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Abstract

Bus schedules are unreliable, leaving passengers waiting and increasing commute
times. This problem can be solved by modeling the traffic network, and delivering
predicted arrival times to passengers. Research attempts to model traffic networks use
historical, statistical and learning based models, with learning based models achieving
the best results. This research compares several neural network architectures trained
on historical data from Boston buses. Three models are trained: multilayer percep-
tron, convolutional neural network and recurrent neural network. Recurrent neural
networks show the best performance when compared to feed forward models. This
indicates that neural time series models are effective at modeling bus networks. The
large amount of data available for training bus network models and the effectiveness
of large neural networks at modeling this data show that great progress can be made
in improving commutes for passengers.
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Chapter 1

Introduction

1.1 Traffic and Technology

Americans spend over 40 hours stuck in traffic a year [26]. This costs the US $121

billion dollars a year. Studies from The American Journal of Preventive Medicine

have shown that commuting causes a range of negative health side effects [23]. These

effects include raised cholesterol, increased depression risk, increased anxiety, and de-

creased overall happiness. Commuting results in lower life satisfaction. Specifically,

riding a bus for 30 minutes or longer is connected to the lowest level of life satisfac-

tion compared to other commutes. All groups including bike commuters experience

reduced life satisfaction proportional to the length of the commute. In addition to

the detrimental health effects, road crashes result in 1.3 million deaths a year [13].

An additional 20-50 million people are injured or disabled each year in road crashes.

The statistics are worse in low income countries.

In addition to health effects, traffic has a strong impact on the environment.

Transportation accounts for 30% of US greenhouse gas emissions. Road traffic also

contributes to reduced air quality, traffic congestion and urban sprawl.

Technology can to a great extent solve some of these problems. Public transit

can largely reduce the environmental impact of transportation. A full bus is 6 times

more efficient than a single driver car [34]. Additionally, buses emit a tenth of the

hydrocarbons compared to single driver cars [34]. Recent years have also shown an
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increase in electric vehicles, which when combined with sustainable energy practices

can drastically reduce emissions.

Furthermore, the advent of autonomous cars promises a future of safer roads and

vastly fewer road crash deaths. Interestingly, car ownership shows signs of decline in

the US, with millennials waiting longer before buying cars [33]. Ride sharing services

like Uber are transforming mobility and the auto industry as a whole. An increase

in sensors and connectivity of cars allows large scale optimization which can decrease

travel times for users. All of these technical innovations make it cheaper, safer and

more convenient for people to use modern forms of transportation. However, as

mobility becomes available to more people, problems regarding traffic congestion will

get worse, not better.

The problem of traffic is not going anywhere. Over the next 30 years, the US

population is estimated to increase by 70 million [26]. Larger populations, and move-

ment into urban and suburban areas exacerbates the issue. Traffic in other countries

is even worse. India’s transportation system is in crisis with booming population

growth in urban areas. Increasing vehicle numbers are overwhelming transportation

infrastructure. Clearly, transit technology needs to keep up with exploding demand.

One obvious way to reduce congestion is public transportation. However, the

adoption level of public transit systems is very low. Only about 5% of US workers

commute to work with public transit [30]. There are several reasons which cause

people to prefer private cars to public transit. Outside of urban areas, public transit

can be unavailable or impractical. Bus riders have to deal with traffic, transfers, and

unreliable schedules. These factors make buses much less convenient than private

autos, despite the clear environmental and economic benefits. This research focuses

on improving the reliability of buses for riders by using neural networks to predict

bus arrival times.
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1.2 Bus Network Characteristics

Traffic networks in general are difficult to model. Part of this has to do with the

stochastic nature of traffic. Traffic conditions depend on countless variables includ-

ing weather, driver behavior, time of day, and construction. Although some of these

variables are easy to measure, others are latent. Furthermore, the relationship be-

tween the variables is complicated. This requires the use of complex models and large

amounts of data.

Besides the sheer number of variables, bus networks also exhibit some behavior

which makes them different from typical car networks. For example, bus trajectories

are affected by passenger demand. The amount of time a bus spends waiting at a

stop depends on how many people get off and on at that stop. Furthermore, a bus

may not make all of its stops along a route, and stops may move over time due to

weather or construction conditions. Buses also have a schedule to follow, whereas

cars do not. For this reason, some buses will slow down if they are ahead of schedule

to allow other buses to catch up. These features make bus networks more complex,

but they also provide structure for models to learn.

An interesting emergent property of bus networks is clumping. This term refers

to the phenomenon of buses along a route to tend to clump together in groups after

starting at uniform intervals. The effect is caused by the relationship between buses

along a route and the respective riders. Consider the following scenario:

1. A bus misses a light, and therefore starts running behind schedule

2. At future stops, more passengers arrive due to the delay

3. The excess of passengers at future stops makes the bus slow down even more,

because it takes longer to pick up more passengers

4. This produces a negative feedback loop, which causes slow buses to become

slower

5. Eventually, the previous bus will catch up, causing the buses to clump together

15



The opposite happens to a bus when it starts running ahead of schedule, meaning

fast buses get faster. This exacerbates the issue of clumping. This complex interaction

among buses along the same route requires modeling at a route level rather than a

bus level.

Another issue which arises studying bus networks is the natural randomness of

traffic. Even with a perfect modeling scheme, there are always confounding factors.

This results in a large variance which limits the theoretical best performance for

prediction. Incorporating more data sources can mitigate this, because the model

can exploit more patterns in the data.

