
Constrained Sets: The Effects of Multi-Layered
Environments in Learning App Inventor

by

Lynda Tang

S.B., Massachusetts Institute of Technology(2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

© Massachusetts Institute of Technology 2018. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 11, 2018

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Harold Abelson

Class of 1922 Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Katrina LaCurts

Chairman, Department Committee on Graduate Theses



2



Constrained Sets: The Effects of Multi-Layered Environments

in Learning App Inventor

by

Lynda Tang

Submitted to the Department of Electrical Engineering and Computer Science
on May 11, 2018, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

MIT App Inventor is a mobile application development platform that seeks to de-
mocratize the construction of mobile apps by making app development accessible to
people with little to no experience with script-based programming. It uses block-
based programming to introduce and teach programming concepts to its users. Users
drag and drop functional and visual components onto their planned app in the screen
editor, and construct the logic behind those components by using blocks in the block
editor. In this thesis, we design and implement Constrained Sets, a system that
allows instructors and developers to allow access to only a subset of App Inventor
functionality by hiding component and block access. This system allows for the con-
struction of multi-layered interfaces, which we then use to conduct an experiment
that explores how novice App Inventor users learn App Inventor in different interface
environments. Furthermore, we discuss and test the possibility of using a React based
implementation of the App Inventor designer, and what implications that may have
on creating more flexible user interfaces.

Thesis Supervisor: Harold Abelson
Title: Class of 1922 Professor of Computer Science and Engineering

3



4



Acknowledgments

I’d like to thank all the people who’ve supported me directly and indirectly in the

past year throughout the thesis process. From the MIT App Inventor team, I learned

not only about computer science and research techniques, but also life lessons and

what it means to be a person who makes a positive impact on the world and on the

people around them.

First of all, I’d like to thank Hal Abelson for giving me this opportunity to work

with App Inventor and opening my eyes to what it means to be a researcher. I’d also

like to thank my current mentors Evan Patton and Mike Tissenbaum for taking time

out of their days and going above and beyond in helping make my study a success,

even when both of them were overloaded with work. You two are both role models

that I aspire to become.

Thank you to everyone on the MIT App Inventor team for the small things every-

one did to help me out: Mark Sherman, for helping me generate the accounts I needed

for my study, Farzeen Harunani, for giving me emotional support, Hedge Nichols, for

taking my panic calls in the middle of the night, Marsha Gordon, for always lending

an ear, and Hercules and Kaidan, for always lending a waggy tail and a furry paw.

Additionally, thank you to all the students and staff members that tested the system

and the curriculum.

I also want to thank Elaine Mou and all the kids that participated in my research.

I couldn’t have done it without you guys and I will miss your enthusiasm every Sat-

urday.

Lastly, I’d like to thank my former mentor Paul Medlock-Walton, for guiding me

through most of the technical challenges in the thesis and making sure that I was well

taken care of after his departure.

5



6



Contents

1 Introduction 15

1.1 MIT App Inventor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.2 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Motivation Behind Constrained Sets . . . . . . . . . . . . . . . . . . 18

1.3 Constrained Sets Use Cases . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Tutorial Integration . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Limited Exploration Environments . . . . . . . . . . . . . . . 19

1.3.3 Customized User Interfaces . . . . . . . . . . . . . . . . . . . 19

1.3.4 Project-Type Specific Interfaces . . . . . . . . . . . . . . . . . 19

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Related Work 21

2.1 User Interface Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Cognitive Load . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2 Multi-Layered Interfaces . . . . . . . . . . . . . . . . . . . . . 23

2.2 Education Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Zone of Proximal Development and Scaffolding . . . . . . . . . 24

2.3 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Gameblox Flexidor and StarLogo Subsets . . . . . . . . . . . . 25

2.3.2 Quizly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Reduced GUI in Geometry Teaching . . . . . . . . . . . . . . 26

7



3 Constrained Sets Design and Implementation 27

3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Constrained Set Representation . . . . . . . . . . . . . . . . . 27

3.1.2 User Experience and Project Dependence . . . . . . . . . . . . 29

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Constrained Set Generator . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Displaying the Blocks and Components . . . . . . . . . . . . . 30

3.2.3 Specifications and Exceptions . . . . . . . . . . . . . . . . . . 31

4 User Experiment and Data Analysis 33

4.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Study Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Study Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Tutorial Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.2 Project Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Data Collected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5.1 Classroom Statistics . . . . . . . . . . . . . . . . . . . . . . . 38

4.5.2 Project Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.3 Survey Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.4 Case Studies of Three Categories of Participants . . . . . . . . 44

5 Discussion and Conclusion 49

5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Other Findings . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Future Work 55

6.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.1 Varying Range of Subsets for Learning . . . . . . . . . . . . . 55

6.1.2 Using Constrained Sets to create diverse App Inventor workspaces 56

8



A App Inventor with React: An alternative approach to WYSIWYG

programming with Constrained Sets 57

A.1 A React/Redux Project Designer . . . . . . . . . . . . . . . . . . . . 57

A.1.1 Why React/Redux? . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1.2 Introduction to React/Redux . . . . . . . . . . . . . . . . . . 58

A.1.3 Background Work . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.1.4 Injecting React into GWT App Inventor . . . . . . . . . . . . 60

A.1.5 Implementation of Constrained Sets in React . . . . . . . . . . 64

B Surveys 65

9



10



List of Figures

1-1 App Inventor’s Screen Editor . . . . . . . . . . . . . . . . . . . . . . 17

1-2 App Inventor’s Blocks Editor . . . . . . . . . . . . . . . . . . . . . . 18

2-1 Multi-Layered Interface Variations . . . . . . . . . . . . . . . . . . . . 23

3-1 The App Inventor designer . . . . . . . . . . . . . . . . . . . . . . . . 30

4-1 The Tutorial Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4-2 Design Editor Constrained vs Full Comparison . . . . . . . . . . . . . 36

4-3 Blocks Editor Constrained vs Full Comparison . . . . . . . . . . . . . 37

A-1 React/Redux Data Flow Diagram . . . . . . . . . . . . . . . . . . . . 59

A-2 How the React Designer Loads and Saves Projects from the GWT Servers 62

11



12



List of Tables

4.1 Workshop Tutorial Curriculum . . . . . . . . . . . . . . . . . . . . . 35

4.2 The average number of blocks, components, block types, and compo-

nent types, used per tutorial project in the two groups. . . . . . . . . 40

4.3 The average number of blocks, components, block types, and compo-

nent types used in the final project in the two groups . . . . . . . . . 40

4.4 Cumulative Block Types Used . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Cumulative Component Types Used . . . . . . . . . . . . . . . . . . . 42

4.6 New Block Types Used . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 New Component Types Used . . . . . . . . . . . . . . . . . . . . . . 43

4.8 Post Tutorial Survey Results . . . . . . . . . . . . . . . . . . . . . . . 43

4.9 Post Workshop Survey Results . . . . . . . . . . . . . . . . . . . . . . 44

13



14



Chapter 1

Introduction

User interfaces increase accessibility by providing a visual representation that ab-

stracts the complex systems underneath. For new users, the interface is the first

thing they see and interact with when using a piece of software. Therefore, designers

and developers should take special care to create an interface that easily onboards

new users and primes them for the other features the software offers. This thesis looks

at the how integrating a limited interface with tutorials affect learning App Inventor.

App Inventor is a platform that enables users to use block based programming to

create Android applications. In this thesis, we create Constrained Sets, which is a

system that diversifies and simplifies App Inventor’s designer interface by allowing a

presentation of only a subset of App Inventor’s full functionality. It can be used to

limit the environment a new user starts off in to create more beginner-friendly user

experiences. Using the aforementioned system, instructors can specify a Constrained

Set and display the Constrained Set in the App Inventor GUI. In addition to creating

the system, we also use Constrained Sets to investigate how different environments

affect how novice users learn and use App Inventor. We discovered that although lim-

ited interfaces had little effect on user confidence and their perceived understanding

of App Inventor, students who started out in the constrained environment explored a

larger range of blocks when they were given access to all of App Inventor’s function-

ality.

15



1.1 MIT App Inventor

MIT App Inventor (2017) is a development environment for Android applications for

smartphones and tablet devices. It combines a visual designer with Blockly, a block-

based programming language, and is used monthly by over 1.1 million users around the

world, who have created a total of over 24 million apps. App Inventor democratizes

app creation by abstracting the complex parts of programming languages behind

blocks. Unlike using script-based programming languages, users do not have to worry

about using the correct syntax and can focus on learning computational models and

paradigms.

A majority of new users learn App Inventor in an informal educational setting

through online tutorials and walkthroughs. The tutorials help new users by scaffolding

the app development process, familiarizing them with the software, and introducing

them to new components and blocks. However, the tutorials only cover a fraction of

what App Inventor offers, and the rest is left for the user to figure out and explore.

