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ABSTRACT

The equations of motion spproprilate for waves In moving
and inhomogeneous medle are developed from the basic
eguations of hydrodynamics with sufficient generality

to allow application to zll geometries and all revers-
1ble flows. Scalar and vector potentlals are used to
describe the sound particle velocity; the general equa-
tions are shown to reduce to two coupled eguations in the
potentials. ' '

Particular applications c¢f the squations of motlon are
made to twe-dimensional cylindrical vortex flow, Two
types of veortex flow are considered. One is the commonly
known ideal vortex consisting of a rotational core and
en induced irrotational flow field; the cother is a "rotor"
consisting only of a rotationesl reglion. The vector po-
tential is approximately evaluated for each in terms of
the scalar potential, and a single second order differen-
tial equation is developed to describes the effect of

the motion on sound waves.

‘The differential equation gppropriate for sound propaga-
LI ¥
£ +O o

tion through a rotor is recast int n integral equation,
The lstter is solved by means of a Born-Kirchoff approxil-
mation and a WKBJ trizl function approximaticn. The cal-
culations show that sound scattering from a rotor is im-
portant when the rotor circumference 1s greater than the
sound wavelength multiplilied by the sguare root of the
ratio of the sound frequency to the rotor freguency, &nd
when the rotors occur in large numbers. These calcula-
tions are in agreement with measurements made over large
distances near the ground.

The refracted field caused by the irrotational part of an
ideal vortex 1s calculated using an approximate WKBJ
technique, It is shown tc be antisymmetric in phase, and
may explain the large phase fluctuations measured in the
atmosphere. '

Supervisor: K. U. Ingard, Assistant Professor of Physics
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I. Introduction

Problems deéling with the acoustics of moving'inhomo—
geneous media have recently become of increased practi-
cal impbrtanbe. Many experimental and theoretical inves-
tigations have consequently been initiated with the hope
of gaining fuller fundamental and applied knowledge of
this general subject. For example, the intense noise
field assoclated with the advéent of the jet and rocket
engine has gparked 1nvestigation of the noise of aero-
dynamic originggg)* It may seem somewhat sufprising that
the subject of moving Inhomogeneous media should have
been neglected for so long in a sclence as o0ld as acous-
tiecs. Actually many investigatlons of a fundamenﬁal
nature were carried out in the last century and ﬁhe early
part of this century, dealing with such toplcs as aeoclian

harps, singing flamesgze) fog-horn sound propagation in

(31)

the atmosphere; etc. Since that time, however, there
has developed a fuller understanding of the subject of A
non-radiative flow; that is, the subject of aercdynamics.
The science and technology of aerodynamics has had two
effects on the field of acoustics. It has produced power-
ful noise scources, so powerful that the problem now is to
find means of quieting these sources, whereas the studiles
of the last century were usually oriented toward finding
meang of producing louder noise sources. It has also pro-
vided a better understanding of rotational flow, particu-
larly furbulence, which 1is inherently present in most

problems dealing with moving inhomogeneous mediz.

This thesis 1s orlented to the problem of sound propaga-
tion in the atmosphere. As pointed out above, the prob-
lem 1s an 0ld one., But because of the louder nolse

*Numbered references are listed on pages xvi, and xvii,
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sources produced by present technology, and the conseguent
annoyance heaped upon those who 1live in the environs,
"this subject has recélved new interest. It alsoc has
connection with several military problems; the detection
of low-flyling aircraft, and the analogous undersea pro-
blem, the detection of submerged vessels, have also
sparked new interest In the subject.

More particularly, the prime objective of this thesis

i1s to develop the theory of the pfopagation of sound in
moving media under a condition in which the flow 1s rota-
tional, While a considerable literature exists on studies
of sound propagatlion in moving media, almost all the work
deals with irrotational flow., The notable exceptions,
h@wéver, are recent studiles dealing with the propagation
of sound through'turbulent flow; they ﬁere carrled out

by M. 7. Lighthi11(27)1n Englana, D. Blokhintzev(3)in
Russia, and R, H. Kraichnan 32)1n this country. The
rotational fiow to be considered in this thesis is or-
dered vortex motion., The reason for studying ordered
vortex flow, rather than turbulent flow, is three-fold:
First of all, for the particular application of interest,
atmospherié propagation, there is reason to believe that
large scale vortex motion forms an lmportant part of the
flow near the ground. Secondly, complete calculations

of the effect of turbulent flow on sound propagation

have succeded only in the case of isotropilc furbulence,

a condltion known to be incorrect for the flow near the
ground, ( Some of the work of Lighthill 1is.an exception,
Under the restriction of high frequencies, he has
succeded in obtaining an expression for the total power
scattered out of plane waves for an arbitrary turbulent
fleid, although he was unable to obtain the scattering
pattern,) Finally, it appears desirable in a problem

of This kind to proceed from the simplest configuration



of the scattering process to the more complex; the
simplest configuration of rotational flow 1is ordered

vortex motion.

In particular, the scattering of plane waves of sound

from two-dimensional tilme-Ilndependent circularly cylindri-
cal vortices will be considered. This problem does not
appear to have been solved before. Using geometrical
(26)has calculated the refraction
of a plane wave only in the induced irrotational region

techniques, R. B. Lindsay

of a vortex, but one of the important conclusions of
the present study is that the rotational core of a vortex
gives rilse to far more lmportant effects,

This investigation is naturally dlvided into two parts.
The first part, contained in Chapter II, deals with the
derivation of the appropriate eguations of motion. The
second part, contained in the remalning Chapters, deals
with the application of the equations of motion to the

sbattering problem.

In Chapter II, the egquations of motlon are developed with
sufficient generality to be applicable to all geometries
and all steady reversilble flows. The well-known laws of
hydrodynamics and thermodynamics are used as the starting
point. All pertinent variables are divided into two com-
ponents. One component 1s associated wilth the net flow,
and 1s taken to be independent of the presence of sound,
The other component is associated with the sound., This
well-known technique gives rise to a set of equations for
the sound variables in terms of the net flow variables.
Next, scalar and vector potentlals are introduced for the
sound particle veloclty in order to reduce the equatilons
to the form of inhomogeneous wave equations. This rather

obvious step does not appear to have been taken before by
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other workers, and leads to a general formulation of the
equationsg of motion which has not been given before. It
is shown that 1in general the sound particle veloclty is
rotational, & fact which is not clearly recognized in
most of the pertinent literature. To date, the best
treatment of the eguations of motion is given in the book
by D.'BlokhintzegB). Although he recognizes that the sound
particle veloclty is rotatlional in the special case of
rotatlonal net flow, he does not use a general vector
potential, and hls results are thus more specialized than
that given here.

In Chapters III and IV, the scattering from vortex motion
is obtaiﬁed approximately by the use of various techniques
similar to those familiar to several branches of physics.
4 Born-Kirchoff approximation 1s used to obtaln the angle
distribution of the scattered sound, a WKBJ solution im-
proved by an Integral equation iteration is used to obtain
the scattering cross-section, and a WKBJ solubtion is used
to compute the refraction by the i1nduced velocity field
of a vortex core, The results of these calculations are
shown to be in agreement with measurements on sound pro-

(18)

pagated over ground, obtained by K. U. Ingard:

On the basis of the calculations, it is shown in Chapter V
that the conditions for measuring vortex scattering in the
laboratory are unfavorable, This fact has been verifiegd
by an attempted underwater experiment. On the other hand,
vortex scattering in the atmosphere 1s a measurable ef-
fect, and further experimental work involving extensive
field tests 1s suggested. |



II THE EQUATIONS OF MOTION

In the usual case, the acoustic equations are obtained by
lineavlzing the combined equations of the conservation of
mass, momentum, energy, and the equation of state. For a
uniform, qulescent, lsentropic. medium described by the
ideal gas equation, the scalar wave equation may be obtalned:

2 1 %Y
VY-=m-==0 (2.1)
¢ Jt

where . W is a scalar completely describing the
1eld. usually the particle veloclity
potential, u = - VY

is the sound particle velocity,

=

c is the adiabatic sound velocity = %E

is the ratio of speclific heats,

GRS

- is the ambient pressure,

p is the ambient density.

If the prcblem 1s complicated one step by the presence of
viscosity, the field is no longer scalar, but becomes a
vector field. The sound particle velocity 1s rotastional
or vortical, and by Helmholtz's theorem it can be writien

ESAS I

us=-Y¢Y+vx A ; V-

[

= 0 (

S
N
S

where A is the vector potential.

(1)

The resulting field eguations are then,

2 .
1 1 .4 3
VZ(V ‘?3“"5/2"'?(—3'\)4'%) v? —aﬁﬁo ' (2.3)
¢

=4
<

2 1 2A
VA =$5T : (2.4)
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/
where Yy 1s the kindmatic shear viscosity =

]

gegi=

=

is the shear viscosity coefficlent,

1 is the kinematic compressive viscosity = %,

A 1is the compressive viscosity coefficlent.

Equation {2.3) may be interpreted as the wave equation with
a damplng term; equatlion (2.%) may be inter?reted as a
vector diffusion equation. If the viscoslty terms are small
(as indeed they usually are), then,

')
>

~0

h

a
ct

éxcept near solid boundéfies, where V?é msay be large. Thus,
to & good approximation, at large distances from boundaries
the sound particle veloclty is Irrotational. Under these
circumstances, the effect of viscoslity on wave motion 1is
exhiblted only as & small damping term, which may be in-
troduced by solving the wave equation (2.1) with complex

wave numbers or frequencies.

In the same way, another complicating irreversible effect,
heat conduction, may be disregarded at large distances

from boundaries; its presence can also be taken into ac-
count by proper damping parameters. Inasmuch as this the-
sis 18 concerned primarily with sound phenomena related

to the flow and the inhomogeneity of the medium, the effects
of Viscosity and heat conduction on the sound will be dis-
regarded, with the knowledge that they may be accounted

for in most physically realizable problems by simple
damping paramsters.

