
Cooperate to Compete:
Composable Planning and Inference in Multi-Agent

Reinforcement Learning

by

Michael M. Shum
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 25, 2018
Certified by. .

Joshua B. Tenenbaum
Professor

Thesis Supervisor
Certified by. .

Max Kleiman-Weiner
Graduate Student
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chairman, Department Committee on Graduate Theses

2

Cooperate to Compete:

Composable Planning and Inference in Multi-Agent

Reinforcement Learning

by

Michael M. Shum

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2018, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Cooperation within a competitive social situation is a essential part of human social life.
This requires knowledge of teams and goals as well as an ability to infer the intentions
of both teammates and opponents from sparse and noisy observations of their behavior.
We describe a formal generative model that composes individual planning programs
into rich and variable teams. This model constructs optimal coordinated team plans
and uses these plans as part of a Bayesian inference of collaborators and adversaries
of varying intelligence. We study these models in two environments: a complex
continuous Atari game Warlords and a grid-world stochastic game, and compare our
model with human behavior.

Thesis Supervisor: Joshua B. Tenenbaum
Title: Professor

Thesis Supervisor: Max Kleiman-Weiner
Title: Graduate Student

3

4

Acknowledgments

This thesis describes work done with Max Kleiman-Weiner and Josh Tenenbaum. I

would like to thank them for all their mentorship and advice. In particular, Max has

inspired my interest in research and guided me while still allowing me to make this

project my own. For the brainstorming sessions, life advice, and technical guidance, I

am extremely grateful.

I would also like to thank Patrick Winston and Katrina LaCurts for the opportu-

nities to TA 6.034 and 6.033.

Last but not least, I would like to thank my family for their continual belief,

support, and advice.

5

Contents

1 Introduction 10

1.1 Motivation . 10

1.2 Reinforcement Learning . 12

1.2.1 Markov Decision Processes . 12

1.2.2 Reinforcement Learning Algorithms 13

1.2.3 Issues in Reinforcement Learning 14

1.3 End-to-End Construction of Teams 15

2 Warlords and Deep Reinforcement Learning 16

2.1 Deep Reinforcement Learning . 17

2.1.1 DQN Architecture . 18

2.2 Warlords Game Construction . 19

2.3 Training a Single Agent . 20

2.3.1 Modified Reward Structures 21

2.4 Moving On . 25

3 Social Planning and Stochastic Games 26

3.1 Naturalistic Games . 26

3.2 Model . 27

3.2.1 Social Planning . 27

3.2.2 Joint Planning . 28

3.2.3 Individual Planning . 30

3.3 Behavioral Experiments . 30

6

3.3.1 Human Ranges of K-Levels 31

3.4 Sequences of Observations . 35

4 Composable Team Structures and Inference 36

4.1 Operations and Base Atoms . 36

4.2 Composing Multi-Agent Teams . 38

4.2.1 Team Theory of Mind . 39

4.2.2 Inference of Teams . 40

4.3 Real-Time Dynamic Programming . 41

4.4 Stag Hunt . 42

4.5 Results . 43

4.5.1 Speed . 43

4.5.2 Inference of Teams . 44

5 Discussion 45

5.1 Selecting Teammates . 45

5.2 Scalability in Planning . 46

5.3 Partial Observability . 47

5.4 Self-Play-Trained Level 0 Agents . 47

5.5 Conclusion . 47

A Tables 49

7

List of Figures

2-1 Starting configuration for the Atari game Warlords. 17

2-2 A frame from Warlords gameplay. 17

2-3 Debugger mode in the Stella emulator. 20

2-4 Rewards per episode for Warlords with Bricks configuration. 22

2-5 Rewards per episode for Warlords with Defense configuration. 23

2-6 Rewards per episode for Warlords with Double configuration. 23

2-7 Rewards per episode for Warlords with Breakout configuration. 24

3-1 Example of a naturalistic game. 27

3-2 Regression model of human data against individual and joint model

predictions. The individual model had R=0.856 and the joint model

had R=0.897. 32

3-3 Heatmaps showing likelihood of movements for players A, B, C in

various games and starting states. For each player and spatial location,

both the averaged human and model predictions for the next move for

each of the three agents is shown as a red probability heatmap. Each

column shows a different arrangement of the three players. 33

3-4 Level k=2 planning for a 3x3 game. 34

4-1 Examples of composing policies to model different team structures with

agents of variable sophistication. 39

4-2 Starting state for a Stag Hunt. 43

4-3 Inference of team structures over time for a 3rd party observer. 44

8

List of Tables

A.1 Number of states for each environment. 49

A.2 Average times in seconds for VI vs LRTDP vs BRTDP for an agent

with K=1. 49

A.3 Average times in seconds for VI vs LRTDP vs BRTDP for an agent

with K=2. 49

A.4 Average number of Bellman updates made for VI vs LRTDP vs BRTDP

for an agent with K=1. 50

A.5 Average number of Bellman updates made for VI vs LRTDP vs BRTDP

for an agent with K=2. 50

9

Chapter 1

Introduction

1.1 Motivation

Finding the right balance between cooperation and competition is a fundamental

challenge for any agent in a multi-agent world. This balance is typically studied in

two-player games such as prisoner’s dilemma, where each player must choose whether

to pay a cost in order to make the group better off (cooperate) or selfishly optimize

only one’s own welfare (compete). Humans are especially adept at finding cooperative

solutions and maintaining the balance [1]: we are more cooperative, have larger social

groups, and are more flexible than any other animal species. A celebrated result is

that reciprocity, cooperating with those who cooperate and competing with those

who choose to compete, can sustain cooperation [2, 3, 4, 5]. While reciprocal games

like prisoner’s dilemma are typically studied in a matrix-form game, this result holds

true in richer environments where cooperative intentions must be inferred from sparse

observations of action in order to be understood and reciprocated [6].

However when the number of agents increases beyond a two player dyadic in-

teraction, balancing cooperation and competition takes on a qualitatively different

character. Unlike with two players where the decision is binary (to cooperate or

compete with the other person), in situations with three or more players individuals

must reason about which agents they should cooperate with and which to compete

against. In environments with limited resources and conflicting incentives, cooperation

10

itself requires competition: agents have to cooperate in order to compete.

In domains with structured teams known in advance such as sports or business,

"rules" are clear and the structure of the teams are essentially written into the reward

function of the environment. Yet within a team, agents might not necessarily play

"as a team". When helping out the group is costly, individuals might optimize for

a more selfish reward e.g. showing off in a sports contest or only contributing to a

group project when they will get credit. This is readily seen when calling someone

a "team player" – one is truly considering the objective of the team, not just their

own individual reward. Since both allies and adversaries are of variable sophistication

and ability, it is still a challenge to develop and execute a detailed joint plan of action

while inferring plans of teammates even when teams are known [7].

While there has been recent success in two-player zero-sum games such as Go

and Poker [8, 9, 10] adding additional players makes these players lose their zero-sum

characteristics and the algorithms designed to play these games (often trained through

self-play) are no longer guaranteed to play optimally. Adding an additional player

creates multiple equilibria so even a zero-sum game with three of more players suffers

from the same multiple equilibrium problems that mixed-incentive games have. Thus

little work on self-play will naively generalize to these richer scenarios. An algorithm

which plans only through self-play will find itself unable to adapt to situations outside

of the equilibria it converged to. Consider even a simple case of three-player poker. If

two of the three players collude against the third then they will be able to exploit the

third player over time even though the game is itself is zero-sum.

Outside of highly organized games, team structure is not known in advance.

Consider the case of a child learning cultural norms: the structure of cooperation (i.e.,

who is friendly and who is not) might be set but unknown to the learner. Teams can

also fluidly change, as in children’s games like tag where "it" is passed from player to

player. Humans naturally infer the new team structures, i.e., who is the chaser and

who is fleeing just from a few sparse samples of behavior [11]. In other cases, the teams

form dynamically in response to the demands of a particular situation. This occurs

across many scales from rival groups of hunters collectively chasing prey [12, 13] to

11

sovereign nations deciding who they should ally with. In order to understand common

sense social concepts that people use regularly such as friendship and ally we need

machines that can understand these terms in the same ways we do.

Our contribution is a representation and formalism for understanding and planning

with teams of other agents. We take an approach inspired by models of human

planning. [14, 15]. Humans solve these problems using a rich cognitive tool-kit that

includes the ability to model other agents [16, 17] to decide what they should do in

any particular situation.

1.2 Reinforcement Learning

In order for computational agents to construct plans, they use an area of machine

learning called reinforcement learning. Reinforcement learning enables an agent to find

an optimal behavioral strategy while receiving feedback from only the environment.

