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Abstract

According to a recent report from the World Health Organization (WHO) and the
World Bank, as many as half of the world’s population lack access to essential health
services [1], a factor that contributes to the deaths of more than 5 million children
every year. To tackle these problems, countries like India have set in motion a number
of initiatives, such as that of Community Health Workers (CHW). However, CHWs
feel disempowered as they often lack access to convenient and reliable tools to perform
their measurements.

In this thesis, we first propose a number of mobile tools that make use of the
smartphone camera, combined with machine vision and augmented reality (AR) to
extract, collect and analyze data from the image of the child, and provide the CHW
with an accurate, faster and automated means of performing Neonatal and Child
Health (NCH) measurements, while at the same time, revealing relevant feedback
about the health of the patient. The basic measurements include anthropometric
information such as Length, Weight and Middle Upper Arm Circumference (MUAC).

For initial deployment and field testing of the technology, we partnered with the
Public Health Foundation of India (PHFI), which implements much of the training
for their accredited social health activists (ASHA). Since the ASHA health worker
program is a government program, we obtained approval from the Government of
India and conducted a pilot usability study with 13 ASHA workers in the New Delhi
slums using our technology, between the months of May and September of 2017. For
the study, we created Baby Naapp, an Android application that served as an interface
for the ASHA workers to create basic profiles with socio-economic information of their
patients, and to perform calls to each of our measurement tools. The findings of this
study helped to refine our algorithms and the user experience of our apps.

Additionally, we have also explored the use of multi-spectral sensing to capture
essential physiological measurements. We have developed an Android mobile applica-
tion which uses a thermal camera module to automatically measure respiration rate
(RR) and respiration rate variability (RRV). This app makes use of machine vision
algorithms to detect a human face and then measure the temperature fluctuations in
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the nostrils to approximate air flow rates and calculate timing parameters.
Future research will improve the accuracy of the anthropometric measurement

tools by refining the machine vision algorithms and the hardware used to capture
the readings, and will also include the thermal respiration app into the NCH kit.
The data capturing algorithm will be used to develop a jaundice screening tool, and
the data structures created to organize and analyze measurements in the NCH kit
can be incorporated into the other verticals of our lab, such as the pulmonary and
cardiovascular screening tools.

Thesis Supervisor: Richard R. Fletcher
Title: Research Scientist
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Chapter 1

Introduction

1.1 Community Health Workers: Context and La-

tent Needs

1

In many developing countries, child health screening is often performed by com-

munity health workers (CHW) or front-line workers, which can be part of various

public or private initiatives. These community health workers, nurses and midwives,

are the first and often the only link between the health care system and billions of

people that belong to the most marginalized populations.

CHWs are critical in settings where the overall primary health care system is weak

or inaccessible, a problem that often requires them to go door-to-door, providing

education, counseling, health screening, and referrals for institutional check-ups. In

India specifically, the National Health Mission operates a community health worker

program which consists of more than 700 thousand ASHA workers (Accredited Social

Health Activist). These local women are nominated from their own community and

receive some basic training for home-based newborn care (HBNC), and Reproductive,

Maternal, Newborn, Child, and Adolescent Health (RMNCHA) services. The ASHA

1Some of the information in this work and in this particular chapter was originally published and
presented at the IEEE GHTC 2017 as Development of smart phone-based child health screening tools
for community health workers[2] on which the author of this thesis participated as a coauthor.
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program was initially implemented in rural areas throughout India but is now being

adopted in many poor urban slum areas as well [3].

Figure 1-1: ASHA worker on her way to a slum

Despite the existence of international guidelines, the quality of child health screen-

ing can vary widely, even across parts of the same country. Members of our team have

spoken with doctors and health functionaries in developing countries, and some have

even traveled to rural clinics in over 14 states in India, and observed many challenges,

including the following:

∙ Lack of tools: Although a basic set of tools and medicines are supposed to be

provided to the Indian ASHA workers [4], in practice many of these tools are

missing or are of low quality.

∙ Lack of digital records: In most areas, data is collected manually and recorded

on paper. This is not only prone to error, but also creates a more generalized

pain point of redundant data that is entered over and over again, but never

established as a shared resource.
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∙ Limited expertise and education: While ASHAs are required to have a minimum

education and be good with numbers, the condition may be relaxed if no other

candidate is available. This limited education added to their limited clinical

expertise results in a slow integration and adoption of any technology.

ASHAs also face socio-cultural prejudices and taboos, lack of a fixed income (since

their remuneration is incentive/referral based), and heavy work loads that require

them to cover great distances in a single day. Taken together, these challenges often

result in a lack of capacity to detect early signs of disease or pathological conditions.

More importantly, the lack of quantitative tools limit the ability for an uneducated

health worker to make confident evidence-based medical referrals and motivate a

child’s family to take action or instill health-seeking behaviors. Generating a demand

for health services is ultimately limited by the ability of a community to properly

assess a child’s health.

Figure 1-2: Rural Clinic in Punjab India
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1.2 Existing Tools used by Community Health Work-

ers

The National Health Mission of India lists the items in table 1.2 as the components

of the HBNC kit for ASHA worker, as well a number of basic medicines that can be

found in [?]

List of Items in ASHA Equipment Kit
1 Digital Wrist Watch
2 Thermometer
3 Weighing Scale (for newborn babies)
4 Baby Blanket
5 Baby Feeding spoon
6 Kit Bag
7 Communication Kit
8 Mucous Extractor

Table 1.1: List of Items in ASHA Equipment Kit

Additionally, since as early as 2013, there have been talks of the government pro-

viding the ASHAs with mobile phones [5]. However, in practice the components of

the ASHA kit are decided at the district level with some kits being more compre-

hensive than others. It is unclear how advance such deployment is, but as far as

our experience goes, we are unaware of ASHAs with government issued smartphones.

Nevertheless, the rapid reduction of production costs of smartphones, added to their

exponentially increasing processing power and the ever increasing market penetration

in development countries, make the prospect of ASHAs having their own smartphones

soon far from an unreachable reality.

1.3 Emergence of mHealth Tools

A review of current and potential uses of smartphones in healthcare published by

Stanford researchers on 2012 [6] identified five main categories: monitoring, health

apps for untrained patients, communication, and reference apps for medical practi-

tioners. Another systematic review by researchers in University of Missouri essentially
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covered the same categories, but made emphasis on who the user for the application

was. Both studies, had a selection criteria that focused on the functionality of smart-

phone software, sensors, and peripherals. The selection started from a pool of more

than 2000 studies that got eventually reduced to around 60 papers, all ranging in

between the years 2001 and 2012 and with a noticeable increase starting in 2010. The

ubiquitous penetration of smartphones since then, make the 6 years that have passed

seem like a few lifetimes in technology time. However, their analysis stays relevant

and it can be expanded to the following categories.

In the category of patient monitoring, the smartphone sensors can be valuable

resources for people who are unable to physically attend hospitals and clinics. Some

examples include the following:

∙ Applications have been used to track the recovery of patients that have had a

stroke using Bluetooth sensors that connect to the phone from the shoes.

∙ ECG sensors can be plugged in the smartphone via usb, or paired via Bluetooth

and Wi-Fi to communicate real time heartbeat monitoring.

∙ GPS sensors can track the location of people with Alzheimer and dementia and

determine if the patients have become confused, lost, or if they are in need of

help.

∙ Systems like 99DOTS allow for medical adherence control using simple phone

calls.

Other health apps are not necessarily used for monitoring of diseases. They are

rather oriented to casual and seamless tracking of health indicator metrics in the

daily routine of a person. These apps include calorie counters, step counters, sleep

quality assessment, wellness and nutrition which gained traction in the west with the

introduction of commercial products such as Fitbit and Apple Watch.

Additionally, smartphones can serve their primary function: a means of commu-

nication. Community health workers can consult physicians via text, image or video
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messages embedded in custom apps that can be used for telescreening and telediag-

nosis [7].

The large storage available nowadays, combined with internet connectivity, allow

medical practitioners to have immediate access to an enormous amount of reference

information. Solutions like Epocrates, an athenahealth service, even claim that their

app can save physicians 20 minutes of time each day.

Finally, small companies such as Dimagi and Mobilitas now offer software plat-

forms that help simplify the task of survey-based data collection, support case man-

agement and have made fantastic advances in integrating with electronic medical

record systems.

1.4 Shortcomings of existing mHealth Tools and Cur-

rent Needs

Despite the existence of all these mobile platforms and their increased popularity in

the developed world, the penetration of sensor-based data collection in the field is

still minimal. For electronic medical record systems, all data collection normally re-

quires manual data entry (e.g. typing in the glucose reading, or the baby’s height and

weight). Given this context, we have identified the need to create a next-generation

of mobile tools that can make use of the intrinsic capability of smartphones to auto-

matically make measurements without the need for a manual data entry.
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Chapter 2

Machine Vision as a proposed

solution

Machine Vision is a broad term that describes computer-based analysis of camera

images, generally in real-time. In the past, Machine Vision algorithms have been used

in a wide range of activities from improving quality of manufacturing and assembling,

robotics, self-driving vehicles, to medical imaging. In the case of medical applications,

processing power has traditionally been a limiting factor when developing low cost

tools. However, with the advent of the smartphone and its explosive growth, Machine

Vision is now being packed in these small gadgets, and becoming increasingly present

even in daily communication apps.

A particular branch of Machine Vision is Augmented Reality (AR), which was

recently popularized by the game Pokemon Go. In formal terms, AR is an overlay

computer-generated sensory input such as graphics, video or sound over the real-time

world environment. Development kits for AR mobile applications support several

main types of AR, such as markerless based and maker based AR. For markerless

based AR, a smartphone uses geolocation, accelerometer readings and other location

estimators, combined with spatial recognition algorithms to understand the compo-

sition of a scene and place, and maintain AR objects in a particular position and

orientation in the camera view. On the other hand, marker based AR uses special

markers, known as targets, which are pre-established and known by the developer
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and that are used to perform tracking and to learn the information of the physical

characteristics of the scene.

Figure 2-1: Examples of AR — (left) Visor of pilot, with superimposed flight info;
(right) Pokemon Go

Current smartphones contain many sensors and embedded technologies that can

be applied to healthcare. Arguably, the most powerful of these technologies is its

camera, with phone manufacturers deeply focusing on improving its capabilities over

the past few years. Coupled with the also ever-improving processing power that allows

to perform Machine Vision algorithms and AR, limitations from 20 years ago slowly

vanish and the smartphone camera can be used as a powerful tool to automate and

complement many tasks that are performed by health workers and doctors.

2.1 Prior Use of Machine Vision and AR in our Group

for Biomedical applications

Just as in industrialized factories, Machine Vision has the potential to be used as a

tool to augment or even automate health related procedures and with the continuous

improvements of imaging hardware, it is increasingly penetrating the health research

sector with clever and ambitious techniques and tools.

In our group, we have used Machine Vision to measure a patient’s heart rate by

analyzing small changes in his skin color. This technology is known as video plethys-

mography and it was partially developed at the MIT Media Lab and the Computer
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Science and Artificial Intelligence (CSAIL). We have extended this technique to a

smartphone application that automatically detects the person’s face and samples the

color pixels from a segment of the image [8]. However, testing results revealed that

video plethysmography is not practical for a health worker using a hand-held phone as

the technology is too sensitive to motion artifacts. Nevertheless, it has shown to be a

promising technique for performing non-contact measurement of babies in situations

where the phone can be mounted on a tripod or as part of a baby crib.