1.3 Future of Travel

We now take a look to the future of urban mobility. It’s difficult to talk about the

future of transportation without considering the implications of autonomy and AI.

Although the world has not yet seen widespread adoption of self driving cars yet,

the sheer amount of capital being invested into their development indicates the world

is ready for a change. This change may improve the efficiency of traffic networks,

increase safety, and cut costs for urban travel. However this change will also bring

unemployment and uncertainty for millions of Americans who drive for a living. Care

must be taken so that this technology improves humanity as a whole, not just the

lives of the urban elite.

Nevertheless, the possibilities created by autonomous cars combined with artifi-

cially intelligent traffic networks are immense. Deep learning models can be used to

estimate the location and trajectory of all the vehicles in the network simultaneously.

This can be combined with a historical model to predict demand and passenger be-

havior. Together these models can be used to dynamically allocate autonomous buses

to the areas where they are needed the most. This will turn the bus network into a

living, evolving graph rather than a fixed, unreliable schedule.

Rather than looking up a bus schedule to determine the fastest way to commute,

passengers will simply enter their destination into their mobile phone and the fastest

16



possible route will be computed, utilizing the various self driving car and bus fleets

in the area. An electric autonomous car will pull up to their exact location. The

autonomous car will find the nearest autonomous bus traveling in the correct direction

and automatically link up while driving to transfer the passenger while the vehicles

are still moving. Another autonomous car will make the final leg to the destination.

Passengers will pay the ride directly, using a biometric based cryptocurrency. The

autonomous car will then recharge and pay for any repairs using its profits.

For mid range commutes, passengers will travel via a combination of autonomous

flying drones and autonomous cars. In larger cities, the number of flying drones will

outnumber cars. All large urban metropolises will be connected by hyperloops or a

similar technology. This will allow people to work and live in several cities seamlessly.

This in turn will increase collaboration and sharing of ideas across nations, as well as

improving international relations.

As connections between nations grow, there will be an increased demand for cheap,

efficient inter-continental travel. Supersonic travel will return to support this de-

mand, allowing jets to travel from New York to Paris in 3.5 hours. The decreased

cost in rocket technology will for the first time allow intra-planetary rocket travel.

Completely reusable rockets will make routine trips across long haul journeys, taking

passengers from Houston to Sydney in a half an hour. As free travel and trade bring

the world closer together, people will look to the stars, contemplating and developing

solutions for interplanetary travel, furthering humanity’s horizon.

By solving the technical problems of today humanity will have a bright future.

This work starts with understanding and modeling the transportation networks we

have now.
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Chapter 2

Related Work

2.1 Theory

Significant theoretical work has been put into studying bus networks. A deeper fun-

damental understanding of bus networks may be the key providing accurate estimates

of travel times for passengers and network operators.

Krbálek and Seba (2006) analyzed data from buses in Cuernavaca, Mexico, and

found that the distribution of arrival times follows the Gaussian Unitary Ensemble

(GUE)[22]. The Gaussian Unitary ensemble is a distribution stemming from random

matrix theory which model Hamiltonians without time reversal symmetry. For more

on random matrix theory and the GUE, see Introduction to the Random Matrix

theory: Gaussian Unitary Ensemble and Beyond[14].

The connection between random matrix theory and bus networks is not immedi-

ately clear. However, Baik, Borodin, Deift and Suidan (2006) developed a microscopic

model for analyzing the bus system in Cuernavaca, Mexico [2]. By introducing natural

repulsion, Baik et al. are able to show how random matrix distributions follow.

Interestingly, the same distribution comes up in other networks as well. Jagannath

and Trogdon (2017) showed that the distribution of gaps between trains in the New

York City subway are captured by both the GUE and the Poisson distribution [19].

The authors explain this duality via the Coulomb potential along the route.
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2.2 Modeling Bus Networks

Given the complexity of bus networks, several modeling techniques have been used

to predict arrival times. Altinkaya and Zontul (2013) put together a comprehensive

review of the different models that have been used [1]. Generally, the different tech-

niques can be broken into three different classes: historical, statistical, and machine

learning. Historical models are generally the most simplistic model, utilizing either

average travel time between stops or average speed between stops to predict future

travel times. Statistical models utilize more advanced techniques such as regression,

time series analysis and Kalman filtering. Machine learning models are the most com-

plex, and require a large amount of data, which is often difficult to obtain. A more

recent review of the field by Choudhary, Khamparia and Gahier (2016) includes more

recent techniques such as hybrid models and real time cell phone data[7]. Due to

the highly stochastic nature of traffic networks, a combination of techniques is likely

necessary to produce the most accurate results.

2.3 Classical Models

2.3.1 Historical Models

Historical models are the most simple of all modeling techniques, but nevertheless

can give reasonable accuracy in certain situations. Maiti, Pal, Pal, Chattopadhyay

and Mukherjee (2014) showed that historical based models can compete with machine

learning models in terms of accuracy (75.56% for historical model vs 76% for neural

network)[25]. Historical data based models typically use very simple features such

as travel time and average speed. This is well suited to cases where more complex

features such as traffic, weather, and schedule are not available, as is the case often

in developing countries. The small feature space also results in faster prediction

times than larger models such as neural networks which can have huge numbers of

parameters. Historical models treat traffic as static across periods such as the week,

month or year depending on the amount of data. This assumption is reasonable,
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because traffic exhibits common patterns which repeat throughout the week, such as

rush hour traffic. However in urban settings, the assumption that traffic conditions

will stay the same across weeks is invalid. This means that historical models are

limited in predicting more complex situations. Nevertheless, they succeed at giving

good accuracy predictions in areas with more static traffic conditions such as rural

areas.

