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Abstract

In recent years, metal halide perovskite solar cells have gained traction as a potential
competitor to the mature silicon-based solar cells in terms of both cost and perfor-
mance. Being a young technology, however, means little is known about its true
market value. In order to understand this, it is important to both get an accurate
estimate of manufacturing cost and explore potential applications.

In this thesis, we develop a Monte Carlo cost analysis method and apply it to-
wards a realistic perovskite module manufacturing sequence today. We determine a
nominal cost estimate of $101.7/m2, which for a 15% efficient module comes out to
$0.68/W. Compared to silicon, which hovers around $0.40/W, this is rather com-
petitive, since most of the installed system cost comes from non-module components
such as installation labor and racking.

With the lightweight and flexible form factor of perovskite solar modules, new
applications become possible. One such application is the installation of perovskite
photovoltaics (PV) vertically on telecommunications towers. Since such towers cannot
support the weight of conventional silicon PV, this is a potential market for perovskite
PV that silicon cannot satisfy. Using HOMER microgrid simulation software, we
determine that it is financially feasible to install vertical PV in countries with high
diesel prices and low grid reliability, such as India.

Thesis Supervisor: Vladimir Bulović
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In today’s society, environmental issues have been increasingly brought to the fore-

front of the public consciousness, all around the world. A 2016 Pew Research Center

survey found that 74% of U.S adults believe that "the country should do whatever it

takes to protect the environment."[6] Despite being the largest emitter of greenhouse

gases, China aims to spend $360 billion on renewable energy through 2020 and is

already the world’s largest investor in renewable energy[11]. This environmentalism

on China’s part results largely from an attempt to curb deadly air pollution in many

of its cities, as well as an awareness that its coastal cities face an existential threat in

rising sea levels.

Partly due to growing concerns about climate change, the renewable energy in-

dustry has boomed. The International Energy Agency (IEA) predicts a 43% growth

on today’s total installed renewable energy capacity by 2022. Among renewable en-

ergy resources, solar is dominating. In 2016, installed photovoltaic (PV) capacity

surpassed coal additions for the first time. This is driven by an abundance of solar

resource as well as continuously decreasing costs[5].

In the current PV market, conventional crystalline silicon (c-Si) is the dominant

force. By 2013, the global PV market was 90% c-Si PV, with less than 10% thin-film

solar cells[14]. However, with the emergence of new PV technologies, in particular

metal halide perovskites, it appears that c-Si may have a challenger. Perovskite thin-

film PV shows the potential to reach a lower $/W cost than c-Si, which would allow

13



Figure 1-1: Global PV market share by technology in 2013

it to achieve wider market penetration.

In Chapter 1, we discuss the basics of solar energy, photovoltaics, as well as

perovskite PV. In Chapter 2, we discuss the importance of manufacturing cost mod-

eling, our methodology for finding a reliable cost estimate, and cost-modeling results.

Chapter 3 applies these costs to a potential application: powering telecommunica-

tions towers. Finally, Chapter 4 provides a future path for this work and summarizes

the thesis.

1.1 Introduction to Solar Energy

The sun provides nearly all useable energy on Earth, whether directly (capturing

the sun’s rays for heat or power) or indirectly (such as through fossil fuels, which is

essentially stored solar energy captured by plants millions of years ago). Intuitively,

we would assume the sun thus supplies a very large amount of energy to the Earth

on a daily basis. Indeed, the solar power incident on the Earth’s surface at any
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time is approximately 1.73 × 1017 W. To put this into perspective, the 2014 energy

consumption was 155,481 TWh, which translates to an average global consumption

rate of 1.78×1013 W. We see that the sun provides us a tremendous amount of power!

We can model the sun as a black-body radiation source with temperature 5,778

K in order to understand its radiation composition. From Stefan-Boltzmann’s law,

we can calculate that the sun produces 𝑃𝑠𝑢𝑛 = 𝐴𝜎𝑇 4
𝑠𝑢𝑛 = 3.85 × 1026 W. Since

the photon flux must be constant, an inverse-square law applies to the energy that

reaches the surface, so we receive a solar constant of 1.381 kW/m2 at the top of

Earth’s atmosphere under AM0 (air mass 0, i.e. no atmosphere). At the Earth’s

surface, and we see a power density reduction from AM0 across the solar spectrum

due to light passing through air molecules and dust. Additionally, different molecules

(O2, N2, CO2, etc.) have different absorption peaks, where they strongly absorb light

at particular wavelengths. This manifests in power density dips at certain frequency

bands within the solar spectrum. The typical spectrum used for rating and testing

terrestrial solar modules is AM1.5 (1.5 atmospheres thick on average).

1.2 Introduction to Photovoltaics

Solar energy can be collected for human use in multiple formats. The two more

well known methods are solar-to-thermal and solar-to-electrical energy. In solar-to-

thermal, solar energy is collected to heat an element (often water) for various purposes,

such as cooking or steam to power turbines. The method that this thesis focuses on

is photovoltaics, which converts light directly into electricity.

1.2.1 Physics of Solar Cells

Any discussion on photovoltaics begins with the physics of semiconductors. Consider a

classical semiconductor with two energy bands: the valence band and the conduction

band, separated by a forbidden energy bandgap (𝐸𝑔). In an intrinsic (undoped)

semiconductor at 0 K, the valence band is completely filled with electrons, and the

conduction band is completely empty. No free charge carriers are present, and thus

15



no electrical current flows under an applied electric field. At higher temperatures,

a small number of electrons are excited from the valence band to the conduction

band, leaving behind positively-charged holes in the valence band. Both types of free

carriers—electrons in the conduction band and holes in the valence band—can move

freely and thus contribute to current flow. Similarly, in a semiconductor doped with

a small number of atoms with a different valence from the prevailing species (e.g.,

boron or phosphorus for silicon), excess electrons or holes—in an n-type or p-type

semiconductor, respectively—are available for conduction.

A solar cell consists of a p-n junction, where a p-type semiconductor is joined

with an n-type semiconductor. This combination creates a built-in potential differ-

ence across the junction. When an incident photon with energy greater than E𝑔 is

absorbed, it excites an electron from the valence band to the conduction band, creat-

ing an excess photogenerated electron-hole pair. If the electron or hole is sufficiently

close to the depletion region, the built-in electric field sweeps it across the junction,

thus separating the electron and hole. If the junction is connected externally, the

majority carrier flows through the external circuit until it meets the minority carrier

in the junction and recombines. This creates a net light-induced current flow.

1.2.2 Circuit Model of Solar Cells

We now discuss the circuit model of a solar cell. Since an ideal solar cell is simply a

current-generating p-n junction, the ideal solar cell circuit model would be a current

source in parallel with a diode. However, a real solar cell has parasitic resistances that

affect its efficiency. This can be represented by adding a parallel shunt resistance, as

well as a series resistance. The final equivalent circuit is shown in Figure 1-2. Here, 𝐼𝐿

represents the photo-generated current, 𝐼𝑑 is the current that flows through the diode,

𝐼𝑠ℎ is the current through the shunt resistance 𝑅𝑠ℎ and 𝑅𝑠 is the series resistance.

There are three important parameters that describe the efficiency of a solar cell:

open-circuit voltage (𝑉𝑜𝑐), short-circuit current (𝐼𝑠𝑐), and fill factor (𝐹𝐹 ). 𝑉𝑜𝑐 is the

maximum possible voltage measured across the cell, which is when there is an open
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Figure 1-2: Equivalent circuit model of solar cell.

load across it. This voltage can be calculated as

𝑉𝑜𝑐 =
𝑛𝑘𝐵𝑇

𝑞
ln

(︂
𝐼𝐿
𝐼0

+ 1

)︂

where 𝑛 is some diode ideality factor, 𝐼0 is saturation current, and 𝑞 is elementary

charge. At open-circuit, no current flows across the device.

𝐼𝑠𝑐 is a measure of the maximum current that can flow through the solar cell,

which occurs when the leads are shorted together. It is approximately the same as

the photo-generated current, 𝐼𝑠𝑐 = 𝐼𝐿. At short-circuit, there is no voltage across the

device.

1.2.3 Solar Cell Efficiency

At open-circuit and short-circuit conditions, it is impossible to extract power from the

solar cell (since power 𝑃 = 𝑉 𝐼). Instead, there is a maximum power point (𝑀𝑃𝑃 )

on the solar cell 𝐼 − 𝑉 curve, at which the most amount of power possibble is drawn

from the cell. The fill factor 𝐹𝐹 can be calculated as

𝐹𝐹 =
𝑉𝑀𝑃𝑃 × 𝐼𝑀𝑃𝑃

𝑉𝑜𝑐𝐼𝑠𝑐
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Figure 1-3: 𝐼 − 𝑉 curve for a solar cell. The open-circuit voltage 𝑉𝑜𝑐, short-circuit
current 𝐼𝑠𝑐, fill factor 𝐹𝐹 , and maximum power point 𝑀𝑃𝑃 are labeled.

where 𝑉𝑀𝑃𝑃 is the voltage at 𝑀𝑃𝑃 and 𝐼𝑀𝑃𝑃 is the current at 𝑀𝑃𝑃 . This is

illustrated in Figure 1-3.