Additionally, our group also conducted a study that uses colorimetric tests for

performing point-of-care health screening using blood samples [9]. The challenge

addressed was that due to human color perception, this type of test results are difficult

to quantify. For this purpose, a mobile app that performs the color comparison was

introduced. The app uses AR to automatically identify the position and orientation

of a printed test, which includes a target to facilitate the tracking algorithm, as

well as a reference color palette to enable color calibration and compensation for

environment settings. The solution is highly scalable and low cost, as it only requires

tests printed on paper and a mobile app that can be easily installed on any Android

phone. The study also suggested that measurements captured using mobile phone

performed favorably when compared with manual measurements.

Figure 2-2: Examples of Prior Use of AR in our group — (left) AR App to automat-
ically digitize the reading from a Peak Flow Meter; (right) a color test that uses AR
to rectify the image and sample pixels from the correct colors
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2.2 Machine Vision for Anthropometric and Physi-

ological Measurements

In this thesis, we explore the use of Machine Vision to extract anthropometric and

physiological measurements from babies and children, and other potential applications

into global health. As with the printed diagnostics example, Machine Vision is an

extremely convenient tool to automatically track regions of interest and liberate the

lay users from the often challenging task of accurately aiming the camera to the desired

location. In addition, AR is used to create live graphical overlays that provide critical

feedback about the measurements in the scene.
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Chapter 3

Anthropometric Measurements

3.1 Motivation

3.1.1 Importance of Anthropometric Measurements

The leading causes of death for children under 5 years of age are infectious diseases

(e.g. pneumonia, diarrhea, malaria, measles) and malnutrition. Recent reports from

UNICEF [10], state that nearly half of all deaths of children under the age of 5 can

be related back to malnutrition, as it increases the frequency and severity of common

infections, and usually delays recovery times. Even though the cases of children

stunning have been slowly decreasing, malnutrition or wasting still affected the lives

of 51 million children on 2017. While it was possible for many of these cases to

see recovery, some of the damage may never be reverted as poor nutrition during

the first 1000 days of life can lead to stunted growth and future impaired cognitive

performance.

Given that newborn babies are generally considered a vulnerable population, an-

thropometric and physiological measurements begin at birth with neonatal screening,

to identify potential congenital disorders or developmental challenges, such as prema-

turity. However, after the first few days of life, a child’s health assessment generally

shifts to monitoring the child’s growth and nutrition status as well as to identifying

signs of potential infectious diseases. The World Health Organization (WHO) has

27



published guidelines for child health assessment in an effort to standardize practice

and improve data quality [11]. These guidelines are used by primary care clinics,

community health workers and health camps worldwide.

While the assessment tools and metrics for child health vary as a function of

socioeconomic status and type of clinical facility, certain fundamental metrics are

common worldwide, even in low-resource settings. These traditional metrics include

anthropometric information such as: height or length, weight, and middle-upper arm

circumference (MUAC). Unfortunately for front-line workers, it is unfeasible for them

to carry a bulky infantometer or an electric digital scale, which are considered the

gold standard tools to collect anthropometric measurements. Instead, the length

measurement is commonly not recorded, while the other metrics are collected with

rudimentary tools and logged by hand in paper journals and notebooks.

3.2 An AR framework for anthropometric data col-

lection

In an effort to overcome the lack of access to robust anthropometric measurement

tools that CHW face everyday, we have developed a suite of Android Apps that make

use of the smartphone camera combined with machine vision and augmented reality

(AR) to extract, collect and analyze anthropometry from camera frames containing

the scene with a child. We focused on the three measurements mentioned in the

previous section: length, weight, and MUAC.

3.2.1 General Implementation Details

The mobile operating system of choice is Android due to its high penetration in

smartphone market of the developing world. In addition, we are making use of open

source libraries that already implement known Computer Vision algorithms and the

basis of AR:

∙ OpenCV - A widely used and constantly maintained library of programming
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functions mainly aimed at real-time computer and machine vision. The capa-

bilities of OpenCV are extensive: from simple tasks as converting and image

into grayscale, to providing a whole pipeline for training a custom object de-

tector. While OpenCV algorithms require the freedom and speed that only

languages like C and C++ can provide, libraries for Python and Java are mas-

sively supported. In particular, we have made use of various versions of the

OpenCV software development kit (SDK) for Android.

∙ Vuforia - Formerly developed by Qualcomm, and now owned by PTC Inc, it is a

SDK that enables the creation of Augmented Reality applications. It supports

iOS, Unity and Android development and it is complemented by a web-based

platform on which users can add their own custom image "targets". Features

are extracted from the targets and a set of feature files is generated to be

incorporated into the user’s project, allowing for automatic recognition and

tracking of the targets in real-time.

∙ OpenGL - A 2D and 3D graphic rendering API, which is supported by Android.

Vuforia samples use OpenGL as the default renderer of AR objects.

We have augmented the already existing tools with simple stickers and patterns that

serve as AR targets. Different AR targets designs and algorithms were developed to

meet the specifications and constraints of each anthropometric measurement, but it

is possible to abstract a common framework or pipeline that is followed by our three

tools.

1. The phone automatically tracks the AR target and extracts information about

its location in the camera frame

2. The target location is used to rectify and extract the intended region of interest.

3. A measurement-specific machine vision algorithm is executed to extract the

required information.

4. Readings from every frame are aggregated to display real-time feedback about

the measurement.
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5. When the measurement has converged, the user is notified and can proceed to

have the anthropometric reading captured and saved.

The design process, algorithm and validation of each individual tool will be explained

in detail, but first, the following sections will go over the common elements of the

pipeline.

3.2.2 Geometric Rectification

On Feature Extraction and Homographies

As briefly mentioned in a previous section, Vuforia generates feature files that are

used to find and track targets in the camera frame. While the library documentation

does not specify which feature extraction algorithm is used for proprietary reasons,

there has been a number of successful features used for object detection, and object

tracking. Scale Invariant Feature Transform (SIFT) is an example of such algorithm

[12]. It presents an attractive way of identifying distinctive scale and rotations of

invariant features from images, that can be used to match objects in different scenes,

with automatic panorama stitching being one of its current most popular applica-

tions. For automatic panorama stitching, features are extracted from the images that

share parts of the same scene. These images are obtained from several frames and

different rotations of the camera. The nature of such rotations determine that the

partial scenes can be related by a particular set of homographies [13]. A homogra-

phy is a transform that relates two projection planes that share the same center of

projection or are images that are viewing the same plane from a different angle. It

can be represented as a 3 × 3 matrix, relating points of the two planes expressed in

homogeneous coordinates. Homographies can be solved with at least four points, but

in the case of panorama stitching, more than four potential matches will likely be

found. For these cases, a combination of RANSAC (random sample consensus) [14]

and least squares optimization is also shown in [13].
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Target Tracking and Perspective Correction

Homographies are also, very likely, the basis used by Vuforia to understand the posi-

tion and orientation of planar targets. Features extracted by its algorithms are used

to estimate a projection matrix that OpenGL uses when rendering the AR infor-

mation. From there, we are able to extract the locations of the four corners of our

target. However, these matrix and corners exist in a frame of reference of OpenGL,

which has its origin in the center of the camera frame and the ranges of its visible

axes are normalized, i.e. they span values from −1 to 1. To be able to process the

image in the frame, the corners and the projection matrix need to transformed into

the frame of reference of OpenCV, which has its origin on the top left corner, with its

axes spanning the pixel values of the screen resolution, the positive x axis pointing

towards the right and the positive y axis pointing downwards. Because OpenCV im-

age manipulation only allows for rectangular cropping, the outer-most coordinates of

the region of interest (ROI) are used to generate a preliminary Bitmap that contains

that ROI in its totality. It is important to take note of the OpenGL coordinates of

this rectangle’s top left corner (offset𝑥, offset𝑦), to keep a reference of the OpenGL

origin. The corner conversion is given by a set of equations of the form:

𝑝𝑜𝑝𝑒𝑛𝐶𝑉,𝑥 = int
(︂
𝑝𝑜𝑝𝑒𝑛𝐺𝐿,𝑥 + 1

2
× 𝑤𝑖𝑑𝑡ℎ𝑝𝑖𝑥𝑒𝑙𝑠 − 1

)︂
− offset𝑥

𝑝𝑜𝑝𝑒𝑛𝐶𝑉,𝑦 = int
(︂

1 − 𝑝𝑜𝑝𝑒𝑛𝐺𝐿,𝑦

2
× ℎ𝑒𝑖𝑔ℎ𝑡𝑝𝑖𝑥𝑒𝑙𝑠 − 1

)︂
− offset𝑦

Subsequently, an inverse projection matrix needs to be calculated to obtain a rec-

tified version of the region of interest from the camera frame. The OpenGL projection

matrix is again inconvenient, as it contains an inferred value for the 𝑍 coordinated

in the scene, i.e. an estimate of the depth component in a 3D world. A much simpler

alternative is to use the OpenCV coordinates of the corners of the target, and find the

perspective transformation that maps it to a strategically scaled version of its original

image. Fortunately, such operation requires exactly 4 correspondent points, and given
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Figure 3-1: Schematic of OpenGL and OpenCV Frames of Reference

that the aspect ratio of the original target are known by the user 1, it is possible to

easily obtain a rectified ROI for which its top right matches the origin of the OpenCV

frame of reference. In other words, given the desired width 𝑤𝑡 and height ℎ𝑡 of a rec-

tified target and for the set of corners (𝑃𝑡𝑜𝑝,𝑟𝑖𝑔ℎ𝑡, 𝑃𝑡𝑜𝑝,𝑙𝑒𝑓𝑡, 𝑃𝑏𝑜𝑡𝑡𝑜𝑚,𝑙𝑒𝑓𝑡, 𝑃𝑏𝑜𝑡𝑡𝑜𝑚,𝑏𝑜𝑡𝑡𝑜𝑚) in

the OpenCV frame of reference, we need to find the perspective transform 𝑇 that

satisfies:

(𝑃𝑡𝑜𝑝,𝑟𝑖𝑔ℎ𝑡, 𝑃𝑡𝑜𝑝,𝑙𝑒𝑓𝑡, 𝑃𝑏𝑜𝑡𝑡𝑜𝑚,𝑟𝑖𝑔ℎ𝑡, 𝑃𝑏𝑜𝑡𝑡𝑜𝑚,𝑙𝑒𝑓𝑡)
𝑇−→ ((0, 0), (𝑤𝑡, 0), (𝑤𝑡, ℎ𝑡), (0, ℎ𝑡))

OpenCV contains a Image Processing package named ImgProc which contains a con-

venient method getPerspectiveTransform that takes as inputs the source and desti-

nation points and generates our desired matrix 𝑇 . ImgProc also counts with the

1In fact, the dimensions of the physical target are established by the user when creating it and
are necessary to generate the feature files from the Vuforia Web Portal
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method warpPerspective, which is used to finally obtain a rectified version of our re-

gion of interest. It is important to note that the pair of four points sets need to be

correspondingly sorted when entered into getPerspectiveTransform.

3.2.3 Handling Continuous Data Feed

After each anthropometric tool has executed its custom algorithm to extract the

measurement, a new measurement value is generated if there is a measurement present

in the frame. With current frame rates it is possible to obtain between 5 and 10

measurements every second. Such continuous data feed requires careful handling to

always maintain the most accurate estimate of the measurement possible.