2.3.2 Statistical Models

The next class of models in terms of complexity is statistical models. Travel time

is determined by several variables including weather condition, time of day, intersec-

tions, network load and driver behavior. These variables can be used as independent

variables to predict the trajectory of buses in a network. However many of the inde-

pendent variables are latent, making modeling and prediction a difficult problem.

One statistical technique is mathematical time series analysis. In this technique,

a mixture of linear or nonlinear functions is used to model the traffic. D’Angelo

(1999) showed that this sort of model can produce accurate travel times for cars on

a highway over short time-spans [8]. Obviously this is a limited use case. However it

proves that there are certain regularities and patterns in seemingly stochastic traffic

networks that can be exploited to predict travel times.

Several regression schemes have also been used to predict bus arrival times. Sun,

Chen, Song and Wang (2010) used the Autoregressive Integrated Moving Average

model in combination with delay models to forecast travel times of buses [35]. The

study uses bus data from Tianjin in northern coastal Mainland China. Travel time

for buses is broken up into three sections: free travel time, road intersection delay,

and stop time delay. Each section is then independently modeled in order to forecast

travel time. The underlying model has the advantage of being very simple and fast

to compute. However, the model neglects several important factors which contribute

to traffic congestion such as weather, seasonality, and driving conditions. Even so,

Sun et al. achieved a 20% error rate for the Tianjin bus.

Another common statistical technique involves using Kalman filtering to model
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bus networks. Kalman filtering is an algorithm which uses several measurements

to estimate latent variables by estimating the joint probability distribution over the

variables. The technique is commonly used in guidance and navigation systems.

Zaki, Ashour, Zorkany and Hesham (2013) used real time GPS data combined with a

Kalman filter and a neural network to produce accurate real time predictions of bus

arrival times[41]. The study uses data from an Egyptian bus network. The predictions

produced have a mean square error in the range of one minute over the course of the

route.

2.4 Machine Learning Models

Machine learning has come into prominence in recent years, revolutionizing the fields

of computer vision and natural language processing. In particular, neural networks

have shown a lot of recent success for their ability to tackle a wide range of problems

if given enough data. Neural networks are also particularly effective at modeling bus

networks. In particular, bus networks have a very large, complex feature space with

many latent variables. Traditional methods of feature engineering are not effective

at computing all of the these features. This may explain the effectiveness of machine

learning techniques on bus networks. In particular, machine learning models are used

to do feature selection and inference on bus networks. The models which are suited

for this use case are kernel methods and neural networks.

2.4.1 Kernel Methods

Kernel methods are a technique for producing nonlinear classifiers from linear models

via a feature transformation. A kernel function is applied to to the standard input

features to produce the kernel representation. This kernel function is typically non-

linear, and represents an inner product. The kernel representation is then used to set

the parameters of a model, which is typically linear. Due to the nonlinear transfor-

mation of the input data, the resulting model produces nonlinear classification with

respect to the original input space. This technique is useful because it only relies
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on inner products, so the computation can be done very efficiently. The technique

even allows for infinitely dimensional feature space depending on the choice of kernel

function. The radial basis function is a popular example of a kernel function which

results in an infinitely dimensional transformed feature space.

Sinn, Yoon, Calabrese and Bouillet (2012) used kernel regression to update arrival

time estimates given real time GPS measurements[32]. When compared to linear

regression or K-Nearest Neighbors (KNN), the kernel regression model showed the

best accuracy. The study uses data from the public bus system in Dublin, Ireland.

In general, the success of kernel regression suggests a complicated nonlinear feature

space.

Another technique for modeling buses uses the relevance vector machine (RVM)

algorithm. RVM is a variant of the support vector machine (SVM) algorithm. SVM

produces a binary classifier with the maximal margin linear separator between data

points of the opposite class. This gives certain guarantees about the performance

of the classifier on unseen data. Additionally, SVMs can be combined with kernel

methods to produce nonlinear classifiers. Furthermore, SVMs can be trained in an

online fashion, which is important for machine learning problems, which may need

to be trained on very large datasets. RVM is simply an extension of the SVM which

gives probabilistic classification instead of deterministic classification. The RVM was

developed by Tipping in 2003[36].

Yu, Wu, Chen, and Ma used the RVM algorithm to estimate predict bus headway[39].

The feature set they used included bus headway time series, travel time, and passen-

ger demand. The study used two bus routes in Beijing, China, Compared with SVM,

genetic algorithms, Kalman filters, KNN, and neural networks, the RVM model per-

formed the best. With a confidence interval of 95%, over 95% of actual bus headways

fell into the prediction interval. The success of kernel based methods also motivates

the use of neural networks, which can be more powerful at learning complex features.
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2.4.2 Neural Network Models

Neural networks are one of the most powerful and effective machine learning models

in current usage. Neural networks work in an end to end manner, learning both the

feature space and doing prediction. They work by combining many simple linear

classifiers with a nonlinear activation function (called neurons) over several layers.

Given enough neurons, a neural network can approximate any function [17]. Despite

their incredible power, neural networks do a better job of avoiding overfitting than

other powerful models. They are especially well suited for problems with vast amounts

of data. For an overview of neural networks, see Neural Network Design [9].