From these parameters we can calculate the power conversion efficiency (𝑃𝐶𝐸)

of a solar cell. This efficiency tells us, given some incident power, how much power

the device can output. It is calculated simply as

𝑃𝐶𝐸 =
𝑉𝑜𝑐𝐼𝑠𝑐𝐹𝐹

𝑃𝑖𝑛

where 𝑃𝑖𝑛 is the incident solar power. Thus, we want to maximize the 𝑉𝑜𝑐, 𝐼𝑠𝑐 and

𝐹𝐹 for a more efficient cell.

In 1961, William Shockley and Hans-Joachim Quiesser calculated the so-called

Shockley-Quiesser limit[21], which puts an upper bound on the maximum possible

𝑃𝐶𝐸 attainable by a single-junction p-n type solar cell. Assuming AM1.5 conditions,

this limit occurs for a material with a 1.34 eV bandgap, achieving a 𝑃𝐶𝐸 of 33.7%.

For silicon, with an indirect bandgap of 1.1 eV, the limit is 29.4%. Now, the limit
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Figure 1-4: Efficiency records for various solar cell technologies over time as of 2018.
Courtesy of NREL.

can be exceeded in a variety of ways, including with multi-junction cells or solar

concentration. However, we shall focus on single-junction cells for the majority of

this work.

An important question to ask is: how close we can get to this limit? After all,

the limit is only for an ideal cell, and ignores losses due to parasitic resistances, light

reflection from the top of the cell, light blockage due to interconnections, and other

such practical matters. We can start by looking at the record efficiency for various

solar cell technologies over time. The National Renewable Energy Laboratory (NREL)

has compiled this data and has made a popular graph depicting it, as reproduced in

Figure 1-4.

We can infer a lot of information from this figure. For instance, the current record

efficiency for a single-junction silicon cell without the use of a concentrator sits at

26.6%[29]. However, more interesting (in the opinion of the author) is the meteoric

rise of perovskite cells. First demonstrated in 2009 with an efficiency of merely 3.9%,

perovskite solar cells have managed to skyrocket in record efficiency to 22.7% by

2017[16], in the span of 8 years. We focus in this thesis on perovskite solar PV, with
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Figure 1-5: Basic perovskite structure, courtesy of Eames et al.[10]

the aim of determining the technoeconomic feasibility of introducing perovskite PV

into the market.

1.3 Basics of Perovskite Photovoltaics

In this section we explore the fundamental characteristics of perovskite solar cells.

As the name implies, these solar cells use compounds with the perovskite crystal

structure as the light-absorbing material in the active layer. Perovskites have an

ABX3 structure, in which A and B are cations (with A larger than B), and X is an

anion that binds to both. The structure is shown in Figure 1-5.

One of the most common perovskites used for photovoltaics is methylammonium

lead trihalide (MAPbX3), with X = I, Br, or Cl. By altering the halide content the

bandgap of the perovskite can be tuned and thus optimized for absorption of light

from the sun[27].
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There are multiple physical factors that contribute to the promising performance

of perovskite solar cells. For one, perovskites have a high dielectric constant. If a

photon with high enough energy is incident upon the perovskite, an electron-hole

bound pair called an exciton is formed. Since the exciton binding energy depends

on the Coulomb interaction between an electron and hole, which is inversely propor-

tional to the dielectric constant, this means that the exciton binding energy is low.

Indeed, this binding energy has been measured to be as low as <5 meV[9][22]. Since

room temperature thermal energy is at 25 meV, these excitons disassociate into free

electrons and holes very easily, allowing for improved charge collection.

In addition, charge carriers in perovskites can travel over one micron. This is due

to the unique properties of defects in perovskites. In typical semiconductors, defects

such as lattice site vacancies or interstitial ions introduce energy levels in the middle

of the bandgap, such that when charge carriers meet the defect they fall into those

energy levels and lose energy or recombine. This reduces the charge carrier density

and thus photocurrent. However, perovskites have the interesting property where

point defects introduce energy bands near the edge of the conduction/valence bands,

so recombination is mitigated and perovskites maintain high conductivity in thin-film

formats[28].

One of the chief advantages of perovskites is their simplicity of processing. While

c-Si solar cells require high-temperature processes, perovskites can be made with

simple, low-temperature, and easily scalable deposition techniques. It has also been

demonstrated that ink-jet printing perovskites is a viable option[20]. This enables

roll-to-roll processing of perovskite solar cells, similar to the way newspapers are

printed. This could potentially simplify and reduce costs of perovskite solar cell

manufacturing.

The simpler and cheaper processing, the requirement for less material in thin-film

formats, and the continued rise in efficiency make perovskite PV a very attractive

candidate. However, in order to be truly competitive, perovskites must eventually be

cheaper than c-Si PV. Currently, commercial silicon module production cost sits at

around $0.40/W[19] and is dropping. A new PV technology can only be economically
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viable if it can be produced and sold at a similar, cheap price. It is thus very important

to estimate the manufacturing cost of a perovskite solar cell module if we want to

predict its scalability and marketability.

1.4 Economics of Perovskite Photovoltaics

In recent years, there has been some effort towards pinning down a cost estimate of

manufacturing perovskite solar modules. For example, Chang et al. estimated a cost

of $107/m2 in 2017 for perovskite-on-glass modules[8]. In comparison, depending on

𝑃𝐶𝐸, a typical silicon PV module costs between $60/m2 - $100/m2 to manufacture.

While Chang’s estimate seems high, in this 2017 paper they assumed very costly

materials such as Au and Ag, impractical manufacturing sequences, as well as slow-

throughput deposition techniques. Later in 2017, Song et al. proposed a much more

optimistic cost estimate of $31.7/m2[25].

In these papers, the manufacturing sequence was designed to produce rigid perovskite-

on-glass modules. However, one of the exciting prospects of perovskite PV is its

potential for a lightweight, flexible form factor. This allows for potential roll-to-roll

(R2R) manufacturing, which could potentially reduce capital costs dramatically. In

2018, Chang et al. estimated a $37/m2 manufacturing cost using a R2R manufactur-

ing sequence[7].

For this thesis, we develop a cost model based on Chang’s approach. We then

examine a perovskite R2R manufacturing sequence and obtain our own cost estimates.

In the search for potential markets for perovskite PV, we apply our cost estimate

to determine the economic feasibility of powering telecommunications towers. We

use the microgrid simulation tool HOMER, using our cost estimates as well as data

provided by ATC as inputs. In the next two chapters, we go over our methodology

for our modeling, as well as the results.
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Chapter 2

Module Manufacturing Cost

Modeling

When deciding whether it is worth scaling up production of a technology, it is of

utmost importance to get a reliable estimate of the final cost of manufacturing. After

all, one can not simply invest the capital to build a factory only to find that the final

product is prohibitively expensive. For a technology as young as perovskite PV, it

becomes even more important to get an accurate estimate, especially when competing

with such a cheap and mature competitor like silicon.

In this chapter, we discuss our methodology towards getting a cost estimate. We

will talk about what has been done already towards this effort, as well as what our cost

model does differently. We will then define a manufacturing sequence and generate

cost estimates given this sequence.

2.1 Cost Modeling Approaches

2.1.1 Bottom-up Spreadsheet Cost Modeling

One of the most widely cited approaches to cost modeling for perovskites comes from

Song’s 2017 paper[25], which draws heavily from the spreadsheet approach of Powell

et al. in their c-Si cost model[18]. In their approach, they first define a reference

23



module. In the paper the module was assumed to be a p-i-n structure of MAPbI3

between NiO and ZnO, respectively. Additionally, it was assumed that the module

would be sandwiched between glass plates to prevent degradation.

Once the module is defined, it becomes possible to define a manufacturing se-

quence. In particular, Song chose to use screen printing of the charge transport and

perovskite layers due to its low cost.

A manufacturing sequence can be divided into a series of processes, where each

process is typically centered around a tool. For example, ITO sputtering would be

centered around a sputtering tool. The final cost estimate can be calculated by

summing the costs associated with each process. The final module cost is given by

the equation

𝑀𝐶 =
∑︁
𝑖

(𝑀𝑖 + 𝑈𝑖 + 𝐿𝑖 + 𝐸𝑖 +𝐷𝑖)

where 𝑀𝑖 is the materials cost for process 𝑖, 𝑈𝑖 is the utilities cost, 𝐿𝑖 is the labor

cost, 𝐸𝑖 is the equipment maintenance cost and 𝐷𝑖 is the equipment and building

depreciation cost.

Song found that the final module cost was $31.7 ± 5.5/m2. $6.8 ± 1.2/m2 is

associated with the processing of the cells, while $24.9± 4.3/m2 is for the materials.

This is a very low cost, which suggests a very favorable path forward for perovskite

manufacturing.

While Song’s approach provides good insight, it is difficult to include uncertainty

in the analysis. When doing a spreadsheet calculation, one typically performs the

calculation with precise definitions for the input values, which makes it difficult to

calculate outputs based on a spread of values.

