinite. Note that since any
physical rigid body is non-degenerate, physical consistency
can alternately be considered requiring the density-weighted
covariance to be positive definite. We close this subsection
with a few remarks for context.

Remark 2. A result similar to Proposition |l| can be found
within [31|], however, the connection to the density-weighted
covariance provided here is new.

Remark 3. Corollary [I| could have applicability to inertia
identification and adaptive methods for attitude control of
aerial vehicles (e.g. [32], [33|]]). The triangle inequalities on
I¢ are only treated in a small subset of the literature on this
topic (e.g. [34)]). Corollary [I| could be used to address the
triangle inequalities in this domain.

Remark 4. Corollary can also be understood within
the context of probability and statistics. Suppose a den-
sity function p(-) and mass m > 0 with [p = m. We
can identify the density with a random variable X € R3
through probability density p(-) = p(-)/m. This association
is well posed, since p(-) non-negative implies p(-) non-
negative, and [p = 1. Let E[] the expectation operation
and £(X) = E[(X - E[X])(X - E[X])"]. Up to scaling
by mass, Corollary [I|is equivalent to the following. Suppose
E € S3, then there exists a random variable X € R® such that
E = 3(X) iff E = 0. Noting that 3(X) is the covariance
of X, our conditions on density realizability for rigid bodies
may be unsurprising in hindsight.

C. An LMI Representation of Physical Consistency

While (I3) and its covariance interpretation provide a
matrix inequality for the physical consistency of I, this
condition is not linear in the inertial parameters 7. Towards
an LMI over 7, a matrix of second moments is defined as

2 2y xz

E:/ XXTp(X) dx:/ |:;y y2 yz]p(x) dx (19)
R3 R3

2
Tz Yz =z
Through expansion of and using (3) and (6), an analog
to the parallel axis theorem can be verified as:

> =3¢ +mee! (20)

As a key feature, using the relationship ¥ = 1Tr(I)13 — I
from (T7), X is verified linear in the inertial parameters 7.

Definition 7 (Pseudo-Inertia Matrix). The pseudo-inertia
matrix J€ R*** of a rigid body is defined by

J_E h
" |hT m

Suppose some density p(-) with pseudo inertia J. The
entries of J are then given by definitions in (3), (6), and
(19). These entries of J include all moments of p(-), in the
sense of Definition [2] up to second order. Additionally, given
inertial parameters 7 € R0, J () is verified linear in .

Theorem 3 (LMI Representation of P*). The set of
physically-consistent parameters P* for a single rigid body
is strictly LMI representable. Its LMI representation is

P ={meRY : J(x) >0}

Proof. By the Schur complement lemma [27, Section A.5.5],
J () > 0 if and only if m(s) > 0 and ¥ — Lhh' > 0. By
application of the parallel axis theorem for second moment
matrices (1215]) and using h = mec, this is equivalent to
¢ = 0. From Proposition [1} this is equivalent to I = 0
and Io satisfies the triangle inequalities. Finally, from the
main result of [14]], this is equivalent to ™ € P*. O

Remark 5. Again, taking a statistical perspective on the mass
distribution, the results of Thm. |3| can be seen to follow from
a condition on the first and second moments in probability
and statistics [35) Thm. 16.1.2]. Suppose pu € R and E €
S3, then there exists a random variable X € R3 such that
pu = E[X] and E = E[XX "] if and only if

e 1] =

In comparison, the constraint J () > 0 in Thm. ]3| is scaled
by mass and enforces non-degeneracy of the distribution.

The moment matrix J(7) was found commonly in early
robot dynamics literature (e.g. [36], [37]). It has been em-
ployed in 4 x 4 matrix forms of the dynamics for a rigid
body [38]], [39]. Using these 4 x 4 equations, a parameter
identification approach for a single rigid body was proposed
in [39]. The pseudo inertia was used to provide a left-invariant
Riemannian metric over SE(3) [31]] and appears in robotics
books (e.g. [40]). Despite its importance here, the pseudo
inertia is notably lacking from current mainstream literature
on robot dynamics.

It is interesting to note how the pseudo inertia J(m)
compares to the standard spatial inertia I (7r) in terms of the
kinetic energy metric each provides. Suppose

S(w) v

v:m ERG,andV:[ o 0} € se(3)

It can be verified that the kinetic energy satisfies [40]]
%VTI(TF)V =1Tr(V J(TF)VT)

Thus, while physical semi-consistency ensures that the as-
sociated kinetic energy metric is positive definite, additional
constraints from the triangle inequalities enforce added struc-
ture on the metric. As has been shown for the first time
here, the triangle inequalities are precisely what represent
the difference between I(w) > 0 and J(w) > 0. The
pseudo inertia is also of a lower dimension (4 x 4) than the
spatial inertia (6 x 6). This provides computational benefits
to enforcing LMIs on J (7) in comparison to I ().