Neural networks have long been used for predicting bus arrival times. As early as

1992, Faghri and Hua showed that neural networks have several applications within

transportation engineering [12]. Chien, Ding, and Wei (2002) developed a neural net-

work model for predicting bus arrival times [6]. The model contains two variants: a

link based model and a stop based model. The input features for the neural network

include speed, volume, delay, passenger demand and arrival times. In addition to the

neural network, the model contains a adaptive algorithm which updates the predic-

tions in real time. The neural network model with the adaptive algorithm performs

well even when predicting multiple stops ahead. Chien et al. use the simulation

model CORSIM, which Chien and Ding developed with real bus data from route 39

of the New Jersey Transit Corporation [10].

Jeong and Rilett (2004) compared several popular models for bus networks[20].

This included a historical data based model, a regression model and a neural network.

The neural network was found to give the best performance by a large factor. The

neural network showed over a 70% improvement in accuracy over the best historic

based model. In all cases the neural network performed the best, with the historical

model coming in second and the regression model in third. Neural network models

have shown the best accuracy in general across several studies, however combining

neural networks with other techniques has shown superior performance in many cases.
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2.4.3 Hybrid Models

Given the complexity of modeling bus networks, a single model may not be sufficient

to predict arrival times with the best accuracy. This has given rise to a number of

hybrid models which combine techniques in order to produce better predictions.

One common technique is to use real time data from cell phones in order to produce

real time estimates for arrival times. Zhou, Zheng and Li (2012) used Android phones

to collect data from passengers on a bus to generate estimates for arrival times at

various stops[42]. The system relies on user participation and uses lower energy

mechanism for localizing the bus such as cell towers and movement statuses. This

has the advantage of not relying on a centralized service. Additionally, they found

that the performance of the system was much better than the GPS supported solution.

Khetarpaul, Gupta, Malhotra and Subramaniam combined neural networks with

fuzzy logic systems to general effective real time bus arrival time predictions [21].

Fuzzy logic contrasts with boolean logic in that truth values of variables can be any

number between 0 and 1, instead of just 0 or 1. Khetarpaul et al. use fuzzy clustering

on the input data to model to generate inputs to a set of neural networks. In this

way, Khetarpaul et al. claim the shortcomings of each model are made up for by

the other. The model generates reliable predictions for bus arrival times for bus data

from Dublin Ireland.

Raut and Goyal (2012) show how recurrent neural networks (RNNs) can be used

to predict bus arrival times given the current weather conditions[29]. The underlying

model estimates the current traffic load given historical data and current weather

conditions. This can data then be used to then infer arrival times for buses at future

stops. This shows the possibility of using more advanced network architectures to

model buses networks.

2.5 Deep Learning Techniques

The onset of deep learning has revolutionized modern machine learning. It has al-

lowed for self driving cars and Siri. The principle concept of deep learning is adding

25



many layers in a neural network. The most common neural network architecture are

convolutional neural networks (CNNs) and RNNs. CNNs perform the state of the

art in computer vision tasks by repeatedly applying a series of convolutional filters

to input images. RNNs work by passing the output of one computation to the in-

put of the next, thereby remembering information. They have revolutionized natural

language processing, to a large extent through the long short term memory (LSTM)

architecture. Hochreiter and Schmidhuber (1997) introduced LSTMs, which work by

combining a series of gates to store and update its internal memory[16]. In order

to achieve the best accuracy on bus modeling problems, deep models may be neces-

sary. For an overview of recent deep learning, see LeCun, Bengio and Hinton’s Deep

Learning[24].

In addition to natural language processing, deep RNNs have shown success in time

series prediction, which is the same realm as predicting bus arrival times. Prasad and

Prasad (2014) used deep RNNs to identify epileptic seizures from electroencephalog-

raphy signals[28]. This task is typically done by a trained doctor. RNNs can be used

on time series data to either perform classification or regression depending on the use

case. A similar model used for regression can be used to predict bus arrival times.

Borovykh, Bohte and Oosterlee (2017) used the deep convolutional network ar-

chitecture Wave-Net for conditional time series forecasting [5]. Wave-Net is a neural

network derived from a family of orthonormal wavelets [3]. Borovykh et al. compared

the architecture to a traditional LSTM network and found that it was able to learn

effectively without the need for long term historical data.

Yang, Nguyen, San, Li and Krishnaswamy (2015) showed how deep convolutional

neural networks can be applied to human activity recognition (HAR) based on time

series signals from body sensors[38]. The prevalence of deep neural models in time

series analysis suggests that deep architectures may work well for predicting bus

arrival times.
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Chapter 3

Methods

3.1 Data

3.1.1 Dataset

The dataset for this research comes from the Massachusetts Bay Transportation Au-

thority (MBTA). The data is publicly available and consists of the following:

• GPS data for buses, consisting of latitude, longitude, route, and route direction

• Route data, describing the GPS location of stops along a route

• Bus timetable information, which shows the times when a bus arrives at each

stop in a route

• Bus metadata

Buses, routes and stops are described by ids. Bus stops also have human readable

names indicating their location. The dataset spans several years, and includes all of

the buses and routes in Boston. This dataset is unique from previous research in its

extent both in size and duration. Previous studies use several months of data, whereas

this dataset allows the analysis of longer term trends, including seasonal trends.