In this chapter, the equations of motion appropriate for.
the propagation of sound in an inhomogeneous moving medium
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are developed. Although the equations are derives from
well known physical relations, they are developed in con-
siderable detall, because the general results form the
core of present and similar problems snd do not appear to
have been presented before in the literature.,

The program to be followed 1s this: It is assumed that

for each flow parameter (such as velocity, pressure, etc.)
a sum of two quantities can be introduced inito the equations
of mass, momentum, energy, and state. CQCne quantity of the
sum describes that part of the total flow which is asszoei-
ated with the net motion of the medium; the other quantity
describes that part of the total flow which 1s associsted
with the wave motion. "The eguations of mass, momentum,
energy, and state for the net flow are separated ocut from
the equations for the total flow, assuming thaet the wave
flow does not alter the net flow. This precess is essen-
tially a filrst order perturbation, and results in a set

of equatlions for the wave flow, containing parameters of
the net flow. It is further assumed that viscosity and
heat conduction effects are minor in the wave motion, as
dlscussed above, and consequently are discarded. Hence,
the resulting equations describe only the effect of the

net flow and,the concomitant inhomogeneity on the wave
flow., Next the equations are linearized, and scalar and
vector potentials are introduced for the velocity. Finelly
the equations are specialized for the present prdblem, in
such a way that the d'Alembertian, or wave eguation operator,

2 .
2.yg2- X 2 | (2.5)
L= ¢ 2t? .

can be abstracted. The remaining terms may then be Iinter-
preted as the inhomogeneous terms that give rise to scat-
tering or diffraction, and hence are of interest in this

gtudy.
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A. EQUATIONS OF MASS, MOMENTUM, ENERGY. AND STATE

The appropriate equations of fluid motion are well known
In the Eulerian reference frame they may be written as:

\

Conservation of Mass:

o)
)

s+ V- (DV) = 0 (2.6)

¥/

Conservation of Momentum:

<3

v 1 1
3T + (‘VXK) X z + EV(Y- . X) = - EVP
+ g +YVV + {2 +)VV-V
g z z Y
Conservation of Energy:
, 93 o _ 2 Q A
T é_f+Ty. .VS = CVKVT +-ﬁ (5.8)
Equation of State (Ideal Ges):
P = RDT (2.9)

where is the density,

is the veloclty,

is the pressure,

is the body force per unit mass,

is the entropy,

23 i W Y

is the temperature,
C. 1s the specific heat at constant voiume,
is the coefficient of thermal conductivity,

& W<

per unit volume by viscous forces (2),
R 1s the gas constant.

is the dissipation function, i.e. the heat leost
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Note that if K,v , andv are small, as they usaally are,
equation (2.8) is very nearly:

or

or
S = constant.

ConaeqUEntly the fluid motion 1s isentroplc in the limit

of zerc heat conductivity and viscosity, and very nearly

igentropic for flulds with small heat conductilvity and
viscosity.

It_is convenlent to rewrite equétion (2.9) in the vari-
ables P, D, and S, rather than P, D, and T, '

z = (F)e (2.9)"

where the subscript zero corresponds to any given state
of the medium.,

Let: V=v+u velocity
P=p+ T pressuﬁe
D=p+¢& density (2.10)
S =858+« entropy
where V, Ps p, 8 are assoclated with the net flow,

u, T, &, T are asscclated with the wave flow.

Inserting relations (2.10) into equations (2.6), (2.7),
and (2.8), results in the following set of equations for




I1-6

the wave flow variables:

20 4+ 7. (V) + V. (pu) + V. (su) =0 (2.11)

2u '

5t * (vxu) x v + (vx¥) xu + (vxu) xu
| | (2.12)

+9(¥ . u) "‘%‘V(P_ .u) = - %Vﬂ +§—2vp + éng
2q |, . | |
a_t'+_‘f"va-+3 .'VS-!-E.V(T:O (Ele)
m=T251 Bqa sl - (2.1%)
P C v

In order to obtaln the above set, the body force has been

~taken as zero, and the net flow variebles are reguired to

satlsfy the original equations of mass, momentum, energy,
and state: '

%%4-\7.-(@1/_) = 0 ' (2.158)
3V _
SF+ v y) x v+ 50y .oy) = -%Vp
+VTY 4+ (%’ +n)vy. v (2.16)
not :
ds - K 2 Q
s+ v Vs % - VT 4+ o1 (2.17)
s-5
&)
.8 G
2 o v
po* (po) ® (2.18)
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In sddition, it has been assumed that

12

= <<1,

(p) ,
and

(5-)° <<1.
v

It is important to‘emphasize that equaéions (2.155 to
(2.18) enforce a given net motion on the medium, independ-
ent of the presence of wave motion. Hence the réyerse pro-
blem, that of computing the generation of net motion by
wave motion cannct be attacked with this formulation.
Furthermore, this formulation obviously excludes inter-
action effects between the wave and net motions. On the
other hand, it is undoubtably true that the above formula-
tion is an excellent approximation to most physically
realizable situations of the type under study in this
thesis. | '

The net flow eguations will be specialized for steady mdtion,

so that

% 2L _35 _ g  (2.19)
In addiiion, it will be assumed that irreversible effects
are small, thus giving rise to isentropic net flow. For

Steady motion, this can be expressed as:

Vs =0 ‘ (2.20)
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B. GENERAL EQUATIONS FOR THE WAVE FLOW

Equations (2.11) through (2.14) are differential relations
for the wave flow varlables. They are rewritten below us-
,ing the condition (2.20) and omitting ell terms containing
the product of two wave flow variables. The resulting

- equatiocns are thus the linearized 1sentropic equations of
sound propogation in an inhomogeneous steadily moving

isentropic gas:

28 +v. (8Y) + V. (pu) =0, (2.21)
24 : ‘
ST+ (Yxu)x ¥+ (vxy¥)xu+ viv.u)s=
| (2.22)
1 $
- -—p- V']T + T Vp .
p
%%r +v .VC= g%_ = constant = O - (2.23)

p

Strictly speaking, the equafiohs given above are valild
only in a region 1in which v 1s much greater than u. If,
hovwever, the net flow fleld is such that through some
region of the field v is either comparable to or less than
u (as indeed 1t may be in vortex motlon), then in that
region the terms containing v are smaller than the omitted
terms containling theAproduct’of the wave variables, and
hence should be dropped. Consequently the amplitude of"
the wave defines the "size" of the moving medium, to the
extent that it 18 possible to define a surface within which
equations (2.21) through (2.24) are to be used, and ex-
terior to whieh the same equations are tc be used with,
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hbwever,~3 replacing v in all terms., But if 1t is insisted
that only linear wave phenomena are to be studled, then

it is clear that 1n general the slze-defining-surface re-
ceeds to infinity, and that, strictly speaking, equations
(2.21) through (2.2%) may be used to derive results which
will be valid only in the limit of zeroc wave amplitude.
This limlitation 1s similar to the limltatlion imposed by
linearizing the equations without flow, and is tﬁerefore

to be considered relatively unimportant for most practi-

cal purposes.

Equation (£.22) may be simplified by noting that Vp may
be wrltten as: |

o= 28| vp = ®Y (2.25)

3

by virtue of the lsentropic conditlion and the gas law
expressed by equations (2.20) and (2.18). Hence:

(2.22)
2u ' T |
5—;:+(v;cg_)xy;+(VXK)XE+V(y_-3)=-V(;)

To facilitate the combination of equations (2.21), (2.22),
and (2.24), it is convenlent to introduce s¢alar and vector
potentials for u:

u=-VYP+Vx A, (V. A is arbltrary ) (2.26)

I£ 1s clear that u can alvays be divided into a longitudi-
nal and a treansverse part. But the physical interpreta-
tion of the transverse part is not always clear. For ex-
amplé, in the case of waves 1in a viscous fluild discussed
at the beginning of'this chapter, the pressure is not
affected by the transverse part of the velocity.(l) Con-
sequently, from the polint of view of & pressure measuring
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device, the transverse part would not be classed as wave
motion. On the other hand, from the point of view of &
velocity measuring device, the transverse part may be
classed as wave motion i1f the measurement 1s made at one
point in the fileld. But if the velocity measuring device
traverses the field, the transverse part would be ldenti-
fied as a diffusion phenomenon, and not true wave motion.
Anslogously the physical interpretation of the transverse
part of u will cdepend upon thé method and the variable
measured. u was defined earlier as that part of the total
flow associated with wave motion; now its definition must
be broadened to include that part of the total flow which
is not assoclated with the net flow. Thus both the scalar
and vector potentlals defined by equation (2.2€6) will be
carried along formally; the physical interpretation of A
will be left for particular examples.

