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Abstract
An increasing amount of knowledge in the world is stored in graph databases. However,
most people have limited or no understanding of database schemas and query languages.
Providing a tool that translates natural language queries into structured queries allows peo-
ple without this technical knowledge or specific domain expertise to retrieve information
that was previously inaccessible. Many existing natural language interfaces to databases
(NLIDB) propose solutions that may not generalize well to multiple domains and may re-
quire excessive feature engineering, manual customization, or large amounts of annotated
training data. We present a method for constructing subgraph queries which can repre-
sent a graph of activities, events, persons, behaviors, and relations, for search against a
graph database containing information from a variety of data sources. Our model interprets
complex natural language queries by using a pipeline of named entity recognition and bi-
nary relation extraction models to identify key entities and relations corresponding to graph
components such as nodes, attributes, and edges. This information is combined in order to
create structured graph queries, which may then be applied to graph databases. By break-
ing down the translation task into a pipeline of several submodules, our model achieves a
prediction accuracy of 46.9 % with a small training set of only 218 sentences.

Thesis Supervisor: Sanjeev Mohindra
Title: Assistant Group Leader, Intelligence and Decision Technologies,
MIT Lincoln Laboratory
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Chapter 1

Introduction

1.1 Motivations of this work

Large quantities of information are collected and stored in databases every day. With rapid

growth in fields ranging from artificial intelligence to the Internet of Things, this data has

the potential to advance our knowledge further, especially if it is accessible for people

to use and analyze. Unstructured data is constantly collected in various formats such as

text, images, audio, and video, from a multitude of sources including social media, online

encyclopedias, and more. Structured data containing information about entities and their

relationships are often gathered automatically from unstructured text or images, for exam-

ple via photo tagging in social media websites, or manually, as in the case of Wikipedia

information boxes.

Graph databases are useful for representing, organizing and analyzing data, and for fus-

ing different datasets together into a common format. For example, analysts may aggregate

information gathered from Twitter, Facebook, and LinkedIn into a single graph for com-

munity detection and other types of social network analysis. Other applications include

using product and customer data in a graph database for recommendation engines, ana-

lyzing anomalies among relationships for fraud detection, and mapping communications

networks for outage prediction. An example of a graph containing information pulled from

different sources is shown in Figure 1-1. This example shows that “ANDREW NG” and

“MICHAEL JORDAN” are co-authors of the paper “LATENT DIRICHLET ALLOCATION,”

13



and that “MICHAEL JORDAN” and “ANTHONY JOSEPH” both work at “UC BERKELEY.”

The “CO-AUTHOR” and “WROTE” relations are extracted from a database of computer sci-

ence journals and proceedings, and the employer-employee relations are extracted from a

source containing information about professional networks.

Figure 1-1: Example of a graph containing information from multiple data sources.

Graph databases demonstrate relationships among entities in an intuitive way that often

offers more flexibility and higher performance compared to other types of databases. They

denote explicit relationships and directional activity, which are difficult to encode at scale

in relational databases. However, challenges in working with graph databases may arise

due to the user’s unfamiliarity with database schemas, and the complexity and multitude

of available query languages. Our primary motivation is to allow analysts who may not

necessarily have technical knowledge of graph databases or specific domain expertise to

tap into this wealth of data, shifting their time from information retrieval to information

analysis.

1.2 Motivation for using natural language processing in

querying graph databases

Natural language interface to database systems produce database queries by translating

natural language sentences into a structured format which in our case, is a subgraph query.

14



They play an increasingly important role as people, not only those with specific domain

expertise or knowledge of structured query languages, seek to obtain information from

databases. These databases contain massive amounts of data and are expanding rapidly, es-

pecially since text and voice interfaces have exploded in popularity due to the accessibility

and prevalence of web and mobile technologies.

A tool that offers quick access to information in a graph containing data possibly from

multiple sources would benefit analysts from various backgrounds, allowing them to focus

their resources on other tasks. Many current systems require that the user specify rela-

tionships between edges and nodes in order to query the graph. A natural language based

system must therefore correctly interpret the sentence, remove extraneous information, map

tokens and phrases to nodes and edges, and resolve any ambiguities.

We approach this problem by implementing a pipeline of traditional natural language

processing and machine learning components for prediction and classification tasks. Our

solution requires a small training set, in contrast to neural models which are expensive in

terms of time and cost to train. Given a source query expressed in natural language, our

goal is to produce a target query expressed in structured language (a subgraph query in our

case). In the example shown in Table 1.1, the natural language sentence, “SHOW ME ALL

ARTICLES IN NIPS WRITTEN BY SOMEONE FROM GOOGLE BRAIN” is transformed into

a subgraph query with nodes representing the article, author, venue, and organization, and

edges representing the relationships between nodes. The target query describes the sub-

graph components in a structured format. This task is an example of structured prediction,

which refers to the prediction of structured objects rather than the prediction of discrete

or continuous values. However, we decompose the prediction process into several sub-

components instead of computing the output in one shot. This allows each sub-component

to focus on one part of the broader prediction problem, resulting in higher overall accuracy.

Existing systems have used pattern matching, syntax-based, and semantic grammar

methods to produce intermediate query representations. More recently, advances in natural

language processing and machine learning tasks have offered new directions for improve-

ment. For example, sequence to sequence methods [10, 3, 30, 16] have enjoyed success in

neural machine translation. We discuss the advantages and drawbacks of these methods in

15



Source “Show me all articles in NIPS written by someone from Google Brain.”
Target ‘nodes’:

[
{‘attributes’:[], ‘type’:‘paper’, ‘id’:‘n0’}.
{‘attributes’:[{‘name’: ‘venue name’,
‘value’:‘NIPS’, ‘op’:‘=’}],
‘type’:‘venue’, ‘id’:‘n1’},
{‘attributes’:[], ‘type’:‘author’, ‘id’:‘n2’},
{‘attributes’:[{‘name’:‘organization name’,
‘value’:‘Google Brain’, ‘op’:‘=’}],
‘type’:‘organization’, ‘id’:‘n3’},
],

’edges’:
[
‘to’:‘n1’, ‘from’:‘n0’, ‘type’:‘appeared’,
‘to’:‘n0’, ‘from’:‘n2’, ‘type’:‘wrote’,
‘to’:‘n3’, ‘from’:‘n2’, ‘type’:‘affiliated’,
],

Subgraph

Table 1.1: A natural language query and its corresponding structured language translation
and graphical representation.

greater detail in the next chapter. The scope of this work is the development of the query

translation engine shown in Figure 1-2.

Figure 1-2: The query translation engine within the context of a broader graph querying
system.
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1.3 Thesis outline

This thesis presents a natural language interface for querying graph databases. Chapter

One describes the motivation and gives an introduction for using natural language process-

ing techniques in the task of querying graph databases. We review sub-tasks and existing

systems related to solving the associated issues in the second chapter. The third chapter

provides a description of each module in our proposed pipeline as well as the natural lan-

guage processing algorithms involved. Chapter Four discusses the results and evaluation

of each module as well as the system as a whole. In the final chapter, we draw conclusions

and propose topics for future work.

17



18



Chapter 2

Review of Existing Work

2.1 Review of natural language processing strategies in

querying databases

Natural language interface to database systems have evolved over decades of research.

Most existing research in this field has been conducted within the context of querying

relational databases, which are widely used today. Due to the success and prevalence of

relational databases, SQL has emerged as a relatively standardized query language. In

comparison, the popularity of graph databases has risen more recently, and a standardized

system akin to SQL for relational databases has not yet emerged.