Applications are created in App Inventor via its project designer. The project

designer consists of two parts: 1) the screen editor and 2) the blocks editor. The

screen editor determines which components, viewable displays, and functions are on

the app, and the blocks editor controls the logic behind the app and its components.

1.1.1 Components

The components of App Inventor are the visual and functional parts that form the

modules of the application. They are shown in the Palette panel in the screen editor.

Components are added to the application by dragging and dropping them onto the

Viewer, and their properties can be modified in the Properties Panel on the screen

editor.

1.1.2 Blocks

Blocks control the logic behind the components. There are two types of blocks:

built-in blocks and component-specific blocks. Built-in blocks are available in every

16



Figure 1-1: App Inventor’s Screen Editor

The App Inventor screen editor. Here, users can drag and drop visual compo-
nents (e.g.:Button, Checkbox) as well as functional components (e.g.: Accelerometer,
Timer) onto their Viewer to use on the screen.

project; they handle basic computational logic, such as if-else statements, and the

manipulation of basic objects, such as strings and numbers.

Component-specific blocks are blocks that handle calling component methods and

setting or getting variables on a specific component object instance. When a com-

ponent is added to the app, the blocks drawer will modify itself to contain that

component’s corresponding blocks. One example of a component-specific block is

the "When Button Click" block, which detects when a component is clicked. Users

first drag a component, such as a Button, into the Viewer, and then use the "When

Button Click" block to detect when that Button is clicked to execute the subsequent

instructions. Component specific blocks fall into three major types: event, method,

and get/set blocks. Event blocks detect when an event occurs, method blocks modify

the component, and get/set blocks retrieve and change the component properties.

With a cumulative total of over a thousand blocks and components, App Inventor

offers users many tools to build a myriad of apps, but that sheer amount may seem

intimidating to the new user and can be frustrating to use(Xie, 2016; Colter, 2016).

17



Figure 1-2: App Inventor’s Blocks Editor

The App Inventor blocks editor. Users use blocks to form the logic behind the app.

We introduce the concept of Constrained Sets to help limit the large search space

provided by App Inventor’s blocks and components.

1.2 Motivation Behind Constrained Sets

Currently, users are always shown an interface that gives them access to all of App

Inventor’s functionality; while this gives novice users an unlimited sandbox for them

to explore and test, it may also increase their cognitive load and impede their ability

to learn App Inventor. In a software like App Inventor, when user proficiency of the

program is linked with their understanding of app development and computational

thinking, does learning in a limited environment affect their ability to understand

and use the system later on? We use Constrained Sets to try to answer this question.

1.3 Constrained Sets Use Cases

Although our experiment only investigates the effects of using Constrained Sets in

coordination with tutorials for novice users, Constrained Sets can also be utilized

18



to create environments that give experienced users easier access to the tools they

frequently use. We propose some more use cases for the system below:

1.3.1 Tutorial Integration

Constrained Sets can be integrated into App Inventor tutorials. This thesis inves-

tigates the effect of tutorial integration by looking at what happens when kids are

given only the exact components and blocks they need to complete each tutorial and

the tutorial’s explorations. Using the set generator (see Chapter 3), instructors such

as the App Inventor staff and other educators can build custom Constrained Sets for

each tutorial.

1.3.2 Limited Exploration Environments

Constrained Sets can be used to create enclosed exploration environments. Instructors

can create specific sets for their students that expose only the blocks and components

they want their students to use and play around with.

1.3.3 Customized User Interfaces

Benjamin Xie’s research on the Progression of Computational Thinking Skills in App

Inventor Users (2016) showed that users, even those who are experienced, used on

average less than twenty different types of blocks. This suggests that perhaps display-

ing all of the App Inventor blocks is unnecessary, even for long term users. However,

using Constrained Sets in this way would mean that users would need to learn how

to create their own Constrained Sets.

1.3.4 Project-Type Specific Interfaces

Constrained Sets can also be used to make project-type specific interfaces. Industry

software, such as Blender and Adobe Suite’s products, often have different pre-defined

layouts that are based on user goals. Blender (2007), for example, uses a selection of

19



default screens to let the user choose which environment is most conducive, or mostly

closely aligns to their project type.

1.4 Thesis Overview

This thesis details the process of creating Constrained Sets and investigating the ef-

fects of Constrained Sets on computational learning for beginner App Inventor users.

Chapter 2 goes further into the background theories behind user interface design. It

also looks at other related work with changing the interface on block-based program-

ming languages and learning environments. Chapter 3 discusses the design decisions

behind Constrained Sets and how the system was implemented. In chapter 4 we dis-

cuss the design and details of the research experiment, and analyze the results of the

experiment in chapter 5. Chapter 6 discusses the implications of the experiment, and

what it means for App Inventor’s future.

20



Chapter 2

Related Work

This chapter looks at the user interface and educational theories that informed and

inspired the creation of Constrained Sets. It also provides examples of subsets and

multi-layered interfaces utilized in other learning environments.

2.1 User Interface Theories

As computers moved from largely esoteric machines operated by a select few to a

common household item, the importance of interfaces increased. An increase in us-

ability for a program can result in financial savings, decreased task times, and an

increase in the number of good customer reviews (Nielsen, 1993). This explains why

a larger percentage of software code is devoted to its interface than before. This sec-

tion will explain cognitive load, one of the challenges of interface usability, and how

multi-layered interfaces can minimize it.

2.1.1 Cognitive Load

The idea of cognitive load was first proposed in a paper by George Armitage Miller

(1956), where he postulated that our working memory contains around seven chunks

of information. Giving it more, he further states, results in a phenomenon known as

information overload, and can have an adverse effect on the decisions and judgments

21



that people make.

Sweller (1988) then took the idea of a limited amount of working memory and

applied it to an educational context, stating that learners have more trouble acquiring

schemas if the learning task demands a high amount of cognitive load. In particular,

learners who expend more effort in trying to solve a problem will find that their

abilities for schema acquisition may be inhibited (Sweller, 1988). When we frame this

idea in App Inventor terms, solving the problem is building the apps, and schema

acquisition is understanding the computational logic behind them. Therefore, it is

not a reach to say that to improve computational thinking in our users, we should,

at least initially, reduce novice users’ cognitive load.

Cognitive load appears in three different types: intrinsic, extraneous, and germane.

Intrinsic and germane cognitive loads refer to, respectively, the difficulty of the topic

and the amount of effort it takes to understand the underlying models that the topic

or problem is based upon. Extraneous cognitive load is the cognitive load that is

associated with the presentation of the topic to the learner, and the one we seek to

minimize using interface design, especially during initial instruction (Chandler and

Sweller, 1991).

One of Nielsen’s (1993) ideas to reduce extraneous cognitive load in interfaces is to

avoid visual clutter, and research has shown that having cluttered interfaces not only

causes confusion in beginner users, but also negatively affects the speed of experts.

By only showing the user what is relevant to their needs, we remove unnecessary

distractions and possible sources of error.

Cognitive load theory would suggest that simplification of an interface is the an-

swer to reducing cognitive load, but when we apply that logic to App Inventor, which

has a broad user-base, we run into some issues. Specifically, how do we know what

is relevant to a user, and how to we create an interface that caters to both beginners

and experienced users?

22



2.1.2 Multi-Layered Interfaces

One solution we can employ in answering this universal usability conundrum is the

concept of multi-layered interfaces. Rather than have everybody use the same inter-

face, we can create a tiered system that starts beginning users off at layer one and

advances them to higher layers as they become more competent (Shneiderman, 2003).

Multi-layered interfaces can appear in many different variations, and Constrained Sets

enable App Inventor developers and instructors to easily create the variations.

Figure 2-1: Multi-Layered Interface Variations

Examples of different variations in multi-layered interfaces. Some interfaces such as
the standard multi-layer design (1b) provide different functions for different layers,
others, like the expanding multi-layer design (1c), use a compounding model, where
functions in the previous layer are available in the later layers (Shneiderman, 2003).

A large challenge in using multi-layered interfaces is determining how the layers

23



should be structured and what variation they should appear in. We will discuss this

further in Future Work.

2.2 Education Theories

2.2.1 Zone of Proximal Development and Scaffolding

The Zone of Proximal Development (ZPD) is a concept developed by Lev Vygotsky

that represents the space of tasks a learner cannot do on their own, but can do

with some guidance from an instructor (Daniels, 1996). The classic example of ZPD

in action is the process of how children learn to speak. When children learn to

speak, the adults around them provide feedback and guidance through reactions and

responses, which in turn helps the child develop more language skills until help from

the adults is no longer needed. As learners expand their knowledge, their zones of

proximal development expand and learners eventually are able to do tasks in the zone

independently.