A Sorted FIFO Queue of Measurements

For these purposes, a custom data type was developed and descriptively named

SortedMeasurementQueue. While Queues are by definition FIFO (First In, First Out)

data buffers, it is important to emphasize its correct behavior, as the Sorted label in its

name may be a cause of confusion. The data type behaves like a normal Queue: as ex-

pected, older measurements are less important, so once the SortedMeasurementQueue

reaches its full capacity, they are discarded in favor of newer ones. The special thing

about this data type is that it also keeps track of the order of its elements to efficiently

provide the median value. Because the maximum size of the SortedMeasurementQueue

ought be kept smaller than a 2 second interval in order that preserve the validity of

its contents, a simple LinkedList is sufficient to rapidly insert a new value in its cor-

rect location. If the queue is not full the value is coupled with the current size of

the queue, while the "popping" pointer remains pointing at the first value that was

entered. If the queue is at capacity, the new value is coupled with the index of the

current position of the "popping" pointer, and the pointer increments by 1 modulo

the size of the queue. In this way putting and popping values from our data type

are 𝑂(𝑛), but when the queue becomes full and because of its relatively small size,

one can think of the complexity of these operations as 𝑂(1). The median value of
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the SortedMeasurementQueue is saved as the measurement for the current frame, and

it is kept in an extra queue that holds the values from about the last 2 seconds of

measurements. This queue effectively holds a median filtered version of the signal of

raw measurements.

Figure 3-2: Continuous Data Feed Handling Workflow

A simple criterion for convergence

The measurement that is presented as the current one to the user is the average of

the queue of medians. This value can be thought of as rolling average of the median-
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filtered version of the raw signal. If the difference between the new median and the

previous average is less than a user specified threshold, the new current average is

labeled as stable. If the updated current values are stable for around two seconds,

the algorithm determines that the measurement has converged, and allows the user

to save the measurement. The whole pipeline is described in Figure 3-2.

3.3 Measurement of Length

3.3.1 Design of AR Target

Figure 3-3: Final Version of Baby Blanket used for the length measurement. The
animal drawings constitute an AR target.

The tool used for the height measurement is a rectangular blanket that contains

animal drawings on three of its sides and upon which the baby is placed in the direc-

tion of the horizontal guide line. The most recent design of the blanket can be seen

in Figure 3-3, while older iterations are discussed in section 4.4.2. Besides creating

a beautiful ornamentation for the tool, the animal drawings serve as a very feature
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dense AR target that allows to automatically correct for geometric and parallax dis-

tortion, unlike other camera-based approaches that require significant calibration or

sensor measurements [15, 16].

The choice of having the drawings on only three sides was not random. For this

technique to work properly, the ASHA needs an aid to ensure that the legs of the

baby are extended, and the toes making a 90 degree angle with respect to the ground.

The mother is expected to provide such help, by holding the baby, and a target-less

side of the blanket is left on purpose so that the presence of the mother does not

interfere with the tracking of the baby.

The dimensions of this blanket are 98 × 78 cm and can measure infants of up to

68 cm, which is the average for 7 month-old babies.

3.3.2 Length Algorithm

The height extraction algorithm is simple and it is based on blob detection. Such

simplicity, requires some heavy lifting performed at the preprocessing stage. The

whole process develops as follows.

1. A ROI is selected inside the rectified image. The ROI is an inner rectangle of

the blanket that does not contain the target. The boundaries for this rectangle

are selected empirically.

2. The contrast of the image is increased to reduce shadows generated by the baby

or the arms of the users.

3. The image is transformed into grayscale for blob detection based on intensities.

4. A Gaussian filter is applied to remove small noisy artifacts.

5. Morphological operations are applied. This step is normally as preprocessing

in segmentations applications such as brain segmentation in MRIs, to remove

small connections that probably caused by noise. For our case, we used them

to remove noise indeed, but very importantly to remove the horizontal guide
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lines. This can easily be achieved by an application back to back of erosion and

dilation [17] with a small square kernel.

6. Edges are extracted from the image using Canny Edge Detection, and contours

are generated.

7. A bounding box that spans all the contours is found and the height of that box

is used as the height of the baby in pixels.

8. Since the size of the blanket is known, both in pixels and in cm, the height of

the baby in cm is recovered.

Figure 3-4: Baby Blanket App Instructions Screen (L) and Operation Screen (R)
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3.3.3 Length Measurement Lab Validation

It has previously been established that lighting conditions affect the performance of

our tools as expected. Work from a previous publication [2] discusses in detail the light

intensity and angle requirements for accurate readings. For this section, we assume

ideal lab conditions, and compare the automatic app measurement with a manual

measurement that was taken as carefully as possible to guarantee the integrity of an

accurate length measurement. The setup for the manual experiment is depicted in

Figure 3-5.

Figure 3-5: Length Experiment Set Up for Manual Measurement

A baby doll was modified with accordion legs that could expand and compress to

achieve different heights. The manual measurement was obtained by placing blocks

on the feet and the head of the baby doll, and the distance between the edges of

the blocks was measured with a measuring tape. For the automatic measurement,

the blocks were removed and the length captured using the Blanket app as shown

in Figure 3-6. The experiment was repeated for different lengths, starting on 43 cm

which is less than 2 standard deviations than the average length of a newborn baby,

and went up to 66 cm, a value close to the physical limitations imposed by the size
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Figure 3-6: Length Experiment Set Up for App Measurement

of our blanket and the restrictions of our algorithm.

The Bland-Altman plot in Figure 3-7 shows a comparison between the manual

measurement ℎ𝑚 of the baby’s length vs. the app measurement ℎ𝑎 for the range of

lengths described above. The mean error was calculated to be 0.91 cm, which suggests

the existence of a small positive bias that will be discussed in Section 4.5.1

3.4 Measurement of Weight

3.4.1 Design of AR Target

We augmented the spring scale used by Community Health Workers by placing a

cylindrical sticker that spanned the whole circumference of the scale. The image of

the sticker was designed manually and started as a friendly tiger face, its stripes and

some spots, but then, a factor of randomness was added to all the shapes in the

target to generate strong and recognizable features. The height used for the target is

7.7 cm and a circumference of 8.2 cm, which results on an average radius of 2.6 cm.

Because our algorithm searches for transitions between the black of the body of the

scale and the white from the measuring region and the phone can track the target in
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Figure 3-7: Bland-Altman Plot that compares the manual measurement ℎ𝑚 of the
baby’s length vs. the app measurement ℎ𝑎 for a feasible range of lengths.

360∘, an additional white sticker had to be added on the measuring region to span

the its whole circumference. The final version cylindrical target and modified scale

can be seen in Figures 3-8 and 3-9, respectively.

3.4.2 Weight Algorithm

Finding the tangent plane parallel to camera

In the flat target case, as described in section 3.2.2, there was no need for this step.

The algorithm would use the corners of the target to directly rectify the whole camera

scene. However, for the case of the cylindrical target, there are no four corners,

an invariant-like rectangle had to be generated. Such rectangle is a perpendicular

projection of the cylinder into the plane tangent to the cylinder that is parallel the

to the camera plane. This rectangle is perpendicular to the plane that minimizes the

distance between the camera plane and the cylinder axis (See Figure 3-11). Notice

that the dimensions of the rectangle are the height of cylinder, and the diameter of
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Figure 3-8: Scale Cylindrical Target flatten out Figure 3-9: Scale with Cylindrical
Target attached

Figure 3-10: Baby Scale App Instructions Screen (L) and Operation Screen (R)
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the cylinder.

To keep track of such plane, we used the orientation information provided by the

Vuforia API, which is provided as Euler angles with respect to a frame of reference

defined by the cylinder of the target. By always compensating for a respective rota-

tion, we are able to keep our rectangle always in sight in front of the camera. And

such rectangle gives us the reference to rectify the scene.

Figure 3-11: Cylinder Tangent Plane Parallel to Camera Plane
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Special Rectification, selection of ROI

A rectification step is required to correct for perspective deformations due to tilting

of the smartphone with respect to the scale, which is mainly vertical due to gravity.

Given the four points in the previous step, we can use OpenCV to find the perspective

transform that will turn such quadrilateral into an empirically chosen 700 pixels tall

rectangle. Unlike with the blanket, the ROI of the scale measurement is not contained

in the target. In this case, a region of interest on top of the target is selected in such

way that it spans what a full extended scale would span plus a discretionary buffer

region. The offsets and values for the ROI are empirically selected based on the actual

dimensions of the scale. The physical height of the white sticker on the scale was 14.1

cm, with white space offset of 1.6 cm. Therefore, a region of interest 16 cm tall and

1 cm wide was selected.

Image Processing of the ROI for Length Estimation

A typical ROI example is displayed in Figure 3-12. The problem of measuring the

weight is as simple as differentiating light versus dark regions, and the pipeline re-

quired in order to be able to extract the displacement based on such image is described

in the following sections.

Figure 3-12: A typical ROI from a frame containing the AR Scale

The first challenge is to remove the measuring guides, or black content, in the white

region. This can be achieved by dilating using a 1 x 3 pixels vertical kernel and a 7 x
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1 pixels horizontal kernel. The horizontal lines that mark discrete measurements of

the scale and the thicker vertical line that holds them together are strongly reduced

and hopefully eliminated with such operation. However, in order to preserve the

vertical information, we erode back using the first 1 x 3 vertical kernel. Since accurate

information in the horizontal axis is not needed, we do not apply erosion with the

horizontal kernel. This conveniently leaves the frame with an increased white content.

For the sake of removing any noise or remaining black content and working with a

smooth region of interest, a bilateral filter [18], which is an edge-preserving smoothing

filter, is also applied. With the bilateral filter, we are able to preserve the transitions

between dark and light, while at the same time reducing the noise of each region.

The next step is to obtain a 1D array by calculating the average of each row.

The assumption is that even if after the preprocessing there is still noise present, the

predominant color in the region will turn the average into an accurate representation

of that row.

Again, OpenCV is used to perform color thresholding. We first transform the

image into HSV, and then the inRange method from the Core package is used to

threshold based on saturation and value. White corresponds to low values of Satura-

tion, and high values of Value. This operation results into a binary array on which

1 means white and 0 means black. A simple 1D edge detector is used to find the

transitions between dark to light and light to dark, to get the number of pixels in the

light region. If the number of continuous pixels is either black or white and is greater

than a certainty threshold, the algorithm determines that the region has transitioned.

Given that we know the mapping in between the length of the target from pixels to

mm, we can recover how much the scale has displaced in mm as well: 700 pixels map

to 12.6 cm, which themselves map to 5 Kg. The calculation is a cascade of simple

rules of three.

3.4.3 Weight Measurement Lab Validation

For testing the weighing scale application, the scale was attached to custom made

setup shown in Figure 3-13. The setup was made by rearranging pieces a clamp in a
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way that it would keep the scale extended at specific weights. These weights ranged

from 2Kg, which is about t 3 standard deviations below the weight of an average

new born, to 5kg, the upper limit of the scale itself. The comparison between the

manually recorded weight and the app captured weight are shown in Figure 3-14.

Unlike the height measurement tool, the weighing tool is used by holding the phone

fairly close to the AR target (as visible in Figure 3-10). Therefore, it was possible to

use the integrated flash from the smart phone to assist in cases with low illumination.

The glare caused by the reflection of the flash on the surface of the target posed no

significant complications. Given the correct light conditions, a mean error of 0.0043

Kg was achieved (effectively 0). It is important to notice, however, that the error

ranges between ±100 grams, which is non negligible for newborn babies.

Figure 3-13: Scale Experiment Setup for Weight Measurement Validation
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Figure 3-14: Bland-Altman Plot that compares the manual measurement ℎ𝑚 of the
baby’s weight vs. the app measurement ℎ𝑎 for a feasible range of weights.