1.  QGenersl Equations for (Jand A.

According to equatlon {2.26), the vector momentum equation
(2.22) 1s:

\~V§5€ + Vx —g—% -V{v .v¢) + V(v .vx g% (2-27-)
o Vyx (Vx v) - (vx A) x (Vxv) - vx (VxVx A) = -V(%)

let

V¢x (Vx V) = -Va; +Ux B,

B
vx A) x (Vx V) = -Ya, +Vx B,, :
7= 4) - 2 =2 (2.28)

B

1

vx (VxVx A) = -Vag +Vx By

V. B, is erbitrary, 1 =1, 2, 3,

In this way, equation (2.27) may be written as the sum of
two vectors, one of which is the sum of only longitudinal
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(curl-free) vectors and the other of which 1s the sum of
only transverse (divergence-free) vectors. By Helmholtz's
theore&%) any vector fleld may be uniguely separated in
thls manner. Consequently equation (2.27) yields two
equations,

(2.29)
_ 2 ' P
5t - Y .7y + v . (Vx A) @ Fay Ayt 2=0
4 .
2% +‘E]_ - .B_g - 53 = 0, (2-30)
and the auxlliary condition,

P A .
3%" V ° g_ + V . El - Vv §2 - v. E} _ C (2'30)‘

The task now is to determine the @; and B,. By operating
on equations {2.28) with the divergence and the curl separ-

ately, 1t can readily be shown that

Vi, = VY. (vx v x V)

V2a2 =(vx A) . (vxTxV)-(VvxV). (VvxvVx A)

V%3=K.VX(VXVX&)~(VXVX§).(Vxﬂ

Vzlél = (Vx ¥)VEY - (Vx ¥V .V VY+ (V7)) v xy (2.31)

VB, = (VXA .V) Vv - (VxV .9) vx4A

7253 = (Vvxvxa)y. v) - (Vx VvxA Vv + (z_.‘V)V’x Vx4
V.B, =0

Note that if all the By vanish as a consequence of the van-

ishing of the transverse parts of the vectors in equation
(2.28), then, by virtue of equation (2.30), the wvector
potential A may be taken as zero, because A should be time-
varying to be of interest in the wave motion.
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The above equatiens for a, and B, are of the form of

Poisson's equation;

[ sy
with solutionéf) ( provided that the vectors (2.28) go to
zerc at infinity)

ai(}:) = %?jpi (21) G (E/_P_') av? (2.32)
.B_i(..?:".) = T_%r-f £4 (E') G (E'./_lf'.') qV (2.33)

where the Green's function® 1s given by,

G(g/g') = %,three dimensions

- 2 1n R,two dimensions

R =| r - z’\

Note that pi,equal to zero 1Implies that ailis equal to
zerc because then Vaﬁ may be written as Vx B!, and is
included in Vx Ei' Similarly, £y equal to zero implies
that B, 1s equal to zero, for theanX'Ei may be written

as Va,', and 1s included in Va,. If a palr p, and p, are
both zero, then it is best to retun to the origlinal vector
given by equations (2.28) to determine whether or not 1t

is identlcally zero. Note also that the condition

V. B; equal to zero is satisfied by equetion {2.3%). This
may be demonstrated as follows:

G e T e Ww e e s e D M e Am e e K e 2 e e e TR e WD A e = e e e Rt WA S i Me M MR e wm e e e Gm G WA e BT v e S e e e

*Hguation {2.3%%) is valid for the rectangular coordinate
system. In general, the Green function is & dyadilc for

other coordinate systems.
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V. B, =30, (x') VG (z/x) av,

- %Tr—J_Qi(r') Ve (r/z') avr.

Now, 1t 1s obvious that

v’ B, = ,}?jvf[gi(y) G (r/r')] av' = o.

By virtue cf the transverse character of Ry>

Vipz') = - V.vx vxB(x') = o0.
Hence,.
1 J[Qi(£’5 . 7'c (rer) avr =0
Therefore,
V.B, =0

The auxiliary condition (2.3%1) is now simplified to

2
ot

Which may a8 well be taken &s

V: A=0.

V. A = 0. (2.38)

In summary, the eporopriate equations in and A are col-
lected below:

__a_%-z.vw+v.Vxéfal+a2+az+%=0 (2.29)

28 + B, - By-By = 0 (2.30)
V.A=0 | (2.34)
(2.35

'?q,‘;“ SV. V- VY.Vp+(Vx4) .Vp-pV?¢P=0
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where a, and B, are solutions of equations (2.31).

Equation (2.24) may be substituted in (2.29), and the
result may be combined with (2.35). This process leads
to a useful reduction of the five equations given above
to the three equations given below:

D
2 1 & 1 4d ' i
1 d . .2
-z Y- ((—i-,‘g -y VX A+ ay - a, - qE)VInc (2.36)
Lov | & +
=5V .\ 3T vxA)+ (VX A .Y) vV 4 vx A)x (Vxy)
c .
g{:-‘a+§-._1_3_2 - By =0, - (2.30)
V. A=0 (2.34)
where %f is the total time de tive Explicltly,
d .9 ~ =
a"t'=5“f+3'v (2.37
(2.38)
L2 2
_ﬂ_,r“é=;2+2y_,.vg%+(z v )y .7)
at- t

'

Equatlons (2.36) (2.30), and (2.34) form the general
result of this section. Because beth ay and Ei depend
upeon  and A, it is clear that In general the equatlons
are "coupled"; the ease of applying these equations will
depend to & large extent on partlcular geometrles and net
flowe which lead to decoupling. To the author's knowledge,
the general equations glven above have not been presented
elsewhere: they have the advantage of providing a unified
basis for attacking many problems of the type under study




II-15
in this thesis.

The most complete exposition to date on this subject has
been gilven recently by D. BlokhintzevSB) but-his work is
rather more specialized than the present treastment, for

he treats onlg one speclal form of the vector potential.
E. N. Parke£6-

but hls work appears to be incorrect, for he has omitted

has also recently treated this problem,
the transverse part of u, even for rotatlonal viscous flow.

In the remainder of this Section, the specialization of

the general equétions to irrotational net flow and zero net
flqw will be carried out. In Part D of thls Chapter,
further speclalization will be made to the case of vortex

motion.

Before golng on, hovever, it 1s appropriate to discuss the
effect of geometry Iin the general case of rotational
(vortical) net flow.

In one-dimensional problems, v and E-are parallel and are
independent of the coordinates transverse to thelr direc-
tion. It 1s obvious that the curl of y must be zero;
consequently rotational flow cannot exist in one~-dimension
and therefore this case is discussed under 1irrotational
flow. -

In two dimensional problems, v and u must lie in parallel
planes and must be Iindependent of the coordinate defining
the planes. Consequently the curl of v is perpendicular
to the planes of V and u. This affords some simplifica-
tion of the equations (2.31) for a, andé gi; terms con-

taining the cperators
(vzv. V)
(vxVvxA.V)
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are automatically zero, for they involve derivatlves with
respect to the coordinate defining the planes of v and u.
In general, however, this simplification 1s not of great

help.

Tn three-dimensional problems, equations (2.21) are to be
used as they stand, and no simplifications of oy and Ei

are possible in general.

Consequently the gecmetry of the situation does not ap-
preclably ease the problem (except in the trivial one-
dimensional case), and therefore the only hope 1s that

the particular net flow under consideration willl lead to
important simplifications. It has already been polinted
out that if all the B, are zero, the vector potentlal 4 1is
zero, and, of course, tremendous simplification results.
It is readily shown that if only B, and EB turn out to be
zerc, then A can be readlly solved for in terms of ¢, giv-
ing rise to the simplification of a single eguation for
. On the other hand, if only El turns out to be zero,
then two decoupled equations result, one in Y and A, the
other in A only. ‘But, if the particular flow under con-
sideration does not lead to such values, that is, if §1
and ﬁg or §3 are non-zero, then the differential equations
for Y and A are coupled (i.e. Y and A appear 1in both
equations) and a solutlon is extremely difficult. Some
speclal flows are discussed below which lead to zero
values of the B, and hence to useful simplifications.

2. 'Irrotational Net FPlow

In this case,
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Now 1t 1= well know that continuocus flows of zero
vorticity retain this characteristic 1f the motions are
isentropic and the external forces are conservative or
zergT) If in some part of the total flow field (say at
infinitj) the boundary condition on the wave flow is such
that 1t i1s required to be 1rrotational, then the total
flow field is irrotational, and must remain so throughout
the field. Under these clrcumstances, the wave flow must
remain irrotational throughout the field! l.e. Vx A is
zero. TFor purposes of generality. it 1is of interest to
retain Vx A 1In the formulation to allow for the possibil-
1ty of the appearance of rotational wave flow as the con-
sequence of a rotational boundary condition. Consegquently

‘equations (2.31) become:

@, = G
aé = 0
Vzaz =v . [vx (vx vx 5_)1
By =0
B, =0
V2B, = (vx Vvx A)( V. v) -(vxVx4a .V)y

Hy .V H{Vx Vvxa)
(2.39)

Thus §1 is zero for generazl 1rrotationel net flow, and
two decoupled equations result, one in Y and g; and the
 other in A only: '

vig. 1 0¥ - .1 99 (yy-vxa) .vin
e at at

v . (d—\y-v.vx.&-a7)vlnc2
¥ lgt - x A - oy

[a®)

O'FJOih’ n‘w
[

v . %(Vxﬂ)-&-(VxA.V)E]

(2.40)
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@
>
(1.
ey
S
E=
]

0. (2.41)

W
ct

It is appropriate to discuss the special forms of equations
(2.40) and {2.%41) and in varlous geometries.

In one-dimensional problems, v and u are parallel and are

independent of ccordinates transverse to thelr direction.
It is clear therefore that Vx u must be zerc. Consequently
the wave flow must be irrotational, and equations (2.40)
and (2.41) reduce to

2
Viy - Sd - vy . Vinp - v . Vine”
5 =
c” at ¢ (2.42)

{one dimensional lrrotaticnal flow)
or, if x 1s the coordlnate in the direction of motion,
the explicit form is:

gy (e, ey
“g]a T? DX ;? 2% 19x

2
1 Y AT alnc Y 2 9% Loty
Z 52t 2 %% 5t _2oxet - 0 (2.42)
where 4 1s the speed of the net flow. This equatlon is
appreopriate for the study of osclliations in heated tubes
(Rijke phenomena), osclllations in combustlon processes
(under some conditions). perturbeatlion of the normal modes

of rooms by temperature gradlents, etc.

In two-dimensional problems, the general irrotational egua-

tions (2.79) for o, and B, are simplified to some extent

by the omission of the term

(Vvxvxa.V)vw
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2. .
However V §3 is in general non-zero. Thus Vx A may be a
function of the cocrdlnates and time, and the wave motion

may be fotational.