Instructional scaffolding is a way to provide the guidance that learners need to help

them accomplish tasks in the zone of proximal development. As students gradually

master the tasks, the scaffolds fade away. Instead of having the instructor guide the

student from task to task, they are only there to provide small nudges in the right

direction; the driver of a student’s learning is the student themself. This type of

instruction also allows for a student to exercise their independence and creates an

environment where students can feel safe to experiment and fail.

The experiment for this thesis uses Constrained Sets as a form of scaffolding

for new learners of App Inventor. The explorations for the tutorials created for

the experiment switches the teaching model from one of hand-holding to one where

students are only given suggestions and must figure out how to implement the rest.

The limited subset that they are given serves as the scaffolding for their exploration.

24



2.3 Prior Work

This idea of using scaffolding through interfaces has been used before in different

projects. This section details a few of them.

2.3.1 Gameblox Flexidor and StarLogo Subsets

Gameblox (2014) and StarLogo (2010) are two projects from the MIT STEP Lab

that both use a block-based programming to teach their respective users programming

concepts through the development of software. Gameblox is a game editor that allows

its users to create video games; users can learn game development skills and concepts

such as design and prototyping without previous programming knowledge. StarLogo

is also a game editor, but it focuses on teaching its users agent-based models and

decentralized systems, letting them create simulations with thousands of agents.

Flexidor is a similar implementation of Constrained Sets in Gameblox. It provides

a restricted view of the Gameblox editor and allows users to create customized edi-

tors and block subsets. It was tested on eighteen MIT undergraduate and graduate

students and the results showed that the users completed tasks faster and with less

errors when using the Flexidor versus the full editor, although the groups showed little

difference in their self-reported understanding and learning scores (Du, 2015). This

could be due to the test group being already familiar with programming concepts.

StarLogo is another development environment that uses subsets. It allows in-

structors and users to create their own block sets that consist of activity based or

frequently used blocks. After the subsets are created, users can save the subsets for

future use, allowing for a personalized environment(StarLogo, 2010).

2.3.2 Quizly

Quizly is an assessment platform that allows users to test themselves with small App

Inventor block-based tasks such as "Set the text color of Canvas to magenta" and

presents the user with a limited amount of block drawers for them to choose blocks

from (Maiorana et al., 2015). Instructors can use Quizly’s Quiz Maker to create

25



questions and block drawers for their students, and students are given automatic

feedback when they make a submission. Quizly uses a similar approach to Constrained

Sets in that it allows the instructors to limit the blocks the students are exposed to

to only contain the ones needed. Constrained Sets, however, places the blocks in

App Inventor’s app building context instead of removing the assessment from the

environment.

2.3.3 Reduced GUI in Geometry Teaching

Researchers have also looked at how multi-layered interfaces affect learning in other

educational software. Previous research on iGeom, an interactive geometry program,

has shown that students felt frustrated with the iGeom interface due to the high

number of features it has(Borges et al., 2016). The researchers developed two inter-

faces for iGeom: a complete interface and a reduced interface. The complete interface

displayed all of the features of the software, while the reduced interface only showed a

subset of the features. For the study, they recruited 69 undergraduate students, gave

them the interfaces, and asked them to solve twenty geometry problems (the pretest)

with aid from software. Then the students were given a series of video lessons that

explained each of the software’s features and asked again to solve twenty geometry

problems (the posttest). The researchers found that the students in the reduced in-

terface scored higher on average in the pretest, but the average scores of the students

using the complete interface were higher in the post-test. This suggests that to novice

users of a new program, a simplified user interface was more useful in learning the

concepts(Borges et al., 2016).

26



Chapter 3

Constrained Sets Design and

Implementation

Constrained Sets is a system that allows for only a subset of App Inventor’s blocks

and components to be shown to the user. This section will go into the design of

Constrained Sets, the reasoning behind design and architectural choices, and how it

is implemented in App Inventor.

3.1 Design

A "set", as used in this thesis, is defined as a collection of pre-specified App Inventor

blocks and component types.

The Constrained Sets systems consists of two main modules: the set generator and

the display. The set generator takes in a specified set and generates a representation

of that set. That representation is then inputted into the display, where it changes

the App Inventor interface to reflect the set.

3.1.1 Constrained Set Representation

A Constrained Set is represented as a JSON string that specifies which components

and block types are in the shown set:

27



1 {"shownComponentTypes":

2 {"USERINTERFACE":[{"type":"Button"},{"type":"CheckBox"}],

3 "LAYOUT":[],

4 "MEDIA":[],

5 "ANIMATION":[],

6 "SENSORS":[],

7 "SOCIAL":[],

8 "STORAGE":[],

9 "CONNECTIVITY":[],

10 "LEGOMINDSTORMS":[],

11 "EXPERIMENTAL":[],

12 "EXTENSION":[]},

13 "shownBlockTypes":

14 {"ComponentBlocks":

15 {"Button":

16 [{"type":"component_event",

17 "mutatorNameToValue":

{"component_type":"Button","event_name":"Click"},→˓

18 "fieldNameToValue":{}},

19 {"type":"component_set_get",

20 "fieldNameToValue":{"PROP":"BackgroundColor"},

21 "mutatorNameToValue":{"component_type":"Button","property ⌋

_name":"BackgroundColor","set_or_get":"set"}},→˓

22 {"type":"component_set_get",

23 "fieldNameToValue":{"PROP":"BackgroundColor"},

24 "mutatorNameToValue":{"component_type":"Button","property ⌋

_name":"BackgroundColor","set_or_get":"get"}}],→˓

25 "CheckBox":

26 ...

27 },

28 "Logic":[],

29 "Control":[{"type":"controls_if"},

30 {"type":"controls_forEach"},

31 {"type":"controls_while"}],

32 "Math":[],

33 "Text":[],

34 "Lists":[],

35 "Colors":[],

36 "Variables":[],

37 "Procedures":[]}}

The field value of shownComponentTypes represents which components are shown

and the field value of shownBlockTypes represents which blocks are shown. The value

of ComponentBlocks lists which component-specific blocks are displayed.

28



In order to make it easy for developers and instructors to create Constrained Set

models, it is necessary to create a generator that allows them to convert a set into its

representation. This generator is described below.

3.1.2 User Experience and Project Dependence

We created the SubsetJSON project property field, which holds the Constrained Set

representation for that project. If a user has a set and wants to display it in an App

Inventor project, they first would create the set representation using the set generator,

and then take the output from the generator and input it into the SubsetJSON project

property box.

By having each project hold its own Constrained Set through a project property,

we allow Constrained Sets to be project dependent.

Constrained Sets is project dependent for a variety of reasons:

• Users, regardless of their experience with App Inventor, should have exposure

to all functions.

• Since new users would not be aware if their environment was limited, Con-

strained Sets should be opt-in.

• A single user could have different projects that use different components, so we

want to allow them to be able to switch between the contexts easily.

3.2 Implementation

This section goes into the implementation of Constrained Sets in App Inventor’s

current GWT-based designer. Constrained Sets was also implemented in a new React

based designer, which is described in more detail in Appendix A.

29



3.2.1 Constrained Set Generator

Figure 3-1: The App Inventor designer

The set generator is built as a standard website and uses two existing App Inventor

JSON files, global_block_checkbox.json and simple_components.json, to generate the

default block and component dependent checkboxes.

When a user clicks on a component, all of the component blocks are automati-

cally added to the shown blocks list. This is designed so that removing blocks is an

intentional action (See Specifications and Exceptions).

3.2.2 Displaying the Blocks and Components

When a user inputs the set representation into the SubsetJSON project property and

refreshes the page, the project will be rerendered with the Constrained Set. When the

subset property is changed, App Inventor’s auto-save function automatically writes

it onto the server. Because the version that we implemented on GWT is not reactive,

the page will need to be reloaded in this version to show the new component sets.

This issue is fixed inside the React version.

30



Components

The onFileLoaded() function is modified to load in the new components when a

user refreshes the project. It first checks whether the project’s SubsetJSON property

contains a valid set representation. If so, it loads its respective component set by only

adding the components in the Constrained Set instead of adding all the components.

Blocks

Since Blockly exists as its own Javascript library, if a change in the blocks set is made,

the project does not need to be reloaded.

In implementing Constrained Sets, we changed how block drawers were displayed

in Blockly so that drawers contained JSON representations of the blocks. In the

previous system, Blockly instantiates every block type in that category and iterates

over the order the keys were added, so the block order is determined by what is

defined in the file. This means that block order could not be changed dynamically,

or easily reordered or rearranged on the go.

Using previous work done on App Inventor by Janice Chui, we added functionality

that converted JSON representations of blocks to their respective XML formats. This

means that blocks in drawers can be reordered and changed easily, and also allows

block sets to be easily created since the representation of a Constrained Set is already

a JSON object. The drawer can create exactly the blocks it needs from the set model

directly, and little modification on the code is needed.