The agent receives information about the state of the environment, can take actions

which may affect the state of the environment, and finally receives a reward or

punishment signal that gives feedback about the action taken. Ultimately, the goal

of reinforcement learning is finding a policy that maximizes the long-term reward.

Much of this background is from Sutton and Barto’s Introduction to Reinforcement

Learning [18].

1.2.1 Markov Decision Processes

Reinforcement learning environments are formally described using Markov decision

processes. A Markov decision process is defined by

∙ states 𝑆

∙ actions 𝐴,

∙ rewards 𝑅𝑎
𝑠,𝑠′ from taking action 𝑎 from state 𝑠 to 𝑠′

12

∙ transition probabilities 𝑃 , where the probability that action a is taken in state 𝑠

to state 𝑠′ is 𝑃 𝑎
𝑠,𝑠′ .

An agent interacts with its environment in discrete steps, so at any time 𝑡, the

Markov decision process is in state 𝑠𝑡. At that time 𝑡, the agent chooses an action

𝑎𝑡 from the set of actions 𝐴, which transitions the environment from state 𝑠𝑡 to the

successor state 𝑠𝑡+1 with probability 𝑃 𝑎𝑡
𝑠𝑡,𝑠𝑡+1. The agent then receives a reward 𝑟𝑡+1

from that action.

Reinforcement learning then primarily involves solving a Markov decision process

to find what actions are best in what states. This mapping of states to actions is

called a policy.

1.2.2 Reinforcement Learning Algorithms

One method for solving reinforcement learning problems is value iteration. It aims

to estimate the expected return of being in a given state and is defined via a value

function 𝑉 (𝑠). Using a given policy 𝜋, 𝑉 𝜋(𝑠) is the expected reward when starting

from state 𝑠.

𝑉 𝜋(𝑠) = E[𝑅|𝑠, 𝜋]

Value iteration uses the Bellman equation (1.1) as an update rule.

𝑉 𝜋(𝑠) = E

[︃
∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡)

]︃
= max

𝑎

∑︁
𝑠′∈𝑆

𝑃 𝑎
𝑠,𝑠′(𝑅

𝑎
𝑠,𝑠′ + 𝛾𝑉 𝜋(𝑠′)) (1.1)

A Bellman backup is defined by updating 𝑉 (𝑠) for all states in 𝑠. With infinite

backups, convergence to the optimal value function 𝑉 * is guaranteed and is referred

to as full value iteration. However in practice, full value iteration terminates once the

value function changes by less than an 𝜖 amount in a backup.

Using the value function 𝑉 𝜋, a Quality function 𝑄𝜋(𝑠, 𝑎) then maps states and

actions to values.

13

𝑄𝜋(𝑠, 𝑎) =
∑︁
𝑠′∈𝑆

𝑃 𝑎
𝑠,𝑠′(𝑅

𝑎
𝑠,𝑠′ + 𝛾𝑉 𝜋(𝑠′))

Clearly when using the optimal value function 𝑉 *, this equation provides a set of

optimal Q values 𝑄*(𝑠, 𝑎) with which an optimal policy can be retrieved by choosing

an action greedily at each state: argmax𝑎𝑄
*(𝑠, 𝑎).

Value iteration is a dynamic programming method that "bootstraps", meaning it

uses existing estimates of 𝑉 and 𝑄 to upate future estimates. Temporal-difference

(TD) methods like Q-learning augment dynamic programming methods by sampling

from the environment. As an example, an on-policy method called SARSA updates

its V and Q functions in 1.2 and 1.3. The on-policy component here refers to the fact

that updates to 𝑄 are made by using transitions generated by the existing policy 𝑄𝜋.

𝑉 (𝑠𝑡)← 𝑉 (𝑠𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑉 (𝑠𝑡+1)− 𝑉 (𝑠𝑡)] (1.2)

𝑄(𝑠𝑡, 𝑎𝑡)← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1)−𝑄(𝑠𝑡, 𝑎𝑡)] (1.3)

An off-policy variant of TD methods is Q-learning, where transitions may be

generated by a different policy than the one being followed. An example is shown in

1.4.

𝑄(𝑠𝑡, 𝑎𝑡)← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾max
𝑎

𝑄(𝑠𝑡+1, 𝑎)−𝑄(𝑠𝑡, 𝑎𝑡)] (1.4)

1.2.3 Issues in Reinforcement Learning

Regardless of the method used, reinforcement learning faces two specific challenges

that continue to plague it.

∙ The only learning signal an agent receives is the reward. This means agents must

interact through trial and error with the environment to discover the reward.

∙ Actions taken by an agent may not lead to immediate rewards, leading to an

inability for agents to make good long-term decisions. This is known as the

14

credit assignment problem.

1.3 End-to-End Construction of Teams

In games with fluid team structures, an individual looking to best plan has to follow a

sequence of steps.

1. Identify team structures: which could be my teammates and what are the other

teams?

2. Select a team: which are my best options for teammates?

3. Inferring teammates: what other agents are demonstrating cooperation?

4. Planning: what is my team’s best course of action; what is my best action?

Chapter two describes our initial exploration of planning in the Atari game Warlords.

This includes a background of deep reinforcement learning.

Chapter three explores social planning where teams and goals are known and

introduces the concepts of joint and individual planning.

Chapter four defines a formal grammar with which individuals and observers

can construct possible team structures and infer in an environment where teams are

unknown.

Chapter five describes future expansions to the project.

15

Chapter 2

Warlords and Deep Reinforcement

Learning

We first attempted to build models that could play cooperatively in an Atari game,

Warlords. Warlords is a battle between 4 players, where the objective is to destroy

the other three castles while protecting your own castle with a moving shield. The

castles are the L-shaped blocks contained within the red bricks as seen in Figure 2-1.

A single red ball ricochets around the screen and bounce off walls and shields, but

upon colliding with bricks destroys them. An example of this gameplay is shown in

Figure 2-2. By moving the shield in the path of the ball, the ball ricochets in the

opposite angle it approached with. However, if the player holds 𝑠𝑝𝑎𝑐𝑒𝑏𝑎𝑟 while the

ball hits the shield, the player "catches" the ball and can move in order to shoot at

high speed in their specified direction. Since the ball can move at higher speeds than

shields, we expected that interesting coalitions may form where multiple players can

team up to "pass" the ball and quickly attack another player.

Atari games are particularly challenging to learn due to their complex continuous

nature. Given the recent success in using deep reinforcement learning to play Atari

games [19, 20], we aimed to first train an agent to learn an optimal individual policy

and then extend it to learn optimal team policies as well as infer teammates.

16

Figure 2-1: Starting configuration for the Atari game Warlords.

Figure 2-2: A frame from Warlords gameplay.

2.1 Deep Reinforcement Learning

Atari games are easily understood by humans, but the complex state space represented

by mere pixels make them difficult for artificial intelligence agents to learn. The sheer

number of states a game can be in make it difficult for a computer to brute-force a

strategy, even for a single-player game with a clear goal like Pong or Breakout. In

2013 DeepMind introduced Deep Q Networks (DQN) [19], a method that uses a neural

network as a nonlinear function approximator to compute Q values. This allowed it

to scale to problems that were intractable due to high-dimensional state and action

spaces, and it achieved super-human performance.

We recall that Q functions assign values for each state-action pair. With large

problems, one method to work around the intractability of fully solving for Q is to

learn an approximate value function 𝑄𝜋(𝑠, 𝑎; 𝜃) ≈ 𝑄𝜋(𝑠, 𝑎). A standard approach is

to use a linear function approximation, where 𝑄𝜋(𝑠, 𝑎; 𝜃) = 𝜃⊤𝜑(𝑠, 𝑎), such that 𝜃 is a

vector of weights and 𝜑(𝑠, 𝑎) is a feature of the state action pair. However, DQN’s

innovation to kickstart deep reinforcement learning was the ability to use nonlinear

17

function approximation methods, specifically neural networks, to approximate the Q

function.

2.1.1 DQN Architecture

Atari games have high-dimensional visual inputs; DQN preprocesses the screens to size

84x84, converts to grayscale with 256 gray levels, and only uses 4 screen images. Some

quick math reveals this to be 25684*84*4 states, an intractable number of states to solve

with value iteration. Especially since a vast majority of these pixel combinations are

never reached, we need a way to condense our screen into manageable features. By

using convolutional neural networks (CNNs) as a component of reinforcement learning

agents, agents learn directly from the visual inputs. DQN represents the Q-function

with a neural network that takes in four game screens as state, and outputs Q-values

for all possible actions from that state. This neural network has three convolutional

layers and two fully connected layers.