2.1.2 Monte Carlo Cost Modeling

In a different approach to cost modeling employed by Chang[8][7], one gets cost

estimates using probability distributions for each input by employing a Monte Carlo

approach. This is a common method in financial analyses, as it is difficult to predict

cost values with precision. In a Monte Carlo approach, a probability distribution
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is defined for each parameter. The model then samples from each distribution and

calculates the final cost using these samples, building a final cost distribution by

repeating this process for a large number of trials.

The Monte Carlo method has an advantage over the spreadsheet-based approach

in that it very easily incorporates uncertainty into the analysis. This is very applicable

to perovskite PV manufacturing, since the technology is still in its early stages and

many of the parameters determining cost are uncertain.

In Chang’s Monte Carlo analysis of R2R perovskite PV[7], it was found that

demonstrated R2R manufacturing processes can achieve costs of $60/m2±30%, while

an optimized but difficult to realize process could be as low as $37/m2 ± 30%. While

these numbers are promising, they appear to be optimistic. Most crucially, Chang

assumes an unrealistically cheap barrier layer. This is not likely to be realistic.

In our approach to cost modeling, we have built on top of Chang’s methodology.

Using our cost model, we defined a manufacturing sequence we believe to be realistic

and obtained a cost distribution. In addition, we hoped to make cost modeling a

flexible and simple process, so that as inputs become more refined it remains easy to

run cost modeling. In this vein, we created a Python library and Jupyter notebook

template that makes the cost modeling process simple.

2.2 Cost Modeling Methodology

In this section we will go over the cost modeling methodology, starting from how the

inputs are defined and the equations used for calculating cost. We then review the

Monte Carlo process. The first step in calculating the total manufacturing cost is the

definition of a manufacturing sequence. This sequence is broken down as a series of

processes. For each process, there are two type of cost components: materials cost

and tools/facilities cost. First, we define a set of factory assumptions.
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2.2.1 Factory Assumptions

The factory assumptions are important factors associated with the factory itself that

play into how cost is calculated. For example, the amount spent on labor is determined

by the wage in the area that the factory is located, and the amount spent on electricity

is determined by the cost of electricity in the area. The full set of factory assumptions

is defined in Table 2.1 below.

Abbreviation Parameter Units Description

𝐵𝐶 Building cost $/m2 Building cost

𝐸𝐶 Electricity cost $/kWh Cost of electricity

𝐸𝑆 Electricity for services Ratio Ratio of electricity for services to electricity for tools

𝐹𝑆𝑅 Floor space ratio Ratio Ratio of total factory space to tool footprint

𝑂𝐿 Operator labor rate $/hr Labor rate for operators

𝑀𝐿 Maintenance technician labor rate $/hr Labor rate for maintenance technicians

𝐼𝐿 Indirect labor cost ratio Ratio Ratio of indirect to direct labor

𝐹𝐷 Facilities depreciation period yr Depreciation period of facilities

𝐸𝐷 Equipment depreciation period yr Depreciation period of tools

𝑂𝐻 Number of operating hours hr/yr Hours in year that factory operates

𝑃𝐶𝐸 Cell PCE % Cell active area power conversion efficiency

𝐺𝐹𝐹 Geometric fill factor Ratio Fractional area of active power conversion on module

Table 2.1: Factory assumptions

2.2.2 Material Cost

Material Cost Parameters

Materials cost is defined as the cost of raw materials that go into manufacturing the

product. Typically, the materials cost will dominate the total manufacturing cost for

mature, high-throughput processes. In order to calculate materials cost, we provide

two inputs: material usage and material cost. These are summarized in Table 2.2

below.
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Abbreviation Parameter Units Description

𝑀𝑈 Material usage unit/m2 The amount of material used in
one square meter of module

𝑀𝐶 Material cost $/unit Cost per unit of the material

Table 2.2: Materials cost input parameters

Material Cost Calculation

In order to calculate the contribution of raw materials to the cost of each process, we

use Equation 2.1.

𝑀 = 𝑀𝑈 ×𝑀𝐶 (2.1)

For a thin-film process, we calculate the material usage as

𝑀𝑈 =
𝜌× 𝑡

𝑢

where 𝜌 is the density of the material, 𝑡 is the thickness of the stack layer that the

material applies to, and 𝑢 is the percentage of the material utilized. We see that, to

determine materials cost, one essentially only needs to know the amount of material

that is used for an area of the module, as well as the cost of purchasing some amount

of the material.

2.2.3 Tool Cost

Tool Cost Parameters

The tool cost for each process can be thought of as the cost of purchasing and running

the tool used in that process. In order to calculate the contribution of the tool to the

final cost, we provide a set of parameters summarized in Table 2.3 below.

Tool Cost Calculation

The most obvious tool cost contribution is that of tool depreciation cost. This is

the capital expenditure (capex) associated with purchasing the tool. This cost is
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Abbreviation Parameter Units Description

𝑇𝐶 Tool cost $M Total upfront cost of the tool
𝐹𝐶 Facility cost % of tool cost Cost of services for the tool
𝐹𝑆 Floor space m2 Tool footprint
𝑆𝑃 Spare parts % of capex/year Cost of spare parts for the tool
𝐸𝑈 Electricity usage kW Power consumption of the tool
𝑇𝑃 Throughput m2/hr Module area produced in one hour
𝐷𝑇 Down time % of time Percentage of time that tool is maintained
𝑂𝑆 Operation staff Number of staff Staff that operate the tool
𝑀𝑆 Maintenance staff Number of staff Staff that maintain the tool
𝑌 Yield % of good parts produced Percentage of parts that are good out of all produced

Table 2.3: Tool cost input parameters

allocated over an amount of time known as the depreciation period. In our model,

we assume a linear depreciation such that the depreciation cost is distributed evenly

across the depreciation period. The tool depreciation cost can be calculated as

𝑇 =
𝑇𝐶

𝑇𝑃 ×𝑂𝐻 × 𝐸𝐷
(2.2)

Another contribution to the tool cost is the facilities cost. This is a capex cost

associated with the facilities for a given tool. Facilities, defined here, are the services

associated with operating a tool, air (such as chemical delivery, N2, compressed or

dry air), or water. It is assumed that the more expensive the tool, the more must be

spent on such services, so the facilities cost is given as a percentage of the tool cost,

except with a different depreciation period set by the facilities depreciation period

rather than the equipment depreciation period. Thus, facilities depreciation cost can

be calculated as

𝐹 =
𝑇 × 𝐹𝐶 × 𝐸𝐷

𝐹𝐷
(2.3)

The final contribution to capex comes from building depreciation. This is the de-

preciation cost associated with building a factory of a given size. The factory size is

determined by the total tool footprint. The amount of floor space for a given tool

footprint is determined by the floor space ratio. From the total floor space, the cost

of building the factory can be determined. This building cost is given in Equation 2.4

𝐵 =
𝐹𝑆 × 𝐹𝑆𝑅×𝐵𝐶

𝑇𝑃 ×𝑂𝐻 × 𝐹𝐷
(2.4)
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The labor cost is dependent on the number of workers as well as the wage. There

are two types of labor: operation staff and maintenance staff. The operation staff is

responsible for running the tool when it is operational. However, if the tool is down or

needs maintenance, the maintenance staff is responsible for fixing the tool. The ratio

of time in maintenance mode vs. the time in operation mode is given by the tool’s

downtime 𝐷𝑇 . We expect operation staff to have different wages than maintenance

staff, due to the difference in specialization. Thus, we add the operational staff cost

𝑂𝑆𝐶 and maintenance staff cost 𝑀𝑆𝐶 to find the labor cost. Additionally, there is

some indirect labor contributions from workers such as custodial or office work, so we

include an indirect labor ratio 𝐼𝐿. We thus calculate labor costs as follows:

𝑂𝑆𝐶 =
𝑂𝑆 ×𝑂𝐿× (1−𝐷𝑇 )

𝑇𝑃

𝑀𝑆𝐶 =
𝑀𝑆 ×𝑀𝐿×𝐷𝑇

𝑇𝑃

𝐿 = (𝑂𝑆𝐶 +𝑀𝑆𝐶)× (1 + 𝐼𝐿)

(2.5)

Finally, we calculate the operational expenses (opex). This is the cost associated

with running the factory, and includes electricity costs as well as spare parts for

machinery and facilities. We calculate the cost for electricity 𝐸, which depends on

the local electricity rate 𝐸𝐶 as well as the amount of power 𝐸𝑈 required to run the

tool. In addition, there is a cost associated with powering services, such as lighting

and air conditioning, which we assume to be proportional to the tool electricity usage

so we include an electricity for services ratio 𝐸𝑆. For spare parts, we assume that

the cost spent on spare parts 𝑆𝑃𝐶 is proportional to the capex by some percentage

𝑆𝑃 . We can thus calculate the total opex as

𝐸 =
𝐸𝐶 × 𝐸𝑈 × (1 + 𝐸𝑆)

𝑇𝑃

𝑆𝑃𝐶 = (𝑇 + 𝐹 +𝐵)× 𝑆𝑃

𝑂 = 𝐸 + 𝑆𝑃𝐶

(2.6)

For all parameters so far, we use similar definitions as in the 2017 paper by Chang

et al.[8]
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Yield

The manufacturing process is not ideal, and each process will not produce 100% good

parts. To take this into account, we add a yield parameter for each tool which defines

the percentage of good parts produced. Calculating the impact of yield on cost is

somewhat complex. If a process produces a bad module, then all of the cost invested

into the previous processes for that module is wasted. Thus, the yield loss for a

particular process incorporates the loss aggregated over all previous processes.