3.2.3 Specifications and Exceptions

We designed the specifications and exceptions in a way that prioritized giving the

user more access in these situations, especially since novice users will more easily find

a block or component than figure out how to change their interface to show the block

or component they need. We always want the user to be in a state where they can

complete their project, and Constrained Sets is designed in a way that tries to satisfy

that condition. Therefore if the Constrained Set properties box is empty or contains

31



an malformed input, it will automatically default to the full App Inventor set.

32



Chapter 4

User Experiment and Data Analysis

In this section we discuss the design and execution of a research workshop that ex-

plores the effects of integrating Constrained Sets with tutorials as a teaching tool to

onboard new learners of App Inventor.

4.1 Hypotheses

Before we conducted the workshop, we made the following hypotheses:

1. Students in the control group would use a larger variety of blocks and compo-

nents because they have chances to explore the open environment for longer

periods of time.

2. Students in the experimental group complete more of the explorations (see Tu-

torial Phase) since they had a smaller set of combinations of components and

blocks, had lesser cognitive load, and were constrained in their explorations.

4.2 Study Participants

We recruited nine participants for our study through a workshop we conducted with

MIT’s Spring HSSP1. The students that signed up for the workshop indicated interest
1MIT Spring HSSP (2017) is a six to eight week long program in which middle and high schoolers

sign up to attend courses taught by members of the MIT community.

33



in creating mobile applications, which fit the App Inventor target demographic. The

participants were not required to have prior programming knowledge. Students who

signed up for the workshop did not need to participate in the study, and not all of

the members of the workshop chose to participate.

4.3 Study Overview

The workshop spanned six weeks, with one ninety-minute session per week. Partici-

pants worked individually, but natural collaboration was permitted. There were also

instructors present to guide participants if they got stuck, but the instructors were

asked to push the students to explore and figure out solutions by themselves first.

The nine participants were split randomly into two groups: five in the experimen-

tal group, and four in the control group. They were all given the same computers,

tutorials, and instructions, the only variable between the two groups was the envi-

ronment in which they did the tutorials.

The study was split into two phases: the tutorial phase and the final project phase,

both which are described below:

4.3.1 Tutorial Phase

The tutorial phase consisted of the first three weeks of the workshop, where students

were taught App Inventor through a series of tutorials. Since a majority of App Inven-

tor learners teach themselves App Inventor in an informal environment via tutorials,

this is a good representation of App Inventor’s general user onboarding experience.

The tutorials used in this phase consisted of four original App Inventor tutori-

als, and two tutorials built in collaboration with Youth Radio 2. The curriculum is

detailed below:

2Youth Radio (2016) is non-profit media company located in Oakland, California dedicated to
encouraging youths to use media to improve their community.

34



Table 4.1: Workshop Tutorial Curriculum

Week Tutorials

Week 1 Talk To Me, Magic 8 Ball

Week 2 Translation App, Snapchat Remix

Week 3 Mole Mash, Get The Gold

The tutorials were displayed to the students through a tutorial side panel that

guided the students through how to build a specific app with step-by-step instructions

and animated GIFs. It included which blocks they needed to use and directions on

how to access those blocks.

Figure 4-1: The Tutorial Panel

The highlighted section shows the tutorial for Mole Mash in the App Inventor de-
signer. Tutorials on the App Inventor website, originally in PDF format, were divided
into individual chunks and processed in this panel format so that students could ref-
erence and follow the tutorial in the same window.

At the end of every tutorial is an extended exploration section that suggests

ways that participants could extend or add functionality to the app the students

had just built. The explorations are not guided like the rest of the instructions, so

35



students must figure out how to build them for themselves. The experimental group

completed the tutorials in a constrained environment that only gave them the blocks

and components they needed to complete the tutorials and explorations, while the

control group was given access to all of App Inventor’s blocks and components.

Figure 4-2: Design Editor Constrained vs Full Comparison

Images showing the comparison in the design page between the constrained environ-
ment (top) and the full environment (bottom). Note the difference in the number of
components that are available to the users.

36



Figure 4-3: Blocks Editor Constrained vs Full Comparison

Comparison between the constrained environment (top) and the full environ-
ment(bottom) for the Math block drawer. Users in the constrained environment
are only given the blocks that were needed to complete the tutorial.

4.3.2 Project Phase

Once the participants completed the tutorials, they were then asked to design and

create their own app using App Inventor. Because the participants expressed interest

37



in creating games, the theme of the final project was game-based, but they were also

allowed to create apps with different themes as well if they desired. They were given

thirty minutes to brainstorm their apps, and to aid them with the process, we gave

them worksheets to help them scaffold their designs. In this phase, all the participants

were given access to the full functionality of App Inventor.

4.4 Data Collected

We collected three forms of data for all participants: surveys, project files, and screen

recordings. Additionally, we conducted interviews with some of the participants at

the end of the workshop, and instructors also noted down significant events such as

students asking for help from either the instructors or their neighbors.

We gave participants questionnaires at three stages: before the workshop, after

the tutorial phase, and after the workshop. The pre-workshop survey asks them about

their previous programming experiences, while the post-tutorial and post-workshop

survey asks them about their experience learning App Inventor and using the App In-

ventor interface. After each tutorial, participants were additionally asked to rate their

understanding and write a segment on things they had learned. All questionnaires

are included in Appendix B.

4.5 Data

4.5.1 Classroom Statistics

The participants of the workshop were 7𝑡ℎ and 8𝑡ℎ graders between the ages of 12 and

13. Most of them have been exposed to programming before, 40% of the students

in the experimental group and 75% in the control group had done so in a classroom

environment.

In the month prior to the workshop, members of the experimental group pro-

grammed an average of 1.8 hours per person. All but one member in that group

programmed for an hour or less both inside and outside the classroom; the last per-

38



son programmed between 2 to 4 hours outside of class. The experimental group had

a pretty even distribution with their past programming experience.

On the other hand, in the month prior to the workshop, members of the control

group programmed an average of 7 hours per person. This average was greatly skewed

by one of the members, who programmed for more than 10 hours in the past month,

both inside and outside the classroom. If we exclude this outlier, the rest of the control

group would have programmed for an average of 2.6 hours per person. The control

group showed a more varied distribution in their prior programming experiences, from

the aforementioned student to a student that had no prior programming experience.

Because attendance was not mandatory, one of the participants in the experimen-

tal group left after the tutorial phase, so we did not include them in the calculations

that required final project data.

4.5.2 Project Statistics

Counting Block Types

We counted block and component types by using App Inventor’s AIATools 3. We felt

that the three broad default types for component blocks: component_get_set,

component_event, and component_method did not provide enough granular-

ity since each of those default types can cover a large range of component blocks.

Therefore, we separated blocks by not only their default type, but by the mutation

they have. Event blocks are now divided based on what event they have and method

blocks are now divided based on what method they call. We have opted to keep the

get/set blocks under one category because we believe the concept of getting and set-

ting a variable is universal. This is similar to the way Benjamin Xie counted his blocks

as well since he states that many of his blocks came from component functionality

(Xie, 2016).

3AIATools is a Python library developed by the App Inventor team that summarizes and analyzes
data from .aia files (The file type that App Inventor projects are saved in)

39



Tutorial Phase

Students in the experimental group completed on average 80% of the tutorials they

started, while students in the control group completed 100% of the tutorials they

started. We define tutorial completion as having a complete, working, and bug-free

version of the app shown in the tutorial. On average, students in the experimental

group completed 1.56 explorations per tutorial while students in the control group

completed 1.52 explorations per tutorial.

Experimental Control

Blocks 24.56 25.58

Components 7.83 8.29

Block Types 7.83 8.58

Component Types 6.02 6.06

Table 4.2: The average number of blocks, components, block types, and component
types, used per tutorial project in the two groups.

Final Project Phase

Experimental Control

Blocks 122 128.75

Components 20.5 21

Block Types 19.5 15

Component Types 8.5 6.25

Table 4.3: The average number of blocks, components, block types, and component
types used in the final project in the two groups

It is interesting to note that for the final project, compared to the control group, users

in the experimental group used around the same number of blocks and components,

but a higher number of block and component types. Two of the participants in

40



the experimental group also mentioned that they used App Inventor outside of the

workshop because they wanted to know more.

Wilcoxon Rank Sum: To figure out if the numerical difference in block types is

statistically significant we used a Wilcoxon Rank Sum test. We chose this test since

different participants were used in each group and the block type distributions were

not likely to be normal. The test revealed that the number of block types used in the

experimental group was statistically significantly different than the number of block

types used in the control group 𝑊𝑠 = 10, 𝑍 = −2.38, 𝑝 = 0.02, 𝑟 = −0.84. Median

for experimental = 4.5, median for control = 0.5.

Block and Component Type Usage Breakdown

The following tables detail the cumulative amount of block and component types used

by the participants throughout the workshop.