Convolutional layers allow the network to learn powerful internal representations

[21]. Convolutional networks apply a single filter in all sections of an image, condensing

them into features. This allows it to generalize observations, like "a red pixel near a

red brick is bad", instead of needing to see every combination of the ball hitting every

pixel of brick. This alone doesn’t encode movement, so DQN uses four consecutive

game screens to embed each object’s direction. The filter sizes in each convolutional

layer are also set to sizes that are roughly the sizes of typical agents in Atari games, in

order for the network to detect objects. After the convolutional layers create features,

the fully connected layers decide a non-linear function from these features that finally

outputs values for each action.

Neural networks are trained by optimizing a loss function, and DQN uses a squared

error loss of the temporal difference error from before.

𝐿 =
1

2
[𝑟 + 𝛾max

𝑎′
𝑄(𝑠𝑡+1, 𝑎𝑡+1)−𝑄(𝑠𝑡, 𝑎𝑡)]

2

This error is used to update the weights of the neural network using backpropaga-

18

tion.

Nonlinear function approximators were not effectively utilized until DQN since

they frequently would diverge when updates were not based on on trajectories of the

Markov chain [22]. In order to solve this, DQN uses experience replay and target

networks. Experience replay stores transitions of (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡+1) in a buffer, and

takes batches of these transitions at a time to update the network. This reduces the

number of interactions and breaks the temporal correlations that RL algorithms can

be affected by. Target networks can be thought of as the off-policy concept from

Q-learning, where the policy network uses a fixed target network that is updated after

a fixed number of steps. This allows the TD error to be compared to a weight matrix

that isn’t constantly fluctuating.

2.2 Warlords Game Construction

In order to train agents to play Atari games, researches use an interface called the

Arcade Learning Environment (ALE) [23]. The ALE is a platform that provides an

interface to Atari game environments built on top of Stella, an Atari 2600 emulator.

For common Atari games like Breakout and Pong, the ALE comes with ROMs as well

as functions that identify action sets and return rewards taking steps.

Warlords is not included in the ALE. We used Stella to identify the RAM locations

of bricks and castles. At every step of the game, the step method checks these locations

for changes to specific values to identify bricks or hearts destroyed. We used the

Stella debugger (Figure 2-3) to step through frames of the game and find which RAM

locations pertained to bricks and hearts. We found that locations 0x8F through 0x(F

(except for 0x95 and 0x96) held hex values that related to the yellow player’s two-brick

sets being destroyed. Starting from 0xFF, these would decrease based on the order of

bricks being destroyed. Additionally location 0xEE held an indicator to which castles

had been destroyed, since an increase of 0x8F represented the yellow castle being

destroyed.

19

Figure 2-3: Debugger mode in the Stella emulator.

2.3 Training a Single Agent

Once we identified how to modify the reward structure and relevant actions, we leverage

OpenAI’s Baselines algorithms [24] and Gym interface [25] to the ALE to train our

agents. Gym allows us to modify interfaces to environments (like setting the mode

of a game). Baselines includes open-source implementations of deep reinforcement

learning algorithms like DQN and variants like A3C [26], A2C, and ACKTR [27]. The

2013 DQN paper used 1 million frames, while the 2015 paper used 50 million frames

to train its algorithm before testing. Baselines operates using timesteps, which each

contain 4 frames. The default setting is 10 million timesteps (40 million frames), and

we generally used this as our cutoff. We found it took roughly 24 hours to train for 10

million timesteps.

We first attempted to train a single agent playing against all others to learn an

intelligent policy. Since the goal is to destroy other player’s bricks while staying alive,

the game is similar in structure to Breakout and Pong, both of which DQN achieved

20

super-human performance on. As a result we expect this to be a trivial first step,

given the correct reward structure.

Breakout and Pong were trained only given the score of the game: Breakout

receives one point for every brick destroyed and loses a point for every life lost, while

Pong receives one point for every score and loses one for every point scored against.

However Warlords only provides a point once all enemy castles have been destroyed,

and no points are lost for one’s own castle being destroyed. As a result, even after

training the agent was unable to learn an intelligent policy. We gathered this was due

to the reward being much more sparse than those from Breakout and Pong.

2.3.1 Modified Reward Structures

Knowing this, we attempted to modify the reward structures as well as different modes

of the game. While the underlying structure of the game remains the same, there are

23 different modes that modify number of players, shield behavior, and ball speed.

The number of players can be between 1-4, and involves a Doubles mode that allows

a single agent to control two players against another single two-player joint agent.

Shield behavior can remove the catch functionality, making the ball ricochet only

when colliding with the shield. Ball speed can be modified between fast and slow

speeds. The default behavior is 4 players with catching and fast ball speed.

We also removed the catch functionality in the hopes of reducing the action space.

The expectation was to first observe intelligent behavior in the form of the paddle

deflecting the ball.

We first modified reward to be +100 for destroying other castles and -100 for one’s

own castle being destroyed in the hopes that an amplified reward structure could lead

to enough credit attribution. We aimed to impart as little structure to the algorithm

as possible, as humans are only given the score as well, but this was as ineffective as

+1/-1.

We then modified reward to be +1 for other bricks being destroyed and -1 for

one’s own bricks being destroyed, in addition to +10 for a castle being destroyed and

-10 for one’s own castle being destroyed. This also did not lead to intelligent behavior

21

Figure 2-4: Rewards per episode for Warlords with Bricks configuration.

in 10 million timesteps. A learning curve is shown in Figure 2-4, where reward is

shown over episodes (a full play of the game until termination). While the plot shows

positive reward per episode, this is due to the fact that agents can earn points even

when losing a brick due to the ricochet. Additionally due to the three other players

and corners, agents earn points without taking intelligent actions and as a result are

unable to attribute the correct actions to the actual rewards earned. Even without

any other agents taking actions, the ball ricochets from one corner of bricks to another,

earning our agent points.

In order to remove this ability to be rewarded arbitrarily, we modified the reward

to only be -1 for one’s own bricks being destroyed. We hoped this would lead to a

defensive strategy of deflecting the ball. The learning curves are shown in Figure 2-5.

While it appears that the agents are beginning to lose fewer points, in fact agents are

attempting to lose as quickly as possible since they have no incentive to stay alive.

Hoping to reduce the parameters, we switched to a Doubles configuration. This

causes our agent to control both yellow and green shields. We hoped that with one

agent controlling an entire half, fewer bricks being hit would be attributed incorrectly.

A plot is shown in Figure 2-6. In this case, we observe that reward increases, indicating

22

Figure 2-5: Rewards per episode for Warlords with Defense configuration.

Figure 2-6: Rewards per episode for Warlords with Double configuration.

23

Figure 2-7: Rewards per episode for Warlords with Breakout configuration.

agents stay alive for longer but upon visual observation very rarely did agents make

movements to block the ball. We hypothesized that with longer training, it might be

possible to train an intelligently acting agent. However, given that it took 10 million

steps to train an intelligently acting agent while it only took 3 million to train an

intelligent agent in Breakout and Pong, this did not seem like the most optimal route.

We finally modified the game-ending condition to be when any of one’s own bricks

were destroyed, hoping to replicate Breakout’s success. It was only with this change

that we observed behavior consistent with expectation – the shield moves to defend

the ball. Similar to early versions of trained agents in Breakout, the motions were

jerky rapid movements, where the shield would shoot across the screen at the last

second to block the ball. While the ball was far away, unlike human or built-in game

AI behavior, the shield would not track the trajectory of the ball. A plot is shown in

Figure 2-7. We imagine this may be remedied if the shield’s movement speed were

limited.

24

2.4 Moving On

We originally intended to have our agents control multiple players in the game. The

expectation was that we could explore creating agents with shared reward functions

that still planned individually, as well as an agent that planned jointly. We hoped

to observe mis-coordination between individually planning agents. Once we had

agents with these behaviors, we hoped to have a version online that allowed human

beings to play with our agents that would allow us to observe our model’s ability to

collaborate with agents outside our own models. Further, we had intended to explore

the difference between DQN, A3C, ACKTR, and Schema Models; would one of these

be more effective or amenable to being augmented to cooperate?

This exploration comprised 4 months of work. We observed that only semi-

intelligent behavior emerges after significantly modifying the gameplay structure and

training for a long period of time. Even with an ability to deflect the ball, we saw

none of the team dynamics that catching and passing the ball might indicate. Given

that our goal was to explore how models may construct teams, infer teammates, and

plan optimally, we decided to forsake this domain and scale down to something more

manageable.

25

Chapter 3

Social Planning and Stochastic

Games

Even when teams and goals are known, coordinating team plans is a challenge.

Teammates can be of varying sophistication, and their behavior may be noisy. Here

we explore how agents can construct optimal team plans and coordinate those plans.