Figure 3-1 shows GPS data for Route 1. The route starts in Cambridge at Mas-

sachusetts Avenue and Holyoke Street, and ends in Boston at Dudley Station. The
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GPS data is fairly accurate for the most part. However, in cities like Boston, GPS

data suffers from an issue known as urban canyons. This occurs on relatively nar-

row streets with very tall skyscrapers, where a canyon effect is created. The large

buildings obscure satellite signals, creating very noisy GPS signals. Certain streets in

Boston suffer from this issue, however Route 1 does not touch those streets, resulting

in relatively clean GPS data. All of the data points are well localized to the street.
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Figure 3-1: GPS Data from Route 1 serving Cambridge and West Boston
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3.1.2 Interpolating Trajectories

The data provided consists of tuples of latitude, longitude, bus id, and timestamp.

However, the data needed to train the model involves the arrival times at each stop,

so the trajectory of the bus must be interpolated from the noisy GPS data. This is

done via the following process:

1. Tuples are grouped by bus id and route, then sorted in time

2. The GPS trajectory is then converted from latitude and longitude into a 2D

Cartesian projection

3. The entire trajectory of the bus is segmented into each individual trip along the

route

4. The 2D coordinates are then projected onto the route using a Gaussian noise

assumption, shown in Figure 3-2

5. This (x,y,t) data is then converted from a 2D position on the map to a 1D

distance along the route, because all buses follow the same route

6. Stop data of the form (latitude, longitude) is then converted into the same 1D

distance along the path.

7. The trajectory of the bus is then interpolated in a piecewise linear fashion,

assuming a constant speed between adjacent points.

8. The trajectory is sanitized by removing any erroneous data by thresholding the

velocity of the vehicle

9. This trajectory can then be used to determine the arrival time at each stop by

determining the timestep when each bus was within a certain threshold of the

stop. This is illustrated in Figure 3-3.
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Figure 3-2: (x,y,t) trajectory of bus along route 1. The route starts on the top left
and finishes on the bottom right.
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Figure 3-3: Interpolated trajectory of bus (blue) with stop locations overlain (red).
Intersections indicate the bus arriving at a stop.
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3.1.3 Features

The following are a number of features which are commonly used as variables to

model bus networks.

• Arrival Time: Time the bus arrives at a stop

• Travel Time: Between adjacent stops

• Dwell Time: The amount of time a bus spends at a stop

• Schedule Adherence: The difference between the projected arrival time and the

actual arrival time

• Headway: The difference in arrival time for two adjacent buses at a specific stop

• Direction: For a route which runs two directions

• Weather

• Traffic Congestion

• Day of Week

• Month of Year

The arrival time at each stop is computed as shown above. Travel time can them

be trivially computed by taking the difference between two arrival times, minus the

dwell time. Schedule adherence is computed by comparing the arrival time of the bus

the closest listed arrival time. Other features are either derived from the raw data or

pulled from outside sources.

3.1.4 Distribution of Arrival Times

Figure 3-4 is a histogram of the difference in arrival times between adjacent buses

at a particular stop on Route 1. Three plots are overlain on the distribution. If

the buses ran perfectly on schedule, the distribution should be concentrated about
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Figure 3-4: Distribution of intervals between bus arrival times at Newbury and Mass.
Ave.

the mean, indicated by the dotted black line. If the buses are perfectly random and

independent, the distribution should follow a Poisson distribution, indicated in green.

However buses are not independent. In particular, a bus will not pass another bus,

which leads to the high concentration about zero in the distribution. This effect is

compounded by bus clumping. The exponential distribution captures the behavior

of the buses near the origin. More complicated distribution like the GUE have been

used to describe intervals between buses. A study out of Cuernavaca, Mexico [2] first

identified this effect, and the same effect is observed in the New York public transit

system.
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3.2 Implementation

All of the models were developed in Julia [4] using Knet [40]. Knet is an imperative

machine learning library which supports automatic differentiation and GPUs. Models

are expressed in pure Julia code, then auto-diff is used to generate gradients which

can used to train the model. This presents several advantages over libraries declara-

tive frameworks like tensorflow. In declarative frameworks, the computation graph is

generated at compile time, which creates a layer of abstraction between the compu-

tation and the implementation. This layer of abstraction can be useful for optimizing

performance. However it also adds a level of complexity and makes debugging more

difficult. This is because the code executing the computation is generated by the

compiler instead of the implementer.

This contrasts with imperative libraries like Knet, where the code executing the

computation is generated by the implementer. This makes debugging much easier,

and gives the implementer the full power of the underlying language. Instead of

defining operations, models are expressed explicitly, making code much more succinct.

Knet also gives the advantage of allowing the developer to express the model in pure

Julia code. In tensorflow, the user is limited to predefined operations, and defining a

new operation requires adherring to the tensorflow mini-language.

Knet includes several optimizers including stochastic gradient descent, RMSprop

and Adam, as well as many common utility operations and layers.

3.3 Models

Three model architectures were used to predict bus arrival times:

• Multilayer Perceptron (MLP)

• Convolutional Neural Network (CNN)

• Recurrent Neural Network (RNN)
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All three models are applied in regression mode, taking as input knowledge of the

bus network, and outputting the expected arrival time at future stops. Each of the

three architectures is successful in predicting arrival times, with the RNN achieving

the highest accuracy.

3.3.1 Multilayer Perceptron

Multilayer perceptrons, also known as vanilla neural networks, are the most basic

neural network architecture. They consist of a series of dense linear transformations

followed by element-wise non-linear transformations. Each of these steps is known

as a fully connected layer, because at each layer, neurons are connected via a weight

matrix to every neuron in the next layer. Popular non-linear transformations include

the sigmoid, hyperbolic tangent, and rectified linear (ReLU). Figure 3-5 shows the

function of a single ReLU.
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Figure 3-5: Rectified Linear Unit
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Figure 3-6: Multilayer Perceptron Architecture: Two fully connected hidden layers

The architecture used in this research uses a relatively small neural network with

two hidden layers, shown in figure 3-6. The number of neurons used in each layers

was 15 and 10. This small model size was used to combat overfitting. The model was

trained using a mean squared error loss function for 50 epochs, with a learning rate

of 0.0001. The optimizer used was stochastic gradient descent. Mean square loss was

used as it is suitable for continuous valued regression tasks.
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The following is the code which implements the MLP.