Table 4.4: Cumulative Block Types Used

Student ID Block Types

Student A 31

Student B 47

Student C 40

Student D 47

Student ID Block Types

Student E 39

Student F 32

Student G 38

Student H 36

The number of block types used over the course of the full workshop in the experi-
mental group (left) and the control group (right)

41



Table 4.5: Cumulative Component Types Used

Student ID Component Types

Student A 12

Student B 17

Student C 16

Student D 13

Student ID Component Types

Student E 16

Student F 8

Student G 14

Student H 12

The number of component types used over the course of the full workshop in the
experimental group (left) and the control group (right)

The next two tables detail the “new” block and component types used by the two

groups, where “new” is defined as types that the participants used in the final project

but not in any of the previous tutorials.

Table 4.6: New Block Types Used

Student ID Block Types

Student A 6

Student B 4

Student C 1

Student D 5

Student ID Block Types

Student E 11

Student F 1

Student G 0

Student H 0

The number of block types used in the final project by each student in the experimen-
tal group (left) and control group (right) that were not used in any of the previous
tutorials

42



Table 4.7: New Component Types Used

Student ID Component Types

Student A 1

Student B 2

Student C 2

Student D 1

Student ID Component Types

Student E 3

Student F 0

Student G 0

Student H 0

The number of component types used in the final project by each student in the
experimental group (left) and control group (right) that were not used in any of the
previous tutorials

4.5.3 Survey Statistics

Below are the average survey results for the surveys we gave to the students after the

tutorial phase and after the whole workshop. We asked them to rate how much they

agree with the following statements on a scale of 1 (Strongly Disagree) to 4 (Strongly

Agree).

Table 4.8: Post Tutorial Survey Results

Statement Experimental Control

It was easy to complete the tutorial apps. 2.8 3.3

I easily found everything I needed in App Inventor to

complete the tutorials.

3.4 2.3

It was easy to build the extensions to the tutorial

apps.

2.8 3

I easily found everything I needed in App Inventor to

complete the tutorial extensions.

3.2 2.7

The interface was enjoyable to use. 3.8 3.3

43



Table 4.9: Post Workshop Survey Results

Statement Experimental Control

App Inventor was easy to learn. 3.5 3.5

The tutorials prepared me well enough to build my

own App Inventor application.

4 4

I want to make more apps with App Inventor. 3.5 4

I know how to figure out how to do something in App

Inventor.

4 4

I am familiar with App Inventor 4 4

I understand how the blocks interact with each other 4 4

I understand the App Inventor interface 3.5 3.5

The constrained interface was easier to use 3 N/A

The constrained interface was more enjoyable to use 1.5 N/A

The constrained interface helped me learn the full in-

terface

2 N/A

4.5.4 Case Studies of Three Categories of Participants

Although the students were randomized into the two groups, we can categorize stu-

dents to belong to one of three different categories: Experimental Group - Beginner,

Control Group - Experienced, and Control Group - Beginner. In this section we will

go into some case studies of the students in those respective categories.

Experimental Group - Beginner

Students A through D all fell inside this group; for the sake of brevity in this case

study, we will only look at Student A and Student B.

Student A and Student B are both middle schoolers in the experimental group,

who have had both done some amount of programming before, but only programmed

for less than one hour in the previous month. This indicates that while they have

44



had exposure to programming concepts, they were still novice programmers.

Student A completed 40% of the tutorials and seemed to dislike the limited amount

of blocks and components they got, especially in the earlier tutorials. However, once

the access for blocks and components got bigger, they were more eager to explore

around the interface. They were among the first to notice that the components and

blocks subsets changed and were disappointed that one of the components they used

in a previous tutorial was not there for a later tutorial.

Even though Student A got the constrained environment, there were many times

when they wanted to implement something in the final project and asked for instructor

assistance. The instructor never gave them direct assistance, and instead would

prompt Student A to try figuring it out by themselves, which they did. Despite these

successes, Student A still continued to ask for instructor assistance.

Both Student A and Student B explored App Inventor outside of the workshop.

In between workshop sessions 3 and 4, we sent a notification to the students to let

them know that we were transitioning from the tutorial phase to the project phase,

and asked them to think of app ideas that they would want to make for their final

project. Student A brought in an App Inventor project that they had worked on

outside of the workshop and asked to continue building on it for their final project.

They said that they had used lessons that they had learned from tutorials 5 and 6.

Since the tutorial interface for those specific tutorials is not readily accessible on the

public App Inventor server, it is assumed that Student A recreated the lessons from

memory or referenced online materials.

Student B also worked on their final project outside of the workshop. They wanted

to implement a mechanic that used the phone’s accelerometer but didn’t know how

to do it since it was not covered in any of the tutorial materials. Because they felt

that they didn’t have enough time in class to create their final project, they asked for

and were given permission to work on it outside of class. They were eventually able

to implement their desired function.

45



Control Group - Experienced

Student E and Student F are two students in the control group who have both had

experiences with programming and programming languages before coming to this

course. They are examples of students who may be novices to App Inventor but are

familiar with coding paradigms. Prior to the workshop, Student E had spent more

than 10 hours, both inside and outside the classroom, programming. They had also

stated that they have had experience using standard text-based programming lan-

guages, such as Python. Student F had spent less time programming in the prior

month than Student E; they had only spent 2 to 4 hours programming outside of

class. However, Student F told us that they spent a lot of time making games in

Scratch, which made them more familiar with block-based programming, program-

ming concepts, and computational logic. For this reason, we have placed them in the

experienced group.

During the tutorial phase, Student E and Student F completed an average of 1.875

extensions per tutorial project.

When brainstorming ideas for their final project, Student E and Student F chose to

work on their own instead of sharing and discussing ideas with the other participants.

Student E usually asked questions on how to do something with App Inventor

that was not immediately obvious. For example, they wanted to pass data between

screens and could not find the component and blocks that did what they needed, so

they asked an instructor for help. Student F, on the other hand, was mostly able to

find the blocks that they needed for their final project, but would ask the instructors

for debugging help. The instructors would ask Student F to walk through their code,

at which point Student F was usually able to figure out the issue themself.

Control Group - Beginner

In contrast to Students E and F, Students G and H were participants in the control

group with little previous programming experience before coming to the workshop.

Student G programmed for similar amounts of time with Student F, but unlike Stu-

46



dent F, he had less experience with other block-based programming languages. Stu-

dent H, on the other hand, had no prior experience with programming before coming

to this workshop.

While Student F and Student G would sometimes collaborate and help each other

find blocks in the tutorials, Student H would look at Student G’s screen for aid and

direction. Whenever Student H needed help, he would often ask Student G, or copy

off what Student G had. Student H’s final project was also a similar app to that of

Student G’s, suggesting that this pattern had carried over from the tutorial phase.

Student H also experienced some struggles with their final project. When they asked

Student G for help, Student G told them that the implementation for the idea was

similar to that of one of the previous tutorials. Even though Student H was able to

complete all of the tutorials, they were not able to recreate and modify the tutorial

projects later on.

47



48



Chapter 5

Discussion and Conclusion

5.1 Discussion

Due to the small sample size of our experiment, it is important to note that these

findings are not conclusive and more experiments are needed. We hope these find-

ings will inspire further research into how interfaces can affect learning software and

computational thinking.

Students in the experimental group used a larger variety of blocks in their

final projects than students in the control group

Contrary to our hypothesis, students in the experimental group used a larger variety

of blocks in their final projects than students in the control group. While we initially

thought this could be due to the fact that students in the control group had already

explored more of App Inventor during the tutorial phases and therefore were more

focused in their final project, the cumulative data seems to contradict this argument.

If this was indeed the case, then we should see equal or higher number of block types

used cumulatively by the control group students. We also manually reviewed some

of the screen recordings of members in the control group to verify that they had not

used or explored any blocks that were outside the subset of those required to complete

the tutorials and their extensions.

Additionally, we calculated the ”new” block types used by the two different groups

49



as a way to establish a minimum baseline for exploration of different types of functions.

We found that on average, students in the control group explored and used more

"new" blocks than students in the experimental group. The one anomaly in the

control group data, Student E, could be explained by the fact that they were absent

from one of the tutorial sessions and they were not a novice programmer. As they

stated in their interview, it was easy for them to catch up and figure out what they

needed to do given their programming background.

We offer two possible explanations for this behavior:

1. Backlash from using the restrictive constrained environment

The participants in the experimental group could be eager to finally use the

rest of App Inventor after being constrained in the limited environment. They

may have felt that they didn’t get the same chance to explore as those in the

control group, and as a result, made up for it by trying more things.

2. Students felt that they had built a solid foundation in the constrained sets and

were not scared to try out new things.