Natural language interfaces for graph databases face challenges related to other natural

language processing tasks. For example, in Question Answering (QA), the system must

also correctly interpret a natural language input question in order to produce the desired

result. This field is closely related to human-computer interaction, in addition to natural

language processing and relational databases. Androutsopoulos et al. [2] review some

methods typically used in this problem space, which we will briefly summarize along with

a description of more recent techniques.
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2.1.1 Pattern matching systems

Pattern matching systems look for exact keyword matches in a sequence of tokens. As

an example, one could engineer a rule such that “capital of Italy” and any variant of a

natural language query containing the word “capital” followed by a country name would

be mapped to a structured query of the form, Report Capital of row where

Country = <Italy>. The ELIZA [28] chatbot demonstrated the ability of a natural

language interface to successfully simulate conversation with a human user by using pattern

matching and substitution methods.

Pattern matching approaches benefit from simplicity and ease of implementation. How-

ever, they face difficulties when processing complex queries. In many cases, sentence am-

biguities are easily resolved by understanding the context or underlying sentence structure.

Androutsopoulos et al. [2] demonstrate how a pattern matching system processing a query

such as “CITIES IN SWEDEN” may confuse the word “IN” with the location “Indiana.”

Our approach avoids this issue by making a first attempt at resolving entities and relations,

and would tag “IN” as a location relation. In a sentence where the context makes it clear

that “IN” refers to a location, the system would tag the token as a location entity. Therefore,

our system utilizes more sophisticated techniques to better handle sentence ambiguities.

2.1.2 Syntax-based systems

Syntax-based systems use a specified grammar to parse the user’s natural language query

and represent it as a parse tree. This parse tree is then mapped to an expression in the desired

structured database query language. Syntax-based approaches identify detailed information

about the underlying sentence structure such as the part of speech of each word, the phrase

type of groups of words, and ways to group phrases into even more complex structures

which form the sentence.

LUNAR [29] is an example of one such natural language interface which allowed re-

searchers to ask questions in the domain of lunar geology. Syntax-based interfaces such

as LUNAR are often domain specific and require extensive manual engineering in order

to create mapping rules that transform parse trees into structured language queries. Since
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our dataset includes data from multiple sources, we seek a solution that can generalize to

multiple domains. Another disadvantage of such systems is that multiple parse trees may

correspond to the same sentence. Even if the system is able to map the parse tree to a struc-

tured language query, it could produce multiple valid queries, and it is difficult to determine

which is correct without additional information.

2.1.3 Semantic grammar systems

Semantic parsing is a related task commonly used in natural language processing problems

such as question answering. Natural language questions are broken into predetermined

semantic categories and parsed into formal representations. In question answering, these

representations are then executed on a database. Semantic parsing methods are often re-

strictive in that they operate on a single schema, and require a person to manually engineer

grammars. LADDER [8] and PLANES [17] are examples of natural language interface to

database systems that use semantic grammar concepts.

Figure 2-1: A sentence represented as a parse tree in a syntax-based system (left) and in a
semantic grammar system (right).

As shown in Figure 2-1, semantic grammar systems are similar to syntax-based sys-

tems in that they transform a natural language query into a parse tree. In this example, the

sentence to be parsed is, “Where is Mount Kilimanjaro?” The syntax-based system catego-

rizes “Mount Kilimanjaro” as a noun phrase. It then combines “is” with the noun phrase

to form a verb phrase. Finally, “Where” and the verb phrase form a sentence. The semantic

grammar system categorizes “Where is” as a location question and “Mount Kilimanjaro”

as a mountain name. The combination of location question and mountain name categories

21



form a mountain question. In a semantic grammar system, the categories do not necessarily

correspond to syntactic concepts such as noun phrases and verb phrases. Instead, the parser

uses semantic concepts specific to the question domain. While syntactic concepts are rel-

evant for all sentences, semantic grammar categories are richer in meaning, eliminating

the less useful nodes in syntax-based systems. Furthermore, semantic grammars allow for

more flexibility and ease in mapping the parse tree to a structured language representation

because the categories are defined for the use case, rather than by the English language.

One weakness of semantic grammar methods is that generating the mappings to struc-

tured language require knowledge of entities in the domain. Furthermore, the broader

semantic categories used in one domain most likely generalize poorly to other domains.

Our approach generalizes to different schema and allows someone without extensive infor-

mation about the dataset to be able to retrieve data.

2.1.4 Intermediate representation languages

Many intermediate representation languages address the difficulties found in previous ap-

proaches of translating parse trees into structured database query languages by instead

breaking the problem into simpler steps. Some models may chain together several interme-

diate representations in order to transform a natural language query into its corresponding

structured language query. For example, the user’s question may be parsed syntactically,

resulting in a parse tree which is then translated using a semantic interpreter into an interme-

diate representation such as a logical query representation. This intermediate representation

is then mapped to the final structured query format.

Examples of interfaces that use intermediate representation languages are Edite [25]

and System X [4]. Androutsopoulos et al. [1] use an intermediate representation language

approach in which the sentence is first transformed into a logical query. The resulting

logical query is then transformed into a database query. The intermediate logical query

expresses the natural language query in terms that are common to all database structures,

yet are still meaningful. This balances the trade-offs between syntax-based systems and

semantic-based systems, where sentences are broken into chunks that are either universal
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to all sentences but not meaningful enough to easily map to a structured language format,

or rich in meaning but not generalizable to sentences in other domains. Another advantage

of using logic query languages is that they allow for reasoning capabilities. Logic query

languages do not depend on the database used, and can therefore work in different domains

and with different query languages.

2.1.5 Sequence to sequence models

More recently, researchers have successfully applied sequence to sequence models to tasks

such as machine translation. As a result, these models are gaining popularity in other

natural language processing tasks as well. Sequence to sequence models convert a sequence

in one domain into a sequence in a different domain by passing the input sequence through

an encoder to obtain hidden states, and using a decoder to produce the output sequence

from the hidden states. The task of translating natural language queries into structured

language queries can be viewed as an application of neural machine translation.

Brad et al. [3] use OpenNMT [16], an open source sequence to sequence machine

translation model implementation with attention, to translate natural language queries into

SQL queries. Since these models do not involve any intermediate representations and in-

stead are more end to end, they can be rapidly deployed for a variety of target domains.

However, they require a large training set of 24,890 natural language queries and their SQL

translations, which is costly and time-consuming to obtain. Iyer et al. [10] extend the use

of deep neural sequence models by incorporating user feedback to flag incorrect queries.

These annotations are readily available due to the popularity of SQL. The authors also use

entity anonymization and provide templates for initially bootstrapping the model.

Zhong et al. [30] propose a sequence to sequence model that translates natural language

queries to SQL queries. Since the target language is structured, the authors restrict the

output space of the neural model. This results in queries that are much more likely to

be correct, and thus directly executable. They also implement a pointer network which

generates the output sequence by pointing to tokens in the input sequence, a concatenation

of the column names, the condition columns of the query, the question, and the target
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language vocabulary. This approach may not work well with previously unseen terms,

since the output is derived from a predefined vocabulary. Again, this method requires a

large training set. The authors use a dataset consisting of 80,654 pairs.

Most current sequence to sequence approaches such as those described above translate

natural language queries into structured queries that are applied to traditional relational

databases. Relational databases operate efficiently when the data is easily mapped into

tables, columns, and rows, and when queries do not require that the system joins together

many separate tables. In our problem setting, users query graph databases composed of

information from possibly many different domains. While other strategies restrict the query

domain to single tables, our approach must handle graphs built from several data sources.

2.2 Review of graph databases and related modules

2.2.1 Comparison of graph databases and relational databases

Most of the approaches described in the previous section focus on querying relational

databases. Our problem setting focuses on the related problem of querying graph databases.

We describe the main differences between the two.

A relational database stores data in tables where each row represents a record and each

column corresponds to an attribute of a record. Therefore, a table, or relation, represents

a set of records which share the same attributes. SQL is used to query and process data

in most relational database systems. While relational databases are highly structured and

benefit from having a nearly universal query language, there are some drawbacks to using

them. In order to analyze relationships among entities across different tables, the expen-

sive “join” operation is used to combine relations. This operation is expensive because it

requires index lookups and matching in order to find a related column in the tables.