We use the idea of strategic best response, a concept commonly used in behavioral

game theory [15, 14] and recently extended to reinforcement learning [6, 12] known

as cognitive hierarchy, level-K, and iterative best response depending on specific

implementation (see [15] for a review and comparison of these subtly different models).

The general idea is to perform a finite number of iterative best responses to a base

model which is not strategic. By only considering a finite number of iterations we

prevent an infinite regress as well as capture some intuitive constraints on bounded

thinking.

3.1 Naturalistic Games

While traditionally social behavior consists of game-theoretic investigations in matrix-

form games, social decisions are much more naturally explored in naturalistic spatial

environments like video games. Simple grids similar to those introduced in [28], like

Figure 3-1, are a useful way to represent a variety of games since people intuitively

26

Figure 3-1: Example of a naturalistic game.

orient themselves spatially and so form complex plans almost without any other

knowledge.

In this chapter, all games explored are a single round of Tag between one team

of two players and one team of one player. Each player controls the movement of

one of the colored circles throughout the course of the game. On each turn players

choose to move their circles into adjacent squares (not diagonal) or stay in the same

spot. All players select an action during the same turn and all positions are updated

simultaneously. If there are collisions between teammates they remain in the same

place, while any collision between opposing players (moving into the same square,

moving into each other’s squares, or one player moving into a stationary player’s

square) counts as a tag and the end of the game.

After every turn the team that is "It" collectively loses 1 point while the team

being chased gains 1 point. Once the chasing team catches a single player the "It"

team receives 10 points, the team being chased loses 10 points, and the game ends.

As a result the game is zero sum with respect to teams.

3.2 Model

3.2.1 Social Planning

We build a model of strategic planning that can form joint intentions assuming equally

intelligent teammates, or varied lower levels of intelligence for other players. Agents

27

know of the existence of teammates and share the rewards with them. At every step,

agents select their action with a plan formulated under a presumption of each other

player’s intelligence. This model-based learning generalizes well with multiple players

as well as in new environments.

This work builds on classical formalisms of intention and joint planning from AI

literature [29, 30] in addition to traditional reinforcement learning techniques [18].

Models in previous work do not handle uncertainty in a probabilistic way and so

struggle with predictions about behavior.

Following the notation of De Cote and Littman [31], we construct stochastic

games representing different childrens’ games. A three-player stochastic game is

represented as ⟨𝑆, 𝑠0, 𝐴1, 𝐴2, 𝐴3, 𝑇, 𝑈1, 𝑈2, 𝑈3, 𝛾⟩ where 𝑆 is the set of all possible

states with 𝑠0 ∈ 𝑆 as the starting state. If assuming equal intelligence, each agent

chooses from a set of actions 𝐴𝑎𝑏 constituting the joint actions of the team. Otherwise,

an agent selects an action from its set of actions 𝐴𝑎. A state transition function

𝑇 (𝑠, 𝑎1, 𝑎2, 𝑎3) = 𝑃 (𝑠′|𝑠, 𝑎1, 𝑎2, 𝑎3) represents likelihoods of moving to new states given

states and individual actions from agents. Reward for an individual player 𝑖 is given

as 𝑈𝑖. Additionally 0 ≤ 𝛾𝑔𝑎𝑚𝑒 ≤ 1 is a discount rate of reward.

We define agents as attempting to maximize their joint utility, assuming other

agents are doing the same. To represent this game-theoretic best response, we use

the level-K formalism used in behavioral game theory with regards to the policies

used by both teams [14, 32]. In a two-player game a level-K agent best responds to a

level-(K-1) agent, which results in a level-0 agent. In our models, a level-0 agent is a

randomly acting agent. This seems reasonable since the environment doesn’t have

specified goals, only to survive.

3.2.2 Joint Planning

If agents assume their teammates are at the same level they are in, the optimal action

comes from treating the team as a single-agent [33]. As a result, they can construct

level-K rollouts to identify the best team-action before marginalizing the actions of

their teammate to identify their individual best action.

28

Accordingly, a randomly moving level-0 agent for a team with players 𝑖 and 𝑗

would have equal probability for any legal joint action for both players.

𝑃 (𝑎𝑖𝑎𝑗|𝑠, 𝑘 = 0) = 𝜋0
𝑖 (𝑠) ∝ exp𝛽𝑄0

𝑖 (𝑠,𝑎𝑖𝑎𝑗)

𝑄0
𝑖 (𝑠, 𝑎𝑖𝑎𝑗) = 0

With a level-0 agent defined, a level-k agent for players 𝑖 and 𝑗 on a team against

player ℎ on an opposing team can be recursively constructed in terms of lower levels.

𝑃 (𝑎𝑖𝑎𝑗|𝑠, 𝑘) = 𝜋𝐺(𝑠, 𝑎𝑖𝑎𝑗) = exp𝛽𝑄
(
𝑖𝑘)(𝑠,𝑎𝑖𝑎𝑗)

𝑄𝑘
𝑖 (𝑠, 𝑎𝑖𝑎𝑗) =

∑︁
𝑠′

𝑃 (𝑠′|𝑠, 𝑎𝑖𝑎𝑗)

(𝑈(𝑠′, 𝑎𝑖𝑎𝑗, 𝑠) + 𝛾max
𝑎′𝑖𝑎

′
𝑗

𝑄𝑘
𝑖 (𝑠

′, 𝑎′𝑖𝑎
′
𝑗)

(3.1)

𝑃 (𝑠′|𝑠, 𝑎𝑖𝑎𝑗) =
∑︁
𝑎ℎ

𝑃 (𝑠′|𝑠, 𝑎𝑖𝑎𝑗, 𝑎ℎ)𝑃 (𝑎ℎ|𝑠, 𝑘 = 𝑘 − 1)

Here, player ℎ is treated as part of the environment and so is described within

𝑃 (𝑠′|𝑠, 𝑎𝑖𝑎𝑗). The maximization operator allows the joint agent to build the best-

response to the level-(K-1) agent. Clearly this could be expanded to teams of any-sized

𝑛 players against teams of similarly any-sized 𝑚 players.

With a policy defined for the joint actions for a team via the underlying 𝑄𝑘
𝑖 (𝑠, 𝑎𝑖𝑎𝑗),

a single agent 𝑖 on the team can marginalize out the actions of its teammate. 𝜋𝐺
𝑖 (𝑠, 𝑎𝑖) =∑︀

𝑎𝑗
𝜋𝐺(𝑠, 𝑎𝑖𝑎𝑗) and similarly for player 𝑗. These individual policies contain intertwined

intentions that include an expectation for the teammate to reach certain states. This

is a meshing of plans that is a key component of joint and shared intentionality [34, 35].

Crucially, agents here assume teammates are at the same level K they themselves are

at.

29

3.2.3 Individual Planning

Agents can also assume teammates are at a lower level than the ones they themselves

are in. Notably, reward is still earned if teammates achieve the goal. For this

experiment, we assume all other agents are at level-(K-1).

A randomly moving level-0 agent then for player 𝑖 only includes actions 𝑎𝑖.

𝑃 (𝑎𝑖|𝑠, 𝑘 = 0) = 𝜋0
𝑖 (𝑠) ∝ exp𝛽𝑄0

𝑖 (𝑠,𝑎𝑖)

𝑄0
𝑖 (𝑠, 𝑎𝑖) = 0

Thus, an agent 𝑖 doing individual planning at level-K with teammate 𝑗 and

opponent 𝑘 constructs its policy with

𝑃 (𝑎𝑖|𝑠, 𝑘) = 𝜋(𝑠, 𝑎𝑖) = exp𝛽𝑄
(
𝑖𝑘)(𝑠,𝑎𝑖)

𝑄𝑘
𝑖 (𝑠, 𝑎𝑖) =

∑︁
𝑠′

𝑃 (𝑠′|𝑠, 𝑎𝑖)(𝑈(𝑠′, 𝑎𝑖, 𝑎𝑗𝑠) + 𝛾max
𝑎′𝑖

𝑄𝑘
𝑖 (𝑠

′, 𝑎′𝑖))

𝑃 (𝑠′|𝑠, 𝑎𝑖) =
∑︁
𝑎𝑗 ,𝑎ℎ

𝑃 (𝑠′|𝑠, 𝑎𝑖𝑎𝑗, 𝑎ℎ)𝑃 (𝑎𝑗|𝑠, 𝑘 = 𝑘 − 1)𝑃 (𝑎ℎ|𝑠, 𝑘 = 𝑘 − 1)

The assumption that a teammate is one level lower is one that could be developed

over time. In the future an optimal agent could infer the K-levels of other agents based

on their actions over the course of the game and adjust to them. In our experiments,

we utilized values of K-1 for both teammates and opponents and tested the self K to

be either 1 or 2. This means agents expect all other players to be moving randomly,

or best responds to an agent expecting everybody else to be moving randomly.