This explanation is more aligned with Vygotsky’s theory on the Zone of Proxi-

mal Development and how students learn. The limited environment could have

served as adequate scaffolding for students to expand their Zone of Proximal

Development, and as a result, students in the experimental group were less

scared to try out new things when they were in the open environment. Even

though the two groups self-reported the same amount of learning and compre-

hension in each of the projects, students in the experimental group could have

felt that they were more familiar in their limited environment and were ready

to explore the rest of App Inventor. This hypothesis is hard to prove without

further supporting evidence, and will require more research.

50



A constrained environment has little effect on the number of explorations

a student completes

We also hypothesized that a constrained environment would increase student efficacy

in using App Inventor since there were only a limited number of combinations stu-

dents could use. This was not the case, however, as students from the two groups

completed approximately the same number of tutorial explorations. Even though the

experimental group more easily found the things they needed to complete the tutori-

als and explorations, they did not find completing the tutorials easier, suggesting that

the cognitive load required to locate the needed components/blocks did not severely

impact learning App Inventor.

5.1.1 Other Findings

Although the constrained interface was easier to use, it was neither enjoy-

able nor helpful in learning the full interface.

Participants in the experimental group mentioned that while they did find that the

constrained interface was easier to use, they did not feel that it helped them learn the

full interface of App Inventor, nor was using it enjoyable for them to use. Interestingly

enough, in the survey after the tutorial phase was completed, the participants in the

experimental group answered that they found the interface to be easy and enjoyable

to use. It was only until they were exposed to the full interface that they came to

dislike the constrained interface.

In interviews conducted with some of the participants after the workshop, they

stated that they thought the constrained interface was too restrictive, and while they

believe that constrained interfaces would help people learn better, they also wanted

a larger degree of freedom. The overall feeling was that they were unsatisfied with

the sizes of the sets that they were given. Participants in the experimental group

also felt negatively about the fact that sometimes they could not access blocks and

components that they had used previously.

”I was mad about that.” — Student A, when asked how they felt when they realized

51



that some of the blocks they used in the previous tutorial were no longer available

to them.

The study conducted with Gameblox Flexidor also revealed that participants en-

joyed using Flexidor less than using the full editor, even though using Flexidor was

easier (Du, 2015). Participants in the Flexidor study, however, said that Flexidor

helped them learn more of the full interface. This could be due to the fact that

students in the Constrained Sets workshop may have interpreted "interface" as App

Inventor’s functionality and not purely the GUI. Participants in this workshop are

also novice programmers as opposed to the participants in Du’s study, who were MIT

undergraduates with prior programming experience (Du, 2015).

5.2 Conclusion

This thesis detailed the design and implementation of a system that creates different

environments in App Inventor by displaying only a subset of App Inventor’s tools.

We proposed different ways of using Constrained Sets to improve the user experience,

and also conducted research using it to test the effects of limited environments on

learning. We held a six week workshop that introduced kids to App Inventor and

asked ourselves two questions:

1. Does using a limited environment in App Inventor increase the efficacy and

comprehension of App Inventor?

2. Does a limited environment affect the breadth of the component types or block

types that they explore?

Via our experiment, we have verified that interfaces must be finely tuned in order

to aid learning, and restrictive environments may not necessarily help users learn

better even though they are easier to use, which aligns with previous research. We

have discovered, however, that when novice users transition from a tutorial space to

a final project and are given all of the software’s tools, users who started out with the

52



restrictive environment used a larger variety of block types. Because of the limited

size of our workshop, further research is required to verify this finding.

53



54



Chapter 6

Future Work

6.1 Future Research

6.1.1 Varying Range of Subsets for Learning

Subjects from the study commented that while they did find that the Constrained Sets

helped them learn the interface of App Inventor, they found that the sets we provided

were too limiting. Since we only gave the experimental participants the subset of

blocks and components that were required to create the tutorials and extensions,

they were not able to explore outside of that range.

As mentioned previously in Chapter 2, a large challenge in using Multi-Layered

Interfaces is determining the granularity of the layers and the sets in each layer.

Future research with subsets could look into how different ranges, instead of our

current binary system, could affect learning App Inventor.

Below we propose some more research directions using Constrained Sets:

• Provide a larger amount of blocks in the Constrained Set

Users in this study were only given the blocks they needed to complete the

tutorials and their respective extensions, meaning that if they had extra time,

they couldn’t make their own extensions. While Constrained Sets allows for

the precision of choosing the exact blocks that were shown, when we counted

the blocks, we grouped them into pre-set block types. One way we can increase

55



the amount of blocks that users got is to select block types instead of specific

blocks.

• Use compounded block and component sets

Participants in the experimental group noticed that they had different blocks

and components for every tutorial, so there were times in which they wanted to

recreate a feature they learned from a previous tutorial but couldn’t because the

current set didn’t allow for it. If we use compounded block and component sets,

this would allow users to revisit materials they’ve learned in previous lessons.

• Use the same constrained sets but decrease tutorial hand-holding

Even though the explorations were unguided, the tutorials contained a lot of

hand-holding, which meant that participants could complete the tutorials sim-

ply by following the instructions and not really understand their actions. In

this tutorial context, the constrained sets we gave may feel restrictive, but if

participants were given tutorials that only contained brief instructions similar

to Quizly’s (2015) tasks, perhaps the constrained sets could serve as stronger

scaffolding.

6.1.2 Using Constrained Sets to create diverse App Inventor

workspaces

As mentioned in the introduction, Constrained Sets could also be used to provide

different workspaces for different goal-oriented projects. For example, users who use

App Inventor to build IoT devices would use a different set of blocks than users who

want to build games. Our research showed that it was easier for novice users in the

limited environment to find the blocks and components they needed, so it is possible

that we use Constrained Sets as a way to improve the user experience for experienced

users who know which components and blocks they frequently use.

56



Appendix A

App Inventor with React: An

alternative approach to WYSIWYG

programming with Constrained Sets

A.1 A React/Redux Project Designer

In addition to implementing the Constrained Sets system and conducting experiments

on the effects of limited environments on learning App Inventor, another significant

portion of the work was dedicated to figuring out how to substitute the GWT imple-

mentation of the App Inventor designer with a React/Redux implementation through

injection. Converting the designer codebase to React/Redux makes UI changes like

the one detailed in this thesis easier and more accessible to novice App Inventor

developers.

A.1.1 Why React/Redux?

Currently, all of App Inventor is built with Google Web Toolkit (GWT), which makes

interface innovation difficult as it requires developers to recompile the codebase any-

time a change is made. This process must be done because the interface and server use

the same code, and each recompilation can take anywhere from two to eight minutes,

57



making this process a huge time sink. When changes are made in React, however,

the page is automatically updated in a few seconds. Additionally, since most modern

websites are built in Javascript instead of GWT and the majority of web develop-

ers nowadays are more familiar with React, finding new student developers for App

Inventor becomes easier. Most importantly, converting the editor to React offers us

more flexibility in user interface layouts. If we want experiment more with the layout

and move or rearrange parts of the interface beyond the scope of the changes in this

thesis, it is much easier for developers to implement them in React than in GWT.

A.1.2 Introduction to React/Redux

The React/Redux Modules

React and Redux are interface libraries built in JavaScript that help create reactive

interfaces. By only rendering the modules that change, it saves a lot of computing

time. This section goes briefly over the React and Redux data flow process to provide

some background information that may be useful in understanding the implementa-

tion process. There are a few important modules:

• Store

The store keeps the state (or data) of the application. The state is used to

display the components.

• Components

The components are the visual elements that comprise the interface. They are

processed by containers, which gets the data from the store and uses that to

generate and render the components appropriately.

• Actions

Actions are Javascript objects that provide information and are dispatched to

the store. They are called when the user interacts with the components, or a

data entry in the store needs to be updated.

58



• Reducers Reducers tell the store what to do when an action is dispatched to

it. It is a function that takes in (currentState, action) and returns (newState),

where newState is the new state of the store after an action has been applied.

The React/Redux Data Flow System

Figure A-1: React/Redux Data Flow Diagram

When a user clicks on a component (for example, changing the color of an element
to blue), an action is sent and dispatched by the reducer to the store. The store then
looks at its current state, sees that an action has been called to change the color of an
element, and updates itself so that in the new state the color of that element is blue.
Once the components see that the state has been changed, they rerender themselves
(Pini, 2016).

A.1.3 Background Work

Injecting the React editor is mainly based on two previous App Inventor projects:

Shelby Pefley’s UAP Project “Introducing a Javascript Based Editor into the MIT

App Inventor User Interface”, and a version of App Inventor in React created by our

collaborators at Youth Global Network 1. Pefley’s project was a proof of concept

1Youth Global Network (2018) is an organization located in Hong Kong dedicated to empowering
youths to create positive changes in their community

59



that demonstrated that React could be injected into GWT App Inventor; it set a

foundation for injecting React code into the current App Inventor’s Document Object

Model (DOM). Although we have a version of App Inventor built in React, we choose

to only inject the designer in because the React version and our current GWT version

sends calls to two different servers with their different data formats. React App

Inventor sends remote procedural calls to its own server, but the data that we want

to access and display is contained in our App Inventor server and formatted differently.