- To demonstrate this, note that for two-dimensions, curl
of eguation (2.41) leads to a linear equation of first

ll

order in Vx Vx A:

Yo

(vx Vx 4) =Vx [y_ x (vx vx ;‘\_)], (2.41)

or

cz.lo.-
et

(Vx Vxa) = - (vx ¢x aA)(v. y). (z.u1)r0

It 1s clear that a non-zero general solution(of this egua -
tion (for Vx ¥ x A) exists, and thus Vx A may be non-

zerc in general. Thisls a somewhat surprising result, for

at flrst 1t may be thought that rotafionsl wave flow could
not occur in conjunction with irrctational net flow. As

a matter of fact, many authcrs commit the error of assum-
ing u to be Irrotational, a priori, when dealing with
irrotatiocnal net flo&32(6) In many cases of practical
interest,'howe er, particularly in problems dealing with
unbounded media, it will be necessary to set V x A equal

tc zero. On the other hand, in certain problems dealing
with bounded media, 1t appears that an effect like viscosity
at the boundaries of a fluild (which is otherwise considered
inviscid), may be treated approximately as & boundary con-
dition which specifles a transverse component of u. In this
case; the wave flow 1s in gereral rotatiocnal, despite the
fact that the net flov may be irrotational (outside of the

boundary layer).

In thfeemdimensional irrotational net flow problems, the
equations (2.3%9), (2.40). and (2.41) are to be used as
they stand. The wave flow may be rotational in general, -
despite the irrotational character of the net flow, and
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the discussion given above for two-dimensiocnal irfctational
net flow applies for this case also.

%, 2ero Net Flow

As a flnal example of the simplification of the general
equations of motion, it 1s useful to consider the case of
‘v identically zero. In this case, eguations (2.31) re-

Quire that the a, and B, are zero. Hence Vx A must be

i
zero. the wave motion 1s irrotational, and eguation (2.36)
reduces to '

VY- 25 S5 = -vy. ving (2.43)

Thls equatlon describes the propagation of waves ih a
statlionary medium whose density and temperzture obey the
adlabatic 1deal gas relation. Ncte thatthis 1s a rigorous
equation. The eguations for Vv non-zero are obtained es-
sentially from a first-order perturbation, but this equa-
tion can be derived directly from the linearized eguations

of mass, momentum, energy, and state.
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C. Circular Cylindrical Vortex Motion

The net flow 1s required to satisfy the equations of mass,
momentum, energy, and state, as set forth in equations
(21), (2.16), (2.17), and (2.18). 1In addition, it is
required to be steady and isentrcpic, as expressed by equa-
tions (2.19) and {2.20), and it is to be devoid of the ac-
tion of body forces, i.e., g 1s equal to zero. The appro-
priate eguations are: '

v. (py) =0 - (2.uh)
(Vx¥) xv+ 2V (v.v) = - %Vp (2.45)
S = constant ) (2.46)
g
p = constant p (2.47)

v

Before proceeding, it is worthwhile to elaborate on the
assumption of steady isentropic net flow. In order to
establish the net flow, it is obvious that viscosity must
be present, and that in géneral the flow bullds up and
decays in a finite time., The condition of steady flow,
however, may be expressed by regulring the characteristic
time of the net flow to be large compared to the period
of the wave Tlow, a condition which 1s often met in prac-
tice. But it is not obvious how to treat thé gradients
of entropy which accompany the build up and decay of the
flow, except by the same intultive argument, That is,

i1f the net flow 1s sensibly timé-independent, then the
entropy gradients should be senslibly zero. This assump-
tlon can be tested by solving the net flow equations
without excluding viscosity, and then proceeding to the
limit of a large characteristic time. This proceedure,
however, does not appear to be necessgary for purposes of
the present investigation.
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Inspection of the equations for ¢ and A reveal that the
effect of the net flow enters through the terms VvV, V. ¥,
vx v, ,cg, ¥Vin cg, and Vi1np. The task of this section
is to evaluate the last three terms for the particular
net flows to be studied. By use of equation (2. h?), it

is readily shown, however, that

1_
-1

Vlnp VY 1n 02

Hence 1t willl only be necesSary to determine 02.

To describe the motion, standard circular cylindrical
coordinates r, 4, and z, are used. The veloclty v lies
in the r, £ plane and 1is independent of z. Two types of
vortex motion will be studled; rotor motion, which shall
be defined shortly, and ideal vortex motion, which is
commonly known. Both types of motion may be characterized
by a veloclity of the form

v = £(r) 1y

where f{r) i1s some function of r only, and }¢ is the unit
vector for the £ coordinate. Obvlously, the divergence
of v 1s automatically zero, and by virtue 6f equation
(2.44), Vp must be normal to v, il.e., in the r direction.
Consequently the conccmitant inhomogenelty of the medium
is independent of the angle d.

‘1. Rotor Motion

For purposes of thls study rotor motion may be defined by
the following configuration of the velocity field:

vV =7 gﬁ, r < a

v=0,r>a
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Thus rotor motion may be described as "rigid body" rota-
tion of a cylinder of fluid of radius a, revolving at a
frequency of £, The fiuld outslde the rotation cylinder
is undisturbed., The vorticity of the medium is:

I

Vxyv=221, 1< a

(2.50)
vxyv =20 r>a

Physlcally, this motion may be achleved in the laboratory
using a cylinder made of a thin plastic sheet within which
a stlrring device 1s located, Rotor motion dces not ap-
pear to be of lmportance 1n natural occufanoes, but it is
the simplest two-dimensional rotational flow that can be
studied, and may serve ag an approximate model for physil-
cal cases in which the flow outside a region of vortlcity
is very small;

From equation (2.45), one may readily obtain,

4 2
a§»= pr L1,

for r less than a. Then by using (2.47) and integrating,
the following equatibn results:

c? = %E-z Liéllffrﬁ + constant, r < a.

The constant may be evaluated by examining the conditions
at the cylinder surface. There 1t is required that the
pressure is continucus. Consequently the sound velocity
may be written as: |
002 [} - §51~M2 (1 - 3;}] ! :
- a (2.51)

C =
: o 2 s, T > 8
0
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where c, 1s the quiescent sound velocity, and, where M
1s the maximum Mach number of the net flow, M 1s evalu-
ated by taking the ratio of the speed at the cylinder
- surface to the qulescent sound velocity, Cqe Explicitiy,

M =92 (2.52)
o}

The relations (2.49) and (2.51) for rotor motion are illus-

trated in Figure 1.

2., TIdeal Vortex Mofion

Ideal vortex mction 1s characterized by the following ve-
locity f1e1al8)

v =Qr ié’ r < a :
5 (2.53)
3_='£5%— , > a
Thus ideal vortex motion differs from roter motion ounly
in that there is an induced velocity field outsidé the
fotating cylinder. The vorticity of the medium is never-
thelegs 1ldentlcal in both cases, 1.e.,, for ideal vortex

motion:

V x

f<
0

2ni_, r < a
—Z (2.54)

Vx v C , T > a

This motion may be achleved in the laboratcry by rotating
a cylinder made of a thin plastic sheet., However ideal
vortex motion often occurs as a result of the interaction
of & uniform flow wlth an object. For example, uniform
flow past a cylindrical obstacle results in a trail of
well defined (approximately) ideal vortices in the Reynolds

2 to 104. Or atmospheric wind

number range of about 10
often causes the shedding of vortices from objects like

buildings or trees.
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The pressure distribution in the core of the vortex {r

less than a) 1is obviously identical to that of the rotor,

Hence,
) \

2 ¥-1 2.2
C_

———!Q?r

5 + constant, r < a.

In the irrotational reglon of the veortex (r greater than
a), the differential equation for the pressure is, from
equation {2.45):

P - pdfat L, o5 e,
o

Consequenfly the sound veloclty squared is:

2 4
0f = - 151-5%%¢- + constant, r > a.
The constant in the irrotational reglon may be evaluated

by reguiring

Finally the constant in the core region may be evaluated
by requiring pressure continulty. Thus,

2
c 2 [1- -1y (2- 3»)] , T < a
0 2 2
o a
c” = ‘

(2.55)

2 .
2 ¥-1.2 a
o [1_ 5 M ;@'], , T > a

Relations {2.53) and (2.55) for ideal vortex motion are
11llustrated in Figure 2,
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D. Equations for Diffraction and Scattering

The task in this section 1s to specialize the two-dimen-
gslonal equations in Y and g_fof circular cylindrical vor-
tex motion. In so far as possible, the equations are to
be reduced to the form of inhomogeneous wave equations;
the inhomogeneous terms may then be regarded as source
terms which give rise to scattered radiation or diffrac-
tion,

The rigorous équations will be developed from the results
of Section B and C of this Chapter. It will be shown,
however, that the rigorous equaticns for the core regloh

~are coupled in Y and A, and are not amenable to solution.

Conseguently an approximation scheme will be adopted which
simplifies the eguatlouns considerably, and which, never-
theless, retains the essential elements of the problem.
Both the approximate equations and the rigorous equations
will be used as starting points for the actual calculatiocn
of the scattering and diffraction.

The net flow motion described in the last section was found’
to have the following general properties;

v =1f(r)iy
Y. v=0
v .Vin c® = 0
gggz', r < a
Vx v =

0 - , T > a

q
>
<
-

1<

it
®]
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where f{r) is determined by equation (2.43) for rotor mo-
tion, and by equation (2.53) for ideal vortex motion. f(r)
and Vx v are both different for the core region (r less
than a) and the exterior region (r greater than a) of the
vortex motion. The specialization of the general equations
in Y and A will now be carried through for the two distinct
reglions of the vortex motlon.