Consider the 𝑛th process in a sequence with a yield of 𝑌𝑛. Before incorporating

yield loss, the process has a total cost of 𝐵𝑌 𝐿𝑛 = 𝑀𝑛 + 𝑇𝑛 + 𝐹𝑛 + 𝐵𝑛 + 𝐿𝑛 + 𝑂𝑛.

After yield loss is included, the process has a total cost of 𝐴𝑌 𝐿𝑛. Then, when adding

the losses from the previous processes, we calculate the yield loss cost 𝑌 𝐶𝑛 as

𝑌 𝐶𝑛 =

(︂
𝐵𝑌 𝐿𝑛

𝑌𝑛

−𝐵𝑌 𝐿𝑛

)︂
+
∑︁
𝑖<𝑛

(︂
𝐴𝑌 𝐿𝑖

𝑌𝑛

− 𝐴𝑌 𝐿𝑖

)︂
(2.7)

Total Manufacturing Cost

Now that we have defined the cost components, we may talk about the total cost.

Similar to both Song and Chang, we calculate the total cost by summing the cost

components of each process, and then summing over the processes. Thus, the total

manufacturing cost 𝐶 is calculated by summing the results from Equations 2.1-2.7.

This is given in Equation 2.8.

𝐶 =
∑︁
𝑖

(𝑀𝑖 + 𝑇𝑖 + 𝐹𝑖 +𝐵𝑖 + 𝐿𝑖 +𝑂𝑖 + 𝑌 𝐶𝑖) (2.8)

This calculation method lends itself well to a spreadsheet-based bottom-up ap-

proach. One just needs to supply a number for every variable for every process and

sum to get the final result. However, this requires a large amount of confidence in

the numbers supplied, especially for a young technology like perovskite PV. There is

very little data on the actual costs of manufacturing this new technology, and it is

unreasonable to expect total knowledge of cost parameters and disregard uncertainty.

We next talk about how to circumvent this issue using Monte Carlo methods.
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2.2.4 Monte Carlo modeling of Costs

For any given cost parameter, one would like to incorporate some amount of uncer-

tainty in the calculation. Perhaps the modeler believes the cost parameter to take

on some value, but maybe the value can be higher or lower. To incorporate this

uncertainty, we use Monte Carlo methods. For every parameter listed in the previ-

ous section, the cost modeler defines a nominal estimate - the value they believe to

be the most likely. Alongside the nominal estimate, a high estimate is defined that

encompasses what the modeler to believe to be the highest value the parameter could

possibly take, and a low estimate that represents the lowest value the parameter could

possibly take.

Once these estimates are defined, we create probability distributions for each

parameter. In a single trial, the cost model will sample from each parameter and

aggregate them to yield the total cost. The model repeats this process over a large

number of trials to form a probability distribution of total cost.

Monte Carlo: A Toy Model

In this section, we outline a very simple toy model to give some intuition on how the

cost model samples and calculates a distribution. Imagine we would like to calculate

the probability distribution of values a random variable 𝑍 can take on. 𝑍 is defined

as the sum of two other random variables, 𝑋 and 𝑌 such that 𝑍 = 𝑋 + 𝑌 . Both 𝑋

and 𝑌 take on values defined by a standard normal distribution, so the probability

density 𝑓(𝑥) that the random variable 𝑋 has a value 𝑥 is given by

𝑓(𝑥) =
1√
2𝜋

𝑒−
𝑥2

2

The random variable 𝑌 is defined similarly.

Let’s say that in a given trial, the model samples from 𝑋 and 𝑌 according to their

probability distributions and adds them. For example, in a single trial 𝑖, 𝑋𝑖 = 1.59

and 𝑌𝑖 = −1.32, so then 𝑍𝑖 = 𝑋𝑖 + 𝑌𝑖 = 0.27. We repeat these trials many times and

plot a histogram of 𝑍 values. This histogram represents a probability distribution for
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𝑍. This is visualized in Figure 2-1.

Now that we have given a cursory understanding of the Monte Carlo model, we

may ask what types of probability distributions we should use. We now go over

different types of probability distributions, and when they are applicable.

Uniform distribution

The simplest type of probability distribution is the uniform distribution. It is defined

such that, within two bounds 𝑎 and 𝑏, all values are equally probable, or

𝑓(𝑥) =

⎧⎪⎨⎪⎩
1

𝑏−𝑎
for 𝑎 ≤ 𝑥 ≤ 𝑏

0 for 𝑥 < 𝑎 or 𝑥 > 𝑏

This is particularly useful if, for some parameter, one only knows a range of values

the parameter can take but is unaware of any particular bias. Thus, this distribution

is useful for a parameter where the modeller has little knowledge of its value.

Normal Distribution

One of the most common probability distributions in nature is the normal distribution.

This makes it an attractive candidate for modeling the uncertainty of a parameter.

This distribution can be parameterized by a mean value 𝜇, which is the most likely

value for the parameter, as well as a standard deviation 𝜎 that represents the spread

of possible values. The probability density goes as

𝑓(𝑥) =
1√
2𝜋𝜎

𝑒−
(𝑥−𝜇)2

2

Thus, the modeller can specify a value which they believe to be the most likely for

a parameter through 𝜇, as well as an uncertainty through 𝜎. In the model, the

nominal estimate is defined to be the median, the low estimate is defined to be the

10th percentile of the normal distribution, and the high estimate is set as the 90th

percentile.
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(a) Probability distribution of 𝑋 (b) Probability distribution of 𝑌

(c) Probability distribution of 𝑍

Figure 2-1: Probability distributions for (a) 𝑋, (b) 𝑌 , and the (c) Monte Carlo results
for 𝑍 in our Monte Carlo toy model. The results of trial 𝑖 are highlighted.

While the normal distribution seems to be a natural choice for a probability distri-

bution, it has some drawbacks. The normal distribution is not bounded; there always

exists some probability of choosing an arbitrarily negative value for some parameter.

This can be a problem, since for most parameters the value should always be greater

than or equal to zero. For example, manufacturers are not being paid to install a

sputterer. Negative values are clearly unrealistic and can make the model’s results

unreliable.
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Log-normal Distribution

One simple method of circumventing this issue is through the log-normal distribution.

It is defined such that, for a standard normal random variable 𝑍, the log-normally

distributed random variable 𝑋 with median value 𝜇 and scale determined by 𝜎 is

defined as

𝑋 = 𝑒𝜇+𝜎𝑍

This has the nice property of yielding strictly positive values, unlike the normal

distribution. However, the log-normal distribution is only parameterized by 𝜇 and 𝜎,

which means that the high and low estimates for a given parameter are forced to be

related to each other. This may not be a significant issue for some parameters, but if

the modeller would like more flexibility in their probability distribution, other choices

should be pursued. Like the normal distribution, the nominal estimate is set as the

median of the distribution, the low estimate is defined to be the 10th percentile, and

the high estimate is set as the 90th percentile.

Triangular distribution

There are two common distribution types in finance which allow the modeller to

flexibly choose low, nominal, and high estimates for their parameters. One of these is

the triangular distribution, which is defined by a lower bound 𝑎, mode 𝑐, and upper

bound 𝑏. This is useful as a "lack of knowledge" distribution, where the modeller has

little information on the actual probability distribution but has an educated guess

on a most likely value as well as boundary values the modeller knows the parameter

cannot surpass[13]. The triangular distribution is defined as
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𝑓(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for 𝑥 < 𝑎

2(𝑥−𝑎)
(𝑏−𝑎)(𝑐−𝑎)

for 𝑎 ≤ 𝑥 ≤ 𝑏

2
(𝑏−𝑎)

for 𝑥 = 𝑐

2(𝑏−𝑥)
(𝑏−𝑎)(𝑏−𝑐)

for 𝑎 ≤ 𝑥 ≤ 𝑏

0 for 𝑥 > 𝑏

For triangular distributions in our model, we define the low estimate as 𝑎, the

nominal estimate as 𝑐 and the high estimate as 𝑏.

Beta-PERT distribution

Similar to the triangular distribution, the beta-PERT distribution is defined by a

lower bound 𝑎, mode 𝑐 and upper bound 𝑏. The biggest difference between the

triangular and beta-PERT distributions is that the mode and extremes are weighted

differently. For the triangular distribution, the end-points are weighted more strongly.

For example, the mean for the triangular distribution is defined as 𝜇 = 𝑎+𝑏+𝑐
3

, which

weights the endpoints and mode equally. This is often unfavorable, since estimation

of extremes is often poor compared to estimation of the mode. The beta-PERT

distribution is also smoother. This means values around but not equal to the mode

are weighted more highly and values near the endpoints are weighted less highly,

which is often more realistic[13].