3.3 Behavioral Experiments

We constructed seven game states and asked 20 participants to pick where they

would go in the next move as each player. Participants were given instructions that

detailed the purpose of the game, goals of each player, scoring system, and dynamics

30

of the environment. After seeing the state, participants were asked to select one of

𝐿𝑒𝑓𝑡, 𝑅𝑖𝑔ℎ𝑡, 𝑈𝑝,𝐷𝑜𝑤𝑛, 𝑆𝑡𝑎𝑦 as the next move for player 1, 2, and 3.

In comparing model predictions with human behavior, we tallied the count of

each movement for each player for the state. We then created red heatmaps where

each square’s color intensity is proportional to the ratio of the movement count to

all movements – the more people that chose a movement the redder the square that

would be moved to. We also visualized the softmax policies for each model, with the

probability of moving to a square determining the redness of that square.

Figure 3-3 shows the decisions of one model with individual planning and one

model with joint planning, compared to human decisions. The individual model

assumes it is level K=1, which assumes all other players are K=0. The joint model

operates assuming the team is level K=1 and the opponent is level K=0. Globally

we observe that both models capture the human data well, almost fully capturing

the range of human decisions and generally capturing the distribution across actions

as well. For all models we used a relatively high softmax 𝛽 value of 7, as well as a

𝛾 discount rate of 0.9. We also plotted every human decision for each game against

the model’s decisions in Figure 3-2 and found a correlation coefficient of 0.897 for the

joint model and 0.856 for the individual model.

Between models, we note that the individual model is less likely to consider the

space of other moves than the joint model. This is most evident for agent B, especially

in columns 2 and 4. As a result the joint model captures the human data better.

Since our current model only does value iteration and state sizes grow exponentially

as the board becomes larger, it was difficult to compute level K=2 heatmaps for all

starting states. However, when conducting the experiment the most interesting human

behavior was in starting state 4 (column 4); we will describe it in more detail as well

as explore heatmaps for level K=2 models.

3.3.1 Human Ranges of K-Levels

We identified that K=1 models did not accurately capture the human sentiment to

move down for player 2 in state 2 and built a level K=2 model to see if it was more

31

Figure 3-2: Regression model of human data against individual and joint model
predictions. The individual model had R=0.856 and the joint model had R=0.897.

accurate, shown in Figure 3-4.

For Player 1, both joint and individual models at level K=2 accurately captured

the human intuition to move down or stay still. This intuitively makes sense since

player 2 closes off the middle square.

Player 2 has the most diverse set of possibilities out of all squares shown. Human

data shows participants equally preferred staying still, moving right, and moving

down. Both level K=1 models strongly preferred moving right and slightly staying

still, reflecting their understanding that player 3 moves randomly. However the level

K=2 individual model roughly equally weight staying still and moving down and place

no weight on moving right, and the joint model reflect the human beliefs thoroughly.

This captures the other human responses shown previously, which expect that player

1 will move down and prevent player 3 from escaping by moving left. It appears

that different participants considered player 3 to be at different intelligence levels.

Interviewed after their selections, participants who elected to move down said they

didn’t believe player 3 would be smart enough to move left. This would reflect a belief

that player 3 is a level 1 agent.

Human data for Player 3 was almost entirely 𝐷𝑜𝑤𝑛, with only two participants

selecting 𝐿𝑒𝑓𝑡. Similar to Player 2 this reflected the fact that most humans were

32

Figure 3-3: Heatmaps showing likelihood of movements for players A, B, C in various
games and starting states. For each player and spatial location, both the averaged
human and model predictions for the next move for each of the three agents is shown
as a red probability heatmap. Each column shows a different arrangement of the three
players. 33

Figure 3-4: Level k=2 planning for a 3x3 game.

thinking at a Level 2. However some participants selected 𝐿𝑒𝑓𝑡, signifying that they

were at Level 3. This would hope for Player 2 to move down, allowing Player 3 to

escape through the middle.

It appears that humans operate as either level 2 and level 3 models. This decision

may either reflect their ability to imagine steps ahead, a bias to underestimate the

opponents, or a lack of time. Participants expressed an interest in playing out more

moves in order to feel out other players’ intentions. Some participants also said the

more states they saw the less thought they tended to put into them due to the high

initial cost of imagining scenarios. For future work it would be useful to explore

the play of individuals over an entire game. This would allow us to more concretely

identify what level individuals were playing at, as well as allow them to be more

invested and accurate in their moves. The immediate feedback would be helpful in

engaging participants.

We notice that humans never assumed opponents were moving randomly or that

they were static. Most people projected what their possible range of actions were as

opponents and did a best-response to that. However, humans interviewed said that

they couldn’t trust teammates to operate at the same level they were. This lack of

trust in teammates was due to the zero-shot nature of the experiment, where humans

weren’t given any information about the other players. Upon observing moves, we

hypothesize that humans are likely to gain trust in a teammate if they follow the joint

34

policy at their own level-K. Notably a player might not gain trust in their teammate

if the teammate’s policy is a level-(K+1) since it might not be understood.

We note that a level-K policy only operates well in response to a level-(K-1) policy.

Using Figure 3-4’s state again, a level K=2 player two might move down with 60%

probability which could allow a level-0 random player the opening to escape into the

middle square. This is a key result from Wako Yoshida’s Game Theory of Mind [12].

3.4 Sequences of Observations

Even with knowledge of teammates and goals, individuals typically observe more than

one still image before making plans. One significant inference is the intelligence of

one’s teammates (thus far referred to as K level). Certainly, agents could be augmented

to dynamically infer partner’s K-levels and adapt their policies over the course of the

game instead of fixing parameters throughout. Additionally, given different games a

random level 0 agent may not be the most representative action; it could be static or

have its own limited intentions. An interesting experiment would be to first compare

human’s inferences of K levels of all other players after observation of a few actions,

and then given the true K levels compare the plans humans construct with those of

our model.

35

Chapter 4

Composable Team Structures and

Inference

Once we know how to plan optimally given teams and goals, we need a way to construct

potential team structures and infer which of these team structures is the most likely

representation of the environment. We do so by augmenting the previous concept of

strategic best response (level K) with a model of joint intentionality. To explore our

models’ abilities to infer teammates and construct plans, we extend a stag hunt from

2 hunters to 3 hunters.

4.1 Operations and Base Atoms

In behavioral game theory [15, 36], level-K is referred to as cognitive hierarchy, as well

as iterative best response. Here, we define an agent finding a policy given a lower-level

model by best responding as BR (best response). This recursive step continues until

it reaches a non-strategic base atom, also known a level-0 policy. Redefining 3.1 for

clarity, a randomly acting level-0 agent A has policy 𝜋0
𝐴:

𝜋0
𝐴(𝑠) = 𝑃 (𝑎𝐴|𝑠, 𝑘 = 0) ∝ exp𝛽𝑄0

𝐴(𝑠,𝑎𝐴)

𝑄0
𝐴(𝑠, 𝑎𝐴) = 0

36

A level-K model for a single agent B is then defined recursively:

𝜋𝑘
𝐵(𝑠, 𝑎𝐵) = 𝑃 (𝑎𝐵|𝑠, 𝑘) ∝ exp𝛽𝑄𝑘

𝐵(𝑠,𝑎𝐵)

𝑄𝑘
𝐵(𝑠, 𝑎𝐵) =

∑︁
𝑠′

𝑃 (𝑠′|𝑠, 𝑎𝐵)(𝑅(𝑠′, 𝑎𝐵, 𝑠) + 𝛾max
𝑎′𝐵

𝑄𝑘
𝐵(𝑠

′, 𝑎′𝐵)

𝑃 (𝑠′|𝑠, 𝑎𝐵) =
∑︁
𝑎−𝐵

𝑃 (𝑠′|𝑠, 𝑎𝐵, 𝑎−𝐵)𝑃 (𝑎−𝐵|𝑠, 𝑘 = 𝑘 − 1)

Since the other agents are treated as a knowable stochastic part of the environment,

the transition probability 𝑃 (𝑠′|𝑠, 𝑎𝐵) encapsulates the dynamics of the other agents,

denoted by 𝑃 (𝑎−𝐵|𝑠, 𝑘 = 𝑘 − 1), where −𝐵 is a shorthand to refer to all other agents.

Due to the maximization operator, a level K agent implements a best response policy

to a level K-1 agent.