Therefore we’ve opted to inject the React version of the editor into the current App

Inventor DOM; this lets us preserve the current data representation and server calls

while keeping the benefits React has.

A.1.4 Injecting React into GWT App Inventor

The editors are injected in three main steps:

1. The React App Inventor designer is first isolated to prepare it for injection.

2. We then compress the React editor into a few Javascript chunks and inject them

into the GWT DOM using Pefley’s method.

3. Finally we populate the React editor with information from the GWT server

and connect the corresponding server calls.

Isolating the React Editors

The version of React App Inventor given to us by Youth Global Network includes all

of App Inventor, so before we inject the App Inventor editors, we must first extract

them from the rest of App Inventor and disconnect their server connections. In order

to get the React designer to an injectable state, the designer should be able to be

properly loaded on the index page, and have all the components and blocks already

working.

Since the React editors provided by Youth Global Network are connected and

populated by data from YGN’s Node server, we first need to isolate the editors to

60



prepare them for injection. This is done by disconnecting the Node server calls from

the editor and creating a dummy project, based off of the project model that the

Node server used. Once the dummy project is created, the React designer can use

the data from the dummy to render the elements. The data from the dummy project

is eventually replaced with actual App Inventor project data.

Injecting the React Editors

Before injecting the isolated React designer, we need to set up the GWT environment

for injection. The React designer is injected in the following manner:

• The React designer is first compiled and built. We configure it so that all of

the React designer is compressed into 4 files.

• A bash script is then run to move the compiled React files into the source code

of the GWT version of App Inventor

• The compiled files are inserted into the location where the designer is via a

script injector

• GWT App Inventor is then rebuilt with the new files

Since the React designer includes both the screen editor and the blocks editor,

the blocks editor inside the GWT version needs to be disabled as well.

Connecting the RPC Calls

Once the React designer is injected into the GWT DOM, we hook up the data from

GWT App Inventor to the React designer, so that the React designer replaces the

aforementioned dummy project data with actual project data from the GWT server.

This is done by creating JavaScript hooks that allow React to load and save

contents. Given a project served by the GWT server, its blocks and screens content

is first converted into a format that React can use, and then sent into the React

editor by exposing the data in a JavaScript window function. The React editor then

61



loads up the project that it receives. When a user makes changes inside the React

editor and saves the project, the React editor exposes the changed blocks and screens

content to GWT using the same method, and calls a function on GWT’s side to save

the project to the GWT server.

App Inventor projects are stored as aia files, which contain three types of files:

.scm, .bky, and .yail. The .scm file stores information about the designer editor

contents, and the .bky file stores information about the block editor contents. These

are the contents that we send to the React designer so that it can load with them.

Figure A-2: How the React Designer Loads and Saves Projects from the GWT Servers

One of the things we had to account for while connecting the RPC calls was

changing the React project model to support GWT’s. The GWT implementation of

App Inventor uses a unique object to store each App Inventor project for a specific

user and only saves the project on the server when the page is refreshed. The React

version, however, uses one object to store every project, and saves the project when

the screen is changed. Because of the differences in project models described above,

modifications in the React version were not displayed when the project was opened

again. To solve this issue, we had to replicate GWT’s multiple project objects inside

React, by storing the state of every project opened with the React designer in the

62



store.

Load - GWT first gets all of the designer and blocks content from the server

and makes them available through the window functions. It then checks if the React

editors are ready, and if so, calls load on the React editors with the designer and block

content. The React editors then render with the content that was given to them.

Save - When React saves a project, it sends a call to the GWT server to let it

know that the blocks and screens data for that project has been changed, or “dirty”.

Periodically, GWT will go through all the dirty data and rewrite it with data from

the React model.

New Project - When GWT creates a new project, it creates its data and then

sends it to React, where a new project is created on the store.

Screen - When React switches screens, it sends an RPC call to GWT to get the

content of the new empty screen. It then rerenders itself with the new content.

Upload - Files can also be uploaded through the React system. The React front

end first uses a FileReader to read the uploaded file as a DataURL, which is then

uploaded to the GWT server. Once the file is loaded, it sends a callback to the React

side to rerender the media files list to display the newly uploaded media.

Issues Experienced

Although we would have liked to use the React version to conduct our workshop, we

ultimately had to default to using the GWT version of App Inventor due to some

of the issues that were discovered. During development of the injection process and

connecting the server calls, we uncovered some issues on the React designer. Switching

between the injection context and the React designer context was time consuming,

and it was difficult to get the up-to-date code for the designer. Additionally, there

were some features of App Inventor such as collaboration that were not included

inside the React designer.

Since the main goal of this thesis was to look at how limited environments affect

learning and exploration in novice App Inventor users, we decided that it would be

better to opt for the safer option and run the experiment with the GWT implemen-

63



tation of Constrained Sets.

A.1.5 Implementation of Constrained Sets in React

One of the benefits of React is that it rerenders changes on the go, which means that

changes to subsets are automatically displayed and do not require the web page to be

refreshed. As we mentioned before in Chapter 4, the implementation of Constrained

Sets in GWT App Inventor requires a page refresh in order to display the component

subsets.

Components

When the SubsetJSON property box is changed, it dispatches an action to change the

subset property in the React store. Once the React store subset property changes,

React rerenders the interface with the new component sets by only adding the com-

ponents that were in the set.

Blocks

In order to get constrained block sets to work in React, we took the constrained block

set implementation in GWT App Inventor (See Chapter 3) and compiled it into the

file blockly-compiled.js. We then took the compiled file and placed it inside the React

codebase.

64



Appendix B

Surveys

65



5/10/2018 Post Task Reflection + Questionnaire :)

https://docs.google.com/forms/d/1XWU_5l8m4HTDFwvFw2gTHMnaDYQNJJ-ZlcV4nYjlRxw/edit 1/2

Post Task Reflection + Questionnaire :)
* Required

1. What is your participant Id? *

2. What was the task/tutorial you just finished? *
Mark only one oval.

 Talk to Me

 Magic 8 Ball

 Hello Bonjour Translator

 Snapchat Remix

 Mole Mash

 Get the Gold

 Your Own Project :D

3. How difficult did you think this task was going to be? *
Mark only one oval.

1 2 3 4 5

Very Easy Very Difficult

4. How difficult was it actually to complete this task? *
Mark only one oval.

1 2 3 4 5

Very Easy Very Difficult

5. Rate your sense of accomplishment at finishing this task *
Mark only one oval.

1 2 3 4 5

None Very High



5/10/2018 Post Task Reflection + Questionnaire :)

https://docs.google.com/forms/d/1XWU_5l8m4HTDFwvFw2gTHMnaDYQNJJ-ZlcV4nYjlRxw/edit 2/2

Powered by

6. Rate your understanding of the app that you created *
Mark only one oval.

1 2 3 4 5

I don't understand it  I
couldn't remake it

I understand everything  I could
remake and extend it without
instructions

7. What did you learn/figure out while doing this task? *
 

 

 

 

 

8. Did you experience any difficulties in building the app? If so, how did you figure out how to
solve it, if you did? *
 

 

 

 

 



5/10/2018 CS Pre-Workshop Questionnaire

https://docs.google.com/forms/d/1RPWeXquCZf2Hpw9ZNiyDd4CPmgmCbKyMOWAO5H4CD7U/edit 1/3

CS PreWorkshop Questionnaire
Please fill out and answer the questions below.

* Required

1. Participant code: *

2. Age: *

3. Grade Level: *
Mark only one oval.

 5

 6

 7

 8

 9

 10

 Option 7

4. I am a: *
Mark only one oval.

 Boy

 Girl

 I don't identify as either

 I'd prefer not to say

5. Have you ever done any programming? *
Mark only one oval.

 Yes  Skip to question 6.

 No  Skip to question 10.

If you have done programming before:

6. Did you do any programming in class? *
Mark only one oval.

 Yes  Skip to question 7.

 No  Skip to question 9.



5/10/2018 CS Pre-Workshop Questionnaire

https://docs.google.com/forms/d/1RPWeXquCZf2Hpw9ZNiyDd4CPmgmCbKyMOWAO5H4CD7U/edit 2/3

Skip to question 10.

If you have done programming in class:

7. In the last month, how many hours did you spend in a programming class? *
Mark only one oval.

 1 hour or less

 24 hours

 510 hours

 10+ hours

8. In the last month, how many hours did you spend programming out of class? *
Mark only one oval.

 1 hour or less

 24 hours

 510 hours

 10+ hours

Skip to question 10.

If you haven't done programming in class:

9. In the last month, how many hours did you spend programming?
Mark only one oval.

 1 hour or less

 24 hours

 510 hours

 10+ hours

Skip to question 10.