Graph databases prioritize modeling relationships among entities. They store entities

and their relationships as nodes and edges, which may be augmented with various at-

tributes. Therefore, retrieving the edge between two entities does not involve the expensive

“join” operation that is necessary when the data is stored in a relational database. Instead,
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the system simply traverses the graph, since edges are stored along with nodes when they

are inserted. In other words, processing data in a graph benefits from “index-free adja-

cency,” the property that each node is stored with its adjacent nodes and edges. This results

in efficient relationship retrieval even for complex queries, as the number and depth of rela-

tionships increase. Graph databases also model data in a visually intuitive manner. They are

appropriate in our problem setting in which users draw insights from multiple data sources

fused into a common graph, since relationships between entities are of high importance.

Examples of graph databases used today include Neo4j, Titan, and Blazegraph.

2.2.2 Subgraph matching

Exact subgraph matching or subgraph isomorphism search tackles the problem of finding

all possible instances of a query graph within a larger graph. In the broader graph querying

system, this step uses the structured output of the query translation engine to obtain a

result from the graph database. Many current solutions filter intermediate results in order

to reduce the search space and processing times. Nabti et al. [19] develop a method that

reduces computational load. However, we aim to effectively and accurately search the

space by directly asking the user for input to narrow down the options. Our system aids the

user in formulating an accurate structured query, which is then executed against the graph

database. It is often impossible to find an exact subgraph match. In these cases, inexact

subgraph matching algorithms such as G-Ray [27] may still return a result by relaxing the

requirement of an exact match and instead retrieve close matches.

2.2.3 Existing graph query languages

Gremlin

Gremlin [26] is the graph traversal language for Apache Tinkerpop, an open source graph

computing framework similar to Oracle’s JDBC for SQL databases. It allows users to

traverse complex property graphs by constructing queries composed of a sequence of steps.

Each step either transforms the objects in, removes objects from, or computes statistics

about the data stream.
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SPARQL

SPARQL is a query language for systems that contain database information stored in the

Resource Description Framework (RDF) format. RDF is a graph-based data format for

modeling information related to web resources. Users specify SELECT, CONSTRUCT,

ASK, and DESCRIBE queries to extract raw values, transform information into RDF, ob-

tain True/False results for a query, and more.

Cypher

Cypher is a query language inspired by SQL, for the widely used Neo4j graph database

management system. Cypher describes graph patterns in a visual format reminiscent of

ASCII art syntax. It allows users to perform operations such as selecting, inserting, delet-

ing, or updating data in the graph.

2.2.4 Complexities of existing graph query languages

Table 2.1 presents examples of existing graph query commands in Gremlin, Cypher, and

SPARQL. The Gremlin query searches for people (managers in the management chain from

"gremlin" to the CEO), the Cypher query searches for a relation that satisfies a certain

property, and the SPARQL query searches for a book. As shown in the table, each language

uses a different approach for querying the database. Gremlin systematically traverses the

graph, Cypher visually depicts edges between nodes with arrows, and SPARQL uses syntax

reminiscent of SQL. Casual users may find it difficult to produce such queries without first

referring to documentation. In addition, there may be multiple ways to construct the same

query. Our system abstracts away the details of graph query languages, allowing the user to

directly query the system in natural language without worrying about learning the syntax of

unfamiliar query languages. The output produced is an intermediate format that can easily

be mapped to formal query languages.
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Gremlin g.V().has("name","gremlin").
repeat(in("manages")).
until(has("title","ceo")).

path().by("name")
Cypher MATCH (n1:Label1)-[rel:TYPE]->(n2:Label2)

WHERE rel.property > {value}
RETURN rel.property, type(rel)

SPARQL PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX : <http://example.org/book/>

SELECT $title
WHERE { :book1 dc:title $title }

Table 2.1: Examples of queries represented in Gremlin [7], Cypher [20], and SPARQL
[24].

2.2.5 Visual query builders

Aids such as visual query builders are often used to assist users with designing and con-

structing valid queries. The prevalence of visual query builders extends to several query

languages. Existing systems for querying databases via visual query builders [11, 5, 12,

13, 9] involve sketching nodes and edges which are subsequently translated into structured

language queries.

Visual query builders can be tedious to use, especially if the user is unfamiliar with

the database schema. Learning to use the tools themselves often requires specific technical

knowledge, such as what is classified as a node, attribute, or edge. In the case where the

user has limited knowledge of the schema and possible values, it may be more convenient

to directly write the query rather than deal with a visual query builder. These issues further

motivate natural language interfaces to databases. A natural language interface requires no

technical knowledge from the user about how to express a query.
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Chapter 3

Model Architecture

Our proposed model translates natural language queries into structured language queries

for graph databases. An example of a natural language query and its translation is shown

in Table 1.1. At a high level, the system must extract tokens from the source sentence

corresponding to the nodes, attributes, and edges, and differentiate between the three. The

system must then determine how to build the overall subgraph structure from the extracted

information. There is no guarantee that the user is familiar with the data and the schema.

Therefore, the system first attempts to build a valid query with the user’s input. The user

may then provide feedback, resolving any ambiguities and errors that may arise due to

limitations in the system’s ability to interpret variations in the way each user expresses

a query in natural language, or other challenges. For example, if the system produces

the result ["name": "organization name", "value": "ICML", "op":

"="], but ICML refers to a venue rather an organization, the user can manually correct the

query to ["name": "venue name", "value": "icml", "op": "="].

Challenges

Although the natural language form of a query is often understandable and unambiguous in

that the meaning is well-defined regardless of data modeling choices, an automated system
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may still find it difficult to generate the structured query representation. We discuss some

challenges that our system faces.

There are numerous valid ways to express the same query in natural language, and some

are easier for the system to process and map to structured language than others. For most

natural language queries, the desired answer is usually clear and unambiguous to a human

user despite variation in the way the query is expressed. However, it is difficult to judge

what types of sentences the system will struggle with, especially without knowledge of how

the model works. For example, the queries “PAPERS WRITTEN BY SMITH AND ALLEN”

and “PAPERS WRITTEN BY SMITH AND WRITTEN BY ALLEN” are essentially equivalent

to a human user, but simple systems may face greater difficulty in interpreting one over the

other. Over time, users may learn the types of sentences that the system handles correctly,

similar to how smart phone users adapt to using voice commands that most often return the

desired behavior. Still, the system should be robust to a diverse user base.

The system can fail to return the correct result for a variety of reasons, and users usually

have no method for diagnosing the issue. Natural language interfaces that behave as black

boxes prevent the user from knowing if failure occurred because the desired result is not

in the database, or because there are linguistic issues in the query, in which case properly

rephrasing the query could result in the correct answer.

Previous natural language interface to database systems faced a trade-off between do-

main independence and performance. While engineering specific components of the system

with domain knowledge in mind may improve the system’s ability to correctly interpret a

query and return a valid result, this strategy fails when the user must query data from mul-

tiple domains.

Linguistic issues include coreference, anaphora, word-sense disambiguation, and more.

Coreference refers to multiple tokens in the sequence referring to the same entity. In the

sentence “MT. EVEREST IS LOCATED IN THE HIMALAYAS AND IT IS THE HIGHEST

MOUNTAIN ON EARTH,” the tokens “MT. EVEREST” and “IT” refer to the same entity.
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Anaphora is the use of an expression to implicitly refer to another expression in the sen-

tence. For example, in the sentence “IF MATT BUYS A NEW CAR, I WILL DO IT AS

WELL,” the expression “DO IT” refers to the action of purchasing a new car. Word-sense

disambiguation refers to inferring from context the correct meaning of words that may have

multiple definitions. For example, the word “CRANE” can refer to a type of bird or a type

of machinery.

Our system handles these issues by showing the user its interpretation of the query and

allowing the user to correct any mistakes. This would give insight to the user as to where

and why errors may arise. We handle linguistic problems through a pipeline of state of

the art natural language processing modules designed to deal with each, including several

named entity recognizers and binary relation extractors.