3.5 Measurement of Middle Upper Arm Circumfer-

ence

3.5.1 Design of AR Target

The MUAC measuring tape was modified to include an AR target surrounding the

measuring window, i.e. the slot through which the measurement is read. The band

was also modified to contain periodic rectangular patterns whose use will be explained

in section 3.5.2. The target is placed on the MUAC in such way that the "eyes" occupy

a small vertical space, and the "ears" are actually isolated from the main face of the

MUAC, and attached only through thin connections. This design choice is meant to

minimize the deformation of the target. The dimensions of the target are 2.4 × 9 cm

and the dimensions of the measuring window are 2 × 1.5 cm.
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Figure 3-15: Final version of MUAC AR Target

Figure 3-16: Final version of modified MUAC band

3.5.2 MUAC Algorithm

A fundamental part of the algorithm for the MUAC measurement calculation, is the

claim that the information contained by the top and bottom patterns that is visible

from the measuring window is enough to determine the number in the middle of the

window.

Absolute Location based on phase shift

Consider a segment of length 1, that has been divided in equally-sized segments of

length 𝑇1 and divided again (Figure 3-18 on the bottom and top, respectively) in

equally-sized segments of length 𝑇2, with

1 = 𝑛𝑇1 = (𝑛 + 1)𝑇2 (3.1)

for some 𝑛 ∈ N. Let’s also define a rising edge of 𝑇𝑖 as a transition from white to

black when the segment has been divided using the period 𝑇𝑖. We claim that, given a

window of the segment, with window length 𝑊 > 𝑇1

2
, it is possible to determine the

absolute position 𝑥 of the center of the window, in terms of the distances from 𝑥 to

the next rising edges of 𝑇1 and 𝑇2: 𝐿1 and 𝐿2 respectively and 𝑇1 and 𝑇2 which are,

of course, known.
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Figure 3-17: Baby MUAC App Instructions Screen (L) and Operation Screen (R)

Figure 3-18: Absolute Location based on phase shift — Definition

Notice that we are not guaranteed to get a rising edge in our window for both 𝑇1

and 𝑇2. Nevertheless, 𝑊 > 𝑇1

2
, we are guaranteed to get a transition for each of the

two divisions. If the transition is from white to black, we are all set: we have a rising

edge. However, if the transition is from black to white, we can still infer the position

of the next rising edge by adding half of its respective period.

Now, let’s observe that there is a pair of positive integers 𝑚1 and 𝑚2, such that 𝑥
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can be written as

𝑥 = 𝑚1𝑇1 − 𝐿1 = 𝑚2𝑇2 − 𝐿2 (3.2)

And plugging equation (3.1) into equation (3.2) we obtained

𝑚1𝑇1 − 𝐿1 = 𝑚2
𝑛

𝑛 + 1
𝑇1 − 𝐿2

𝑚1 −
𝑛

𝑛 + 1
𝑚2 =

𝐿1 − 𝐿2

𝑇1

(3.3)

Figure 3-19: Phase shift discontinuity schematic

To find the absolute location 𝑥 we now only need to solve for 𝑚1 or 𝑚2. We will

show that

𝑚1 = 𝑚2 − ∆ for ∆ ∈ {0, 1} (3.4)

In Figure 3-19, the sections for which ∆ = 1 have been highlighted in yellow, and

∆ = 0 for the rest. Now, observe that 𝑘 < 𝑛, 𝑘 ∈ N, 𝑘𝑇2 ≤ 𝑘𝑇1 < (𝑘 + 1)𝑇2, from

which we conclude that equation (3.4) is a trivial consequence.

Finally, we can solve for 𝑚1 based on two cases:

∙ Case 1: 𝑚1 = 𝑚2

First, we have that

𝑚1 = (𝑛 + 1) × 𝐿1 − 𝐿2

𝑇1

(3.5)

∙ Case 2: 𝑚1 = 𝑚2 − 1
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In this case, we have that

𝑚1 −
𝑛

𝑛 + 1
(𝑚1 + 1) =

𝐿1 − 𝐿2

𝑇1

𝑚1 = (𝑛 + 1) ×
(︁𝐿1 − 𝐿2

𝑇1

)︁
+ 𝑛 (3.6)

Practical Implementation

Figure 3-20: Close-up detail of the "head" of an earlier version of the MUAC band
which integrates the augmented reality target and optical linear code used to calculate
the position along the band.

The formulas from the previous section can be readily applied into the MUAC

calculation. As mentioned earlier, each of the long edges of the band contains periodic

black markings, which serve as a linear code. One edge has period 𝑇1 and the other

edge has period 𝑇2. In our current band design which can measure circumferences

from 4 to 25 cm, there are 𝑛1 = 7 periods 𝑇1 along one edge and there are 𝑛2 = 8

periods 𝑇2 along the other edge. The periods 𝑇1 and 𝑇2 were chosen so that the width

of the measurement window would be greater than both 𝑇1

2
and 𝑇2

2
.

In order to calculate circumference, the MUAC software focuses inside the mea-

surement window, and analyzes the phase difference between the black markings on

each edge of the band. Just like in the previous section, the value in the center of

the measuring window, in this case the circumference, can be found by applying the

Equations (3.2), (3.5) and (3.6).

The MUAC software tool (Figure 3-17), extracts a top and a bottom slices from

the ROI. For this discussion, the target in Figure 3-15, has been rotated 90∘ coun-

terclockwise to match the orientation of Figure 3-20. The larger dimension of these
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slices is equal to the larger dimension of the measuring window, and the heights (or

smaller dimensions) are both equal to a length that empirically spans the height of

the rectangular patterns (about 2.5 mm). To find the rising, the algorithm performs

a processing pipeline similar to the one explained in detail in section 3.4.2. The slices

of the ROI go through a bilateral, column averaging, and color thresholding to end up

with a pair of 1D arrays. The process then searches for edges by scanning the image

segment starting from the center and moving outwards one pixel at the time and de-

tecting abrupt changes in brightness, which are white-black or black-white transitions

in the thresholded image. If the rising edge is found to the left of the center, a full

period is added to infer the next rising edge. Alternatively, when a falling edge is

found, half a period is added.

At this point, the reader should not be convinced about the correctness of this

method, for an important consideration is still missing: the changing curvature of the

band. Since the MUAC band is not flat, but rather wrapped around a child’s arm,

an additional correction must be added to our algorithm to account for curvature.

If the radius of the circumference is 𝑟 and the observed distance is 𝑑𝑝, the corrected

distance 𝑑𝑐 can be obtained by the formula

𝑑𝑐 = 𝑟 × arcsin
(︁𝑑𝑝
𝑟

)︁

Figure 3-21: MUAC Curvature Correction

However, the radius is not fixed, it is actually dependent on the measurement

itself. This issue calls for an iterative algorithm which makes an initial estimate and
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enters a feedback loop until converging on a corrected value. Starting with an initial

circumference estimate of 15 cm, our correction step uses the measured distances

that are projected into the camera plane to correct the circumference value. This

new circumference estimate is then passed to the next iteration of the algorithm

which continues to iterate until the measurement converges to within 1mm.

3.5.3 MUAC Measurement Lab Validation

Figure 3-22: Bland-Altman Plot that compares the manual measurement ℎ𝑚 of the
baby’s MUAC vs. the app measurement ℎ𝑎 for a feasible range of circumferences.

The MUAC measurement tool was tested by manually adjusting and holding the

circumference of the band as shown in Figure 3-17(R). The MUAC value measured

by the mobile app was compared against the actual value, and the results are shown

in Figure 3-22.

Over the entire measurement range (8 cm — 25 cm), good agreement was found

between the measured and actual results, with mean error of 0.0122 cm. A few outlier
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points were observed in the lower end of the circumference range (< 10 cm), likely due

to the increased curvature of the AR target which distorts the geometric calculation.

For this tool, the integrated flash was turned always off to avoid specular reflec-

tions and glare that interfered with the measurement. Hence, as with the blanket

measurement, the lighting in the scene must be bright enough to allow for a good

distinction between dark and light zones in the band.
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Chapter 4

Community Health Worker Field

Study

Figure 4-1: ASHA workers during the field study

A field study was developed in conjunction with the Public Health Foundation of

India (PHFI), which implements much of the training for ASHA workers. Since the

ASHA health worker program is a government program, we obtained approval from

the Delhi State Health Mission to conduct a pilot study with 13 ASHA workers in
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the New Delhi slums using our technology. The study took place between the months

of April and September of 2017, on which the ASHA workers were introduced to our

kit of mHealth tools and were asked to include the use of our kit in addition to their

normal routine.

This study was sponsored by the generous support of the TATA Trusts and the

MIT Tata Center.

4.1 Motivation and Study Aims

With the rapid growth of mHealth tools in the developing world, it seems like the

natural step to put our tools in the hands of CHWs right away. However, before any

large deployment it was important to show the tools as a proof of concept to establish

the feasibility of their potential. The original sole and main aim of the study was

measure the user acceptance of our kit within ASHA workers and also to explore

the feasibility of using mHealth tools as a job aid for ASHAs and its field validation.

However, as early as the first days of training, the high variability of the scenes during

operation proved the study to be a very adequate setting for validation of our tools

and algorithms in real life field conditions.

The study also served as means to observe how ASHAs adjusted to mHealth Apps

at their own pace in their daily work flows, so that influential factors in the adjustment

could be taken into consideration for a more sustainable scale-up model.

We can summarize the objectives of the study as follows:

∙ To assess the feasibility and the ease of use of MHTs as a job aid for ASHAs as

they perform their daily duties in their usual resource-constrained settings.

∙ To validate and improve our algorithms and the design of our hardware, e.g.

AR targets, blanket material, scale’s sticker, MUAC material.

∙ To visualize, understand and relate the geographic and demographic distribu-

tion of the families of the study back to the results from the assessment from

our kit.
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4.2 Mobile App Design: Baby Naaapp

Figure 4-2: Screenshots of Baby Naapp Workflow

To facilitate data collection during the study, a master app was developed and was

given the name Baby Naapp, as an allusion to the Hindi word "naap" which means

"measurement". The purpose of Baby Naapp was to

∙ Create a centralized hub to easily create and retrieve baby and family profiles

∙ Provide a checklist and summary of the measurements that ASHA workers

had to perform, allowing them to call each individual measurement from Baby

Naapp itself

∙ Compile and organize the data from each measurement in convenient way for

analysis, while at the same time appending information about timings of the

usage of the tools and GPS coordinates.

The app was developed on Android 6, using a Samsung Galaxy J7 (J710MN) from

2016. For this reason, the J7 was our phone of choice for the study.

4.2.1 Personal Profiles + Demographic Data

With Baby Naapp we introduce the concept of profiles that can be shared by different

apps in our lab. The details of the implementation of such framework can be found
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in section 6.2. The profile questions were divided into two groups: first, the basic

profile questions, which contained the child and mother information — and second,

the additional profile questions, which would provide us with insightful information

about the socioeconomic status of the baby and its family.

Only the Basic Profile 1 Questions were mandatory as they where necessary to

perform and analyze the measurements. The questions from the Basic Profile were

simple enough for the ASHA workers to understand them in English. However, for

the more detailed additional questions, translations in Hindi were presented. The

list of all the questions can be found in Table 4.1 and the screens that contained the

translated screens can be seen on Figure 4-3

Table 4.1: Profile Questions
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Figure 4-3: Screenshots of Additional Profile Questions in Hindi

4.2.2 Anthropometric Measurements

The AR Anthropometric Measurement apps that were described in detail in chapter

3 were on of the most crucial components of the study. For the Scale (Weight) and

MUAC apps, an additional screen was added to enter the measurement that the ASHA

would normally record in the absence of mHealth tools. Their manual measurement

served as a comparison reference for the measurements automatically recorded by our

tools. For the Blanket (Length) app, there was no comparison, since ASHA workers

generally do not carry interferometers to perform a manual measurement.