How much do you agree with the statements below?
Remember, there are no wrong answers :)



5/10/2018 CS Pre-Workshop Questionnaire

https://docs.google.com/forms/d/1RPWeXquCZf2Hpw9ZNiyDd4CPmgmCbKyMOWAO5H4CD7U/edit 3/3

Powered by

10. *
Mark only one oval per row.

I agree a
lot

I agree a
little

I disagree a
little I disagree a lot

I can learn how to program
I am good at programming
I have the skills to program
I have confidence in my
programming ability
I think of myself as someone who
programs
I want to use programming to help
solve problems in the world
I want to use programming to
make people’s lives better
I can use programming to make
daily life easier
I love designing technical/techie
things
I want to learn as much as
possible about computer science
Designing new things makes me
feel excited
I enjoy talking about how
technical things work with friends
or family

11. I think... *
Mark only one oval per row.

I am very good
at

I am good
at

I am OK
at

I am not good
at

Figuring out how to fix things that
don’t work
Explaining my solutions to
technical problems
Solving problems
Coming up with new ways to
solve technical problems
Coming up with new ideas when
working on problems



5/10/2018 CS Post Tutorial Questionnaire

https://docs.google.com/forms/d/1U4PL_4w7nftuPCs0IGeJHUJVX9d67FQ99O1ZfVlTUAI/edit 1/1

Powered by

CS Post Tutorial Questionnaire
Please fill this out to the best of your ability!

* Required

1. User ID: *

2. How much do you agree with the statements below? *
Mark only one oval per row.

I agree a
lot

I agree a
little

I disagree a
little I disagree a lot

I can learn how to program.
I am good at programming.
I have the skills to program.
I have confidence in my ability to
program.
I think of myself as someone who
programs.
I want to use programming to help
solve problems in the world.
I want to use programming to
make people’s lives better.
I can use programming to make
daily life easier.
It was easy to complete the
tutorial apps.
I easily found everything I needed
in App Inventor to complete the
tutorials.
It was easy to build the
extensions to the tutorial apps.
I easily found everything I needed
in App Inventor to complete the
tutorial extensions
The interface was easy to use.
The interface was enjoyable to
use.



5/10/2018 CS Post Workshop Questionnaire

https://docs.google.com/forms/d/1dCahnZQipESCngxdTl_zwn4OEUgfXA5WfsIryc8w5z0/edit 1/2

CS Post Workshop Questionnaire
* Required

1. User ID *

2. How difficult was it to build your final app? *
Mark only one oval.

1 2 3 4 5

Very easy Very difficult

3. How much do you agree with the statements below? *
Mark only one oval per row.

I agree a
lot

I agree a
little

I disagree a
little I disagree a lot

I can learn how to program
I am good at programming
I have the skills to program
I have confidence in my ability to
program
I think of myself as someone who
programs
I want to use programming to help
solve problems in the world
I want to use programming to
make people's lives better
I can use programming to make
daily life easier

About App Inventor

This section will ask about your App Inventor experience. Please do your best to fill this out as this will 
help us make App Inventor better!



5/10/2018 CS Post Workshop Questionnaire

https://docs.google.com/forms/d/1dCahnZQipESCngxdTl_zwn4OEUgfXA5WfsIryc8w5z0/edit 2/2

Powered by

4. How much do you agree with the statements below? *
Mark only one oval per row.

I agree a
lot

I agree a
little

I disagree a
little I disagree a lot

App Inventor was easy to learn
The tutorials prepared me well
enough to build my own App
Inventor application
I want to make more apps with
App Inventor
I know how to figure out how to
do something in App Inventor
I am familiar with App Inventor
I understand how the components
interact with the blocks
I understand how the blocks
interact with each other
I understand the App Inventor
interface

App Inventor Constrained Interface

You may have realized that you use a limited interface when you did your tutorials than when you worked 
on your final project. The following questions will ask you about your experience with that interface 

5. How much do you agree with the statements below? *
Mark only one oval per row.

I agree a
lot

I agree a
little

I disagree a
little I disagree a lot

The constrained interface was
easier to use
The constrained interface was
more enjoyable to use
The constrained interface helped
me learn the full interface



74



References

Blender (2007). Screens. https://docs.blender.org/manual/en/dev/interface/
window_system/screens.html.

Borges, S., Reis, H., Marques, L., Durelli, V., Bittencourt, I., Jaques, P., and Isotani,
S. (2016). Reduced gui for an interactive geometry software: Does it affect students’
performance? 54:124 – 133.

Chandler, P. and Sweller, J. (1991). Cognitive load theory and the format of instruc-
tion. Cognition and Instruction, 8:293–332.

Colter, A. J. (2016). Evaluating and improving the usability of mit app inventor.
Master’s thesis, Massachusetts Institute of Technology, Electrical Engineering and
Computer Science.

Daniels, H. (1996). An Introduction to Vygotsky. Routledge.

Du, E. (2015). Gameblox flexidor: Adding flexibility to blocks based programming
environments. Master’s thesis, Massachusetts Institute of Technology, Electrical
Engineering and Computer Science.

Maiorana, F., Giordano, D., and Morelli, R. (2015). Quizly: A live coding assessment
platform for app inventor. In 2015 IEEE Blocks and Beyond Workshop (Blocks and
Beyond), pages 25–30.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on
our capacity for processing information. The Psychological Review, 63:81–97.

MIT App Inventor (2017). About us. http://appinventor.mit.edu/explore/
about-us.html,.

MIT Educational Studies Program (2017). Hssp. https://esp.mit.edu/learn/
HSSP/index.html.

MIT Scheller Teacher Education Program (2014). Gameblox. https://gameblox.
org.

Nielsen, J. (1993). Usability Engineering. Academic Press.

Pini, C. (2016). React + redux: Architecture overview.

75

https://docs.blender.org/manual/en/dev/interface/window_system/screens.html
https://docs.blender.org/manual/en/dev/interface/window_system/screens.html
http://appinventor.mit.edu/explore/about-us.html
http://appinventor.mit.edu/explore/about-us.html
https://esp.mit.edu/learn/HSSP/index.html
https://esp.mit.edu/learn/HSSP/index.html
https://gameblox.org
https://gameblox.org


Shneiderman, B. (2003). Promoting universal usability with multi-layer interface
design. In Proceedings of the 2003 Conference on Universal Usability, CUU ’03,
pages 1–8, New York, NY, USA. ACM.

StarLogo (2010). How to edit subsets. http://web.mit.edu/mitstep/
starlogo-tng/learn/how-to-edit-subsets.html.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cog-
nitive Science, 12:257–285.

Xie, B. Y. (2016). Progression of computational thinking skills demonstrated by app
inventor users. Master’s thesis, Massachusetts Institute of Technology, Electrical
Engineering and Computer Science.

Youth Global Network (2018). Youth global network. https://www.ygn.org.hk/
en/home/.

Youth Radio (2016). About youth radio. https://youthradio.org/.

76

http://web.mit.edu/mitstep/starlogo-tng/learn/how-to-edit-subsets.html
http://web.mit.edu/mitstep/starlogo-tng/learn/how-to-edit-subsets.html
https://www.ygn.org.hk/en/home/
https://www.ygn.org.hk/en/home/
https://youthradio.org/

	Introduction
	MIT App Inventor
	Components
	Blocks

	Motivation Behind Constrained Sets
	Constrained Sets Use Cases
	Tutorial Integration
	Limited Exploration Environments
	Customized User Interfaces
	Project-Type Specific Interfaces

	Thesis Overview

	Related Work
	User Interface Theories
	Cognitive Load
	Multi-Layered Interfaces

	Education Theories
	Zone of Proximal Development and Scaffolding

	Prior Work
	Gameblox Flexidor and StarLogo Subsets
	Quizly
	Reduced GUI in Geometry Teaching


	Constrained Sets Design and Implementation
	Design
	Constrained Set Representation
	User Experience and Project Dependence

	Implementation
	Constrained Set Generator
	Displaying the Blocks and Components
	Specifications and Exceptions


	User Experiment and Data Analysis
	Hypotheses
	Study Participants
	Study Overview
	Tutorial Phase
	Project Phase

	Data Collected
	Data
	Classroom Statistics
	Project Statistics
	Survey Statistics
	Case Studies of Three Categories of Participants


	Discussion and Conclusion
	Discussion
	Other Findings

	Conclusion

	Future Work
	Future Research
	Varying Range of Subsets for Learning
	Using Constrained Sets to create diverse App Inventor workspaces


	App Inventor with React: An alternative approach to WYSIWYG programming with Constrained Sets
	A React/Redux Project Designer
	Why React/Redux?
	Introduction to React/Redux
	Background Work
	Injecting React into GWT App Inventor
	Implementation of Constrained Sets in React


	Surveys