3.1 Dataset

Several public datasets are available for use in developing natural language interfaces for

querying databases. The Stack Exchange Natural Language Interface to Database (SEN-

LIDB) corpus [3] includes 24,890 (natural language text, SQL query) pairs constructed us-

ing the Stack Exchange API. WikiSQL [30] contains 80,654 pairs of the same form derived

from 24,241 Wikipedia tables. These datasets are appropriate for the task of translating nat-

ural language queries into their corresponding structured language queries. However, these

datasets are relevant for constructing SQL queries and querying relational databases, rather

than for querying graph databases.

There are a number of other datasets which contain data that is relevant to the tasks

that users will eventually use our model for. For example, the NYC Taxi and Limousine

Commission Trip Record Data contains taxi trip data such as pick-up and drop-off dates,

times, and locations, and trip distances, fares, rates, payment types, and passenger counts

reported by the driver. DBLP contains bibliographic records such as ISBN, title, journal,
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author, year, volume, and pages about computer science journals and proceedings. GDELT

contains billions of references about people, locations, organizations, events, and more,

derived from broadcast, print, and web news sources around the world. A user could query

a graph created from fusing these related datasets to answer questions about conference

attendees who may have taken taxi rides while a major event occurred in the same city, for

example.

We have constructed a property graph dataset that reflects the structure, richness, and

diversity of datasets studied by MIT Lincoln Laboratory. A property graph is composed

of nodes, which represent objects or entities in the graph, and edges, which represent con-

nections between two nodes. Each node is associated with a unique identifier and a set of

attributes, which are represented as key-value pairs. Each edge is associated with a source

node, a target node, and a label denoting the relationship between its two endpoints.

The graph, consisting of data from DBLP, is shown in Figure 3-1. Each node is associ-

ated with a set of attributes, and the source and target nodes of each edge type are restricted

to specific node types. This graph can be expanded to include information from multiple

data sources. The system only requires that the node types, edge types, and attribute types

are specified beforehand. For our example graph, these specifications are shown in Table

3.1. The node types are “author,” “paper,” “venue,” and “organization,” and the edge

types are “wrote,” “referenced,” “appeared in,” and “affiliated with.” The attribute

types associated with “author” nodes are name and ID (a unique identifier), the attribute

types associated with “paper” nodes are title, year, and ID, the attribute types associated

with “venue” nodes are name, date, and location, and the attribute types associated with

“organization” nodes are name and location. The “wrote” relation points from an “au-

thor” node to a “paper” node, the “referenced” relation points from a “paper” node to

a “paper” node, the “appeared in” relation points from a “paper” node to a “venue”

node, and the “affiliated with” relation points from an “author” node to an “organiza-

tion” node. When a user queries the database, for example searching for a paper with

32



a certain title or a particular author, the system will retrieve the paper by translating the

natural language query into a subgraph query which is then applied to the graph database.

Figure 3-1: An example of a graph database.

Nodes Edges
type attributes type source target
author name, ID wrote author paper
paper title, year, ID referenced paper paper
venue name, date, location appeared in paper venue
organization name, location affiliated with author organization

Table 3.1: Node types, edge types, and attributes of the graph.
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3.2 Model pipeline overview

We decompose the process of translating a natural language query into a structured lan-

guage query into several building blocks. An overview of the model pipeline is shown

in Figure 3-2. Figure 3-2a describes the first phase of the pipeline. The purpose of this

phase is to use state of the art natural language processing techniques to extract informa-

tion such as key entities and their positions in the sentence, as well as possible relationships

between them. Figure 3-2b describes the second phase of the pipeline, in which we use the

data collected in the first phase as input to create the structured graph components (nodes,

attributes, and edges) of the query.

Before explaining the sub-modules in detail, we give an overview of how the system

processes a natural language query. First, we train two named entity recognizers and n bi-

nary relation extractors, where n is the number of edge types in the graph. The first named

entity recognizer (NER-G) tags tokens in the sentence that are likely to be graph compo-

nents, such as nodes, attributes, or edges. The second named entity recognizer (NER-A)

tags attribute tokens in the sentence with their corresponding attribute type. Each binary

relation extractor produces a score for every combination of two nodes in the sentence.

Given an edge type, a higher score for the node combination (NODE A, NODE B) denotes

that the likelihood of an edge of that type pointing from NODE A to NODE B is higher.

After collecting this information, we look at each node, attribute, and edge detected, and

process it accordingly.

3.3 Information extraction phase

3.3.1 Training data

In order to train the named entity recognition and binary relation extraction modules, we

create a small training set of natural language queries. The system should work well with
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(a) The information extraction phase of the model pipeline.

(b) The information processing phase of the model pipeline.

Figure 3-2: The model pipeline. Information extracted in the first phase is color coded
to depict where it is used as input to the second phase. The shaded boxes represent sub
modules within the pipeline. The non-shaded boxes represent the inputs and outputs at
each step.
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limited amounts of training data, and the training set can be augmented as users enter more

sentences into the system over time. The detailed counts are shown in Table 4.1.

Named entity recognition training data

The training data for the named entity recognition model for graph components (NER-

G) consists of 218 manually annotated sentences. The average sentence length is 10.07

tokens. Annotating the training sentences results in 1035 training samples. Each sample

is an entity which is marked as a node, attribute, or edge. The training data for the named

entity recognition model for attribute types (NER-A) consists of the same 218 manually

annotated sentences. Annotating the training sentences results in 414 training samples.

Each sample is an entity which is marked as one of the attribute types.

Binary relation extraction training data

The training data for each binary relation extraction module is derived from the same

218 manually annotated sentences used for training the named entity recognition mod-

ules. Since all edge types may not be present in every sentence, the number of training

sentences for each binary relation extractor varies. For each sentence, we compile a list

of every token that was marked as a node or an attribute, and produce every combination

of two tokens from this list. For each edge type, we annotated on average 804 such pairs,

marking each as positive if the pair represented a valid relation, and negative otherwise.

The exact counts vary because in natural language, some relations appear more frequently

than others.

3.3.2 Named entity recognition

Named entity recognition (NER) is a task commonly used in information extraction for

classifying entities of interest into predefined categories, such as the names of people, or-

ganizations, or locations. We train two named entity recognition models, whose inputs are
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the natural language query. The named entity recognizer for graph components (NER-G)

tags tokens in the input sentence as N (node), E (edge), or A (attribute). The named entity

recognizer for attribute types (NER-A) tags tokens in the input sentence according to their

attribute type (listed in Table 3.1).

Input “SHOW ME ALL PAPERS CO-AUTHORED BY

VINYALS APPEARING IN NIPS.”
NER-G output N; papers; xrange(3, 4)

E; co-authored by; xrange(4, 6)
A; Vinyals; xrange(6, 7)
E; appearing in; xrange(7, 9)
A; NIPS; xrange(9, 10)

NER-A output author name; Vinyals; xrange(6, 7)
venue name; NIPS; xrange(9, 10)

Table 3.2: The input and outputs of the named entity recognition models. The input is the
natural language query. The outputs are entities, their positions in the sentence, and their
tags.

Table 3.2 presents the output of the named entity recognition modules given an example

input sentence. The output of the NER-G module is a set of tokens and their corresponding

N (node), E (edge), or A (attribute) tags and positions in the sentence. The output of the

NER-A module is a set of tokens and their corresponding attribute types and positions in

the sentence. For example, the NER-G module tags PAPERS as a node, CO-AUTHORED BY

as an edge, VINYALS as an attribute, and so on. The NER-A module tags VINYALS as an

author name and NIPS as a venue name.

Named entity recognition model

We use the state of the art named entity recognizer from the open-source MIT Informa-

tion Extraction (MITIE) toolkit to train both NER models. MITIE was developed by MIT

Lincoln Laboratory on top of the high-performance C++ machine learning toolkit Dlib

[15], and can be used with C, C++, Java, R, MATLAB, and Python. MITIE’s NER model

uses distributional word embeddings [6], Conditional Random Fields, and Structural Sup-

port Vector Machines [14] in its implementation. MITIE also offers pretrained models for
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English and Spanish trained using various corpora (including Wikipedia, Freebase, and

Gigaword).