The summary screen on Baby Naapp provided ASHAs with a list of the measure-

ments included in this study. For the anthropometric measurements, two buttons are

present next to the name of the tool. When pressing the first button, Baby Naapp

automatically passes the baby information to the measurement app, and starts the

measurement activity. Upon the completion of the app and manual measurements,

the measurement app returns to Baby Naapp. The button is then highlighted with a

green tint and the value of the manual measurement (or the app measurement if the
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manual is not present) is written on its body. The second button is enabled and the

ASHA worker repeats the process for a second time. This interaction result is shown

in the two leftmost screenshots of Figure 4-2.

In order to avoid biased data in the results, the ASHAs were never presented with

the value of the automatic measurement. Instead, they are only informed that the

measurement was ready to be saved by a "Ready" message on the top of the screen,

as well as the operation button changing from a grayed-out X to a green tinted check

mark.

The ASHA workers were instructed to perform the length and weight measure-

ments on new born babies only (younger than 6 months old), whereas the MUAC

measurement made sense only for older children (2 up to 5 years-old).

4.2.3 Physiological Measurements

The study also served as the perfect environment to introduce early stage physiological

tools that could be used in the future to screen for disease or abnormalities. While

the measurements performed by these tools were no overly complex, they granted us

important impressions on how ASHA workers and families would adapt to these more

"advanced" tools.

Thermal Assessment

A custom mobile app was created that enables the health worker to quickly capture

a thermal image of the infant that is lying in supine position. We made use of a

commercial USB thermal imaging module designed for use with mobile phones. For

guiding the health worker, a silhouette of a child’s body is superimposed on the

thermal imaging screen, and the health worker was instructed to make sure that the

baby’s head is aligned with the silhouette. This helps ensure that the infant will be

centered in the image and that the distance to the infant will be consistent (Figure

4-4). Applications of thermal analysis in global health and a more advance thermal

tool are explored in sections 5.3 and 5.4
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Figure 4-4: Baby Thermal App Instructions Screen (L) and Operation Screen display-
ing how the head of the baby has been aligned with the head of the baby silhouette
(R).

Cardiac Assessment

Figure 4-5: Photo of custom PPG device connected to Android phone (L). PPG
device being applied to baby foot in a field study (R).

Cardiac assessment is fundamentally important for newborns and infants. Pho-
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toplethysmography (PPG) and pulse oximetry are standard tools for pediatric care

[19] and the value of PPG devices has been demonstrated in global health [20] for

congenital abnormalities [21] and screening for sepsis and infectious diseases [22].

We developed a custom PPG device (Figure 4-5), for use with Android phones,

which contains 3 different illumination wavelengths and is capable of measuring both

reflected and transmitted light from a baby’s foot. The device was developed as part

of a mechanism to measure arterial stiffness using pulse wave velocity (PWV). Three

PPG clip-on probes were used, one on the toe, one on the finger, and one on the

ear. These devices do not require batteries and plug into the USB port on the phone.

For the ASHA study, an adaptable custom probe was also designed so it could be

wrapped around a neonate’s foot as well as an older child’s finger. While this tool has

many potential applications, for the purpose of the current study, we have initially

implemented only heart rate and heart rate variability for field use. The design,

manufacturing, operation, and analysis of the PPG device are examined in detail in

[23].

Figure 4-6: Baby Naapp and the ASHA Kit Icons
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4.3 Field Study Design and Methods

4.3.1 Participants and Location

The subjects of the study were 13 ASHA workers whose ages ranged between 34 and

52 years. They covered a total population of approximately 28000 people around dif-

ferent areas of were working in different areas of Juanapur Village, which is situated

in the South District of Delhi. Their educational qualifications ranged from seventh

grade to graduation and their work experience as CHWs ranged between 2 and 11

years. The majority of the ASHAs did not have any prior experience of using smart-

phones, but they were all enthusiastic to participate in the adoption of mHealth tools.

For their participation in the study, all the ASHAs were remunerated via incentives

that were arranged by PHFI.

4.3.2 Training and Data Collection

Training at the Juanapur Delhi Government Dispensary

Figure 4-7: Picture Dr. Suparna leading the training Session Day 1

The 13 ASHA workers received a two day training on how to properly use Baby

Naapp and each of the mHealth tools. It took place on the 22nd and 23rd of May,
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2017 at the Delhi Government Dispensary in Juanapur and it served to kick-start the

study. It was led by doctor Suparna Ghosh-Jerath, a nutrition expert from the PHFI

and Indian Institute of Public Health and the principal investigator on the Indian

team.

The first session served as a reinforcement on the importance of the CHWs work to

tackle the problems of mother and children’s health and as a reminder and retraining

on the proper way of collecting their routine measurements. The ASHAs also received

a comprehensive training on the smartphone, its components and its software. For the

last part of the first day, Baby Naapp and the anthropometric tools were introduced

and their relationship pointed back to the undernourishment assessment. A short

hands-on session was conducted at the end on which the ASHAs were instructed on

how to use the Blanket and Scale apps to measure length and weight.

The second session was mostly hands-on, devoting the whole day on teaching the

ASHAs the proper techniques to use the tools, such as the correct alignment of the

babies in the blanket and tricks to help the algorithms converge the correct answer

faster. As mentioned earlier, the ASHA were not discouraged by the slightly steep

learning curve of introducing mHealth tools in their routine. Instead, they were rather

excited and eager to learn and adapt to the use of new technologies.

Development of study and Data Collection

From the end of May until the end of September 2017, the ASHAs included the

mHealth tools in their routine. Each of them was given a Samsung Galaxy J7, which

contained a pre-selected hard-coded ASHA ID from 1 to 13. They all used the same

phone as a way of reducing difficulty of learning different user interfaces, and as a

way of guaranteeing that measurements were collected with a standardized tool.

During the first month, a handholding period was held. During such period, the

ASHA workers made their visits in the company of two researchers from PHFI, who

mentored them and and assisted them in learning the proper technique and correcting

any errors while using our mHealth tools. As some ASHAs grew more confident and

proficient on the tools, the PHFI researchers used their judgment to dedicate their
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Figure 4-8: Pictures of Hands-On Training Session — On the left, the ASHAs are
learning how to use the blanket tool and on the right, the ASHA are being shown
how to use the MUAC tool.

Figure 4-9: Pictures of Visit with ASHA Worker — On the left the ASHA is taking
the weight measurement, and on the right she is taking the length measurement.

time and resources with the ASHAs who were slower learners.

The PHFI researchers also stayed in constant contact with the technical team

and based on their observations and conversations with the ASHA workers, valuable

feedback was incorporated into the updates of the different tools. The timeline and

nature of this updates is discussed in section 4.4.2.
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Data Handling and Aggregation

Figure 4-10: Picture of hotspot set up used to upload data to a remote server

In general, ASHA were not given a SIM card, and were asked not to use one.

While one of the goals of the study was to allow ASHAs to get familiarized with the

smartphone technology, it was also important to prevent the integrity of the collected

information and the resources of the phone from viruses and spam data. The ASHAs

were asked to inform the team of any apps that they would like to download, and

they were encouraged to tinker with different apps in the phone.

For this reason, no cellular data was used. Instead, two battery powered Wi-Fi

hotspots were set up at the government dispensary, with 8-hour battery life –âĂŞ

and they were automatically charged using a simple mechanical timer. Whenever

the ASHA workers returned to the government dispensary, they were ask to push a

button so that the data would be automatically uploaded to the remote server.

4.4 Study Results

4.4.1 Demographic Survey Results

As expected, the population that the ASHAs visited was mainly comprised of families

in the lower end of the socioeconomic status. They measured 761 different babies in

1066 visits . Of these babies, 398 were boys and 363 were girls. Interestingly, 524
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babies were visited or measured only once.

Figure 4-11: Pie Chart of Gender of Babies

Mean 90.31 Younger than 10 229
Median 74.60 Between 10 and 52 94
Quartile 1 3 Between 52 and 156 233
Quartile 3 160 Older than 156 205

Table 4.2: Distribution of Babies’ ages in Weeks

The distribution of the ages of the babies during their first visit, as shown on

Table 4.2 and Figure 4-12, has the particularity that a large quantity of babies were

measured before they turned 10 weeks old. This feature is to be expected, as the

ASHA manual [24] instructs them to provide close and frequent follow-ups to new-

borns on the days 3, 7,14, 21, 28 and 42 after the baby is born (also on the 1st day

for home delivery cases).

The mother info also shows a skew on the lower end of the age range. While 342

profiles were not filled up (or in some cases filled incorrectly, e.g. 5 year-old mothers),

43% of the respondents mothers were younger than 25 years-old. The distribution of

the ages can be seen in Table 4.3.

The results of the additional profile questions agreed with expectations of the

socioeconomic information from families in the lower socioeconomic status. 59% of

mothers had been diagnosed with anemia within the 2 years before the study, 68%

of families were below the poverty line and had a National Food Security Card, 34%
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Figure 4-12: Histogram of Babies’ Ages in Weeks

Mean 26.37 Younger than 25 181
Median 25.65 Between 25 and 30 157
Quartile 1 23.02 Between 20 and 35 60
Quartile 3 29 Older than 35 21

No Info 342

Table 4.3: Distribution of Mothers’ Ages in Years
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Table 4.4: Results of the Additional Profile Questions

Figure 4-13: Pie Charts of the Additional Profile Results

of the households were exclusively vegetarian and 68% were cooking with biomass

stove in their houses. The details behind these percentages are shown in Table 4.4
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and Figure 4-13.

4.4.2 Software Updates and Design Iterations

During the the duration of the study, the technical team responded promptly to

the complications and challenges that were observed during the visits. In this way,

updates were pushed accordingly. In this section we explore the motivation behind

and the timeline of such updates.

Figure 4-14: Timeline for introduction of updates

Length Measurement

In the initial stages of design, the AR target for the blanket was very simple and

uninspiring. In the spirit of creating tool that was more relatable to mother and

children, an Indian animal-inspired design was implemented. By this choice, not

only the aesthetic aspect of the blanket was improved, but because of the additional

randomness in the animal shapes, also the quality of the AR target was significantly

increased. The evolution of the target can be observed in Figure 4-15.

During the study, the first problem that arised was that the ASHAs and the

mothers were having trouble understanding the correct alignment of the baby in the

blanket. Secondly, the space in the houses was very limited and at times the ASHA

was not able to find a flat area large enough to extend the blanket. For these reason

blue horizontal guide lines were added to the blanket, and its size was reduced to the

dimensions presented in section 3.3.1. While such size reduction represented also a

reduction in the range of ages the could be measured, it allowed for the ASHAs to

meet the space constraints of many households.
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Figure 4-15: Evolution of the Blanket Tool

Weight Measurement

The Scale was the most challenging tool for the ASHAs and the one that took us

the most time to correct accordingly. The original design of the scale AR target was

a flat sticker, a flat image target. Also animal inspired, it started as a small single

tiger face. However, because the shape scale is cylindrical, we tried to overcome the

incongruence by creating a target that was long and thin, extending the tiger face

and adding a little bit of its body. Nevertheless, the curvature of the target caused

tracking to be unstable and difficult to achieve.

During lab testing, this fact was not a terrible problem, but for the ASHAs in the

field it was the most frustrating tool. For it to function properly, they had to focus

the camera very close to the sticker and slowly move the phone back to be able to
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capture the whole frame in the phone screen. This process added to the inexperience

of the mother as an aid, cause extended delays and discomfort for the ASHAs and the

mothers who had to stay in uncomfortable physical positions while trying to make

the measurement converge. The resources were exhausted for the flat target, since

increasing its height would cause the ASHAs to have to bring the phone even farther

away to capture the reading, while increasing the overall size of the target would

generate more problems to preserve the automatic tracking.