V. CONTRIBUTION: LMI CONSTRAINTS FOR INERTIAL
PARAMETER REALIZABILITY ON ELLIPSOIDS

It has been shown that physical consistency of the inertial
parameters can be enforced with an LMI over all moments
up to second order. The resultant LMIs have been explained
through connections to the existence of probability measures.
Even beyond mechanics and probability, however, the re-
alizability of moment sequences represents a more general
problem in mathematics. Namely, it represents the classical
problem of moments (see e.g. [26]], [41]]). With this insight,
results are translated here to provide new conditions on
density realizability with bounding-volume constraints.

Recent work has shown the benefits of including prior
knowledge on the shape of each rigid body within parameter
identification. Work by Jovic et al. [[12]] for instance, enforced
the CoM to reside within a bounding box estimated from
CAD. New constraints are provided here that address second
moments.

To begin, suppose a rigid body is known to reside within
an ellipsoid S C R? described by:

S={xeR®| (x—x,) Q' (x —x,) <1} Q1)

Before considering constraints on the second moments, it is
noted that the CoM constraint, ¢(7) € S, can be formulated
as an LMI over w. When m(m) > 0, c(w) € S iff

h(m)" —m(m)x]

m(m)Qs

Again, equivalence is due to the Schur complement lemma.

Yet, as the CoM approaches the edge of S, large second
moments would imply the existence of mass outside the ellip-
soid. In fact, as the CoM of a rigid body approaches the edge
of a bounding ellipsoid, the rigid body necessarily degenerates
to a point mass. Thus, constraints that c(7) € S alone are
not sufficient for 7 to be S-density realizable. Drawing on
the classical problem of moments, Theorem 4.7(b) from [26]
can be translated as follows.

=0 (22)

Theorem 4 (Density Realizability on an Ellipsoid). Suppose
a bounding ellipsoid S C R3. Let Q € R*** such that

s={xer : 71"Q[}] =0}
Then, 7 is S-density realizable if and only if
J(7) >0 and Tr(J(w)Q) > 0. (23)

Further, any 7 is S-density realizable iff it can be represented
by four point masses my, at positions Xy € S.

Proof. See [26], Theorem 4.7(b)]. O

Note that by taking into account second moments, the
condition Tr(J(7) Q) > 0 in (23) is a 1D linear inequality
constraint. The looser condition (22)) is a 4 x 4 LML Thus,
the new conditions are both tighter, and computationally
more efficient to enforce. Figure |§| shows a number of cases,
illustrating both the role of the CoM location and the shape
of the covariance ellipsoid &, on S-density realizability.
The following corollary is provided to accommodate more
complex bounding shapes.
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Fig. 3. Cases illustrating the role of the center and shape of the covariance
ellipsoid £x on S-density realizability of 7r. In each case, the ellipsoid S
has semi-axes of length V5,4/2,1 in the X,y,2 directions. £ has semi-
axes v/ 0.9, /0.2, /0.2 with principle axes colored accordingly in the figure.
When a mass distribution on S exists, a distribution by four point masses is
shown, as guaranteed to exist through Thm. 4.
Corollary 2 (Density Realizability on the Union of El-
lipsoids). Suppose a rigid body is known to reside within
the union of ny ellipsoids S = U}ZlSj. Then, its inertial
parameters 7 are S-density realizable if and only if there
exist parameters {m;}7*, such that w = 3, m; and each
7 is Sj-density realizable as verified by Thm.
Remark 6. LMIs for the nested sets Ps C Prs C P have
applicability for other problems. Tightened convex constraints
can only increase the rate of convergence for online parame-
ter estimation [24], or more generally provide faster decrease
of Lyapunov-like functions in adaptive control [23)]. For a sys-
tem of bodies, the relative volume of the set Pg X --- X Pg

. . b
versus Pgs X - -+ x Pgs decreases exponentially with ny, due
to its product structure. Thus, it is expected that these benefits
will increase for higher-DoF robots.

VI. EXPERIMENTAL VALIDATION

The proposed constraints were applied to identify a leg of
the MIT Cheetah 3 robot. The robot, shown in Fig. m has
four 3-DoF legs where each DoF is driven by a propriocep-
tive actuator [9]]. Each actuator includes a high-inertia rotor
coupled to the joint by a 10.6 : 1 gearbox. To address actuator
effects, the leg was treated as a system of n; = 6 bodies (3
links and 3 rotors). Joint rates at the gearbox output were
used for v € R3. To account for transmission losses, (]ZI)
was modified via diagonal matrices of viscous and Coulomb
friction coefficients B € R3*3 and B, € R3*3

T —Bv —B.sign(v) =Y(q,v,0)w (24)
Using Theorem [] physically realistic inertial parameters can

be identified alongside transmission effects.