MITIE uses a chunker to split the tokenized sentence into entities and non-entities using

structural support vector machines. A multiclass classifier categorizes each entity into one

of m + 1 classes, where m is the number of labels provided by the user. The model learns

to classify each entity into one of the m classes defined by the user or the one additional

class denoting that the entity should not be labeled as one of the m classes. In our example

property graph, the NER-G module categorizes entities into 4 classes, and the NER-A

module categorizes entities into 11 classes.

The classifier uses features such as whether or not the token is capitalized, contains

only capitalized letters, contains numbers, contains letters, contains numbers and letters,

contains only numbers, contains hyphens, contains alternating capital letters in the middle,

and more. The model uses BOBYQA [23] for automatic tuning of hyperparameters.

3.3.3 Binary relation extraction

Binary relation extraction (BRE) refers to the task of identifying the relationship between

two entities. We train one binary relation extractor module for each edge type. The input to

each, is the trained NER-G model and a pair of tokens representing nodes. We first compile

a list of tokens that were marked as either N (node) or A (attribute). We include tokens that

were marked as A in addition to those marked as N because these tokens often stand in

for a node in natural language. For example, people often say “JOHN WROTE A REPORT”

instead of “THE AUTHOR JOHN WROTE A REPORT”. The system marks JOHN as A, and

will create a node with the appropriate attribute in later steps of the pipeline. For every

combination of two tokens (n1, n2) from this list, each binary relation extractor produces a

score which represents how likely it is that an edge of that type points from n1 to n2.

Continuing with our example sentence “SHOW ME ALL PAPERS CO-AUTHORED BY

VINYALS APPEARING IN NIPS,” the output of the binary relation extraction modules are
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shown in Table 3.3. Since our example graph contains four edge types, we pass the in-

put sentence through four binary relation extractors, each trained to detect one of the edge

types. Each column represents the scores outputted by one binary relation extraction mod-

ule. For example, the column labeled bre-appeared contains the “appeared in” edge

scores for each “from” and “to” node pair. The higher the score, the more likely it is that

an edge of that type with the corresponding “from” and “to” nodes exists. In the bre-

appeared column, the highest score (0.866, in bold) occurs in the second row. This means

that if an “appeared in” relation exists in the sentence, it is more likely that the edge points

from the PAPERS node to the NIPS node, than any other combination of “from” and “to”

nodes.

“from” “to” bre-affiliated bre-appeared bre-referenced bre-wrote
PAPERS VINYALS -1.027 -0.318 -1.517 -0.693
PAPERS NIPS -3.031 0.866 -1.990 -2.083
VINYALS PAPERS -1.807 -1.956 -0.212 0.883
VINYALS NIPS -1.818 -0.689 -1.702 -1.106
NIPS PAPERS -2.887 -2.063 -1.128 -1.021
NIPS VINYALS -1.314 -1.725 -2.388 -1.413

Table 3.3: The inputs and outputs of the binary relation extraction models. The inputs
are the trained NER-G model and a set of entity pairs. The output of each binary relation
extractor is a set of scores associated with each combination of ordered endpoint nodes.

Binary relation extraction model

We use MITIE [15] to train the binary relation extraction models, which use the NER-G

model described earlier for feature extraction and processing. MITIE offers several pre-

trained models to detect relations such as author, organization founded, parents, place of

birth, religion, nearby airports, ethnicity, nationality, people involved in an event, and more.

We train binary relation extraction models specifically for the edge types defined in the

property graph. Training from scratch allows the overall pipeline to generalize to different

domains which may model different relationships.
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3.3.4 Output re-organization

As a preprocessing step, we organize the NER outputs into a dictionary that keeps track of

all of the nodes. The keys of the dictionary are the token’s position in the sentence, and the

values contain the node identifier and the attribute type (if applicable). We add each token

marked as N by the NER-G model and each attribute detected by the NER-A model to the

node dictionary. For our running example, the dictionary is {(3, 4): [‘n0’], (6,

7): [‘n1’, ‘author name’], (9, 10): [‘n2’, ‘venue name’]}. In

other words, the token located in the range (3, 4) is assigned the node identifier ‘n0’,

the token located in the range (6,7) is assigned the node identifier ‘n1’ and attribute

type author name, and the token located in the range (9,10) is assigned the node

identifier ‘n2’ and attribute type venue name.

3.4 Information processing phase

In this phase of the model pipeline, we organize information extracted from the named

entity recognizers and the binary relation extractors into a structured format. The following

sections (Node processing, Attribute processing, and Edge processing) correspond to the

three sub-diagrams depicted in Figure 3-2b.

3.4.1 Node processing

For each token tagged by the NER-G module as N, the system creates a node structure.

The node creator requires the node identifier, node type, and node attributes in order to

create a node structure. The node identifier is obtained through a simple lookup in the node

dictionary. The node type is obtained by comparing the token embedding to the embedding

of each node type and choosing the node type with the closest embedding.

Word embeddings map tokens to vector representations such that semantically related

words are located closer together in the vector space. Word embeddings avoid the curse of
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dimensionality associated with other vector representations such as one-hot encoding, and

provide a baseline approach for modeling word similarity. Several off the shelf embeddings

are available for use today, such as Word2Vec [18] from Google and GloVe [22] from

Stanford. We use pre-trained GloVe embeddings, which were obtained via unsupervised

learning on the Wikipedia 2014 and Gigaword 5 [21] corpora.

In the example from Table 3.2, the NER-G module tags PAPERS as N. We compare

the word embedding of PAPERS to the embeddings of the node types (“author,” “paper,”

“venue,” and “organization”). The similarity scores of the word embedding of PAPERS

to the embeddings of “author,” “paper,” “venue,” and “organization” are 0.496, 0.740,

0.131, and 0.345, respectively. The system suggests that the node type is “paper,” since

the embedding of PAPERS is closest to the embedding of the node type “paper.” The final

node structure produced by the system is:

{‘id’: ‘n0’,

‘type’: ‘papers’,

‘attributes’: []}

3.4.2 Attribute processing

The system creates an attribute structure for each token tagged by the NER-A module. The

attribute creator requires the attribute type and attribute value in order to create an attribute

structure. The attribute type associated with the token is obtained from the node dictionary.

From this information we know the node type, since each attribute type is mapped to one

node type. If a node structure of the same node type already exists, the attribute is added to

that node. Otherwise, a new node structure is created with the node type, attribute structure,

and node identifier (which is also obtained from the node dictionary).

In the example from Table 3.2, VINYALS and NIPS are tagged by the NER-A mod-

ule. In an earlier pre-processing step, these tokens were added to the node dictionary along
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with their attribute type, and each was assigned a node number. From the node dictio-

nary, we know that VINYALS is associated with node identifier ‘n1’ and attribute type

“author name,” and that NIPS is associated with node identifier ‘n2’ and attribute

type “venue name.” From this information we conclude that the node types associated

with VINYALS and NIPS are “author” and “venue,” respectively. No node structures of

type “author” or type “venue” currently exist, so the system creates a new node structure

for each token. The final node structures produced by the system in this step are:

{‘id’: ‘n1’,

‘type’: ‘author’,

‘attributes’: [{‘name’: ‘author_name’, ‘value’: ‘Vinyals’,

‘op’: ‘=’}]}

{‘id’: ‘n2’,

‘type’: ‘venue’,

‘attributes’: [{‘name’: ‘venue_name’, ‘value’: ‘NIPS’,

‘op’: ‘=’}]}

3.4.3 Edge processing

We first compile a list of every token that was tagged as N or A by the NER-G model. Each

binary relation extractor scores every combination of two tokens from this list. For each

edge detected by the binary relation extractors (node pairs with a positive edge score), the

system creates an edge structure. The edge creator requires the edge type, “from” node

identifier, and “to” node identifier, which are determined via node dictionary lookups, in

order to create an edge structure. If the information is not contained in the node dictionary,

a new node is created with a new node identifier, node type given by the edge endpoint type

requirements, and an empty attribute structure.
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Continuing with the example “SHOW ME ALL PAPERS CO-AUTHORED BY VINYALS