In addition to the bounds and mode, the beta-PERT distribution is also parame-

terized by a scale factor 𝜆 which determines how strongly the mode is favored over the

endpoints. The probability distribution, shown in Figure 2-2 is calculated as follows:

𝜇 =
𝑎+ 𝑏+ 𝜆𝑐

𝜆+ 2

𝑣 =
(𝜇− 𝑎)(2𝑐− 𝑎− 𝑏)

(𝑏− 𝑎)(𝑐− 𝜇)

𝑤 =
𝑣(𝑏− 𝜇)

𝜇− 𝑎
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Figure 2-2: Visualization of beta-PERT distribution. The distribution goes to zero
at the endpoints, and increasing lambda makes the peak larger and narrower.

𝑓(𝑥) =
(𝑥− 𝑎)𝑣−1(𝑏− 𝑥)𝑤−1

𝐵(𝑣, 𝑤)(𝑏− 𝑎)𝑣+𝑤−1

where 𝐵(𝑣, 𝑤) represents the beta function. Like the triangular distribution, in our

model we define the low estimate as 𝑎, the nominal estimate as 𝑐, and the high

estimate as 𝑏.

2.3 Defining a Manufacturing Sequence

In this section, we will discuss the module stacks and manufacturing sequences we

would like to model. We assume a 100 MWp/yr factory located in the United States

to define our factory assumptions, and reference the standard literature as well as

industry sources for data on parameter values.
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Figure 2-3: Perovskite solar cell structure

2.3.1 Single Junction Perovskite Reference Module and Man-

ufacturing Sequence

Here we consider the design of a standard single junction perovskite module. We elect

to use indium zinc oxide (IZO) coated on a flexible polyethylene terephthalate (PET)

substrate. Not only does this flexibility allow for new applications with lightweight

flexible solar cells, it could potentially cheapen the manufacturing process with R2R

manufacturing. The active material we use is a mixed iodide-bromide formamidinium-

cesium-lead perovskite (FACsPb(IBr)3), which has been shown in Leijtens et al. to

have improved stability over traditional MAPbI3 perovskites[15].

Nickel oxide (NiOx) is used as the hole-transporting layer. We opt for PCBM as

the electron transport layer. For the rear metal we use a thin layer of aluminum. The

full stackup is shown in Figure 2-3.

For our manufacturing sequence, we assume a continuous R2R line in a 100 MW

factory. The IZO and Al electrodes are sputtered, followed by laser scribing. The

charge transport layers are similarly sputtered. We choose to slot die coat the per-

ovskite. A flow diagram of the entire manufacturing process is shown in Figure 2-4.

A full list of cost input parameters for our manufacturing sequence is included in

Appendix A.
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Figure 2-4: Diagram of roll-to-roll manufacturing sequence for perovskite solar mod-
ules

2.4 Cost Model Results

We modeled the cost for the given sequence and plotted the Monte Carlo cost dis-

tribution. The model was performed with 100000 trials, which should reduce any

probability error to negligible amounts. The cost is presented in $/m2 as manufac-

turing cost in Figure 2-5, while cost in $/W is plotted in Figure 2-6. The $/W figure

gives an idea for base PV cost, and is dependent on the module efficiency. We assume

for this analysis a conservative efficiency of 15%. The conversion between cost 𝐶 in

$/m2 and $/W can be calculated as

𝐶𝑊 =
𝐶𝑚2

𝑃𝐶𝐸 × 𝑃0

where 𝑃0 is the irradiance power density under standard test conditions (1000 W/m2).

The median, 10th percentile, and 90th percentile costs in both $/m2 and $/W are

presented in Table 2.4.
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Figure 2-5: Manufacturing cost distribution in $/m2

Figure 2-6: Manufacturing cost distribution in $/W
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Units Median 10th Percentile 90th Percentile

$/m2 101.7 83.1 121.8
$/W 0.68 0.55 0.81

Table 2.4: Cost distribution results, assuming a 15% module efficiency

We see that, compared to the $0.40/W manufacturing cost of silicon PV, this

perovskite PV process can be as high as twice as expensive, at up to potentially

$0.81/W. To see what drives the price, we can plot the 5 largest cost components.

In doing so, we can determine which cost components to focus research efforts on to

reduce the price. The 5 largest cost components for our manufacturing sequence is

plotted, in $/m2, in Figure 2-7.

Figure 2-7: The 5 most costly components of the given manufacturing sequence in
$/m2. Error bars indicate the 10th and 90th percentile estimates for each component’s
cost.
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We see that the barrier film dominates the cost. Rather intuitively, the sputter-

ing tools are very costly as well. The junction box, as a discrete component, also

contributes significantly to the cost.

It is also useful to breakdown the cost by process so that we may understand

how to optimize each step. The costs for each process is visualized in Figure 2-8.

As expected from the cost component breakdown, the encapsulation step is by far

the most expensive, dominated by materials cost due to the expensive barrier layer.

Additionally, the deposition steps (sputtering and slot die coating) are noticeably

more costly than the others. An interesting and encouraging result to point out is

the cheap cost of the perovskite material itself, which is one of its main draws from

a cost perspective. The materials component of the FaCsPbIBr slot die coat process

is essentially negligible, at only $0.50/m2.

Figure 2-8: Manufacturing sequence cost breakdown by process in $/m2, broken down
by materials cost, capex, labor, opex and cost associated with yield loss.
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Figure 2-9: Normalized uncertainty of materials costs

In order to tighten our bounds on the actual cost of the sequence, we must reduce

uncertainty. To do so, we must see which cost components contribute the most to

our uncertainty. A useful visualization of this is a plot of the normalized uncertainty

over median price, where normalized uncertainty is defined by the difference between

the 90th percentile cost estimate and the 10th percentile cost estimate, all over the

median cost estimate. The points with high median cost as well as high normalized

uncertainty are worth examining in that, a lower cost might be found for these com-

ponents, or a tighter bound can be created which would reduce the total uncertainty.

The normalized uncertainty plots are shown in Figures 2-9 and 2-10. From the plots,

it appears that both the barrier film and junction box have large uncertainty relative

to their median cost, and are worth investigating to refine the bounds. Similarly, the

sputtering tools are large contributors to the uncertainty.

2.5 Discussion

Our cost model predicts a promising nominal estimate of $0.68/W. A staggering

40% of this comes from the barrier films alone, as a high quality encapsulant is likely

needed to prevent perovskite degradation. While a large uncertainty is reported for
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Figure 2-10: Normalized uncertainty of tools costs

the barrier film, this is mostly due to the fact that film cost scales directly with quality

- depending on the application’s lifetime requirement, a cheaper or more expensive

film may be required. Even so, much work must be done to optimize this portion of

the cost for flexible perovskite PV to become more cost competitive.

The sputterers are also large cost contributors in the form of capex. If we were to

increase the throughput of the R2R line, the tool depreciation cost, which is inversely

proportional to throughput, would decrease. The depreciation cost as a function of

throughput for a $6.5M sputterer in a factory operating 3690 hours a year is plotted

in Figure 2-11. We see that an increase in throughput from the current nominal

estimate of 67 m2/hr to 100 m2/hr would result in a decrease of $5/m2 across the

R2R line, which is a 5% decrease in final cost. While not a huge decrease, shaving

costs wherever possible could be a worthwhile endeavor.

Another method to achieving cheaper $/W cost is through improving efficiency.

If we produce modules at a more optimistic efficiency of 20%, we find the median per

watt cost dropping from $0.68/W to $0.51/W, which is a fairly dramatic decrease

and brings perovskite PV closer to the silicon PV manufacturing price.

Since we performed a Monte Carlo analysis and accounted for as much uncertainty

as possible, it is very likely the true cost falls within the estimated cost distribution.
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Figure 2-11: Sputterer depreciation cost as a function. This assumes a $6.5M sput-
terer in a factory operating 3690 hours a year with a depreciation period of 7 years.

However, we perform some simplified assumptions in our cost model; for example, we

assume that Monte Carlo results for all parameters in a trial are independent, when

in reality they would not be. For instance, the throughput across every tool should

be the same for an R2R line, but is calculated individually for each tool in the model

for a single trial. This discrepancy is assumed to have little impact on the final result,

as any such fluctuations would average out over many Monte Carlo trials.

In real-world applications, we are mostly concerned with the cost of PV systems on

a per watt basis. This number includes not only the module manufacturing cost, but

also costs associated with installation and profit. In the next chapter, we apply the

results from our cost model, combined with installation cost and profit assumptions,

to the case of installing perovskite PV on telecommunications towers.
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Chapter 3

Economics of Vertically Deployed

Photovoltaics on Telecommunications

Towers

In addition to being cheap enough to enter the market, lightweight flexible PV needs

to have applications not currently fulfilled. For instance, being lightweight and flexible

means perovskite PV can be easily transported to remote areas, or mounted on less

reinforced structures. This seems especially relevant for developing countries, where

PV must be driven long distances on flatbed trucks to remote villages. In this chap-

ter, we will investigate a possible market application: powering telecommunications

towers.

3.1 Telecommunications Towers: A Background

As global demand for connectivity grows, the necessity of telecommunications towers

continually increases. This translates to building more towers worldwide, with in-

creasing demand for power as more users access each tower. While the United States

enjoys a well connected and reliable grid system, the same cannot be said in other

countries.