While the Level-K model can capture strategic thinking (i.e., how to best respond

to other agents), by itself it is not sufficient to generate cooperative behavior. Thus

we also consider a second planning procedure that aims to approximate the results

of centralized planning in a decentralized way. In short, the procedure combines the

individual agents into a centralized “team-agent” that has joint control of all the agents

that are included in the team.

Although the objective function of the planner is centralized, the actual planning

process and execution of the plan itself are assumed to be decentralized. Thus each

agent carries out this planning process with information that is common to the team.

We define JP (joint planning) which takes a stochastic game 𝐺𝐴,𝐵 with agents 𝐴 and

𝐵 as input, merges the remaining players into a “team-agent” which can control the

joint action space and the reward of all players into a shared reward, plans optimally,

and decomposes into individual policies.

After replacing agent C, merging the action spaces for agents A and B (𝑎𝐴, 𝑎𝐵)

from 𝐺𝐴,𝐵 into a joint action space 𝑎𝐴𝐵 within a new game 𝐺𝐴𝐵 creates a single-agent

MDP. As a result the joint agent can run the same planning algorithms from before

to find a joint policy.

37

𝑄𝐴𝐵(𝑠, 𝑎𝐴𝐵) =
∑︁
𝑠′

𝑃 (𝑠′|𝑠, 𝑎𝐴𝐵)(𝑅𝐴𝐵(𝑠
′, 𝑎𝐴𝐵, 𝑠) + 𝛾max

𝑎′𝐴𝐵

𝑄𝐴𝐵(𝑠
′, 𝑎′𝐴𝐵))

𝜋𝐴𝐵(𝑠, 𝑎𝐴𝐵) = 𝑃 (𝑎𝐴𝐵|𝑠) ∝ exp𝛽𝑄𝐴𝐵(𝑠,𝑎𝐴𝐵)

In the same way as BR, the transition function of 𝐺𝐴𝐵, 𝑃 (𝑠′|𝑠, 𝑎𝐴𝐵) embeds the

policies of other agents (here, agent C). Since a policy is probabilistic, each agent

plays its role in the team by marginalizing out the actions of all the other agents. As

an example for agent A:

𝜋𝐴(𝑠, 𝑎𝐴) =
∑︁
𝑎𝐵

𝜋𝐴𝐵(𝑠, 𝑎𝐴𝐵)

4.2 Composing Multi-Agent Teams

The core of our contribution is that using these simple components we can create

highly complex team plans where agents vary in their cooperative orientation as well

as in their sophistication. Our approach is that under the right model of other agents,

multi-agent planning can be described as the flexible composition of single agent

planning algorithms with a model of the environment.

Even with just three players (A, B, C) there are a combinatorial number of possible

team structures, each of which could have varying intelligence levels and methods of

construction.

1. [ABC] (all players cooperating together)

2. [AB] vs [C] (A and B on a team against C)

3. [AC] vs [B],

4. [A] vs [BC],

5. [A] vs [B] vs [C] (all players competing against each other).

Figure 4-1 shows how atomic level-0 policies for individual agents can be composed

together to create policies for individual agents (with BR), as well as for teams of

cooperative agents (using JP). Above are tree structures that visualize the hierarchy of

38

(a)

𝜋2
𝐴

𝜋1
𝐵

𝜋0
𝐴 𝜋0

𝐶

𝜋1
𝐶

𝜋0
𝐴 𝜋0

𝐵

BR(REPLACE(𝐺, [

BR(REPLACE(𝐺, [𝜋0
𝐴, 𝜋

0
𝐶])),

BR(REPLACE(𝐺, [𝜋0
𝐴, 𝜋

0
𝐵]))]

]))

(b)

𝜋2
𝐴

𝜋𝐵 × 𝜋𝐶

𝜋0
𝐴

BR(REPLACE(𝐺,

JP(REPLACE(𝐺, 𝜋0
𝐴))

))

(c)

𝜋2
𝐴

|

𝜋0
𝐵

𝜋1
𝐶

𝜋𝐴 × 𝜋𝐵 × 𝜋𝐶

BR(REPLACE(𝐺, [

𝜋0
𝐴,

BR(REPLACE(𝐺, 𝐽𝑃 (𝐺)[𝐴,𝐵]))

]))

Figure 4-1: Examples of composing policies to model different team structures with
agents of variable sophistication.

how mental models are constructed, and below are the corresponding grammars. For a

level K=2 agent A, tree (b) shows a composition assuming team structure [A] vs [BC],

while trees (a) and (c) demonstrate two possible compositions of team structure [A]

vs [B] vs [C]. We explore how these composition are constructed in the next section.

4.2.1 Team Theory of Mind

With a representation that can generate possible team configurations we now describe

how agents use trees like Figure 4-1 to construct plans. Given a game 𝐺 that includes

all agents 𝐴,𝐵,𝐶 and their respective action spaces and reward functions, an individual

agent A can first identify all team structures as above. It then recursively best responds

as an individual agent with BR or as a joint agent with JP to other agents. It does so

with a REPLACE operator that takes 𝐺 and a list of policies [𝜋𝐵, 𝜋𝐶 , . . .], and replaces

players in the game with their respective policies. Having replaced all other agents in

the game with policies, the game becomes a single-player MDP that BR and JP can

completely solve.

In order to construct the policies used in REPLACE, agents continue recursively

replacing players in lower-level games until they reach base atoms of level-0 policies.

With a given maximum K-level depth and team structure, agent A can construct all

39

possible trees using only BR, JP, and REPLACE operators.

As an example, tree A shows how a level K=2 agent A given team structure of [A]

vs [B] vs [C] solves for its policy by best responding to what agents B and C will do.

Agent A has to determine how agent B and agent C will make decisions – what team

structures do agents B and C have in their minds? In tree A’s construction, agents B

and C also assume a team structure of [A] vs [B] vs [C]. Since B and C are level-1

agents, their mental models of other agents are level-0, and those are base atoms at

the leaves of the tree. We can rewrite the grammar under tree A in a bottom-up

construction for clarity:

𝜋0
𝐴, 𝜋

0
𝐵, 𝜋

0
𝐶 ← 𝐵𝑎𝑠𝑒𝐴𝑡𝑜𝑚𝑠

𝜋1
𝐵 = BR(REPLACE(𝐺, [𝜋0

𝐴, 𝜋
0
𝐶]))

𝜋1
𝐶 = BR(REPLACE(𝐺, [𝜋0

𝐴, 𝜋
0
𝐵]))

𝜋2
𝐴 = BR(REPLACE(𝐺, [𝜋1

𝐵, 𝜋
1
𝐶]))

Tree B shows an example of using JP where the same level K=2 agent A assumes a

team structure of [A] vs [B+C]. Since agents B and C are on a team in A’s mind, agent

A maintains a mental model of a level K=1 joint agent [B+C] that best responds to a

level-0 agent [A]. Note that while a joint agent [B+C] has policy 𝜋1
𝐵𝐶 , agent A best

responds to a marginalized ([𝜋1
𝐵, 𝜋

1
𝐶]) and recomposed policy 𝜋1

𝐵 × 𝜋1
𝐶 , since B and C

are not directly controlled by the same agent. Again rewriting the grammar under

tree B in a bottom-up way:

𝜋0
𝐴 ← 𝐵𝑎𝑠𝑒𝐴𝑡𝑜𝑚

𝜋1
𝐵 × 𝜋1

𝐶 = JP(REPLACE(𝐺, 𝜋0
𝐴))

𝜋2
𝐴 = BR(REPLACE(𝐺, [𝜋1

𝐵 × 𝜋1
𝐶]))

4.2.2 Inference of Teams

Our models can then use the policies computed after using Team Theory of Mind to

make posterior updates of their beliefs of the team structures in their environment.

40

These updates are made after observing a single action taken by every player. Defining

𝑚 as the relevant team members from team structure 𝑇𝑚 (e.g. members [AB] from

team structure [AB] vs [C]), a posterior is the likelihood of taking action 𝑎𝑚 multiplied

by the prior 𝑃 (𝑇𝑚).

𝑃 (𝑇𝑚|𝑎𝑚, 𝑠) ∝ 𝑃 (𝑎𝑚|𝑇𝑚, 𝑠)𝑃 (𝑇𝑚)

By aggregating (normalized) likelihoods from all trees with the same team structure,

we have our likelihood of this team structure. We can index into the policy at the

root of each tree to retrieve the likelihood for each tree. Here, trees are symbolized as

𝑅, where there are 𝑖 trees with team structure 𝑇𝑚.