A different approach had to be taken and we started exploring the possibility of

using an cylindrical target which would indeed be more appropriate for the scale.

The cylindrical target extended the flat target by adding an additional tiger on the

diametrically opposite side of the first one and by increasing the randomness of the

tiger markings. With such change, the tracking became extremely reliable, but a

white sticker had to be added around the measuring region so that measurements

could be capture in 360∘ along the axis of the scale.

The evolution of the scale AR target can be seen on Figure 4-16 and the last two

versions of the scale can be seen on Figure 4-17.

Figure 4-16: Evolution of the AR Sticker for Scale
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Figure 4-17: Final two stages of the Scale Tool

MUAC Measurement

The nature of the MUAC and its not fixed curvature was also problematic. Because

of this, we tried create a target that spanned in the direction of no curvature and

minimized the content in the direction on which the band curves. The original AR

design was a pair of eyes, eyelashes and eyebrows. To accommodate this target, a

large MUAC head was included, but this addition came with usability problems. The

larger head was difficult to wrap around children’s arm. Therefore, an update was

made in which the head of the MUAC was reduced.

On the software side, we included first some semi-transparent images of the eyes

AR target, that stayed constant on the screen of the phone when the camera was

tracking. The idea behind these eyes was to provide guidance on the optimal distance

and orientation to track the AR target and get the measurement. However, the

natural tendency of all users was to try to perfectly align the super-imposed eyes with

the physical target. This interaction defies the purpose of using automatic tracking,
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Figure 4-18: Pictures of MUAC Design Attempt with Flat Target

Figure 4-19: Evolution of the MUAC Tool

by going back to putting work on the hands of the user for alignment, and therefore

the semi-transparent feature was discarded in the first update as well.

In an attempt reduce the effects of the curvature problem, a couple of designs

were explore. The first attempt, shown in Figure 4-18, was to completely eliminate

the curvature problem by appending a piece of stiff cardboard that would contain the

target, and would be attached to the band only by a thin line. In this way, the target
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size was no longer constrained and the band could freely wrap without deforming

the target. The solution was very attractive, but not very practical: the cardboard

casted shadows on the band that were interfering with the measurement. Since the

camera illumination would also interfere with the measurement by causing unwanted

glare, this design was discarded and never put in the field.

The final version of the MUAC one was the one shown earlier in Figure 3-16 and

can also be seen in the evolution of the MUAC band in Figure 4-19.

4.4.3 Analysis of Measurements

Anthropometric Measurements

We performed two types of analysis for the anthropometric measurements. For the

first one, we compare the two automatic measurements with each other, analyzing

the absolute value of their difference. This was applied to the three types of mea-

surements. For the second, we compare the automatic measurement with the manual

measurement entered by the ASHA, and analyzing the error between the 2, assuming

that the manual measurement is the correct value.

For this purposes, box plots were generated to visualize the distributions of the

differences. The data for each measurement was filtered from outliers by comparing

each data point to the guidelines provided by WHO [25]. When a data point was not

within 4 standard deviations of the mean, it was ignored from the analysis. The plots

can be found in figs. 4-20 to 4-22. The means, medians, 25th and 75th percentiles

were also extracted and are shown in table 4.5.

Table 4.5: Distribution of measurements

While in general we found good agreement within automatic and manual mea-
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surements, it is important to note that the widespread distribution of the error is far

from perfect and not suitable for a massive deployment yet.

Figure 4-20: Box Plot of length measurement reproducibility, defined as the absolute
difference of consecutive app measurements 𝐿1 and 𝐿2

Figure 4-21: (left) Box Plot of Weight Measurement error, defined the difference
between the automated measurement, 𝑊𝐴, and the manual measurement, 𝑊𝑀 ; (right)
Box Plot of weight measurement reproducibility, defined as the absolute difference of
consecutive app measurements 𝑊1 and 𝑊2
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Figure 4-22: (left) Box Plot of MUAC Measurement error, defined the difference be-
tween the automated measurement, 𝑀𝐴, and the manual measurement, 𝑀𝑀 ; (right)
Box Plot of weight measurement reproducibility, defined as the absolute difference of
consecutive app measurements 𝑀1 and 𝑀2

Timing

We collected the time that it took each ASHA to perform every single measure-

ment. The stopwatch started when the ASHA clicks the measurement button in Baby

Naapp, and stopped once the measurement had returned to the summary screen. The

expectation for such metric was to verify that once ASHAs became comfortable with

the smartphone and the mHealth tools, the effort and time for each measurement

would decrease. We were able to verify this hypothesis, by compiling all the timings

for each ASHA and fitting an exponential on the data set. Figure 4-23 shows the

example of ASHA 8, who has a typical distribution of timings shown as scattered

points in blue, while the exponential has been fitted in red. Figures 4-24, 4-25 and

4-26 compile and superimpose the learning curves for each ASHA. The was majority

of the curves decay over time, while only few behave in the opposite manner. The

MUAC measurement had the least steep slope, while the blanket tool was the one

with the most improvement. An interesting observation is that ASHA 3 was the

slowest learner for all the tools, while ASHA 6 was always the fastest. One can hy-

pothesize that prior experience with a smartphone might have played an important

role in such behavior.
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Figure 4-23: Example of Timing Evolution for ASHA worker collecting the weight
measurement

Figure 4-24: Timing Evolution of Length Measurements for all ASHA Workers

Mapping

The development of a mapping interface that displays all the places where measure-

ments happened is in progress in conjunction with undergrad student Jiayu (Jenny)

Xue. This project uses the GPS coordinates collected during each measurement to
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Figure 4-25: Timing Evolution of Weight Measurements for all ASHA Workers

Figure 4-26: Timing Evolution of MUAC Measurements for all ASHA Workers

show the spatial distribution of the areas that ASHAs had to cover. It displays the

number of children that were visited in a particular neighborhood, and it indicates

whether or not there are malnourished children in that neighborhood. An important

takeover from this experiment was that ASHAs learn how to turn off location services

and since there was no enforcement or requirement of enabling location services in

79



Baby Naapp, they inadvertently obscured some of the location information. For cases

in which the location was not available, the map tool tries to see if the same baby had

another measurement, either before or after, on which the location was available, and

if there is, it reuses that location. If there are no other visits, or if there is no location

available for any of the visits, the measurement is defaulted to the Delhi Government

Dispensary.

The government of India showed great interest in such tools, as one of its possible

applications is to target specialized interventions based on the spatial distribution of

malnutrition and other afflictions. A preliminary version of the tool can be seen in

Figure 4-27.

Figure 4-27: Map displaying the areas on which measurements and visits were made
during the study

4.4.4 Feedback From Focus Groups

Two focus groups were conducted after the initial training. One July 8th and the

second one on September 9th. The sessions were used to have open conversations

with the ASHAs, answer their questions and listen to their suggestions. The meeting
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also served occasions for rolling out updates of the apps, and for verifying that the

data on the phones was synchronized with the data on the server.

The main topics discussed in the focus sessions can be summarized in the following

points:

∙ They expressed their discomfort with the initial version of the scale app and

the difficulties because of the size of the blanket.

∙ They were worried about using the phone for personal uses, such as taking

pictures of their children.

∙ Some ASHAs shared clever ways in which they had used the smartphones: One

used the camera to document a share a record with her superior.

∙ They shared that many parents were excited with the new technology: "We

are feeling good. . . Until now all the parents who would otherwise take their

newborns to a private facility, have become interested and have started allowing

us to take their children’s measurement. This has increased our credibility. We

have gained their trust."

∙ They expressed their interest in having similar tools for maternal health.

∙ They were asked about the difficulties and the learning curve of using mHealth

tools.

∙ They discussed how they feel about being an ASHA in general.

4.5 Discussion

4.5.1 Challenges and Limitations

We have already discussed the challenges of dealing with curved surfaces, especially

when the curvature of such surfaces is not fixed. Another general limitation lies, not

only on the pixel resolution of the camera itself, but also on the different unpredictable
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processing steps that phone companies do to "improve" the quality of their screens.

While such steps are probably pleasant for the consumer, from the point of view of

using the camera to capture a real scene to information, the less processing and the

more raw of an image we can obtain, the better.

Vuforia posses some limitations as well. It takes control of the camera resource

and camera preview, allowing us to interact with them only via its interface. It is to

be explored if in the premium version, the developer is given more liberties over the

source code or more faculties to control the camera.

Of course, the resource-constrained nature of the tools bring additional external

challenges, starting from dark and small rooms on which our tools may not operate

reliably, unforgiving weather conditions that can endanger the integrity of the elec-

tronics of the cellphone, deform or stain the blanket or even melt the sticker on the

scale.

Another recurrent challenge and a already established pain point is the lack of

connectivity in rural areas. If we want to automatically sync and host the data of

the phones into a server, a significant amount of work needs to be done to guarantee

that in such conditions with limited or intermittent connectivity, data sharing can be

achieved reliably without compromising the integrity of the information.

Finally, the large variability of Android phones in the market prevents us from

guaranteeing that our apps will perform flawlessly in their system.

4.5.2 Future Improvements

Each of the anthropometric tools needs to be improved before they can be massively

deployed into the developing world. If the solution to the problems that were discussed

in the past two chapters were known by the author of this work, they would already

be implemented and presented. However, there are some ideas of refinements that

can be made and they shall be discussed.

For the Blanket app, additional pieces of hardware need to be added to hold the

feet and the head of the baby. Such pieces could have additional targets to lock an

accurate reading of the length. The software can also be improved. The simple blob
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detection that it performs now is not enough to handle non ideal scenes. A better

algorithm can be develop to understand the shape and the color of the baby.

The scale has seen a great improvement by transitioning to the cylindrical target.

However, more work can be done. The unpredictable auto white-balance and dynamic

range algorithms that are performed by the phones sometimes confuse the tracking

algorithm that is trying to differentiate between light and dark. Again, the use of an

additional target would be ideal in this scenario. Estimating the distance between

two targets seems more reliable than differentiating between black and white in an

environment on which such concepts are relative.

Also the MUAC needs to have reinforcement in its algorithm. The measurement

is vulnerable to noise by the slightest rotation of the band or the phone, and even

by the shadows than can be naturally casted on it. The phase based algorithm is a

good base to create an educated guess, but a viable options to solve this problem is to

reinforce it: OCR, Color recognition, spatial gradient analysis are just some examples

of techniques that could improve the MUAC algorithm.

Finally, to move forward there is a deep need into gaining control over the resources

of the phone. Whether it is the camera itself, or the freedom of managing memory,

the addition of more complex algorithms will require the developer to have the ability

to write code natively.
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Figure 4-28: All the ASHAs and researchers captured right after the first focus group
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Chapter 5

Using Machine Vision for

Physiological Measurements

5.1 Motivation

According to the Merriam-Webster dictionary, physiology is "a branch of biology that

deals with the functions and activities of life or of living matter (such as organs, tis-

sues, or cells) and of the physical and chemical phenomena involved" [26]. Hence, is

not possible to perform a complete health assessment without collecting and under-

standing physiological measurements. As a matter of fact, an article published in the

Science Translational Medicine Magazine [27] established a causal relationship be-

tween early physiological responses to predict later illness severity and even mortality

in infants.

Examples of physiological measurements include heart rate, respiration rate, blood

sugar levels, red blood cell count, oxygen saturation, etc. What these measurements

have in common is that the gold standard for their assessment involves expensive

laboratory analysis machines, and invasive or direct contact methods of collection.