As an example, American Tower Corporation (ATC) owns tens of thousands of
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towers in India, Ghana, Uganda and Nigeria. For many of the towers, the grid can be

so unreliable that it powers the tower for only a few hours a day. A large percentage

of the towers are completely off-grid, running for the most part on diesel generators

and batteries.

On the short term, using diesel works decently well, and sufficiently covers power

demand for the towers. However, there are significant drawbacks to using diesel. For

instance, diesel in India currently hovers around $1/L[3], which is quite expensive and

can accumulate in operating cost over a long period of time. Even worse, as time goes

on, diesel cost is trending up. Additionally, diesel generators (DG) are very inefficient

at around 15% power efficiency, which means most of the diesel energy is wasted.

In addition to diesel cost, there are some drawbacks related to supply chain.

Transporting diesel to distant rural tower sites represents a drain on both time and

financial resources, which adds even more opex. An interesting but problematic

challenge that is being continually faced at telecommunications sites in India is the

theft of diesel, which adds a risk factor and increasing cost in powering these towers.

Finally, and arguably more importantly, diesel generators pose environmental risks

due to carbon emissions. One liter of diesel translates to 2.68 kg of carbon dioxide[4].

As a back of the envelope calculation, if a tower consumes 2.5 L of diesel per hour

and runs on diesel for 12 hours a day, then a total of 30 tons of CO2 is produced in

only one year. In comparison, the average UK household CO2 emission in 2012 was

around 20 tons per year [17]. This is a fairly significant amount, and with thousands

of towers lasting tens of years, it is safe to say that DG-powered towers contribute to

the carbon emission problem.

One possible way to help curb these issues is the installation of renewable energy

to power the towers. Adding solar panels as a source of power could supplement

(and potentially replace) the use of diesel to power the tower. However, for towers

with larger power demands, a larger area of solar modules is required. This may not

be feasible as many towers have only a small area of land available, as small as 400

ft2. On the other hand, for a standard 150 foot tall tower, only the top 50 feet are

utilized. The rest of the 100 feet represent available and unused vertical real estate,
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which would are suitable for installing solar panels. Traditional silicon panels are very

heavy, however, which makes it typically unfeasible to install significant amounts of

c-Si PV along the tower. A solution to this issue is the use of lightweight perovskite

solar cells, which would not represent a significant weight to the tower and can be

installed vertically.

Though the weight problem would be solved, there are other issues that must be

considered. On the structural side, a large flat area installed along the side of the

tower could potentially dramatically impact the wind load of the tower. It becomes

important to consider the effects of this increased wind load and determine if the

tower’s structural stability would be compromised.

Another important factor is the economic impact of the solar installation. If in-

stalling PV becomes a financial burden, there is little incentive to adding solar to

power the towers. Thus, we would like to use the results from our cost model to de-

termine whether it is economically feasible to install PV to the towers as a diesel/solar

hybrid power source. To this end, we use the microgrid simulation software HOMER

to calculate the costs of diesel/solar versus using diesel alone.

3.2 Wind Loading on Telecommunications Towers

with PV

We now discuss the effect of vertically mounted PV on tower wind loading. We will

first discuss some methods of calculating wind load to develop an intuition, followed

by finite element analysis results. Modeling is performed with a typical 45 m, 4-

leg lattice tower. A 40 m/s wind speed is assumed. We will follow the TIA-222-G

standard, which tower wind loads are designed to follow[1].

In order to get accurate results, we can simulate the effect of adding panels to

the tower. We thus apply finite element analysis on the tower and add different size

panels to determine the limit at which the tower deforms according to the TIA-222-G

standard, or where the max stress on the tower exceeds the allowable stress of the
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Figure 3-1: Deflection of tower under maximum wind load with no PV

steel. In this case, the steel has a max allowable stress of 470 MPa, and with a safety

factor of 2 we do not want any member of the tower to have a stress exceeding 235

MPa.

Assuming a typical 45 m tower, it is found that in the base case, a tower under

40 m/s wind experiences a 35.38 kN force. If we were to apply PV to only existing

members (i.e. add PV without increase wind load), we find that the tower deflects

merely 32 mm, which translates to 0.02∘. This is shown in Figure 3-1. The maximum

stress in this case comes out to 37 MPa, well below our limit.

We also simulated cases for rectangular panels covering an entire side with width

888 mm and 4888 mm (the min and max width along the tower), as well as a trape-

zoidal panel completely covering a side. The wind load is applied perpendicularly to

the panels. The results are summarized in Table 3.1.
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Case Additional Panel Area (m2) Deflection (degrees) Max Stress (MPa)

No panels/panels on existing members 0 0.0229 37
888 mm wide panel 39.96 0.0758 107
Trapezoidal panel 119.6 0.1816 247
4888 mm wide panel 199.96 0.2777 388

Table 3.1: Wind force on different panel geometries

Figure 3-2: Linear regression to find the maximum allowed PV area

We notice from these results that the max stress is the limiting factor on our

panel size, and actually scales very linearly with panel area. We can form a linear

regression, visualized in Figure 3-2, to find the panel area at which the max stress is

235 MPa. We find a maximum area of 113 m2 which, for a 15% efficient cell, comes

out to a maximum 16.95 kWp of installed PV. We thus conclude that the tower is

not the limiting factor on wind load - instead, we must be able to design the PV to

withstand the wind loads. In simulating the towers with 300 𝜇m thick PET panels,

the PV fails long before the tower does. Thus, either sturdier panels or a system to

retract the panels during high wind are desired.
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Figure 3-3: Schematic of HOMER inputs

3.3 HOMER Microgrid Simulation

In order to perform a thorough financial analysis, we use a software called HOMER.

Developed by NREL, HOMER is a microgrid optimization and design software that

optimizes power systems based on net present cost (NPC), which is the total cost of

the system over its lifetime. By providing information on the location (and thus solar

insolation profile), PV system, diesel generator, batteries, grid, converter and load,

HOMER will optimize for the configuration with the lowest NPC that still satisfies

the load[2].

We can also include sensitivity analysis on any input variable, so that we may see

the impact that changing the value of that variable will have on the optimal system.

3.3.1 Defining Our HOMER Model

For our analysis, we would like to see how financially feasible deploying PV in countries

such as Nigeria, Uganda, Ghana and India is. In particular, Nigeria and India present
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interesting cases, as Nigeria has a particularly low diesel cost at $0.55/L and India

has variable grid reliability but a more standard diesel cost of $1.02/L [3]. We will

thus perform simulations in Maiduguri, Nigeria and Rajasthan, India, which both

have high solar potential.

We begin the HOMER model by defining the system economics. Here, the vari-

ables of interest are model period, inflation, WACC, and real discount. The first

variable of interest is the model period. This defines the time over which the financial

analysis is run. We also include inflation, which is the expected inflation rate over

the course of the system lifetime. Weighted average cost of capital (WACC) repre-

sents the cost of the company’s debt and equity. Real discount is the rate which the

company can borrow money.

For the diesel generator, the variables of interest are the initial/replacement cost,

lifetime, O&M cost, fuel price, and fuel consumption. The initial/replacement cost

is the capital cost of installing or replacing the generator. Lifetime is the number of

hours that the generator can run before needing to be replaced. O&M cost is the

cost of operating/maintaining the generator per year. Fuel price is the price of diesel

in the area of interest. Fuel consumption is the amount of fuel required to run at

different loads; generally, higher power loads are more efficient. This fact can lead to

somewhat unintuitive results, which we discuss later. The main variable of interest

here is the diesel cost, as its value varies significantly across different countries as well

as over time. Thus we are interested in performing sensitivity analysis on diesel cost.

For the grid, the three input variables we set are the cost of energy in $/kWh, grid

reliability in hours per day, and variance in reliability. Grid reliability is an especially

interesting variable for us, as India in particular has very different grid reliabilities

across the country. We thus want to be able to predict how this variation will affect

tower economics and apply sensitivity analysis to this variable.

The batteries also play an important role in the system, storing and leftover energy

produced by the DG or PV. We define the battery capacity in Ah, the battery cost,

lifetime throughput in kWh, and its lifetime in years. The variable of interest here is

the battery cost, as lithium-ion batteries are expected to halve in price in the next
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ten years. Thus, we apply sensitivity analysis on the battery cost.

Of course, we need to define the PV system. This takes in as variables the maxi-

mum PV size, PV cost, lifetime, and derate factor. The maximum PV size is set by

the wind loading analysis, which gave a maximum size of 100 m2. Assuming a 15%

module efficiency, this translates to a max PV size of 15 kWp. PV cost is the cost

in $/W. If we assume a balance-of-system cost of $0.50/W and an installation labor

cost of $0.24/W, and include a profit margin of 17%, we get a system cost between

$1.51/𝑊 and $1.82/W from our cost model. To be conservative, we estimate the final

system cost to fall between $1.5/W - $2/W in this analysis. Since PV price is particu-

larly important, we apply sensitivity to PV cost in all simulations. For perovskite PV,

as a young technology known for being unstable, it is important to see how changing

the lifetime affects the system economics, so we also simulate lifetime as a sensitivity

variable. Finally, derate is a factor that represents "real world efficiency" - that is,

how much do real world considerations such as dust, shading and wiring loss affect

PV output. We are also interested in this as a sensitivity variable, as it encapsulates

degradation in PV efficiency over time which is a potential problem with perovskite

PV. We also set the tilt angle to 85∘ (the approximate tilt of a tower side) and the

azimuth to 0∘ such that the panel faces south.