1, Exterior Region (r greater than a)

a. Rotor Motion

In this case f(r) and Vilnp are zero., The wave flow is
irrotational and equation (2.43) for zero net flow re-
duces to the standard wave equation:
52
- 2 oo - (2.56)
¢, at“ .

where u = - VqJ. For reference purposes, it is conven-
ient to determine the wave flow pressure. From equation
(2.29):

T-pdd (2.57)

b. Ideal Vortex Motion

In the exterior region of an ideal vortex, the net flow
is irrotational. Heuce equations (2.39), (2.40), and
(2.41) are to be applied., Inasmuch as the wave motien
at large distances from the vortex (r — o) 1s required
to be irrotational, Vx A can be taken as zero, Hence
equation (2.40) reduces to:

V3 - —%j—:-g= - V. Vinp

[
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With the use of equations (2.38) and (2.53), this equation

becomes:

2y _LFY . na 0 9l 9%y
02 9t2 olpl I82¢L o2t og2 (
2.59)
o1 S1nc? 14
¥r-1 2r or
where 2 2 ¥-1 .2 a°
| T
and where u = -V¢., From equation (2.29), the wave flow
pressure 1s: '
T o= ¥ o -Q-_E_z.éib (2.61)

The equations (2.59) and (2.61) for the exterior reglon
of 1deal vortex motlon are considerably more complicated
than the corresponding equations (2.56) and (2.57) for
rotor motlon,

2. Core Reglon (r less than a)

a, Rotor Motion

In this region, the net flow is rotational. ‘Thus equa -
tions (2.31), (2.36), {2.30), and {(2.34), specialized for
two-dimensional vortex motion, are to be used. Explicitly,
equations (2.31) become:

al,: 0

(Vxv) x (Vx &) (2.62)

v .{Vx (Vx vx g)] -(vxvx4a). (vx v)

<
N <
2 Q
W
oo

((2.62) continued on next page)
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q
%
e
i

Vx (Vv x v)

vzg} = (v .Vv) (vx vx A)
. )

Because 51 and 23 are non-zero, the differential eguations

for Y and A are coupled. As expected, the wave flow 1s

rotational, as may be seen from the curl of equation (2.30):

;?VXA=VX§3—VXQI (2.67

The curl of equation (2.6%) takes on a simple form, and

will be useful for discussion:

a—% (vxvxa) =(Ux 1)72W - (2.64)
or,
S (vEa) = - (vxy) vy (2.68):

Now, the vorticity of the wave flov is Vv x u, or Vx V x_é.’!
Thus, for cifcular cylindrical vortex motion, the wave
vorticity is parallel to the net vorticity, and varies in
direct proportion to it and to the amplitude of the scalar
potential ¢ . If it 1s permissible to discard the "flow"
part of the total derivative in egquation (2.64%), (later
this shall be shown to be possible for many practicsl
cases), then, for harmonlic time dépendence, a simple rela-
tion exists between the longltudinal and transverse parts

of the wave flow velocity:

-1 7/2 -
(vxg) (g.u)ye T, (2.69)

(v
\v4 + o
* 2 w

where @ is the freguency of the wave flow. Thus the trans-
verse part 1s 900 out of phase with the longitudinal part,
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and the magnitude of the wave flow vorticity 1s the order
of ef?m cf the wave flow divergence. Hence the dimension-
less ratio-n/b forms & useful measure of the importance

of the effect of net flow vorticity on wave propagation.

In general equation (2.63), or equation (2.64), though
relatively simple to interpret in an approximate manner,
must be solved simultanecusly with the other eguation in
W and A obtained from equation (2.36):

cmlr—'

2 1 .
ViY- =5 —% = -

i ° at (Ot2 + 03)

(o

(2.66)

- -1—1- (vyp-vx é) Vlne®

v . [dt (vxa)+ (Vy A .V)y 'V°‘2_J

'
OmIHT(

where a, and A are determined from equation (2.62), where

3%

co“‘2 [1 - 15—1 Me (1 - % ):{ (2.67)

v a
and where u = - V{+ Vx A. From equation (2.29), the
wgve flow pressure is:

n

sza—i+pn—a‘f—p&1”i¢.§7xé-p(a2+a3)

In part 3 of this Section, approximations will be introduced
to facllitate the solution of the squation pailrs (2,63)

and (2.66); general solution of the simultaneous equations
as they now stand appears hopeless.

b. Ideal Vortex Motion

In the core region the net flow veloclity and vorticity
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for ideal vortex motion 1s identical to that of rotor mo-
tion. Consequently all of the egquatlons and all of the
discussion given in (&) above are valid here, with one

exception. For ldeal vortex motion, the correct equation
for the sound velocity 1Is:

.
2 2 ¥-1 2 FGR ~
C =Co [1 -—-—2—M5 (2—?)], (5.09)

Hence equatlon (2.69) must replace equation (2.67).

2. Approximations

As pointed out in Section B of this Chapter, 1if El and §2
or E} are non—zgro, then the differential eguations for‘w
and A are coupled. Thls 1s the situation encountered in
the core reglon of vortex motion, as expressed by equations
(2.63) and (2.66). But it was also pointed out that if
pboth §2 and 23 are zero, then the two coupled equation can
be reduced to a single equation for (. This would obvi-
ously represent an appreciable simplification of the core
equations (2.63) and (2.66). Consequently it is appropri-
ate to investlgate the conditiocns under which 23 may be
considered very much smaller than B, (§2 is already zero).

if B, is zero, then

Q)lm

VX A= -Vx By
or (2.70)
Vx A ajﬂ(VPx v) x v{dt.

Hence V x A is determined by Y . Insertion of eguation
(2.70) into equation (2.66) would then lead to a single
equation for Q. The error entering eguation (2.70) by

the fact that B: is not zero may be expressed as the ratio

of:
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V2B | -
=3 _ (v .v) (vxVxa4)
V5 (vxv) 72y - BT

To establish the order of magnitude of the error, Vx A
will be calculated from the approximate equation (2.70),

and (P will be taken as a plane wave:
Y = eikrcosﬁ - iwt,
where k = w/c, 18 the propagation constant. It is

readily determined that the error expressed by equation

(2.71) is approximately:

Hence, the root-mean-square error in the core reglon 1s

approximately
5 .
7ZB, 2w T T2 '
rms

It is important toc note also that on the basls of equatlion
(2.70), the magnitude of Vx A compared to the magnitude of
V¢ is of the order of 2% /w. Thus the use of the approxi-
mate equation (2.70) in equation (2.26) (u = -V¢+Vx A)
is correct to the order of f¥/w; the error incurred in the
wave veloclty by the use of the approximate eguation is

therefore the order of

MQ

elo

In addition, with the use of the approximate equation
(2.70), the wave flcw pressure in the core region may be

written as:

Y Y _
m = St + pSlé-E (2n72)
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Desplite the error the order of M in the apnroximate equa-
for Yx A, the pressure as given in equation (2.72) 1s
correct to the order M; the errors are the order of
9-2/(1)2, Mg, and ¥w M,

Consequently it will be convenient %to require that terms

the order of
2

M, & and M°
w

are small compared to unity In the measurable quantities
u and 7. Then the approximate equation (2.70) for Vx A
may be usedf and the wave pressure equation may be simpli-
fied to equation (2.72). This requirement does not re-
presentva serious restriction on the practical application
6f the results, for SL is usually much less than w, and M

is rarely greater than 107+,

g0

In summary, the appropriate equations are given below for
both regions of the twoc types of vortex motion under study.
They have been sultably reduced according to the approxi-

mation scheme:

2
L,
w
2 -~
M° << 1, (2.72)
<
= M <L 1.
Eotor Motion:
i r > a,: o ’
2 1 ?F 2.73
\Y4 ‘P- = 5—1:-? = 0 ( 73)

((2.73) contlnued on next page)

A s e e G WS ae e e n s TR e Y e o " -y - = e M e W e Eh o A M WS e e m e Em M m M Ma e am

¥0f course, V x A will have an errcr the order of M, but
the quantities of interest, u and 7, will have much smaller
errors. Eguation (2.70) for Vvx A was first introdeqg by
A.M. Obukhcv, as discussed in D. Blokhintzev's book.\”
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u=-vy
; oy
T =Ps 5t *
r < a, _
vy 1 2% 2n 9%
T2 4,27 T2 345t
Cq ot ¢,
u=-vy +/(vx v) x vgdt (2.74)
5 , .
T =g ?ité + po“%%
Idesl Vertex Motion
r > a - 2 2 52
VZqJ-_ 1 34) 225?.@ 4/
. 2 at? ¢ drg o9 3t
e} o
us=- vy (2.72)
T =7p é-i-i-p -‘7-32?.9
o ot o r2~ ,a¢
r < a 2¢ 5
1 7 20
vy - 1, 2% . 2g 2
¢ T ot c 2¢ ot
o 0
u = ~V()U+f(Vx V) x vVydt (2.76)
T o= po%% + pos]__aa_lé)

It 1is Important to

note that the approximate equaticns{z,73

to (2.76) do not depend
Inspection of equatiilons

upon the Inhomogeneity of the medium;
(2.51) and (2.55) shows that the

medium inhbmcgeneity is the order of MQ. Thus for scatter-
ing and diffraction, the net flow terms are more important

than the concomitant inhomogeneity.
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III, Scattering by Rotor Motion

A rotor causes a disbontinuity in value and slope of the
net flow velocity and vorticlty of the medium. In a sense
1t 1s analogous to a "square-well" scatterer in quantum
mechanical problems, for the vorticity is everywhere zerc
except within a circular ¢ylinder, where 1t is a constant.
Just as in the case of the Square-vwell scatterer in quantum
mechanics, it is useful to study the rotor despite the

fact that it has few natural ccunterparts, for it repressents
a8 simple a case as can be studied, and can, nevertheless,
lead to the essential physical properties to be expected
from general vortical scattering.

The problem may be stated in the following way. Consider

a rotor of radius a and angular frequency ., Circular
cylindrical coordinates r,#, z, are arranged such that the
axis of the rotor coincides with the z axis, and the direc-
tion of rotation is in the positive ﬁ sense, as shown in
Figure 3. Thus the curl of the velocity in the core is
directed in the positive z sense. The space outside of
the core, or rotor, is designated as Region I; the core,
Oor rotor, 1s designated as Region II. A vwave in Region I
is incident upon Region II, such that its orlginal direc-
tion at r = is from £ = v. The problem is to determine
the total wave fileld at distances large compared with the
radius of the rotor and the wavelength of the incident

sound.

The incident wave will be required to be a plane, simple-
harmonic time dependent wave. Without loss of generality,
its amplitude may be assumed to be unity. Thus,

. s
Wy = elxlrcosﬂ o~ ot
in !

(3.1)
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where kI = %— 1s the propagation constant in Region I.
0
Inasmuch as the appropriate differential equations de-

veloped 1in Chapter II are linear, solutions may be sought
which also have the time depehdent factor

e-iwt.