. 1
min  —
B¢, B N

Z ||Y(m) 4+ Bv™ LB, sign(l/(m)) — H2
+wallw — 7| (25)
s.t. Cl(ﬂ'l) =0
J(ﬂ'z) =0

Tr(J(w:) Qi) >0 Vie{l,...
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Fig. 4. Regression errors after identification of a leg for the MIT Cheetah 3. The data shown is distinct from that used in training. Motor torques are predicted

with an overall RMS error of 1.46 Nm. For comparison, the Coulomb friction was identified as

A small regularizing term w,| 7w — #||> was added where
7 € R197 i a set of estimated inertial parameters from CAD
or other sources. Such regularization is common practice [13]].
Bounding-ellipsoid parameters for the CoM and body, in C;
and Q; respectively, were set using geometry from CAD.

Data was gathered from a leg swinging experiment shown
in the supplementary video. The leg was placed in a Cartesian
impedance control mode, and the foot endpoint was com-
manded to move on a virtual ellipsoidal shell. The target point
on the shell was set through spherical angles (¢,6), using
rates ¢ = Agsin(wgt) and § = Agsin(wyt) with Ay = 12
rad/s, Ag = 3.4 rad/s, wy = 1.63 rad/s, and wy = 0.265 rad/s.
Data was sampled at 1 kHz. Joint actuator torques 7; were es-
timated from the torques commanded to motor drivers [9]]. A
each data point, a modified version of the Recursive-Newton-
Euler Algorithm [29] was used to compute each column of
Y. Following this computation, the problem (23) was solved
with 10,000 samples using MOSEK [42] in MATLAB. The
problem took 1.67s to solve to global optimality on a 2011
Intel Core i5 MacBook Pro. Regularization of w, = 1076 was
used. It was verified that all physical-consistency constraints
were satisfied. Numeric values for the identified parameters
are provided in the supplementary material.

After identification, the RMS errors from (24) with the next
10,000 samples in the dataset were 1.48, 1.69, and 1.16 Nm
on the ab/ad, hip, and knee respectively. For comparison,
Coulomb friction was found as B, = diag(3.12,1.25,0.95)
Nm. Figure E| shows validation results. The measured T,
used as input to the algorithm, shows high-frequency noise.
This noise is from finite-differenced encoder signals used in
online feedback. In contrast, the estimated data used non-
causally filtered signals to compute Y offline. This results in
a comparatively smoother identified estimate. The estimation
is notably poor on the ab/ad joint at 17.5s. However, this
occurs at a time when the joint is not moving, and the sign
of the Coulomb friction torque cannot be reliably predicted.

Figure 5] shows an accounting of friction and inertial effects
on the identified model. Effects that dominate the required
torques are shown to be dependent on both the motion as
well as the joint. This demonstrates the need to identify all
model components treated here. It is important to note that
these effects will be robot and transmission specific.

B. = diag(3.12,1.25,0.95) Nm.
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Fig. 5. Identified contributions of the effects from link inertias, rotor inertias,
and friction. Data is from the same experiment as Figure EI

- 5 —— No Physical Consistency Constraints
-% ~10 ™| —— Physical Semi-Consistency
° % Density Realizability on an Ellipsoid
T T ot ]
52 —
z u 1° ) ‘ E——

10° 10t 10

Samples

Fig. 6. Validation error (after identification) versus training sample size.

Figure [6] shows the validation error with different training
sample sizes n, and different constraints. As in Remark [6]
tighter constraints empirically result in an accurate model
more rapidly as samples are added. Lower validation error
for tighter constraints further demonstrates reduced overfit-
ting. These benefits are in addition to the fact that tighter
constraints result in physically realistic model parameters.

Remark 7. Although these results have only addressed a
3-DoF leg, physical-consistency constraints are equally ap-
plicable to more complex rigid-body systems. Previous work
demonstrated the scalability of least-squares identification to
high-DoF platforms [I1], [I2)]. The 4 x 4 LMIs proposed
would present minor added overhead to the solution of these
problems. As in Remark [6] benefits from our tightened con-
straints are expected to increase with the number of bodies.

VII. CONCLUSIONS

This paper has introduced LMIs to rigorously characterize
physical consistency of rigid-body inertial parameters. Rather
than focusing on the moments of inertia, physical plausibility



is directly assessed using the types of moments encountered
in probability and statistics. With this observation, LMIs
involving a pseudo-inertia matrix and its density-weighted
covariance have been shown to tightly characterize physical
consistency. LMI constraints for density realizability on an
ellipsoid were also proposed through connections to the
classical problem of moments in mathematics.

In closing, recall that while intuition was borrowed from
probability and statistics, there is nothing stochastic about
our results. Given a bounding ellipsoid for a rigid body,
the new constraints characterize a cone where its inertial
parameters must reside with certainty. Beyond least-squares
considerations, a quantified treatment of stochasticity can
play an important role in inferring models from uncertain
measurements, with a rich literature on the topic (e.g. [17],
(L8], [19], [20], [21]). The incorporation of rigorous physical-
consistency considerations into this inference represents an
interesting next step for inertial parameter identification.
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