Finally, we define a DC/AC converter and tenant load. The converter has an

associated cost, lifetime and power capability, while the load is simply the power

demand of the tower. We assume an average load of 5 kW for the tower.

Some approximate values for key inputs, informed by discussion with ATC, are

given in Table 3.2. Battery cost is given as $ per 48V, 80 Ah battery.

3.4 Simulating Tower Microgrids in Nigeria

One of the primary countries of interest to install PV is Nigeria. This is due to its

low diesel price, which disincentivizes improving the grid, as well as high solar in-

solation. However, this low diesel price may also make vertical PV installation less

attractive. We thus run HOMER simulations applying sensitivity on diesel price,
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Base Input Assumptions

Diesel cost in Nigeria $0.55/L[3]
Diesel cost in India $1.02/L[3]
Battery cost $2000
PV derate 80%
PV lifetime 10 years
Grid reliability in Nigeria 5 hrs/day
Grid reliability in India 12 hrs/day

Table 3.2: Base assumptions for key Nigeria microgrid simulation inputs

battery cost, PV lifetime, PV derate, and grid reliability all over PV cost sensi-

tivity ranging from $1/W - $3/W. These studies are performed with and with-

out grid. The full results are presented online on at https://github.com/jtxiao/

Vertical-PV-on-Tower-HOMER-Results.

3.4.1 HOMER Results

In the case of Nigeria, it is found that the results are not significantly different between

the cases of with grid and without grid. Additionally, the sensitivity variable that

has the most impact on optimal system configuration is diesel price. Thus, we look

at the impact of diesel price with no grid by plotting heat maps of optimal PV size,

NPC, renewable fraction, and fuel diesel usage reduction plotted in Figures 3-4 - 3-7.

We force a minimum PV size of 1 kWp, even if it is unfavorable financially, such

that we can determine the impact it will have on NPC, renewable fraction and diesel

reduction. For NPC, we plot the percent change in NPC by installing PV compared

to the case without PV. Renewable fraction is defined as the fraction of the energy

delivered to the load that comes from renewable sources.

It is worth noting that the numbers for renewable fraction do not include energy

delivered by the batteries, which store a large amount of the energy produced by PV.

Thus, the number underestimates the total amount of energy from the PV system.
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Figure 3-4: Heat map of optimal PV installation size (1 kWp minimum) with varying
PV cost and diesel cost in Maiduguri, Nigeria.

Figure 3-5: Heat map of change in net present cost given the PV installation in Figure
3-4 with varying PV cost and diesel cost in Maiduguri, Nigeria.
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Figure 3-6: Heat map of renewable fraction given the PV installation in Figure 3-4
with varying PV cost and diesel cost in Maiduguri, Nigeria.

Figure 3-7: Heat map of change in diesel usage reduction given the PV installation
in Figure 3-4 with varying PV cost and diesel cost in Maiduguri, Nigeria.
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3.4.2 Is Vertical PV Financially Viable in Nigeria?

Given that the diesel price in Nigeria currently sits at $0.55/L, and that the projected

price of perovskite PV is between $1.5/W - $2/W, we see from the HOMER results

that the optimal system from these inputs has no PV installed. If we force a 1 kWp

system installation, we see a somewhat large increase in NPC (between 2.3% and

2.8%). This shows that, from a cost perspective, it does not make sense to install

vertical PV on the towers.

However, the main draw of solar energy need not be purely a financial one.

Nonetheless, we see that, even if we install some PV, we just do not see a signifi-

cant reduction in fuel usage at only 280 L/yr. Virtually none of the energy delivered

to the load comes from a renewable source. Installing PV does not seem significantly

greener, in this case.

That being said, all hope is not lost. Diesel prices globally are on the rise. In

Nigeria alone, diesel prices have skyrocketed in the last 15 years, going from $0.19/L

to $0.55/L. It is not unreasonable to expect a doubling in diesel price in the next

10 years, bringing the cost to approximately $1/L. Referencing Figure 3-4, we see

that this price encourages the installation of a large amount of PV. Even better,

solar prices are expected to decrease significantly in this time, making PV even more

attractive.

This fact is actually very encouraging, as the global average diesel price sits around

$1/L. In fact, India, one of our main target countries, has a diesel price of $1.02/L.

Thus, we would like to now focus our analysis on India.

3.5 Simulating Tower Microgrids in India

While India rapidly modernizes, the need for electrification rises. As such, oil is India’s

number one import[26]. One challenge being faced is that grid energy in India can be

unreliable - in fact, 240 million people currently do not have access to electricity[23].

One of the main energy goals set by the government is "24x7 electricity for all",

including 100 GW of solar, by 2022[12].
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In parallel with the need for energy is the need for access to communication.

Modernization in India has introduced many to cell phones, and with the rise of cell

phones comes the need for more telecommunications infrastructure. Companies like

ATC own thousands of cell towers and are continuously building more. As each tower

is built, the question arises on how to power the tower. With low or non-existent grid

reliability, powering towers with diesel seems like a straightforward and relatively

cheap option. However, diesel is often stolen and poses environmental risk.

Because of government support and its tropical location, India makes a prime

target for PV installation. This makes a solar/diesel hybrid solution an attractive

candidate for powering communications towers. We now analyze the economics of

powering telecommunications towers with vertical PV in order to determine whether

it makes financial sense.

3.5.1 HOMER Results

In the case of India, we run the same analysis as in Nigeria, but focus on grid reliability

as that is the main variable of interest in India. Again, the full results can be found

online at https://github.com/jtxiao/Vertical-PV-on-Tower-HOMER-Results.

The Impact of the Fuel Efficiency Curve

For the most part, these results are intuitive. As grid reliability goes up, the need

for PV and external power sources trends down. Similarly, as PV cost increases, the

demand for solar decreases. However, there appear to be some discrepancies. For

example, when PV costs $2.6/W, PV is favorable for reliabilities of 4 hours per day,

but not 0.

This discrepancy actually comes from the diesel generator fuel efficiency. As the

generator runs at higher loads, it uses fuel more efficiently, wasting less energy. For

the worst grid reliabilities, the power demand on the generators becomes higher so

its load increases, using fuel more efficiently. This saves a nontrivial amount of diesel

opex, making PV less attractive.
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Figure 3-8: Heat map of optimal PV installation size (1 kWp minimum) with varying
PV cost and grid reliability in Rajasthan, India.

Figure 3-9: Heat map of change in net present cost given the PV installation in Figure
3-8 with varying PV cost and grid reliability in Rajasthan, India.
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Figure 3-10: Heat map of renewable fraction given the PV installation in Figure 3-8
with varying PV cost and grid reliability in Rajasthan, India.

Figure 3-11: Heat map of change in diesel usage reduction given the PV installation
in Figure 3-8 with varying PV cost and grid reliability in Rajasthan, India.
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For example, let’s look at the case for $2.4/W PV cost and 0 hours of grid reliabil-

ity. Optimally, the system wants to install no PV; in that case it consumes 8,974 L/yr

of fuel and produces 41,688 kWh/yr, with a total NPC of $108, 193. This comes out

to $0.21967/kWh. On the other hand, if we force the system to install 7.1 kWp of PV,

because of the lower load on the generator it consumes 7,348 L/yr of fuel to produce

33,628 kWh/yr of energy. This translates to a diesel cost of energy of $0.22287/kWh,

which accumulates over the 10 years to a total diesel cost of $73480. The system

now has an NPC of $108, 514, which is a $321 increase. If the generator had a linear

efficiency curve, such that its $/kWh cost is the same at all loads, then the total diesel

cost for the 7.1 kWp PV case would be $0.21967/kWh×336 258 kWh×10 yr = $73090.

We see that the difference in price from diesel efficiency alone comes out to $390, which

accounts for the $321 increase in price from installing PV.

3.5.2 Is Vertical PV Financially Viable in India?

There are many areas of India with grid reliabilities of less than 12 hours a day.

It is very promising, then, that given the predicted price range of $1.5/W - $2/W

for perovskite PV, it is financially favorable to install PV for grid reliabilities of up

to around 10 hours per day, and for PV costs between $1.5/W - $1.8/W we are

encouraged to install PV for reliabilities up to around 16 hours a day. As India

rapidly works to improve its grid, these higher numbers for reliability are becoming

more widespread. It’s encouraging that these results remain robust for better grid

connection.

Encouraging, also, is the green impact that the PV installation serves. Installing

such a large amount of PV leads to around 10-15% renewable fraction (ignoring the

amount stored in the battery), and an annual reduction in fuel usage of 1000 - 2500 kL.