In what follows, 1t will be convenlent to omit the time
dependent factor, and replace the operators

-;’%E and LSdt
by -1w and 1/w respectively.

The total wavs field may be expressed as ehe sum of the
inclident wave and a scattered wave. In certain scattering
problems, the scattered wave may be found rigorously by
summing the scattering from each mode. That is, eigenfunc-
tion expansions valid separately in the external medium
and in the scatterer can be adjusted term by term zccord-

- Ing to continulty or matching conditions at the mutusl
surface, and the total scattering can be interpreted as
& superposition of scattering from modes corresponding to
each term. This method, when 1t can be applied, leads to
results which are useful principally at low frequencies.
At high frequencies, a large number of modes must be con-
sidered, and the evaluation of the sﬁm becomes cumbersome,
Inspection of the appropriate differential equations for
the core reginn; however, shows that the equations are
not separable. Thus exact determination of the eigenfunc-
tions for the core 1s not possible. It is possible, how-
ever, to approximate the eigenfunctions by performing a
perturbation on some closely related but exactly solvable
problem. Hence, 1in principle, it would be possible to
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attack the present problem from the point of view of scat-
tering by modes, but this does not appear to be a conven-
ient approach.

Instead an approximate solution for the scattered wave
using Iintegral equation techniques will be sought. The
wave equations valid separately in the external medium
and in the scatterer.can be recast into integral equations
which implicitly contain the countinuity and.boundary‘ccn—
ditions, These integral eguations can be constructed

for arbitrarily shaped scatterers. They are not, however,

any easler to solve rigorously than the differential egqua-
tions, but they do lend themselves more readlly to approxi-
mate solution.

Briefly, the procédure to be followed is this: The
approximate differential equations (2,73) and (2.74) for

¢ are recast into integral equations using the fact that

T and the normal components of u are continuous across »

the rotor surface, The integral equations are arranged

in such a way that the total wave fleld outside the rotor

is related to the integrals of the wave fileld and its de-
rivatives inside and on the surface of the rotor. The equa-
tions are then specialized for distances large compared

to the radius of the rotor and the wavelength.

One approximate solution for (/is obtalned by taking the
wave fleld of the rotor, i,e., ¥ in the velume integrals
and In the surface integrals, to be the incident plane
wave, This approximation is calleé the Born-Kirchoff
(BK) approximation: 1t ylelds the scattered field as a.
function of g. It is shown that for at least one point

" in the rotor (the center), the BK trial assumption of a
plane wave 1s exact. It is therefore concluded that the
approximation gives useful results, on the basis that the
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field withlin the rotor 1s probably nct much different than
the field at the center.

Another approximate solution for ¢/ is obtained by taking
the wave field of the rotor to be that calculated by a

WKBJ * iteratiye technique. 1In order to apply the WKBJ
technique, the two-dimensional problem is reduced to an
ensemble of one-dimenslonal problems; the coordinate per-
pendicular to the normal of the incident wave takes on

the role of an "impact" parameter for straight-line rays
whose phases are determined by the approximate differential
equations (2.73) and (2.74). The resulting ray ensemble

is used as a trial function in the two-dimensional integral
equatioﬁs. Because the WKBJ procedure is more adcurate,

1t may be expected to yleld more acéhrate resulits than

the BK approximation,

Finally, the results ocbtained in this Chapter are compared
with a statlstical theory of scattering from turbulence
developed by M. J. Lighth111(27)

e e e e N e e e e e Y - G G e = e ——— e e = m O = - - e G e = e e e o = — - —

*The letters stand for G. Wentzel, H. A. Kramers,
L. Brillouln, and H. Jeffreys.
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A, Integral Equation Formulation

1. Rigorous Integral Equations

Congider an infinitely-long cylinder of arbitrary cross
section, as shown in Figure 4, n; and npy are outward
pointing normal vectors (of magnitude unity) for

Regions I and II respectively; EO and El are propagation

vectors, both of magnitude k., and are in the incldent

I!
radlation direction and the measurement directlon respec-

tively,

The approximate differential equations {(2.73) and (2.74)
for the rotor may be written as:

2 2 .2
(v + kp© o+ W)Y (r) = 0 (3.2)
where
2 91n '
ipdk r < a
W) =4 @ T R |
C- , T > oa

Egquation (3.2) 1s in the form of the time independent
Schreoedinger equation. The perturbation wg, compared to
ey ®
derivative of ¢ with respect to g. Thus the relative ver-
turbation is the order of or less than M, the maximum
Mach number of the rotor, and hence equation (3.2) may
be approached with the theory of small perturbations of

Helmholtz's eguation:

(V2+ 4. P) W (z) = 0

The boundary cocnditions on ¥ for the mutual surface S
of Reglonsg I and II may be determined by requiring con-

, 1s the order of magnitude of {2/ times the logarithmic
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tinuity of 7 and the normal component of u.- Hence:

Gl o= g o+ 1%2—!%1- , '(5."3)
S 5 3
and
arp VW =Rpp VWpp - 18ap - L x Vg
or

~~~

\H
=

po—

Note thsat in consideratlon of equation (3.3), equation

(7.4) may be rewrltten as

oY _ Y
a I a 11 2 3y
L}*’I‘!—?ar z\l/II+';C-T 5t . /‘.4)'

The boundary conditicon on the surface at infinity for
Region I 1s that there be a socurce and sink distribution
corresponding to the incident plane wave.

The inhomoéogeneous Helmholtz equation for the two-dimensiocnal
Creen's function, G(r/r'), will be associated with equa-
tion (3.2). It is:

(V% + %%) 6(r/r') = -8(x - '), (3.5)

G(r/r') represents a wave at r due to a source at r!' de-
scribed by the two-dimensional Dirac delta functlon
§(r - r'). It is invariant with respect toc an inter-
change of r and r'. The boundary condition on G(r/r')
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appropriate for the present problem 1s that 1t be an out-
going cylindrical wave at infinity. The soclution for free
space 1s:

6(x/z') = + 53 (k) (3.6)
vhere R - lz - r" .

The volume perturbation term W24/ may be considered the
inhomogeneous part of a Helmholtz ecquation in y . The

two regions of interest, I and II, within which ¢ and

vy are continuous are to be considered separately. Then,
using Weber's two-dimensional analogue of Helmholtz's
theorem conce”nLng solutions of Helmholtz's equatioﬁg)(lo)'

the following set of integral equations result:

Region I | (3.7)

1kg ﬁ_ 5 nr G(_r;/E!) - Qﬁ%_f-_’l WI(E’ )] ase

%(;_), r in I
- | |
+ | Wt (z) Wyl )e(z/zr )av =

0 , v in II

T
feslen A (=.8)
a (_ /! .
ﬁ grgII Glz/z') - 3__%(_;;_?_) W II(Z’_")]@S!
f 2 0 > _1: in I
Wot (xt) Yoy (21)e(z/zr)eve =
& | | Yo(x), r in 11

The term eiKO L results from evaluating the surface in-

tegral at infinity, and 1s the incident plane wave of

unit amplitude. For the particular case of equaticn (3.2),
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2 2
W i8 zero and WII

2
1 .

i1s identically W
In order to joln the two integral equations, the continﬁity
conditions given in equations (3.3) and (3.4) are to be
used. Consider r in Regilon I (outside the rotor). Then
from equation (3.8):

faéxl Y as =fw2 YtV + des g

onry

Application of the pressure continulty condition in the
surface lntegral yields:

{20 v [ue 15 e
fa_——-nﬂ ‘#I a8 __fw WIIde + “‘_“a - Gds

oy
of ¢ IT
£ fanII EX

where use has been made of the relation

@

2G 3¢

ony; = T 3nL .

The latter ecuation 1s then added to equation (2. 7), ith
the vesult

Y .r+f oY1 Gas: +fw2<,DIIde
Iﬂ

o1 a¢
+ [ =L gas' + 12 il
fann ' fanu 57 %

Finally, the continuity condition on the normal component

bof.g may be used to obtain:
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_ iks . T 42 09YII 2 »
SVI(E) £ aj%f‘f— Gas! J:fw Y GV

of2e 2¥11
+ i@J;HEE»E;ET das:,

o~ P > |
Y (r) = e'Bo + L - 42 f-—al%% gast + 122 kfj%- Gav!

(3.9)

The integral equation (3.9) is a rigorous result. It re-
lates the wave field outside the rotor to the ¢ deriva-
tives of the field inside and on the surface of the roctor.
In\this form, approximation tc the "iumside" function (PII
yields the corresponding approximation to the "outside"
function (PI directly.

Note that surface as well as volume integrals appear in

the above integral equations. In gquantum mechanical pro-
blems dealing with volume perturbations, %’and 3% are
continuous, sc that it is unnecessary to make 2 distinc-
tion between two reglons, and only a volume integral
appearsgll) In ordinary acoustical problems deallng wlth
volume pertufbations, %%fis continucus, but ¥ may be disé
continuous (corresponding to a jump in density), so that

it is necessary to distinguish between two regions of
space, and both volume and surface integrals appear&le)
aén the latter case, however, surface integrals containing

aE;-do not appear; in the present case they do.

o, Far-Field Relations

Often the field at large distances from the rotor 1ls de-
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sired. In that case the asymptotic form of G(E/g') can
be used and its argument approximated. For kIr large,
the argument kIR approaches

~ » - 1 t - -
kiR # kg (r - r'cosg') = kyr - ko .or'

and 1s used In the phase of G(r/r'). 1In the amplitude of
G(r/r'), kiR is taken as k;r. Hence '

" ik.r -k, ., r!
: i 2 e I e =1 =
G(r/rl) ~
== EJWin /T

Then equation (%.9) becomes

flz) = etMo - I 4 L[ 2

where

The second term on the right of equation (3.10) 1s recog-
nized as the scattered radiation. s(gl,go) is the amplitude
of the scattered cylindrical wave measured in a direction
k) due to a wave incldent in a direction kj. Hence 35(k;,k,)
may be Interpreted as S(#,0) if the incident wave 1is coming
from g = 7 (headed toward g = o).

In genersgl, eguation (3.11) for the far field 1s easier
to integrate than equation (3.9), but it does not lend 1t-
self tc an iterative procedure. The reason for this is
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that only the asymptotic value of ¢ is determlned by equa-
tion (3.11), and values of ¥ on and near the scatterer
are required for iteration. In many practical cases,
however, only the far fleld is of interest, and even
without iteration 1t 1is often possible to obtain a useful
solution for ¢ based on a first trlal inside function.

In Section B and C of this Chapter, sapproximate solutions
are found for Y based on two different inside trial func-
tions; the trial functions used must be simple enocugh to
afford integration and sccurate enough to lead to useful

results.

It can readily be shown that the scattered intensity per

unit incident intensity 1s given by

2
Ly 1: -
I(r,£) = Bk T S(El’ho)‘ , (%.12)

and that the scattering cross-section is given by

s 2
T - ﬂ'ix jIS(z:_l,go)\ ag (3.13)
O

These relations are derlved in Appendix I. There is also
a theorem connecting the total cross-section (scattering
plus absorption cross-sections) and the forward scattered

amplitude:

0, =T+ 0, = -};-I- m [ 8(kg. ko) ] (3.14)
Equation (3.14%) 1s well known for ordinary scattering pro-
blemg}s) but 1t is not obvious that it should also hold in
problems of the type under study here. Consequently the
proof of equation (3.1%) 1is given in Appendix I. Through-
out this stuwy absorption effects have been discarded;
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thus @ is directly related to the imaginary part of the
scattered wave in the incident wave direction.

B. Born-Kirchoff Approximation

One of the simplest inside trial fﬁnctions i3 a plane
wave equal to the Incident plane wave. This trial func-
tion leads to a first "Born-Kirchoff" approximation.
From an intuitive point of view, the smaller M and {t/w,
the better the approximation-will be.

The inside function is chosen tc be a plane wave of pro-
pagation constant, kI’ which is equal to the propagation
constant in the external medium. Thus,

Yoo = el - 2, (3.15)

~Before proceeding with the calculation of the scattered
amplltude, 1t 1s appropriate toc investigate the error
associated with the BK approximation. To do this, a
scheme due to &chiff is useé%a He celculates the field
at r = 0, and investigates its value compared to the as-
sumed value of eiKG . To apply thls scheme to the pre-
sent preoblem, note that for r _in’Region II, egquations

(2.7) and (3.8) give
ik, . 1 3¢@ '
e 0 +jtan G an I] as! =

and

£y ‘
\PTI( ) =I5 e - 2% g ] es:

+jw2’ Yip Cav'.
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Explicit use of the value for’wg, and application of the
continulty condltions in the surface integrals of these

*
two equations leads to

Y (r) = e - I 4 12&:< f %%-Iji Gav'

" (3.16)
2
- 122 53 cas' 4+ 1 %ﬁgi, ds'

The integrals on the right of equation (3.16) are equal
to the error incurred by assuming ¢&I to be the incoming
plane wave, For r = 0. the error 18 given by

-1 % { “ZEI;#E B P (iegr) av
- Zﬁél) (kIa{f %gg%; ag - (3.17)

In corder to calculate fthe error, 4&1 will be taken as the
incoming plane wave in the integrals of equation (3.17).
Then, all of the Integrals have angle parts which are of

the form
27

f o tkyreoss singdg.

.
e mn Gm o wm G e m G WA e B ee W e R M WS N DY —e Wh W R e WD S e W R e ey WM e WO WB Ra G W A O M MR R A WD e e — WM e W e

¥ Equation (3.16) for ¢’I (r in II) is of the same form as
equation (3.9) for Y. ~*(r in I). At first sight this
appears incorrect, fof at r = a this implles that wPII - ¢'I
Ed
in viclation of the pressure ccntinuity condition. Fur-
ther inspection reveals, however, that the sigularity of
GI calculated in II i3 the negative of the singularlity of
2G| calculated in I; the surface Iintegrals contain-
5? ing 3G thus give rise to the discontinuity of w,
2r

as expected.




ITI-14

But these integrals are all zero, the error 1s therefore
zero, and hence the 1lncident plane wave is the exact
soluﬁion for the center of the rotor. In additlon, in-
spection of the continuity equations (3.3) for the surface
"of the rotor shows that the discontinuity in ¢ is less
than about M, 1if \pI and \DH are assumed to be the in-
cident plane wave. Thus it seems reasonable that the
:error incurred by assumlng %&I toc be the incident pléne
wvave 13 less than the order of M throughout the rotor,

and tendé toward zero &t the center of,the rotor. In-
asmuch as the calculatlion of ¢L involves integrals of
'wll multiplied by Z/w ( sge equation (3.9)), the net error
is the order ofn M (or ié or Mg), and the BK approxima-
tion is thus adequate for the present problem. In sum-
mary, the zero order sclutlion of the problem 1s” the incld-
ent plane wave, and is in error by the order of /e or M,
The first order solution, the BK approximation, is obtained
by iterationvof the zerc order solutlon, and 1s 1in errcor

-~

er of 2 or M or M
by the order of oo or M~ or M o

‘Now the scatiered amplitude will be calculated. It may

be written as
' 27

Sk ,kg) = - 2 "‘Iafeié I sindragt (5.18)

5 2

1K 2 1
- f% (kIa)2 e= * I sindtcosgrag:

K .
et ‘—,sinﬁ’dﬁ'(r')adr',

0“«-\QC3au__\

a
+25lk3f
w
0.

where the vector K 1s given by,




ITI-15
Hence,
K| = ekIsin(pf/z),
K.r' = ERIP‘sin(ﬁ/E)cos(g;g).

If & change of variable 1s made to the angle coordinate 9,
where 6 = #' + 2(" - #), then simple geometrical considera-
tions show that cos(r', K) = cos §. That is, K defines a
new coordinate line, such that r' is at an angle 8 from

K. This is shown 1in Figure 5. The transformatien to the
angle © will be used in each of the three integrals in
equation (3.18); each integral will now be investigated

in turn. '

Conslder the first integral of equatlon (%.18). It may
be written as: '

uln(ﬁ/E) iEk asin(ﬁ/?)cos@ s1n6 d6

T
T-4
(3.19)
r 8
R

- cos(4/2) eiEkIasin(ﬁ/ﬁ)cos@ cos@ de

=
oPs,

The integration 18 around a closed circle. Thus the limits
given in equation (3.19) may be changed to O and 27. The
first integral of equation (3.19) is zero because the ex-
ponential term 1s an even function arocund 6 = 7, while
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8in® 1is an odd function around © = 7. The second Inte-
gral is proportlional to an integral representation of the
Bessel function of thé first kind, of order unitygl5)
Thus equation (3.19) reduces to

- 27 1 cos(g) J1(?k1asin(§)). (3.20)

Similarly the second integral of equatlon (3.18) is found
to be:

T sing JE(?kIasin(g)) (3.21)

The angle part of the third integral is identical to the
first integral; the radiszl integration is simple, and re~ -

sults in:
- ¢/

-7 1 cosg/2 = J.(2k,asing/2). (3.2¢

kIsin z 2( I ) )
Thus the scattered amplitude may be written as:

5(ky,kq) = 1Mk asing - (3.23)
- (2 Age) - 21+ stnP/2) (kga)? Ag(Ka)]

where

K = l_}gl= 21{13111,6/2,

]
A (Ka) = K‘g&‘ﬁ' Jn(Ka),

=
RS L -S|
4 = cos [—E;gu ].

Several interesting physical features of this result will

now be discussed.
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First of all, S is an odd function of g. Thus the phase
of the scattered field undergoes a phase shift of 180° at
# = 0 and 7, and the lines of constant phase are asym-
metrical with respect to the forward direciicn. On the
other hand, the intensity of the scattered fileld, which
is essentlally y¢¢*, is symmetrical with respect to the
forward direction. Consequently the lines of constant
phase and the lines of constant intensity of the scat-
terad fleld are behaviorally different. Acoustic ray
theory predicts that in the présence of net flow, sound
intensity is propageted with a velocity different from
the veloclty of phase propagatio£%6) Thus it may be
expected that the phase and Iintensity in the rotor are
distorted differently, and that the resuvlting phase and
intensity»batterms external to the rotor are btehaviorally
different. This is borne out by wave theory using the
BK approxlmation.