𝑃 (𝑎𝑚|𝑇𝑚, 𝑠) ∝
∑︁
𝑖

(𝜋𝑅𝑖
[𝑠][𝑎𝑚])

4.3 Real-Time Dynamic Programming

Because the number of possible states is exponential in the number of agents, exactly

computing the policies with full value iteration for anything but the simplest games is

intractable. However, the assumption of approximately rational agency is a strong

one – under almost any agent model most states are not reachable with any significant

probability. In this section we apply tools for bounded planning that are highly suited

to exploit this feature of multi-agent plans.

In principle any planning algorithm works depending on the problem – we could

use value iteration or even deep RL. Here we take a more model based approach

in using Real-Time Dynamic Programming (RTDP) [37] an algorithm with strong

convergence guarantees [38, 39]. RTDP-based algorithms simulate the current greedy

policy in order to sample trajectories through the state space, and perform Bellman

backups only on states in those trajectories. We utilize two variants of RTDP called

Labeled RTDP (LRTDP) and Bounded RTDP (BRTDP).

LRTDP identifies 𝜖-consistent states and marks them as solved. Once a state

becomes 𝜖-consistent, future Bellman backups are guaranteed to not change 𝑉 (𝑠) or

41

the values of any descendants of s by more than 𝜖. This allows LRTDP to detect

convergence and terminate trials early, especially if initialized with a good heuristic.

BRTDP not only keeps track of the value function but also keeps a monotone

upper bound 𝑉𝑢 on 𝑉 *, in addition to a lower bound. Performing a Bellman backup

to either bound thus results in a closer approximation to 𝑉 *, eventually converging on

the optimal values. Maintaining upper and lower bounds allows BRTDP to evaluate

a measure of uncertainty about the state’s value via the difference between bounds,

and focuses its sampling on states where the value function is less understood (where

the uncertainty is larger). By using these bounds BRTDP guarantees convergence

without touching all reachable states.

We hypothesize that RTDP variants will perform well in this scheme because

rational behavior is highly constrained. That is, in a multi-agent setting most states

are extremely unlikely when other agents are assumed to be acting rationally. As a

result, by sampling trajectories following a greedy policy we can avoid unnecessary

computation in solving single-agent MDPs. In section 4.5.1 we validate this approach,

even without heuristic values for either algorithm.

4.4 Stag Hunt

In game theory, a stag hunt is a game in which there are two Nash equilibria – one

is risk dominant and one is payoff dominant. In the game, two individuals are on a

hunt. Each individual can choose to hunt either a stag or a hare, without knowing

what the other person’s choice. If both choose to hunt the stag they will catch it,

but if one chooses the stag without the other he dies. Hunters can catch the hare

without the other, but a hare is worth much less than a stag. The conflict between

safety and cooperation lead to the game also being called a "coordination game" and

"trust dilemma". Wako Yoshida extends this matrix-form game to a naturalistic game

[12], and we extend her two-hunter game to 3 hunters. An example game is shown in

Figure-4-2.

If hunters catch stationary hares, they earn 10 points. If more than one hunter

42

Figure 4-2: Starting state for a Stag Hunt.

catches a stag, they each receive 20 points, but if a single hunter is killed by a stag

it loses 20 points. After each timestep, each hunter loses one point. Stags earn one

point at every timestep they were alive, incentivizing them to stay alive as long as

possible. After any hunter catches any hare or stag, or after any hunter is killed by a

stag, the game ends. Both hunters and stags can only move in adjacent directions

(up, down, left, right, no diagonals), or stay still.

4.5 Results

4.5.1 Speed

In order to compare LRTDP and BRTDP to full value iteration (VI), we initialized

games with varying state spaces and numbers of agents. We then had one agent fully

converge on a policy and timed how long the computation took for the three different

algorithms. In cases where the computation took more than 1800 seconds, we stopped

the calculation. We also tracked the number of Bellman updates made for all three

algorithms. Each experiment was repeated 10 times and the numbers were averaged.

Tables with this data can be found in Appendix A.

43

Figure 4-3: Inference of team structures over time for a 3rd party observer.

Both variants of RTDP vastly outperform VI in time and number of Bellman

updates.

4.5.2 Inference of Teams

A 3rd party observer can also use the same formalism to infer the team structure of a

game given a few observations of the environment. This inference is quite similar to

the one performed by a single agent, but the likelihoods of actions are now multiplied

across all teams within the team structure. That is, after observing a single action

taken by every player, an observer could update a posterior of team structure 𝑇𝑚𝑛 by

multiplying the likelihood for team 𝑚 and likelihood for team 𝑛 with the prior 𝑃 (𝑇𝑚𝑛)

and normalizing. For a more concrete example, 𝑚 could be [A+B] and 𝑛 could be [C].

𝑃 (𝑇𝑚𝑛|𝑎, 𝑠) ∝ 𝑃 (𝑎𝑚|𝑇𝑚, 𝑠)𝑃 (𝑎𝑛|𝑇𝑛, 𝑠)𝑃 (𝑇𝑚𝑛)

In the same way as before, we can aggregate likelihoods from all trees with a given

team structure to get individual likelihoods like 𝑃 (𝑎𝑚|𝑇𝑚). In Figure-4-3 we see an

example of a 3rd party observer updating its posterior over team structures.

44

Chapter 5

Discussion

While we achieved many of the steps we set out to – formulating team structures,

inferring teammates, and coordinating optimal plans, we still lack a principled method

of selecting teammates the way humans might. Additionally planning is still limited

in the size of games and number of agents that can be modeled, our games assume full

observability that real life doesn’t guarantee, and level 0 agents are always assumed

to be random. Here, we explore how to remedy these issues.

5.1 Selecting Teammates

Agents have the ability to infer the most likely team structures, but in all experiments

they begin with uniform priors over all team structures and select teammates purely

based on the posterior of the most likely team. This is not representative of how

humans form teams – people have underlying goals that drive them to form specific

teams, and may have existing priors on how cooperative another agent might be. This

manifests itself commonly in international relations: a long-standing concern is what

motivates states to follow international norms [40], and with whom are they willing to

come to terms with?

A simple augmentation to the model would be setting the probability of selecting

a team structure by augmenting the posterior of the team after observation with a

softmax of the V values at a state:

45

𝑃 (𝑇𝑚|𝑎𝑇𝑚 , 𝑠) ∝ 𝑃 (𝑎𝑇𝑚|𝑇𝑚, 𝑠)𝑃 (𝑇𝑚)

𝑃 (𝑇𝑚) ∝ 𝑃 (𝑇𝑚|𝑎𝑇𝑚 , 𝑠) exp
𝛽𝑉𝑇𝑚 (𝑠)

This weighting incentivizes agents in early stages to demonstrate cooperation to

teammates that lead to higher reward, but if the cooperative intent is consistently

not reciprocated agents will still be able to infer and select a better team. Ideally

this could lead to interesting propositions of teams as well as convergence on teams in

different starting states and environments.

Further, instead of starting with a uniform prior agents could retain a posterior of

cooperation with other agents across games. This might be based on demonstration of

cooperative intent in previous games, but could also be influenced by norms of some

kind. Individuals who may not be "team players" might seek to be the best player on

their team – they may elect to only cooperate with others of equal or lower ability.

Other interesting possibilities that appear in human behavior include players teaming

up against a heavy favorite to overthrow them, or instead joining the favorite in order

to be on a winning side.

5.2 Scalability in Planning

Even with the improvements made to planning with RTDP, we are still unable to

scale to larger games. What if we want to evaluate the cooperative intent of huge

groups? One approach taken is to model a large population as a mean field game

(MFG), where the population is represented by their distribution over state space and

each agent’s reward is a function of the population’s distribution as well as the total

actions. By modeling agents as a distribution, MFGs are able to scale up to massive

population sizes. Yang et al [41] have created a method for MFG inference by using

MDP policy optimization, and show that a case of MFG can be reduced to a MDP

whose optimal policy is equivalent to inference of the MFG model.

Another optimization that could be made is to the heuristic bounds in RTDP. For

46

BRTDP, we initialize the upper and lower bounds to arbitrary values that guarantee

being larger and smaller than the true 𝑉 *. However, with lower bounds convergence

is much more rapid. Using deep reinforcement learning here may be a viable option,

as we could utilize it to identify heuristic values that have tighter bounds.

5.3 Partial Observability

In addition to games with full observability, we could implement games with limited

visibility. Agents next to blocked squares may be temporarily unable to view the

locations of other players. These uncertainties could be included in the models by

averaging expected locations of agents around swaths of area, or by modeling as a

POMDP [42]. Further, new agents could be introduced to the game and known agents

could be removed. This could lead to interesting configurations of how team structures

are created and updated with new knowledge.