APPEARING IN NIPS,” the edges with positive scores in Table 3.3 are “appeared in,”

from PAPERS to NIPS, and “wrote,” from VINYALS to PAPERS. The system obtains the

node numbers corresponding to the PAPERS, VINYALS, and NIPS nodes, which are ‘n0,’

‘n1,’ and ‘n2,’ respectively. The final edge structures produced by the system in this

step are:

{‘type’: ‘appeared’, ‘from’: ‘n0’, ‘to’: ‘n2’}

{‘type’: ‘wrote’, ‘from’: ‘n1’, ‘to’: ‘n0’}

System output

In summary, the system translates the example natural language query, “SHOW ME ALL

PAPERS CO-AUTHORED BY VINYALS APPEARING IN NIPS,” into the following structured

subgraph query. As shown in Figure 3-2b, the output of the node processing step and the

attribute processing step are node structures, and the output of the edge processing step is

an edge structure. The system creates the structured query by aggregating all of the node

structures and edge structures created in the previous steps of the model pipeline.

‘nodes’:

[

{‘id’: ‘n0’,

‘type’: ‘papers’,

‘attributes’: []},

{‘id’: ‘n1’,

‘type’: ‘author’,

‘attributes’: [{‘name’: ‘author_name’, ‘value’:

‘Vinyals’, ‘op’: ‘=’}]},
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{‘id’: ‘n2’,

‘type’: ‘venue’,

‘attributes’: [{‘name’: ‘venue_name’, ‘value’: ‘NIPS’,

‘op’: ‘=’}]}

],

’edges’:

[

{‘type’: ‘appeared’, ‘from’: ‘n0’, ‘to’: ‘n2’},

{‘type’: ‘wrote’, ‘from’: ‘n1’, ‘to’: ‘n0’}

]

3.5 Post processing phase

3.5.1 User feedback and cleanup

Noise and error may arise at any step of this pipeline. Therefore, the user performs a final

step of human review to resolve any ambiguities that the system cannot deal with. Given

that the property graph format outputted by the pipeline is relatively interpretable by the

average person, we expect that the user can correct any errors that are present. A user

who wishes to query a graph database no longer bears the responsibility of recalling details

regarding specific query languages. The final structured subgraph query is easily converted

into a variety of graph query languages commonly used today, such as Gremlin. Therefore,

our system acts as an intermediate representation that is not specific to any single domain,

and can generalize to other datasets and query languages.

In the next section, we describe the performance of each submodule as well as the

prediction accuracy of the system as a whole. We also present an approximation of the
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number of edits necessary for a user to perform in this post processing phase in order to

obtain the correct final structured language query.
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Chapter 4

Results

4.1 Dataset

Table 4.1 presents the amount of training data available for each of the six modules used in

the pipeline. We created 218 queries of varying complexity related to the graph database.

The sentences range from a minimum length of 3 tokens to a maximum length of 24 tokens.

Examples of sentences are “SHOW ME ALL PAPERS CO-AUTHORED BY VINYALS AP-

PEARING IN NIPS” and “PAPERS WRITTEN BY PEOPLE AFFILIATED WITH MICROSOFT

RESEARCH THAT ARE REFERENCED BY ARTICLES WRITTEN BY PEOPLE AFFILIATED

WITH STANFORD.”

The number of graph component entities (entities tagged as N, E, or A) range from 301

to 415, and in total, there are 1035 such tags. The number of attribute type entities (entities

tagged as organization name, venue date, paper title, venue name, organization location,

venue location, paper year, or author name) range from 31 to 86. In total, there are 414

such tags.

Of the 218 sentences, 60 contain pairs of nodes with an “appeared in” relation, 61

contain pairs of nodes with an “affiliated with” relation, 61 contain pairs of nodes with a

“referenced” relation, and 109 contain pairs of nodes with a “wrote” relation. The total
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number of tagged pairs for each relation ranges from 556 pairs to 1344 pairs.

NER-G
number of training sentences 218
average sentence length 10.07

number of (N) tags 301

number of (E) tags 319

number of (A) tags 415

total number of tagged entities 1035

NER-A
number of training sentences 218
average sentence length 10.07

number of (org. name) tags 49

number of (venue date) tags 46

number of (paper title) tags 86

number of (venue name) tags 57

number of (org. location) tags 31

number of (venue location) tags 36

number of (paper year) tags 31

number of (author name) tags 78

total number of tagged entities 414

BRE-appeared
number of training sentences 60

number of positive pairs 63

number of negative pairs 697

total number of tagged pairs 760

BRE-affiliated
number of training sentences 61

number of positive pairs 69

number of negative pairs 803

total number of tagged pairs 872

BRE-referenced
number of training sentences 61

number of positive pairs 63

number of negative pairs 493

total number of tagged pairs 556

BRE-wrote
number of training sentences 109

number of positive pairs 132

number of negative pairs 1212

total number of tagged pairs 1344

Table 4.1: The amount of training data available for each named entity recognition (NER)
module and each binary relation extraction (BRE) module.

4.2 Information extraction phase evaluation

We evaluate the performance of each module in the pipeline by computing precision, recall,

and F1 scores. These metrics are defined below, where TP , TN , FP , and FN denote the

number of true positives, true negatives, false positives, and false negatives, respectively.

precision =
TP

TP + FP
recall =

TP

TP + FN

F1 =
2 ∗ precision ∗ recall
precision+ recall
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Precision is the fraction of retrieved elements, or instances predicted true, that are rel-

evant. Recall is the fraction of relevant elements, or instances that are actually true, that

were retrieved. F1 is a metric that combines precision and recall. Table 4.2 presents the re-

sults for the two named entity recognition and four binary relation extraction modules. For

each model, we run k-fold cross validation by partitioning the training set into k = 5 splits.

The values reported are the average of the scores when holding one split out for evaluation

and using the rest of the data for training the model. For the NER models, we use all 218

sentences. Since the number of sentences for each BRE model varies, we randomly choose

60 sentences for each so that the scores are comparable.

model precision recall F1

NER-G 0.861 0.869 0.865

NER-A 0.873 0.871 0.872

BRE-appeared 0.857 0.842 0.848

BRE-affiliated 0.897 0.819 0.857

BRE-referenced 0.783 0.720 0.750

BRE-wrote 0.860 0.845 0.853

Table 4.2: K-fold cross validation scores for each model (k=5).

The precision, recall, and F1 scores surpass 0.8 for all models except BRE-referenced.

The complexity of the edge type explains some of the difference in performance. The

“referenced” binary relation extractor performs worse because there is more ambiguity in

determining the edge endpoint node types. In natural language, an author can reference

another author, a paper can reference another paper, an author can reference a paper, or a

paper can reference an author. For other edge types, the endpoint node types do not vary as

much. As an example, the source node of the “wrote” edge is always an author node, and

the target node is always a paper node.

To evaluate the effect of the amount of training examples on model performance, we

repeat the same k-folds cross validation procedure as above, with varying dataset sizes. The

resulting learning curves are shown in Figures 4-1 through 4-6.
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Figure 4-1: Average precision for the NER models using various amounts of training data.

Figure 4-2: Average precision for the BRE models using various amounts of training data.
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Figure 4-3: Average recall for the NER models using various amounts of training data.

Figure 4-4: Average recall for the BRE models using various amounts of training data.
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Figure 4-5: Average F1 score for the NER models using various amounts of training data.

Figure 4-6: Average F1 score for the BRE models using various amounts of training data.
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For all models and metrics, the mean score increases as the size of the training set

increases. The curves plateau fairly quickly, and this suggests that a relatively small training

set is sufficient. This could be due to the lack of variety in the way the graph components

are expressed in the training set. Spending more resources on obtaining additional data

may not be necessary, depending on the system’s accuracy requirements. As discussed

previously, all scores surpass 0.8 with the exception of the BRE-referenced model.