# w is a vector of weight matrices

# x is the input vector

function mlp(w,x)

for i=1:2:length(w)

# Apply linear transformation

x = w[i]*x .+ w[i+1]

if i<length(w)-1

# Apply ReLU non-linearity

x = max.(0,x)

end

end

return x

end

3.3.2 Convolutional Neural Network

Convolutional neural networks are used primarily for image classification. Convolu-

tional filters are applied iteratively to an image to detect low and high level features in

the image. However they are also applicable to regression tasks. For time series pre-

diction, 1D convolutions are used, as opposed to the 2D convolutions applied to image

tasks. 1D convolutions are therefore suitable for the time series task of predicting bus

arrival times.

The architecture used contains two convolutional layers followed by two fully con-

nected layers, shown in figure 3-7. The first convolutional layers consists of 20 filters

with 5 neurons each, and the second filter consists of 5 filters with 5 neurons each.

The number of neurons in the fully connected layers depends on the number of input

features and number of stops being predicted. Again, mean squared error loss was

used to train the model.
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Figure 3-7: Convolutional Neural Network Architecture: Two convolutional layers
and two fully connected hidden layers
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The following is the code which implements the CNN.

# w is a vector of weight matrices

# x is the input vector

function cnn(w,x)

x = reshape(x,(length(x),1,1,1))

n = length(w)-4

for i=1:2:n

# Apply a convolution with max pooling

x = pool(max.(0, conv4(w[i],x) .+ w[i+1]))

end

# Flattens the vector before the fully connected layers

x = mat(x)

for i=n+1:2:length(w)-2

# Apply linear transformation and ReLU activation

x = max.(0, w[i] * x .+ w[i+1])

end

return w[end-1] * x .+ w[end]

end

3.3.3 Recurrent Neural Network

Recurrent neural networks (RNNs) extend feed forward neural networks such as CNNs

and MLPs by adding persistent state. Typically RNNs are used to model sequences,

with the internal state of the network being updated as the sequence is fed through

it. This makes them particularly well suited for time series analysis.

This research uses an Elman network with a hyperbolic tangent activation[11].

The network used consists of a single hidden layer with 10 recurrent neurons. In each

time step, a single element of the input sequence is fed into the network, producing an

output and a hidden state. The output is used to train the network, and the hidden

state is fed into the network on the next timestep. This is illustrated in figure 3-8.

The network is fed some empty initial state, in this case a zero vector.
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Figure 3-8: Recurrent Neural Network Architecture: One hidden layer with 10 neu-
rons
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The network was trained via back propagation through time (BPTT)[37]. This

allows for training the network across an entire sequence, and reinforcing the correct

outputs at each step of the sequence. Again, root mean square error across the

predictions was used as the loss function.

The following is the code which implements the RNN in Julia.

# w is a vector of weight matrices

# x is the input vector

# h is the state

function rnn(w,x,h)

# Generate the new state from the previous state and the input

h = tanh.(w[1]*vcat(x,h) .+ w[2])

# Generate prediction from state

y = w[3]*h .+ w[4]

return (y,h)

end
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Chapter 4

Results

4.1 Linear Baseline Model

First a simple linear model was trained to establish a baseline accuracy. Figure 4-1

shows the test and training loss for the linear model.

The loss curve is smooth, and follows our expectation for the training loss to be

slightly better than the test loss. Furthermore, this model allows us to establish the

baseline accuracy of 60 seconds for test RMSE. The further models will be compared

against the linear model.

4.2 MLP

The next model trained was the multilayer perceptron. The MLP has much more

expressive power than the linear model, so one would expect that the training loss

will be significantly lower. However the high variance of the model can lead to poor

performance on the test set. Figure 4-2 shows the loss curves for the MLP model. As

expected, the training loss is significantly lower, with a RMSE of around 30 seconds.

The test loss is significantly higher, but still better than the linear model. This shows

that the model was able to capture more of the variability in the data.

45



Figure 4-1: Loss for linear model (lower is better). The plot shows characteristic
overfitting, with a test loss baseline just under 60 seconds.
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Figure 4-2: Loss for MLP model (lower is better). The MLP can capture more of the
variation in outputs than the linear model.

47



Figure 4-3: Loss for CNN model (lower is better). The CNN improves upon the
accuracy of the MLP.

4.3 CNN

Figure 4-3 shows the loss curves for the CNN model. The CNN model improves

slightly on the MLP model. It achieves a test RMSE of around 37 seconds. The CNN

model is significantly larger, and takes longer to train than the MLP. An interesting

observation is that the loss curve for training starts increasing after around 10 itera-

tions. The larger model seems to have some difficulty with convergence. The model

is trained until the validation accuracy stops decreasing, which occurs at around 25

epochs.
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4.4 RNN

The final model trained was an RNN. RNNs take significantly longer to train due to

the back propagation through time algorithm requiring an entire sequence to be feed

through the network for each update. In this case, the prediction optimization for

future stops was optimized rather than the entire sequence.