Arguably, the holy grail of physiological measurements in the developing world lies

in developing inexpensive, contactless sensors that can extract the same information

with minimal quality degradation. In this context, a natural expansion from our work

measuring anthropometry with the camera is to develop more advanced tools that
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can understand subtle changes in the shape, the color, or the movements of a person

in the camera frame to extract information about its physiology.

5.2 Some Examples of Prior Work

A lot of work has been done to explore the area of contactless physiological measure-

ments. A method called Eulerian Video Magnification (EVM) [28], was developed

here at CSAIL. It makes use of small temporal changes in the frames of a video that

are imperceptible to the naked eye, to extract, amplify and reveal information hidden

in such variations. With this method, researchers were able to display blood flow into

the face as well as amplified range of motion during the respiration of a baby, and

measure heart and respiration rate. The method has been used as the underlying

process for implementations in different devices such as the Microsoft Kinnect [29],

to explore and advance the area of contactless heart rate detection. Unfortunately,

as with video plethysmography, the technique is fundamentally limited to a mounted

fixed camera.

Color analysis and colorimetry are also important techniques used to measure

physiology. In section 2.1, we showed a concrete example [9] of this technique, that

compares different tonalities of red to estimate hemoglobin levels and detect anemia.

Color analysis can also be used to estimate the heart rate and heart rate variability:

Our group developed a simple tool that is able to capture a PPG signal by using the

flash as the light source and the camera as the optical sensor [23]. The Ubiquitous

Computing Lab (ubicomplab) at the University of Washington has also done extensive

research on this method, using it to extract hemoglobin levels in [30] and [31]; and

combining it with the accelerometer to extract blood pressure [32]. ubicomplab has

also explored machine vision techniques to screen for jaundice ([33] and [34]), brain

injury [35], and intraocular pressure [36].

The work that certainly served not only as inspiration, but also as a code base for

the thermal breath analysis work exposed in section 5.4, was the implementation of a

smartphone video plethysmography method described in [8]. While for that particular
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project physiological measurements were unfeasible for non-static persons because of

the low signal-to-noise ratio on moving scenes, in the case of respiration rate thermal

analysis, lower frequencies allow for the scene to be accommodated in order to always

obtain strong breathing signals. Thermal imaging and its applications are explored

in the following sections.

5.3 Applications of Thermal Imaging

So far, we have only explored the uses of machine vision in the visible light spectrum,

but the infrared (IR) spectrum contains information that can be as rich and at times

invisible to the naked eye. Since most of the thermal radiation emitted by objects near

room temperature is infrared, IR imaging provides us with an array of temperatures

that can be thought of as a different color representation of an image that contains

vast amounts of new information. For these reason, we decided to expand our work

into the IR region.

5.3.1 Screening for infections in babies

In a newborn baby, many regulatory systems begin to function outside of the mother’s

womb. One of these is the baby’s own mechanism for regulating its temperature. The

thermal regulation of a neonate is critical for survival and its measurement can be

an indicator of pathophysiology [37]. This is quite difficult for a baby, since it has a

small mass and small amount of blood. Studying the thermal regulation of a newborn

provides important information regarding the health of a baby as well as it’s maturity.

For example, measuring the temperature of the baby’s limbs compared to its core

temperature is an indication of how well a child is able to regulate its temperature.

Thermal analysis is also a useful indicator for infection, circulatory shock and sepsis

[38], or pneumonia [39] — with each of these having its own signature.
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5.3.2 Screening for pulmonary diseases

A study published in the BMJ Open Journal showed a proof of concept that explored

the potential of thermal imaging as a valid, innovative and inexpensive technology for

diagnosing bacterial pneumonia [40]. The study analyzed the similarity of chest X-ray

and thermal imaging on patients that presented focal pneumonia. It concluded that

thermal imaging can detect pneumonia with high sensitivity and negative predictive

value in a consistent way with the X-Ray method.

Figure 5-1: Example pictures collected with the thermal tool. The thermal image
has a superimposed semitransparent torso silhouette to demonstrate how the image
looks when it is being captured

With such capabilities, our group is also interested on developing a thermal screen-

ing tool that can detect a localized infection, such as tuberculosis. For this purpose,

our group has partnered with the Chest Research Foundation (CRF) in India and we

have developed a data collection tool that uses a USB thermal module that plugs into

the smartphone (For details on the thermal module, refer to 5.4.1). The app collects

both, the visible and the thermal image (as seen in Figure 5-1), and provides the

clinician with a workflow to collect images of the patient from 8 different positions:

posterior, left side, anterior and right side, all of them with an exhale and inhale

variation. To guide the clinician’s process on capturing a thermal images, different

semitransparent silhouettes (Figure 5-2) are superimposed on the thermal camera
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preview and instructions are displayed in each step of the process.

Figure 5-2: Images of the silhouette filters used to guide the clinician’s process on
capturing a thermal image

5.4 Use of Thermal Imaging For Breath Monitoring:

A Lab Study

Measurement of human breathing is a fundamental component of clinical diagnosis

and disease screening. Breath rate and breath rate variability are important param-

eters that can be used to help diagnose and monitor a variety of disease conditions

including pneumonia and chronic obstructive pulmonary disease, and can also be used

as part of mental health assessment as an indicator of stress or relaxation. The abil-

ity to perform non-contact assessment of breathing is particularly useful for health

screening of infants and neonates, very old frail patients, or patients with infectious

diseases, where it is not practical or advisable to use any device that attaches to the

patient.

We are developing a mobile app that uses thermal imaging and machine vision to

automatically measure respiration rate (RR) and respiration rate variability (RRV).

The airflow generates measurable fluctuations of temperature in the nostrils and in

between the nose and the mouth. While other groups have demonstrated the use of
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thermal imaging to measure the respiration [41], our approach utilizes low cost, low

resolution camera to account for resource-constrained environments, and explores a

variety of configurations to maximize the signal strength.

We have partnered with the Swamy Vivekananda Yoga Anusandhana Samsthana

University (S-VYASA) in Bangalore, India, to explore the possibilities and limitations

of the technology applied to contexts of global health and, in particular, yoga. A

preliminary study was conducted and its details will be discussed in the following

sections.

5.4.1 The Thermal Module

For implementation, we made use of a commercial USB thermal imaging module

designed for use with mobile phones (Seek Thermal Compact), which has a pixel

resolution of 206x156 and an advertised frame rate of about 9 Hz (Figure 5-3).

Figure 5-3: Thermal camera module used with thermal apps

To understand the actual behavior of the camera we generated plot 5-4, which

contains the horizontal axis the elapsed time, and on the vertical axis the number of

frames that have become available. They are divided by the average frame rate to

illustrate how, for a constant sampling frequency, the plot would follow the line 𝑦 = 𝑥

in red, but since the sampling is not constant and it stalls periodically, the actual

plot, in blue, deviates from that of a constant sampling frequency.

For development we use the development SDK Seekware, which was provided by

the manufacturer of the thermal module. The SDK provides sufficient functionality

such as absolute temperature arrays for every frame and a variety of color mapping

from infrared to create images in pseudo colors.
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Figure 5-4: Frames Available vs. Time plot. In red the 𝑦 = 𝑥 plot, and in blue the
frames signal.

5.4.2 Thermal Breath Analyzer Mobile App

The prototype app was developed for Android 7.0. It identifies a ROI containing the

nostrils, and samples the absolute temperatures of a Gaussian-weighted neighborhood

around each individual nostril. The sums of those neighborhoods are passed into the

signal processing pipeline described in section 5.4.3. The filtered signals are displayed

on the top of the screen (as seen on Figure 5-5) and the respiration and the respiration

rate may be extracted, by means of Fourier analysis or peak finding.

The goal is to evolve this prototype into a variety of tools. One can result into a

coach that can assist users into proper breathing and relaxation. Another one is the

use of the tools as health assessment means to capture RR and RRV.

5.4.3 Signal Processing Pipeline

The signal processing pipeline of the app can be summarized in the following steps:
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Figure 5-5: Layout of the Thermal Breath Analyzer App

1. Detection of ROI

2. Extraction of temperature neighborhood values (in float which is the data type

provided by the Seekware SDK)

3. Conversion to integer type arrays (for efficiency reasons)

4. Calculation of the sums of temperature values over the left and right nostrils

neighborhoods

5. Time Series Generation that includes resampling to an empirically chosen mean

frame rate

6. Application of FIR Low-pass filter with a cutoff frequency higher than normal

respiration rates

7. Time Derivate Calculation using the 5 point rule
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Since the temperatures of the ROIs fluctuate based on inhalation and exhalation, we

predict that the time derivative of the temperature signals can approximate air flow

rates and calculate timing parameters.

5.4.4 Data Collection and Preliminary Analysis

Figure 5-6: Pictures of the positions that were explored for the Thermal Breath
Analysis app

Table 5.1: Respiration Rate Estimates

Our device was tested with eleven human subjects in a clinic and validated against

a gold-standard piezo-electric respiration chest belt, that responds linearly to changes
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in length, and for three intensities of breathing (normal breathing, shallow breathing,

and deep breathing) as well as two different position of the head: camera straight

ahead or "mirror position", camera slightly below or "book position" (20-degree an-

gle). The mirror position simulates the position of a user looking themselves at the

mirror. It generates a noisier signal than that of the book position, but the configura-

tion feels more natural for the user. On the other hand, the book position simulates

the position of the user reading a book. It generates a stronger signal since the camera

is looking at the nostrils from a more direct angle. The shortcoming of this position

is that ideally, the user needs to keep his head straight and resist the temptation of

bending his neck to look at the thermal image. Pictures of both configurations can

be found in Figure 5-6.

With the thermal camera placed in the book position, the results from the mobile

phone tool had good agreement with the clinical device, with preliminary trivial

Fourier analysis resulting in mean absolute errors of 0.64, 3.81, 7.46, 1.99 bpm, for

normal, deep, fast, and shallow breathing, respectively. The estimated rates can be

found on table 5.1.

An example of different representations of the same temperature signal is presented

in the plots of Figure 5-7. For time series of normal breathing, it is possible to obtain

clean signals with well defined peaks, whereas for the Fourier domain, the dominant

frequency is usually that of the respiration rate.

5.4.5 Face Tracking and Detection of Region of Interest

Naturally, the book position was chosen to develop the automatic detection of the

region of interest. For the initial detection of the face, we incorporated OpenCV

into our mobile app and used their pipeline [42] to train a HAAR Cascade that

can recognize faces in the infrared spectrum, from the book position orientation.

Examples of the positive images used for training can be seen in Figure 5-8. For

detection, we used the Viola—Jones [43] and [44] object detection framework that is

also built-in the OpenCV Android SDK.

Since the resolution of thermal camera is not too high, we were able to complete
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Figure 5-7: Plots of different of temperature signals. On the top, the raw and filtered
temperature signals. On the bottom left, the time derivative of the top plot. On the
bottom right, the Fourier representation of a temperature signal

8 stage training with 200 positive images and 610 negative images. The face tracking

works reliably for static faces, but it can be improved by adding some persistence of

the tracking based on the assumption of slow movements.

It is important to note that the OpenCV tracking takes place in the color mapped

image and not on the thermal array. We have chosen the particular color mapping

that is shown in the example training photos, because it provides a very good repre-

sentation of the features that were are interested on. In other words, for this color

mapping named SeekwareLut.LUT_GLOW, the nose, the mouth, and the eyes are

very distinct in the face.

The rectangular ROI shown in Figure 5-5 was found by the thermal face detector

and provides us with an even smaller image to work with. For such small images,
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we have decided to abandon tracking with OpenCV, and perform analysis using the

temperature array itself.