5.4 Self-Play-Trained Level 0 Agents

This approach is model-based. Since all actions are made by the individual, they could

find the best responses themselves. Self-play has been shown to allow simulated AIs to

discover physical skills without designing an environment for those mind [43], and to

learn a strategy for Texas Hold’em that approached the performance of state-of-the-art

methods [44]. We could use self-play to find priors for more accurate level-0 models.

This could lead to more accurate inferences of teammates and team structures.

5.5 Conclusion

In fully-observable environments, we formalize a model that can identify team struc-

tures, infer teammates, and coordinate optimal plans. Our models have an ability to

reason about other group and individual agents’ intents and make predictions about

their behaviors in order to best-respond. This ability to do inference is an extension

47

of Theory of Mind that can be considered a Theory of Team Mind.

48

Appendix A

Tables

number of states

small 3375

medium 50625

large 279841

huge 4084101

Table A.1: Number of states for each environment.

k1 small k1 medium k1 large k1 huge

VI 4.62 72.627 591.722 None

LRTDP 0.313 0.0711 0.509 0.514

BRTDP 0.353 0.091 0.477 0.485

Table A.2: Average times in seconds for VI vs LRTDP vs BRTDP for an agent with
K=1.

k2 small k2 medium k2 large k2 huge

VI 56.28 1919.457 None None

LRTDP 29.947 19.274 3021.1 None

BRTDP 20.543 0.989 9.014 168.405

Table A.3: Average times in seconds for VI vs LRTDP vs BRTDP for an agent with
K=2.

49

k1 small k1 medium k1 large k1 huge

VI 175824 2718848 20104866 None

LRTDP 449.315 89.42 555.36 444.89

BRTDP 772.05 189.75 875.4 793.8

Table A.4: Average number of Bellman updates made for VI vs LRTDP vs BRTDP
for an agent with K=1.

k2 small k2 medium k2 large k2 huge

VI 3422080 109663101 None None

LRTDP 71678.0 7780.57 None None

BRTDP 87462.0 2190.15 14889.45 596266.9

Table A.5: Average number of Bellman updates made for VI vs LRTDP vs BRTDP
for an agent with K=2.

50

Bibliography

[1] M. Tomasello, A natural history of human thinking. Harvard University Press,
2014.

[2] R. L. Trivers, “The evolution of reciprocal altruism,” Quarterly review of biology,
pp. 35–57, 1971.

[3] L. Cosmides and J. Tooby, “Cognitive adaptations for social exchange,” The
adapted mind: Evolutionary psychology and the generation of culture, vol. 163,
pp. 163–228, 1992.

[4] R. Axelrod, The Evolution of Cooperation. Basic Books, 1985.

[5] M. A. Nowak, “Five rules for the evolution of cooperation,” Science, vol. 314, no.
5805, pp. 1560–1563, 2006.

[6] M. Kleiman-Weiner, M. K. Ho, J. L. Austerweil, M. L. Littman, and J. B.
Tenenbaum, “Coordinate to cooperate or compete: abstract goals and joint
intentions in social interaction,” in Proceedings of the 38th Annual Conference of
the Cognitive Science Society, 2016.

[7] M. Babes, E. M. De Cote, and M. L. Littman, “Social reward shaping in the
prisoner’s dilemma,” in Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems-Volume 3. International Foundation
for Autonomous Agents and Multiagent Systems, 2008, pp. 1389–1392.

[8] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering
the game of go with deep neural networks and tree search,” nature, vol. 529, no.
7587, pp. 484–489, 2016.

[9] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the game of go without
human knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.

[10] N. Brown and T. Sandholm, “Superhuman ai for heads-up no-limit poker: Libratus
beats top professionals,” Science, p. eaao1733, 2017.

51

[11] T. Gao, G. McCarthy, and B. J. Scholl, “The wolfpack effect: Perception of
animacy irresistibly influences interactive behavior,” Psychological science, vol. 21,
no. 12, pp. 1845–1853, 2010.

[12] W. Yoshida, R. J. Dolan, and K. J. Friston, “Game theory of mind,” PLoS
Computational Biology, vol. 4, no. 12, 2008.

[13] B. Skyrms, The stag hunt and the evolution of social structure. Cambridge
University Press, 2004.

[14] C. F. Camerer, T.-H. Ho, and J.-K. Chong, “A cognitive hierarchy model of
games,” The Quarterly Journal of Economics, pp. 861–898, 2004.

[15] J. R. Wright and K. Leyton-Brown, “Beyond equilibrium: Predicting human
behavior in normal-form games.” in AAAI, 2010.

[16] C. Baker, R. Saxe, and J. Tenenbaum, “Bayesian theory of mind: Modeling joint
belief-desire attribution,” in Proceedings of the Annual Meeting of the Cognitive
Science Society, vol. 33, no. 33, 2011.

[17] C. Frith and U. Frith, “Theory of mind,” Current Biology, vol. 15, no. 17, pp.
R644–R645, 2005.

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT
Press., 1998.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing atari with deep reinforcement learning,” 2013,
cite arxiv:1312.5602Comment: NIPS Deep Learning Workshop 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis, “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015. [Online]. Available:
http://dx.doi.org/10.1038/nature14236

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing
systems, 2012, pp. 1097–1105.

[22] J. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference learning with
function approximationtechnical,” Report LIDS-P-2322). Laboratory for Informa-
tion and Decision Systems, Massachusetts Institute of Technology, Tech. Rep.,
1996.

52

[23] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning
environment: An evaluation platform for general agents,” Journal of Artificial
Intelligence Research, vol. 47, pp. 253–279, jun 2013.

[24] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Rad-
ford, J. Schulman, S. Sidor, and Y. Wu, “Openai baselines,”
https://github.com/openai/baselines, 2017.

[25] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” 2016.

[26] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”
in International Conference on Machine Learning, 2016, pp. 1928–1937. [Online].
Available: https://arxiv.org/pdf/1602.01783.pdf

[27] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba, “Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation,”
in Advances in neural information processing systems, 2017, pp. 5285–5294.

[28] M. Kleiman-Weiner, M. K. Ho, J. L. Austerweil, M. L. Littman, and J. B.
Tenenbaum, “Coordinate to cooperate or compete: Abstract goals and joint
intentions in social interaction,” in 38th annual conference of the cognitive science
society., 2016.

[29] H. J. Levesque, P. R. Cohen, and J. H. Nunes, “On acting together,” in AAAI,
vol. 90, 1990, pp. 94–99.

[30] B. J. Grosz and S. Kraus, “Collaborative plans for complex group action,” Artificial
Intelligence, vol. 86, no. 2, pp. 269–357, 1996.

[31] E. M. De Cote and M. L. Littman, “A polynomial-time nash equilibrium algorithm
for repeated stochastic games,” arXiv preprint arXiv:1206.3277, 2012.

[32] M. Costa-Gomes, V. P. Crawford, and B. Broseta, “Cognition and behavior in
normal-form games: An experimental study,” Econometrica, pp. 1193–1235, 2001.

[33] R. Sugden, “Thinking as a team: Towards an explanation of nonselfish behavior,”
Social philosophy and policy, vol. 10, no. 01, pp. 69–89, 1993.

[34] M. E. Bratman, “Shared intention,” Ethics, pp. 97–113, 1993.

[35] ——, Shared agency: A planning theory of acting together. Oxford University
Press, 2013.

[36] C. Camerer, Behavioral game theory: Experiments in strategic interaction. Prince-
ton University Press, 2003.

[37] A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to act using real-time
dynamic programming,” Artificial intelligence, vol. 72, no. 1-2, pp. 81–138, 1995.

53

[38] B. Bonet and H. Geffner, “Labeled rtdp: Improving the convergence of real-time
dynamic programming.” in ICAPS, vol. 3, 2003, pp. 12–21.

[39] H. B. McMahan, M. Likhachev, and G. J. Gordon, “Bounded real-time dynamic
programming: Rtdp with monotone upper bounds and performance guarantees,”
in Proceedings of the 22nd international conference on Machine learning. ACM,
2005, pp. 569–576.

[40] I. Hurd, “Legitimacy and authority in international politics,” International orga-
nization, vol. 53, no. 2, pp. 379–408, 1999.

[41] J. Yang, X. Ye, R. Trivedi, H. Xu, and H. Zha, “Deep mean field games for learning
optimal behavior policy of large populations,” arXiv preprint arXiv:1711.03156,
2017.

[42] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in
partially observable stochastic domains,” Artificial intelligence, vol. 101, no. 1-2,
pp. 99–134, 1998.

[43] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch, “Emergent
complexity via multi-agent competition,” arXiv preprint arXiv:1710.03748, 2017.

[44] J. Heinrich and D. Silver, “Deep reinforcement learning from self-play in imperfect-
information games,” arXiv preprint arXiv:1603.01121, 2016.

54