RNNs are considered more difficult to train than other forms of models because

of the exploding/vanishing gradient problem [27]. During back propagation through

time, the signal to train the network passes through the neural network several times.

If the magnitude of the gradient does not stay relatively constant between time steps,

the gradient can exponentially blow up or shrink. This reduces the quality of gradients

and makes training the networks more difficult. The same effect occurs in large feed

forward networks with many layers, such at deep CNNs. In feed forward networks,

this effect is mitigated with batch normalization[18]. RNNs also have an issue with

exploding and vanishing gradient, because unrolled RNNs because each timestep of

training adds another layer. However for regression problems, the signal is only

received at the end, and then has to be propagated back over the network several

times. For this reason, the size of RNNs for regression tasks is limited.

Figure 4-4 shows the loss curves for training this model. The loss curves are much

noisier than the other models. However, the model converges eventually to just under

30 seconds for training and just over 30 seconds for test. This represents the best

overall loss across all of the models.
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Figure 4-4: Loss for RNN model (lower is better). The RNN achieves the lowest
overall loss.
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Table 4.1: Root mean square error for all models

Linear MLP CNN RNN
Train 54.3 31.2 35.0 29.8
Test 59.2 39.9 37.5 30.4

Table 4.2: R2 score for all models

Linear MLP CNN RNN
Train 0.636 0.8798 0.8488 0.8904
Test 0.5673 0.8035 0.8264 0.8859

Table 4.1 summarizes the final loss values for all of the models, and table 4.2

summarizes the R2 score for each of the models.
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Chapter 5

Evaluation

5.1 Model Comparison

Figure 5-1 shows the root mean square error across all of the models. Linear model

serves as a baseline for comparison. All of the neural network models improve upon

the accuracy of the linear model, as is expected [20].

The MLP and CNN architectures achieve similar accuracy. Both models fall under

the class of feed forward models, meaning data is feed from input to output without

any feedback loops. However, the MLP model is symmetric about the inputs, mean-

ing that no temporal aspects can be extracted from the input. This is by nature of

the network being fully connected, so each input is treated equally. However in the

case of the CNN, the model is not symmetric about the inputs. Specifically, the 1D

convolutions act in order on the input sequence. In image processing, this ordering

is used to capture translational invariance. However for time series prediction, con-

volutions capture high level patterns in sequences which are then used as features for

prediction in the fully connected layers. This temporal aspect is possibly what gives

the CNN advantage over the MLP. Additionally the CNN is a larger model, with

many more parameters than the MLP. This increases the variance of the model and

allows it to capture more patterns in the data.
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Figure 5-1: Root mean square error across all models

54



Figure 5-2 shows the coefficient of determination (R2) score for each of the models.

The R squared score shows how much in the variance of the data the model is able

to capture. Zero indicates that the model is as good as random guessing, while a

score of 1 indicates the model perfectly captures the data. The linear model achieves

an R2 score of around 0.56. This shows that the linear model does not do a great

job of modeling the data, as is expected. The linear model does not have enough

expressivity to capture some of the more subtle patterns in the data.

The best coefficient of determination comes from the RNN, which achieves around

0.89. This represents much better performance than the linear model. However, there

is still a lot of variance in the underlying data which the model cannot capture. This

gets back to the issue of the stochastic nature of traffic. Large deviations can occur

in traffic networks for various reasons which makes prediction difficult. For example

traffic accidents and construction are not included as features to the model, and

these factors make a drastic impact on the underlying network. To some extent,

incorporating more data into the feature set will increase the amount of variance the

model can capture. However, this also requires increasing the size of the model, which

may lead to overfitting, and decreased inference performance.
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Figure 5-2: R2 score across all models
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5.2 Analysis of Strengths and Weaknesses

In order to fully model a traffic network, the following categories of information must

be captured.

1. Spatially local, temporally local: Information about the bus at the current

timepoint, including its location, number of passengers, speed etc.

2. Spatially global, temporally local: Information about the overall traffic net-

work currently, including traffic conditions, number of buses in the network,

construction, weather etc.

3. Spatially local, temporally global: Information about each bus which create

trends over time, including the bus id, and driver

4. Spatially global, temporally global: Information about the topology of the net-

work overall, including distances between stops, number of intersections, relative

location of routes etc.

The linear model can only reason globally, because each input parameter gets one

weight. Therefore no temporal aspects can be captured.

The MLP can do a good job of capturing global data and global trends, so it will

be good at modeling numbers 3 and 4. However it is not really designed for modeling

numbers 1 and 2. Although the input data is inherently a sequence, the MLP treats

all inputs equally, so the sequential nature of the data is immediately lost.

Convolutional nets are also able to model number 3 and 4 well, and may be able to

capture certain patterns of numbers 1 and 2. The convolutions respect the sequential

nature of the input data, so patterns over time can be captured. Additionally, CNNs

are good at capturing patterns in very high dimensional spaces. For example, Alpha

Go [31] uses a convolutional network to read the Go board and detect similarities

between different board positions to create strategies. Despite the incredible state

space of the game of Go, with over 10170 possible board positions, the convolutional

net can detect which positions are equivalent or similar. Given access to the entire
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state of the traffic network, a CNN would do a good job of determining which factors

are important for determining travel time. However this would require an immense

amount of training data, because the network has to be able to recognize an immense

number of states. One possible application of CNNs for traffic analysis would be an

autoencoder, which takes in the entire state of a traffic network, and extracts the

features which are relevant for the prediction task at hand. This helps reduce the

dimensionality of the problem. However, to truly capture sequential data, RNNs are

more suitable.