Figure 5-8: Examples of the positive images used for training the HAAR Cascade

5.4.6 Ongoing and future work

Finding the nostrils in the image is the final step that needs to be implemented in

order to have a fully connected workflow.

We explored training a HAAR cascade to identify noses in the thermal face, but

the method was not very effective. We have tried using Hough Circle Transforms and

contour detection, but again the fluctuating signal of the temperature prevents the

found areas to persist and are very sensitive to noise.

Moving forward, we will decided to dive into the array of temperature values itself.

We will explore using time derivatives and radial derivatives of such array to find the
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exact location of the nostrils. The results of our findings will be presented in a future

publication.
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Chapter 6

Design of a Framework for Scalable

mHealth Tools

6.1 Scaling and Deployment Challenges

When a single app needs to be created as an assignment or for the purposes of a specific

study, there is no need to give much thought on design decisions for a maintainable

and scalable future. As a young group that started developing mHealth apps, our

main focus was to deliver products were capable of performing their own specific

task and with a very limited vision of the other apps in its environment. However,

as our lab grows and our technology advances, we have increasingly dealt with the

challenges of lack of standards, redundant information inputs, and data formats that

are convenient for specific analysis, but not easy to share.

A design on which each app is focused on a specific task is attractive for the

developing world, since it comes free from unnecessary and often unwanted features.

However, such design does not contradict a scenario in which a specialized app can

live in the same environment and share resources with similar ones.
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6.2 A general App Framework

Even as the verticals of our lab became clearly defined (the 3 largest ones being

Pulmonary, Cardiovascular and Neonatal and Child Health), it also became clear

that a new framework had to be designed that could:

∙ Abstract and Modularize common components from the different apps.

∙ Create rules that would allow apps to communicate within each other and share

mutually needed information.

∙ Pave the way for integrating with technologies that are becoming increasingly

ubiquitous, such as cloud based computations and Internet of Things.

∙ Preserve the independence of apps specialized in particular measurements.

∙ Update to and follow UI and code standards that are the Android Developer

Guide.

The first step was to create a home directory on which all of the apps of our apps

would live. The name of our home is MobileTechLab, and in this way the paths of all

of our apps were change from /SpecializedApp to /MobileTechLab/SpecializedApp.

6.2.1 Abstracting the common the denominator

A summary or data aggregator app was the first attempt of our group to move into

being able to share and combine the measurements of different specialized apps. It was

presented as a pulmonary screener tool in [45]. The app, whose main workflow was a

questionnaire, gave the user the option of plugging into a specialized app that used

the phone camera to automatically record the reading from a peak flow meter (PFM)

device, instead of forcing the user to enter it manually. The interaction is simple:

the pulmonary screener creates an intent to call the PFM activity, and populates

the intent with the information that the PFM requires to analyze its measurement.

Once the PFM measurement is completed, the activity returns to the Pulmonary

Screener with the values calculated by PFM activity. It is important to note, that for
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this workflow to work the Pulmonary Screener asks the Android Activity Manager for

someone to perform the specialized task. The only way in which the Android Activity

Manager can know about such app, is if the app explicitly declares in its manifest a

listener for such request.

Baby Naapp and all the NCH tools follow this model, but in order to make it

scalable, the way in which shared data is dealt with needs to be standardized. For

example, the PFM app requires the height of the patient, but if given the ID of

the patient, it could potentially handle the case of a missing height. Does it make

sense for the PFM app to crash its operation if a height value is not passed? Should

Pulmonary Screener be responsible of sending the correct and complete data to PFM

or is it a better alternative to allow the PFM to retrieve the height by itself? The

answer to the last question is that it should support both options.

In terms of efficiency, if the Pulmonary Screener needs to open the patient profile

to retrieve metrics from the patient, it makes sense for it to keep the most commonly

needed information readily available. For each specialized measurement app, there

should be a contract specifying the pieces of information that it requires when called

externally. If the caller app is not able to pass one of the requirements, the specialized

app should be ready to explicitly ask the user to enter it, or try to retrieve it from

the shared profile information. But before such behavior can be achieved, first the

apps need to maintain shared profile information.

6.2.2 A shared Profiles Directory

Of course, different apps require different specific information, but most of them

usually share common fields such as IDs, dates of births, and genders. In the past,

each app had maintained its own profile in a format that could only be understood

by that particular app, but we are leaving behind such practice. A Profile Class was

created to standardize the way in which profile information is stored, while the Profile

class gives autonomy to the developer to incorporate fields at will, it comes with a

prior knowledge of fields that are commonly used. Profiles are stored and retrieve in

the form JSON files. The handling of JSON is done via the library GSON, which
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Figure 6-1: Diagram of the new Folder Structure: It shows how each tool has access
to the share profiles, shared measurements, and shared diagnostics (new), while at
the same time it separating the information of its own media files, such as pictures
of ROIs, or internal calibration numbers

provides a handy API to convert the file into a Java key—value data structure. All

the profiles are saved with the name of their unique ID and in a location that is known

to all the apps: /MobileTechLab/Profiles.

Dealing with missing data now becomes very methodical. If a required field is

missing for a specialized app, it can try to retrieve the value from the profile. If the

field is not found in the profile, the app should explicitly ask for it. If the field is

a fixed value, like the height of an adult, it can now be added to the profile to be

available for any other app that requires it. If it is not fixed, like the height of a child,
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the field may be used accordingly and disposed.

6.2.3 A shared Measurement Directory

The scenario was similar for measurements of each individual app, with them being

isolated from each other. Here as well, the first natural change was to migrate the

format JSON. Useful info such as units, timings and location were included in each

measurement, but now all types measurements have started concurring into the same

file, it is important to establish standards and conventions. Each type of measurement

is being assigned a unique integer identifier, which is included in the measurement

JSON Element. We also identified that another concept higher in hierarchy than

that of a "measurement" is often used: this is the concept of a "visit". Measurements

can be grouped in visits, and while more than one visit can happen on the same

day, it is often assumed that a different date implies a different visit. In this way,

a single measurement file is created for every user in the MobileTechLab ecosystem.

The file is saved with the name of the unique ID of the patient in the directory

/MobileTechlab/Measurements. As a result, measurement files are composed of a list

of JSON objects that represent visits, and each visit contains a field with a list of the

measurements for that day. An example of a section from a sample measurement file

can be seen on Figure 6-2.

An additional benefit of transitioning to JSON-formatted measurements is to au-

tomatically become more cloud and server friendly, as JSON is the standard used for

most modern web APIs.

6.3 Case Studies and Examples

6.3.1 Neonatal and Child (NC) Screener

While Baby Naapp was an app specifically designed to meet the ends of the CHW

Study, the Neonatal and Child Health Screener App (NC-Screener) is a spin-off of

Baby Naapp that adopts all of the design paradigms discussed in the chapter and can
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Figure 6-2: A sample section of a measurement file

be thought as the product version of Baby Naapp. All of the individual anthropo-

metric measurements were also updated to follow the new profiles and measurements

standards. However, each of them still has its individual directory in MobileTechLab.

The anthropometric apps, maintain a Media directory on which the ROIs may be

saved for comparison with the measurements extracted. In general, each apps folder

may save diagnostics or information that is specific to that app and does no need to

be shared.

Additionally, we added an extra results screen that plots the anthropometric mea-

surements in graphs that contain growth charts provided by WHO. While CHWs usu-

ally use printed copies of such charts to plot an individual measurement data point,

our version allows for digital longitudinal tracking of the data, an important metric

to assess for malnutrition.
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Figure 6-3: Screenshots from NC-Screner

Figure 6-4: New Plot Screens for Anthropometric Measurements

An immediate consequence of the new format of the measurement file is the ability

to easily combine measurements from two different tools as observed in the Weight

vs Length Plot.
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6.3.2 Pulmonary Screener

A Pulmonary Screener v2.0 was developed as well. The pulmonary apps have already

adopted the use of the common profile directory and paradigm. Since Pulmonary

Screener v2.0 is mainly a questionnaire, it was the perfect scenario to ask the profile

for answers to some of questions such date of birth or gender. It is possible that

time series results stay in the individual folder of the specialized apps, while metrics

extracted from them might end up in the measurement file.

An additional folder that is planned to be introduced is a Diagnostics directory,

which would contain files similar to the measurement ones, but diagnostics would com-

bine the information from different measurements to categorize the patient, diagnose

an affliction, or give a recommendation, that would get stored in the diagnostics file.

While NC-Screener does not generate any diagnostic data yet, pulmonary screener

does, and it will continue to adapt to this newer protocols.

The fate of the roll-out of this framework lies on its near-future proper documen-

tation.
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Chapter 7

Conclusions

7.1 Next Generation of mHealth Tools

With the release of ARKit by Apple and ARCore by Google over the past year,

and with the continued growth of older AR Development Kits such as Vuforia, it is

clear that the smartphone industry is moving forward into a extensive exploration

of such technologies. In addition, the inclusion of dual cameras, infrared sensors,

and powerful processors that focus more and more on image processing, only confirm

the clear direction in which mobile hardware manufacturers are heading. With such

power, it is tempting to assume that computations will only keep becoming more

complex in the smartphones.

However, pushing from the other direction, there is cloud computing which in

principle has an unbounded number of resources for computation. Its limitations

lie on the transfer speed between the phone and the servers and on the sometimes

unreliable Internet access. However, as future technologies such as 5G become more

of a reality, the limitation of transfer times steadily fades away.

Future technologies must meet halfway and create a seamless interaction in which

users do not realize that computations may not happening locally. The challenge for

developers will be to identify where the new bottlenecks are formed.

For users in remote areas, there will also be a shift in the way in which they

adapt to new technologies. Connectivity is part of a positive feedback loop system
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that catalyzes the adoption of technologies, and the new technologies promote more

connectivity.

On a different point, wearable sensors keep becoming more inexpensive and pop-

ular in the developed world, but they will reach a saturation point in which their new

capabilities will only be incremental updates. At such point, wearables will need to

either go in, and become one with the user as implants or more attractively, go out

and become a natural part of the ambient. It is difficult to predict where the next

disruption might come from, but with the boom of the Internet of Things, it is safe

to assume that it will include an environment or mesh of health sensors that will be

present everywhere, from your wifi router detecting if you have tripped and fallen [46],

to your smartphone telling you to cough again because it heard a suspicious wheeze.

7.2 Reflection

There are branches of Computer Science and Engineering that can remain buried

under layers and layers of abstraction. For Machine Vision, this is not the case and

less so for an application as the one explored in this work, with such potential for

global impact. And while the math and algorithms behind Machine Vision make it a

beautiful field by itself, the countless applications to the real world add a whole new

level of satisfaction that I doubt can be met by the purely theoretical or the purely

applied.

In this thesis, we have designed and demonstrated a low cost child health assess-

ment kit. We have learned from each iteration of its design and improved it such

a way that its operation becomes simpler and its capabilities scalable. We have ex-

plored and established the basis for powerful physiological measurement tools, which

when ready, will be easily incorporated into the child health assessment. This work

has shown that even with "simple" algorithms, there is potential for a significant

improvement in the data collection methodologies for CHWs. The word "simple" is

in quotes here because our algorithms are only simple due to of the fantastic work

done by Machine Vision groups to provide the world with powerful tools that can be
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seamlessly connected into larger and more powerful systems. With this in mind, it is

only natural to assume, that the methods and tools that we have generated will come

to be used as part of a yet larger and more powerful system.

Figure 7-1: Honey Bajaj and Xavier Soriano observing a baby during a visit with and
ASHA
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