4.3 Information processing phase evaluation

In order to evaluate the final system output, we compare the predicted structured language

queries to the correct structured language queries. We compute the precision, recall, and

F1 scores for predicting node structures and for predicting edge structures. We also report

overall accuracy, which is the fraction of sentences whose predicted output exactly matches

the correct structured language query, and an edit cost metric, which is described next. In

the following sections, “predicted” refers to the outputs of the models and pipeline, and

“gold” refers to the correct answer that the outputs are compared to.

We calculate a version of graph edit distance, a measure of the similarity between two

graphs, to approximate the amount of work relative to the size of the subgraph query that

a user would need to perform due to cases that the model pipeline cannot handle. In order

to do so, we count the number of fields in the predicted structured language query that a

user would need to edit in the post-processing step in order to obtain the gold structured

language query.

We compute the relative cost by dividing the edit cost by the total cost of building the

graph. To calculate the edit cost, we count the number of times a gold edge does not appear

in the predicted edges (an edge must be added), the number of times a predicted edge does

not appear in the gold edges (an edge must be deleted), the number of times a gold node

does not appear in the predicted nodes (an edge must be added), and the number of times a
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predicted node does not appear in the gold nodes (a node must be deleted). For each of these

four cases, we add three points to the edit cost, since three fields in the structured language

query are incorrect (for edge structures, the “to” node, “from” node, and edge type, and for

node structures, the node ID, type, node attributes). The total cost is computed by adding

one point for each node, attribute, and edge field in the gold structured language query. The

reported edit costs may overestimate the true cost because edits usually involve swapping

out individual fields rather than entire node or edge structures.

To quantify the effect of each module in the pipeline on the final structured prediction,

we perform several experiments, in which the gold tags are used for some submodules,

and the predicted tags are used for others. First, we simulate that every module makes

predictions with perfect accuracy by using only the gold tags. In this case, any errors that

occur must arise during the second phase of the model pipeline. We also test using the gold

tags for all modules except for one module of interest. Second, we use the predicted tags

for all submodules in the pipeline. We also report the scores when using the gold tags for

one module of interest and the predicted tags for every other module.

Nodes Edges Total

gold/pred. prec. recall F1 prec. recall F1 acc. cost
GGGGGG 0.861 0.862 0.858 0.746 0.710 0.720 0.711 0.203

PGGGGG 0.821 0.834 0.823 0.702 0.667 0.676 0.646 0.276

GPGGGG 0.752 0.771 0.755 0.680 0.641 0.651 0.576 0.380

GGPGGG 0.832 0.850 0.835 0.677 0.680 0.665 0.655 0.279

GGGPGG 0.856 0.862 0.854 0.698 0.664 0.669 0.697 0.236

GGGGPG 0.785 0.814 0.788 0.592 0.639 0.593 0.590 0.432

GGGGGP 0.844 0.866 0.848 0.664 0.653 0.646 0.665 0.272

Table 4.3: The effect of each model in the information extraction phase on the structured
language prediction scores (precision, recall, and F1 for nodes and edges, overall query
accuracy and edit cost).
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Nodes Edges Total

gold/pred. prec. recall F1 prec. recall F1 acc. cost
PPPPPP 0.687 0.727 0.695 0.449 0.511 0.453 0.469 0.684

GPPPPP 0.691 0.742 0.702 0.447 0.511 0.451 0.488 0.693

PGPPPP 0.749 0.790 0.757 0.456 0.521 0.461 0.534 0.595

PPGPPP 0.693 0.728 0.699 0.485 0.534 0.484 0.479 0.632

PPPGPP 0.687 0.727 0.695 0.475 0.541 0.483 0.465 0.668

PPPPGP 0.713 0.744 0.720 0.531 0.547 0.521 0.520 0.527

PPPPPG 0.688 0.727 0.695 0.482 0.540 0.486 0.474 0.650

Table 4.4: The effect of each model in the information extraction phase on the structured
language prediction scores (precision, recall, and F1 for nodes and edges, overall query
accuracy and edit cost).

The results are presented in Tables 4.3 and 4.4. The first column in each row denotes

whether the gold tags (G) or the predicted tags (P) are used for that module, and the order

of the modules is NER-G, NER-A, BRE-appeared, BRE-affiliated, BRE-referenced, and

BRE-wrote. For example, PGPPPP denotes that the gold tags were used for the NER-A

module, and the predicted tags were used for all of the other modules. Table 4.3 presents

the results in the case where all models in the information extraction phase of the pipeline

except one (or zero) use the gold annotations and Table 4.4 presents the results in the case

where all models except one (or zero) use the predicted outputs.

The accuracy of the pipeline under the GGGGGG setting, which simulates perfect NER

and BRE models, is 0.711. The edit cost to total construction cost ratio is 0.203. This

means that on average, the user must edit approximately one fifth of the overall structured

language query in order to obtain the correct answer. Given that the average structured

language query in the dataset consists of 4.4 graph structures (2.7 nodes and 1.7 edges),

this amounts to correcting fewer than one node or edge for each prediction. Since we

assume in this setting that the models predict the graph components, attribute types, and

edge relations with perfect accuracy, the error can be attributed solely to limitations in the

information processing phase of the pipeline.

55



In reality, the user must deal with errors in earlier stages of the pipeline as well. The

prediction accuracy under the PPPPPP setting, which uses no gold annotations for any of

the models, is 0.469. The edit cost ratio is 0.684, which is equivalent to approximately 3

node or edge edits to the structured query prediction. As a reference point, we compare

the prediction accuracy score of our model to the logical form accuracy achieved by the

Seq2SQL [30] model. The results are not directly comparable due to differences in the

dataset, target database type, and model. However, the task is similar in that both models

attempt to translate natural language queries into structured formats for querying databases.

Our model achieves an accuracy score of 0.469 using a dataset of only 218 training sen-

tences. In comparison, the Seq2SQL model achieves a logical form accuracy of 0.483 using

the WikiSQL dataset which consists of 80,654 pairs.

In the other settings of using gold or predicted annotations for each model, the preci-

sion, recall, and F1 scores are fairly similar within each table. In Table 4.3, we see that the

edge type that results in the largest drop in performance when using the predicted annota-

tions instead of the gold annotations is the “referenced” edge. In Table 4.4, the edge type

that results in the largest gain in performance when using the gold annotations instead of

the predicted annotations is also the “referenced” edge. These results are in line with the

analysis of the individual models in Section 4.2. The accuracy of the NER-A model has a

large effect on the structured language prediction scores, as well.

4.4 Qualitative analysis

Table 4.5 demonstrates how an example natural language query is represented at various

stages of the pipeline. From manually reviewing the structured language predictions, we

uncover sentence patterns that the system has trouble dealing with. Misclassified outputs of

the named entity recognition and binary relation extraction modules contribute to some of

the overall structured language prediction error. Many errors arise when combining these
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outputs in the second phase of the model pipeline.

4.4.1 Word embeddings

Using word embeddings alone to determine the corresponding node type of each entity is

inaccurate in many cases. For example, this strategy maps “PEOPLE”, “RESEARCHERS”

and “WHO” to organization nodes instead of author nodes, “CONFERENCE” to an orga-

nization node rather than a venue node, and “COMPANY” to a paper node instead of an

organization node. For the five examples above, we hard code the correct node type rather

than compare embeddings. Instead of using word embeddings, the system could use a

multiclass classifier to predict the node type of the entity.

4.4.2 Multiple attributes

The current system creates one node for each attribute and each node detected. Most of

the time, these attributes are associated with the same node. Therefore, an effective node

combination step is necessary in order to reduce prediction error. The system’s default

behavior is to combine all nodes of the same type, and this is not always correct. For

example, in the sentence “WHICH CONFERENCES WERE HELD IN TOULON, FRANCE IN

2017 AND SAN JUAN, PUERTO RICO IN 2016?”, all attributes detected belong to venue

nodes. The system aggregates them into one node, rather than creating two separate venue

nodes. Instead, it could use a binary relation extractor to determine whether or not two

nodes relate to the same entity and should therefore be combined.