Compared with the linear, MLP, and CNN models, the RNN is the only one

which has state. This allows it to capture certain properties which the other models

cannot. Recurrent neural networks are well suited to model numbers 1 and 2, and

certain types of RNNs can capture numbers 3 and 4. More specifically, long short

term memory networks (LSTMs) do a good job of capturing long term and short

term dependencies [16]. This makes RNNs the most general model for modeling

traffic data, and may explain why they perform the best. This is because RNNs have

memory which is selectively updated based on new data. In the case of predicting

bus arrival times, there is a lot of state which updates over the course of a route.

The number of passengers on the bus, for example, is a quantity which changes over

time and is very important in determining how long the bus will stay at each stop. A

feed forward net will not be able to represent this. This may explain why the RNN

performs much better than its feed forward counterparts. Furthermore, there is a

high degree of uncertainty in traffic networks which requires updating your belief of

the state based on new information. RNNs are very well suited for doing this. In

a scenario with free access to all data related to the traffic network, a CNN could

be used to distill the entire state into a lower dimensional space. Then an RNN can

be used on the sequential data from each bus to generate accurate predictions based

both on the global and local behavior.
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Chapter 6

Further Work

To improve upon the accuracy or traffic models, more data sources need to be incorpo-

rated. Traffic networks are extremely complex, which makes modeling them difficult.

Good models require a lot of data, which forces researchers to use simulations instead

of real data [15]. This is one current limitation of the field. One potential avenue

is incorporating more nuanced traffic data such as volume, delay, and average speed

of all cars in the network. This data is easily available in traffic simulators, but real

high resolution traffic data is less available.

Another strategy to improving the accuracy of predictions is increasing the ex-

pressiveness of the model. Given that RNNs generated the best results, other RNN

architectures may also be successful. Long short term memory networks (LSTM)

would be a good avenue of pursuit because they model dependencies at various time

scales. Additionally, a hybrid model may do a good job a solving the different tasks

necessary to predict traffic. Specifically, a CNN can be used to model the current

state of the overall network, while and RNN can be used to generate real time pre-

dictions of trajectories for each of the buses in the network. In this way work can be

reused because all buses share the same state embedding.

To fully model traffic networks, a holistic approach needs to be taken. Traffic

conditions are determined not only by local behavior, but by the complex interactions

of all the vehicles in the network. Bus routes cannot be treated as independent.

Therefore good models will need to reason about the network as a whole. A good
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path to follow is generating some global state embedding with a large convolutional

neural network, then using this embedding to update beliefs of a reccurent network

in an online fashion. This allows for real time updating of predictions.
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Chapter 7

Conclusion

7.1 Implications

7.1.1 Neural networks can handle the high volume of data

generated by traffic networks

One issue with using larger models is overfitting. Linear models limit the variance of

the estimator class, improving the generalization of the model. However this research

shows that neural networks models can combine several different data sources and pull

out relevant features, with little overfitting. The models in this research do overfit to

some extent, but their generalization scores are better than the linear model, despite

the models having an extremely high variance. In particular, the CNN trained in

this research improved almost two-fold compared to the linear model, with around

a thousand-fold increase in the number of parameters. This may indicate that even

larger models may be effective at traffic prediction. Traffic networks generate huge

amounts of data, especially given the advent of mobile apps such as Google Maps

and Waze. All of this data can be leveraged to improve the operating efficiency of

the network.
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7.1.2 Recurrent neural networks are effective at modeling

bus time series data

Traffic networks generate time series data, which are well modeled by RNNs. Feed

forward models like MLPs and CNNs do a good job of feature extraction and pattern

recognition, however their ability to model trends is limited. CNNs can do 1D convo-

lutions which model time series data to some extent, however they cannot remember

long term patterns. This is where RNNs can shine. This research shows that RNNs

outperform feed forward networks on traffic modeling tasks. Traffic networks have

a lot of latent state which cannot be directly measured. For example the data used

in this research does not have any passenger counts, which are vital to estimating

dwell time at each stop. However RNNs can model latent features like this over long

and short time periods. This behavior underlies their effectiveness at predicting bus

arrival times.

7.2 Contributions

In summary, in this thesis I:

1. Used MBTA GPS data from buses to model their trajectories over a 3 year

period

2. Processed the GPS data to extract high level features such as arrival times at

stops and wait times at each stop

3. Gathered more data related to modeling the traffic network such as traffic esti-

mates and bus metadata

4. Used all of the processed data to train a series of models including linear, MLP,

CNN and RNN

5. Generated predictions with these models and showed that neural networks can

generate accurate predictions of travel times
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6. Showed that large feed forward models can generate highly accurate predictions

without overfitting

7. Showed that RNNs outperform feed forward models

8. Gave an explanation for this improvement based on time series analysis and

latent variables

Traffic networks are notoriously difficult to model, and classical methods struggle

to capture high levels of variation in the network. Most techniques for predicting ar-

rival times are moving from deterministic to learning based algorithms. The explosion

in the amount of data available in traffic networks now allows larger, more accurate

models of traffic. These models can be used to generate predictions and deliver these

predictions to passengers, decreasing wait times and increasing the overall efficiency

of the network. Additionally, the increase in available data necessitates larger models

and new architectures. This research analyzed the effectiveness of the three most

common neural network architectures and found that recurrent neural networks show

the best accuracy. These models can be applied to reduce passenger wait times and

increase the reliability of bus networks.
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