This translates to approximately 2.7 - 6.75 less tons of CO2 per year per tower. From

both a cost and environmental benefit, we predict that installing vertical perovskite

PV on communications towers in India makes sense.
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Chapter 4

Conclusions and Future Work

In this work we have developed a Monte Carlo cost modeling method and applied

it to a realistic perovskite manufacturing sequence. Because of the extremely cheap

cost of the active materials, we found a cost-competitive price range. With obvious

cost component targets, we proposed possible pathways to bring this price down even

further.

We applied our cost model results to see if a real world application of powering

telecommunications towers with vertically mounted perovskite PV makes financial

sense. We first ensured that a large amount of PV could be mounted without creating

structural failure modes through wind load. This gave an upper bound on PV size,

which informed our economic analysis. Using HOMER, we analyzed the financial

feasibility of vertically mounted PV in Nigeria and India. We found that at the

current low diesel price in Nigeria, it is not cost-effective to use vertical PV. However,

with the global increasing of diesel prices, it may very well become feasible. In India,

with its high variance in grid reliability, we determined that vertical PV is cheaper

and greener for areas with grid reliabilities as high as 16 hours a day. Thus, there

exists a potential market application for perovskite PV.

In continuing partnership with ATC, we would like to further our studies by

investigating possible deployment solutions for vertically mounted PV on towers. We

would like to develop high-speed, automated, and cost-effective methods for primarily

vertically mounted PV, but also commercial rooftop and utility-scale PV. As the study
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continues, cost parameters will likely change. We will thus regularly update the cost

model to account for more refined and updated inputs.

With all of this in mind, we strongly believe in the potential of perovskite solar.

Though perovskite PV is not without its faults (stability issues and possible toxicity

from lead), these issues are continually being researched and mitigated. Its low cost

and high efficiency, combined with its potential lightweight and flexible form factor,

make perovskite PV a promising technology for making the world a greener place.
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Appendix A

Cost Model Inputs

A.1 Materials Inputs

Presented in Table A.1 is the list of all materials inputs and their nominal, low,

and high estimates for usage and cost. Values are either taken from discussion with

Dirk Weiss, Nathan Chang, Sarah Sofia, Tomas Leijtens, Max Hoerantner, and the

GridEdge/ONE Lab team, or from References [7] and [24]. Usage is in units/m2,

while cost is in $/units.

Process Material Nominal Usage Nominal Cost Low Usage Low Cost High Usage High Cost Unit

PET Receipt PET 1 2 1 1 1 4 m2

IZO sputter IZO 1.405 0.324 0.702 0.02 2.107 0.898 g

NiOx sputter NiOx 0.1 1.979 0.033 0.249 0.2 4.233 g

FACsPbIBr slot die CsBr 0.134 0.26 0.108 0.031 0.269 0.568 g

FaBr 0.385 0.584 0.308 0.087 0.77 1.176 g

PbI2 1.284 0.078 1.028 0.003 2.569 0.263 g

PbBr2 0.341 0.157 0.273 0.024 0.682 0.311 g

PCBM slot die PCBM 0.068 24.12 0.068 1.144 0.068 73.891 g

Anisole 3.4 0.013 3.4 0.004 3.4 0.02 mL

SnO2 sputter SnO2 0.07 1.513 0.035 0.224 0.139 3.051 g

Al sputter Al 0.27 0.267 0.135 0.029 0.81 0.605 g

Encapsulate Barrier films 2 20 2 5 2 40 m2

Adhesive 3 0.164 2.5 0.074 3.5 0.351 g

Cut and contact Contact buttons 13.1 0.1 13.1 0.05 13.1 0.2 pair

J-box install Junction box 1 8.5 0.5 5 2 12 m2

Table A.1: Cost model materials inputs
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A.2 Tools Inputs

Presented in Table A.2 and A.3 are the lists of all tools input estimates, in the format

nominal (low - high). Values are either taken from discussion or from References

[7],[25], and [24].

Process Tool Tool cost Facility cost Floor space Spare parts Electricity usage

Web clean Web cleaner 0.029 (0.022-0.037) 2 (1-3) 5 (4-8) 3 (2-4) 10 (5-20)

IZO/NiOx/SnO2 sputter Sputterer 6.5625 (5.25-7.875) 25 (20-30) 25 (20-30) 4 (3.2-4.8) 500 (400-600)

P1/P2/P3 scribe Laser scriber 0.8 (0.64-0.96) 25 (20-30) 15 (12-18) 4 (3.2-4.8) 2 (1.6-2.4)

NiOx/FACsPbIBr flash anneal Flash annealer 0.25 (0.2-1) 25 (20-30) 10 (5-20) 3 (2-4) 100 (50-200)

FACsPbIBr/PCBM slot die Slot die coater 0.632(0.441-0.864) 30 (20-40) 30 (20-40) 10 (5-20) 40 (20-60)

Al sputter Sputterer 6.5625 (5.25-7.875) 25 (20-30) 12.5 (10-15) 4 (3.2-4.8) 80 (64-96)

Encapsulate Laminator 1.958 (1.566-2.349) 25 (20-30) 15 (12-18) 4 (3.2-4.8) 35 (28-42)

Cut and contact Sheet and pin tool 0.029 (0.022-0.037) 2 (1-3) 5 (4-8) 4 (2-8) 10 (5-20)

J-box install J-box tool 0.504 (0.404-0.605) 25 (20-30) 2.5 (2-3) 4 (3.2-4.8) 0.5 (0.4-0.6)

Module test Module tester 1.656 (1.325-1.988) 25 (20-30) 2.5 (2-3) 4 (3.2-4.8) 0.5 (0.4-0.6)

Table A.2: Tool cost inputs, where tool cost ($𝑀) is the total upfront cost of the tool,
facility cost (% of tool cost) is the cost of support services such as air or chemical
delivery, floor space (m2) is the footprint of the tool itself, spare parts (% capex/yr)
is any replacement parts that the tool needs every year, and electricity usage (kW) is
the power demand of the tool.

Process Tool Throughput Downtime Operation staff Maintenance staff Yield

Web clean Web cleaner 4 (3-5) 2 (1-3) 0.02 (0.01-0.04) 2 (1-3) 99.5 (99-100)

IZO/NiOx/SnO2 sputter Sputterer 67.2 (53.76-80.64) 3 (2-5) 0.25 (0.2-0.5) 2 (1-3) 98 (96-100)

P1/P2/P3 scribe Laser scriber 52 (41.6-62.4) 2 (1-3) 0.25 (0.2-0.5) 2 (1-3) 99.5 (98-100)

NiOx/FACsPbIBr flash anneal Flash annealer 100 (80-120) 2 (1-10) 0.25 (0.2-0.5) 2 (1-3) 99 (98-100)

FACsPbIBr/PCBM slot die Slot die coater 18(18-18) 10 (5-20) 0.5 (0.25-1) 2 (1-3) 98 (96-100)

Al sputter Sputterer 67.2 (53.76-80.64) 3 (2-5) 0.25 (0.2-0.5) 2 (1-3) 98 (96-100)

Encapsulate Laminator 67.2 (53.76-80.64) 2 (1-5) 0.02 (0.01-0.04) 2 (1-3) 99.5 (99-100)

Cut and contact Sheet and pin tool 4 (3-5) 2 (1-3) 0.02 (0.01-0.04) 2 (1-3) 99.5 (99-100)

J-box install J-box tool 67.2 (53.76-80.64) 2 (1-3) 0.02 (0.01-0.04) 2 (1-3) 99.5 (99-100)

Module test Module tester 67.2 (53.76-80.64) 5 (3-8) 0.02 (0.01-0.04) 2 (1-3) 99.5 (99-100)

Table A.3: Tool cost inputs, where throughput is the area process in an hour of
operation (m2/hr), downtime is the percentage of time the tool is maintained instead
of operating (% of time), operation staff is the number of operators needed to operate
the tool, maintenance staff is the number of staff needed to conduct maintenance or
repair, and yield is the percentage of modules process that are good (%).
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A.3 Factory Assumptions

Presented in Table A.4 is the list of all factory assumptions and their nominal, low,

and high estimates. Values are either taken from discussion or from Reference [7].

Factory assumption Nominal estimate Low estimate High estimate

Electricity cost ($/kWh) 0.11 0.07 0.13

Electricity for services 1 1 1

Floor space ratio 3 2 5

Building cost ($/m2) 1000 200 1500

Operator labor rate ($/hr) 20 15 30

Maintenance technician labor rate 25 20 30

Indirect labor cost ratio 0 0 0

Facilities depreciation time 15 15 15

Equipment depreciation time 7 7 7

Number of operating hours 3690 2630 6130

Table A.4: Factory assumptions, where the electricity cost is the local cost of grid
electricity, electricity for services is the ratio of electricity for services/tool electricity,
floor space ratio is the ratio of total factory floor space/tool footprint, building cost
is the cost of building a factory, operator labor rate is the wage for operators, main-
tenance technician labor rate is the technician wage, indirect labor cost ratio is the
ratio of indirect labor/direct labor (set to 0 here because it is accounted for in later
steps), facilities and equipment depreciation times are the depreciation times for all
facilities and tools respectively, and number of operating hours is the hours per year
the factory operates.
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