4.4.3 Implicit nodes and edges

In many cases, nodes are not explicitly stated in the natural language query. Therefore,

the named entity recognizer has no way to tag them. In the example query “ARTICLES

APPEARING IN ICML 2017 FROM OPENAI,” there is one implicit node and two implicit
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Input “SHOW ME ALL ARTICLES IN NIPS WRITTEN BY SOMEONE

FROM GOOGLE BRAIN.”

NER-G N: ARTICLES

E: IN

A: NIPS
E: WRITTEN BY

N: SOMEONE

E: FROM

A: GOOGLE BRAIN

NER-A venue name: NIPS
organization name: GOOGLE BRAIN

BRE-affiliated (SOMEONE, GOOGLE BRAIN)

BRE-appeared (ARTICLES, NIPS)

BRE-referenced
BRE-wrote (SOMEONE, ARTICLES)

Output {‘NODES’: [
{‘ATTRIBUTES’: [], ‘TYPE’: ‘PAPER’, ‘ID’: ‘N0’},
{‘ATTRIBUTES’: [{‘NAME’: ‘VENUE NAME’, ‘VALUE’:

‘NIPS’, ‘OP’: ‘=’}], ‘TYPE’: ‘VENUE’, ‘ID’: ‘N1’},
{‘ATTRIBUTES’: [], ‘TYPE’: ‘AUTHOR’, ‘ID’: ‘N2’},
{‘ATTRIBUTES’: [{‘NAME’: ‘ORGANIZATION NAME’,

‘VALUE’: ‘GOOGLE BRAIN’, ‘OP’: ‘=’}], ‘TYPE’:
‘ORGANIZATION’, ‘ID’: ‘N3’},

],
‘EDGES’: [
{‘TO’: ‘N1’, ‘FROM’: ‘N0’, ‘TYPE’: ‘APPEARED’}
{‘TO’: ‘N0’, ‘FROM’: ‘N2’, ‘TYPE’: ‘WROTE’}
{‘TO’: ‘N3’, ‘FROM’: ‘N2’, ‘TYPE’: ‘AFFILIATED’}
]

}

Table 4.5: The output of each submodule in the pipeline and the final structured language
prediction for an example natural language input query.

edges. An author wrote the article, and the author is affiliated with OpenAI. To reduce

prediction error, the system can make use of additional information such as the fact that
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the source and target node types corresponding to an edge are predefined. For example, if

the named entity recognizer for graph components detects that “FROM” corresponds to an

“affiliated with” edge, the system could deduce from the schema that an author node and

an organization node must be present and create the nodes if they are not.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Graph databases are useful for representing relationships between various entities. In re-

cent years, the amount of knowledge stored in graph databases has increased significantly.

This thesis presents a method for converting natural language queries into structured repre-

sentations that are easily applied to graph databases. Many previous works include systems

that convert natural language queries to SQL queries, which are then applied to relational

databases. However, our contributions focus on converting natural language queries to

subgraph queries.

We present a model pipeline consisting of an information extraction phase and an infor-

mation processing phase. The first phase is composed of several named entity recognition

and binary relation extraction models. The second phase applies an algorithm to combine

the outputs gathered from the previous phase into structured queries.

When trained using all available sentences, the named entity recognition modules for

graph components and for attribute types (NER-G and NER-A) achieve F1 scores of 0.865

and 0.875. The binary relation extractors achieve F1 scores of 0.848, 0.857, 0.747, and

0.861 for the “appeared,” “affiliated,” “referenced,” and “wrote” edges. Adding more high

61



quality training examples would improve the performance of these individual modules,

resulting in higher prediction accuracies for the final pipeline output.

Zhong et al. [30] present a sequence to sequence model (Seq2SQL) that translates nat-

ural language queries into SQL queries, and report a logical form accuracy of 48.3%. Our

model achieves an accuracy of 46.9%. The metrics reported are not directly comparable,

since they involve queries for two different types of databases containing differing types of

information. Furthermore, our dataset contains 218 training sentences, whereas the Wik-

iSQL dataset contains more than 80,000. We report the Seq2SQL score as a reference

point because the task is similar to ours. One reason that we are able to achieve a simi-

lar score despite using a small dataset is that our model breaks the task down into several

subcomponents, whereas the Seq2SQL model is more end to end.

5.2 Future work

Incorporating user feedback

Further human evaluation may be conducted by deploying the system to a wider audience.

Since the system may produce incorrect results, an extension could be to implement a

simple user interface that allows users to make corrections more easily.

In addition, the system requires a training set of sentences. Initially, this training set

may be limited in number. It could incorporate user feedback and retrain the model peri-

odically by adding previously asked queries to the training set. This would create a richer,

more diverse set of questions for the submodules to learn from, since each user has their

own style of question-asking.

Detecting other graph components

The current named entity recognizer for graph components recognizes nodes, attributes,

and edges. Depending on the domain in which the system is deployed, it may be useful to
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include other graph components. For example, the system could learn to detect temporal

and spatial entities (such as a period of time or a distance) and relations (less than, greater

than, equal to, etc.) so that a user could query a database for events that were located within

a certain distance of a point of interest, or events that occurred within a certain time frame.

Improving ambiguous node type predictions

The success of using word embeddings to predict node type depends on how similar the

entities are to the node types specified by the graph. For example, the system may think that

Stanford refers to the name of a person, rather than the name of an organization. The system

could search the graph for various tokens in order to determine if they commonly appear in

the database as person, venue, paper, or organization names. This preliminary search could

help to resolve such ambiguities. Another possible solution is to train a multiclass classifier

which predicts the node type from the node entity. To address edge types whose endpoint

node types are ambiguous in natural language, such as the “referenced” edge, the system

could relax the requirement that the endpoint nodes must be of a fixed type.

Other future work

The system pipeline could make use of other natural language processing tools. One of the

main challenges that the system currently faces is when to combine nodes of the same type,

and when to keep them separate. An off the shelf coreference resolution model could be

used to combine nodes that refer to the same entity. Another possible solution is to train a

new binary relation extractor as mentioned in Section 4.2.2.
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Appendix A

Pseudocode for model pipeline

1. Train named entity recognizer for graph components

(NER-G)

2. Train named entity recognizer for attribute types

(NER-A)

3. For each edge type:

- Train binary relation extractor (BRE-edge-type)

given NER-G

4. Use NER-G to predict ’N’, ’E’, ’A’ entities given

input sentence

5. For each entity tagged ’N’ by NER-G:

- Record in node_dict

(key = entity position,

value = node id)

6. Use NER-A to predict attribute tokens and their

attribute type given input sentence

7. For each entity tagged by NER-A:

- Record in node_dict

(key = entity position,

value = node id, attribute type)

8. For each entity tagged ’N’ by NER-G:

- Get node type through embedding comparison

- Get node id through node_dict lookup

- Create node structure, add it to overall
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structure

9. For each entity tagged by NER-A:

- Get attribute type through node dictionary lookup

- Create attribute structure

- Get node type from attribute type

If a node structure of the same type exists:

- Add attribute structure to that node

Else:

- Get node id through node_dict lookup

- Create a new node structure

- Add attribute structure to the new node

- Add node structure to the overall structure

10. Get relation_pairs:

For source_node in node_dict:

For target_node in node_dict:

If source_node != target_node:

relation_pair = (source_node, target_node)

11. For each relation_pair in relation_pairs:

For each edge type:

Use BRE-edge-type to predict edge_score

If edge_score > 0: #relation exists

- Get source node id through node_dict look-

up or create new node if it is not present

- Get target node id through node_dict look-

up or create new node if it is not present

- Create edge structure, add it to overall

structure

12. Present final structure to user for revision
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