Because dissipative forces have been neglected, the scat-
tering process described by eguation (3.23) is elastic.
Thus no nel tordgque can act on the rotor, and the total
“anpgular momentum of the wave field around the origin

must be zeroc. However because ¢f the asymmetrical naturs
of the scattered field, the total fleld by virtue of
interference effects is asymmetrical, and it may be ex-
pected that the local angular momentum density around the
origin may be ssymmetrical and non-zeroc. To see that this
the case, 1t 1s sufficient to note that if two cbservation
points (r, g) and {r,-g¢) are considered, the angular mo-
mentum density for each is the equal and opposite of the

is

other for symmetrical scattering, but unequal for asymmetri-

cal scattering. To gain gquantitative informaticn, cne
“may use as’'a measure of the angular momentum asymmetry
the sum of the quantity at (r,#£) and at (r,-£). If this
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sum 1s formed and integrated from g = O to 7., then the
result is a measure of the field angular momentum in an
infinitesmal ring dr located at r, and uéon r integration
must yleld zero. Thus 1t may be concluded that rotor
scattering gives rise to asymmetrical angular momentum
densities which oscillate abcut zero values as a function

of r,

The scattered amplitude may be interpreted as a product
of two factors. The first factor is the solutlon valid
at low frequencies; the second factor 1s a directivity

factor which alters the form of the scattered wave as a
function of fregquency. Thus for low frequencies,

S(El,go) & i M(kIa)sinﬁ, (3.24)

the scattering 1s proportional to kIa, and the scattering
pattern 1s & simple sine function. On the other hand,
for high frequenciles, (2.25)

S(El’ﬁe) S M(kla)’sinﬁ(l + £1in° g)Z\E{Ka),

the scattering is proporticnal to the cube of k.a, and the
radiation pattern is such that only one major peak exists;
it occurs between g = 0 and .the first zeroc of zlg(Ka).

In the intermediate range, the complete eguation (%.22) must

be used.

To illustrate its behavior, several plots have been made
of 5(51’50) in the angular range of 0 to 180 degrees* for
kra between O and 8. 1In Figure 6 it is evident that

e ma e wp oy Dk e am o A e MmN WA L W n ek WS A e S T e e R W e M Ge e W B R mm e e e e G M e s e G A < s S e G A B e

*0nly the range 0° to 180° is given in the figures. Of
course, S(El,go) for the range 0° to -180° 1s just the nega-
tive of the curves shown,
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the scattering pattern for kIa less than % is 1ittle
distorted from a slne curve. As frequency is increased
however, the peak of the scattered intensity moves for-
ward from 90O because of the term.Al(Ka). Near kIa

equal to unity, term in Jlg(Ka) becomes important and
cistorts the curve through zero to negative values; the
peak of the intensity therefore moves backward again. At
kpa of 2, S(EI’EO) is all negative (for this range of #)
and thus a phase shift of 180° from the low freguency
field has been accomplished. For k.2 greater than 2,

the term in JKQ(Ka) predominates, and the peak of the
gcattered Intensity moves forward again, as shown in Fig-
ure 7. The peak Increases and the angle of the peak
decreases contlnuously as kIa increases beyond 4.

It 1s of interest to investigate the order of the effect

of rotor scattering on sound propagation by referring

to particular examples. It 1s assumed that rotor motion
serves a8 an approximate model for two-dimensionel vorti-
cal effects, Suppose an underwater experiment* in which

a sound beam 1s to traverse a single rotor. Assume the
frequency of the sound tc be 50 KC, and the radius of

the rotor to be 60 CM {this about the "size" of the in-
hcmogeneities measured in the ocean)ng) Now the maxi-

mum Mach number that can occcur for rotor motion is probkably
about 5 x 10"3, for this corresponds to a velocity of about
25 ft/sec, which 1s roughly the cavitation threshold at
atmospheric pressure. Thus kra 1s about 8,%% is about
1072, 8(20°,0) is about 1/2 per unit incident amplitude,
and IS, the scattered intensity per unit incident intensity

M e e e e b e M imp T G MR e D A S e s e G e e M e M S W G wn S GG Mk AL B0 e ww w em o B W e e e O G rm e e W me G e

*Although the general equations developed in Chapter II
refer specifically to an ideal gas, the final equatlions
which are used 1in this Chapter are 1lndependent of the
equatlion of state of the medium.
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is about -i4%5 decibels at a distance of 10 radil from the
rotor. Thus‘the effect for & single rotor, even at the
peak of the scattering pattern, is small.

On the other hand, consider e similar experiment in air.-
The dlameter of the rotor 1s taken to be 10 ft, which

i1s the order of magnitude of the size of inhomogeneities
near the ground. The velocity 1s taken to be 25 ft/sec,
or M about 3 x 10'2 , corresponding to usual gust veloci-
ties. Then foz a frequency of 1000 cps, kIa is about 30,
2 is about 1077, 5(5°,0) 1s about 5 (at the peak) and

IS at a distance of 10 rotor radii is about -25 decibels.
Hence for thls case too the effect of single rotor scat-
tering is small, although not as small as in the under-
water case, It 1s clear however, thatat higher frequencies,

the effect will become greater.

There is one particular case where this effect, though
small, iIs very Important. It is well known that wind
causes a sound shadow zone; ray theory predlcts the sound
in the shadow zone to be zero, although measurements show
that this 1is not quite the caseglg) The examble cited

above shows that for reasonable values of the velocity,

sound may be scattered intc the shadow zone to a non- ,
negligible extent, the total effect depending upon frequency,
veloclity, rotor "size" {which foughly depends upon height),

and the number and distribution of rotors.

In Figure 8, measurements pertaining to this phenomenon
are shown. The measured wave attenuation in a shadow zone
is plotted agalnst frequency for a case in which both
source and receilver are 1C ft from the ground. The upper
curve refers to propagation against the wind, the middle
curve to propagation 450'against the wind, and the lower
curve at right angles to the wind. Because the axes of
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rotational motion are most likely to be normal to the wind
direction, the upper curve fits more nearly into the cate-
gory of the present theory. At frequencies up to about

1000 cps, the measured attenuation increases with frequency;
from a ray theory point of view it is expected that the
attenuation should increase without limit, i.e., the field
should go to zerc at high frequencies. Above 1000 cps,
hovever, the measured attenuation decreases. This suggésts.
that energy 1is belng scattered into the shadow zone; PFig-
ure‘8 shows therefore that the scattered field is about

-25 decibels at 1000 cps, and increases with increasing
frequency. Thus the calculation in the example sgbove based
on an approximate model of the vorticity, appears to be
able to predict the order of magnitude of the measured
effect rémarkably well, provided that some reasonable
assumptlions are made regarding the rotor properties,

It may be concluded that scattering from a single rotor
is a relatively unimportant effect, except in cases like
scattering into & shadow zone. This 1s an important
result., On the other hand, I1n many probvlems cof interest
vorticlty is not concentrated 1in one rotor, but rather
distributed throughout space in many rotors, usually in
a random manner. Hence 1t 1s appropriate to inveStigate
the effect of a distribution of rotors on scund propaga-

tion, where the radius, fregquency, and the position of

the rotor vary according to some prescribed statistical
laws. The statlstical analysis will not be carried out

In this study, for the proper specification of the statis-
tical properties of rotatlional flow is a problem in itself.

In one simple and very important case however, it 1is pos-
sible to give immedlately the connection between the sound
field and a statistical [ield of rotors: For & medium
contalning a random spatial distribution of rotors of a
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single size and rotation frequencg, the effective propa-

gatlon constant may be written as.lg)

2 ~
(k') = e+ N 8(k,, k) (3.26)

where N 1s the number density of the rotors., Thus the
effective propagatlon constant 1s complex; the real and
imaginary parts are approximately ’

o~ N
Re k' =l [1 + =z Re 3(50,_150)] s
“tI
(3.27)
Im k' 2 5 Im S{k. k.)
’ 2kp T Tl=00=0

The imaginary part obviocusly corresponds to attenuation
In the medium, and 1is usually of great interest. With
the use of equation (3.14), the attenuation in nepers
per unit length may be written as

Imk' X2 T . (%.28)
It is clear that analogues to eguations (3.26) and (3.27)
may be obtained for particular statistical laws of interestj
in any case one approach to the statistical problem is »
to solve the single scattering problem, as evidenced by
the zappearance of the quantities S(Ed,go) and 0O In equa-
tions (3.26). (3.27) and (3.28). On the basls of these
equations it can be concluded that scattering from a
large number of rotors may be an important effect.

Note that the BK approximation does not properly predict g,
for from equation {3.23) the scattered amplitude is zero
in the forward direction. This a common failing of the
Born approximation used in ordinary quentum mechanical pro-
blems£20> It may ve btraced back to the fact that the
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imaginary part of S(EO,EO) is directly related to the
assumed phase perturbation of the wave in the rotor, which
in the BK approximation is taken as zero. Of course,
equation (3.13) may be used to obtain G by integrating

the square of the scattered amplitude cn a closed surface,
but this 1s not a convenient procedure. Consequently 1in
the following Section ancther approximation 1is considered
which assumes the inside wave field to have a phase pertur-
bation, and which leads directly to the scattering cross-

gsection T .
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C. The WKBJ Approximation to the Trial Function

The WKBJ approximation is usually applied to one-dimen-
sional problems. In order to adopt this technigue to

the present problem, it is imagined that the wave normals
do not have components in a direction other than the in-
cildent wave directicn EO' Then 1t is not hard to show
that ¥ may be written approximately a£21)

X
: L [ 2
Sy - elkIX + ﬁ; W-dx! (3.29)

where WE ls now thought of as a function of x and Y
rather than r and #. In the present case, y plays the
role of an "lmpact" parameter; it selects the one-
dimensional wave fileld at a distance v from the forward
axils, It 1s expected that equation (3.29) is a Letter
inglde trial function for the integral equation than the
BK approximation, for it takes into approximate account
the phasé variation In the rotor caused by the perturba-
tion w?, Although it is incorrect by reguiring the wave
normals to be parallel to k., this also was implicitly
reguired 1n the BK approximation.

Actually equation (3.29) 1is not quite the ordinary WKBJ
expression, but rather one that may be derived from it

'by expanding

, 1
2 2] ?
[ 2 + v
in inverse powers of kI. It was pointed out in Section A,
hus
the expanslon is valid. 1In addition, the usual condition
’ o]
for the validity of the WKBJ solution 15°2%)

however, that w2 compared to kI? 1s the order of M;

<t

e = ey
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(3.30)

1 awe
\ T TP/ &

2 [kI + W ]
It will be shown shortly that this condlticn 1s fulfilled.

Explicitly, the inside funetion of equation (3.11) will

be tsken as %

1 2
Yo (xy) = elKI¥* + EE;./’W (x', y) ox!

-b (

Ay
A%

0

p——

in the volume integrals, and as

ik.x il T - =n
5”11‘ —erY T g5 (3.31)
S b
1
1K X + W (x',y) dx! T g
III# bk -z <F<3
g

in the surface Integrals. where b is equal to

Thus on the "41luminated” surface of the rotor, the inside
function is just the incident plane wave; on the "shadow”
surface of the rotor 1t is the incident plane wave modified
ty a phase which 1s a function of y. Within the rotor,

the inside function is the incident plane wave modified’

by a phase depending upon the depth of penetration and
upon the impact distance y.

For the present purposes, 1t 1s more convenlent to write
the equatiou for S(Kl —0) in terms Gf'wz, rather than in
terms of STl | Tnus equation (%.11) becomes

o ¢
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1 z -ix, . r' 43¢
3(kp.kq) “‘i{"?""f Wo et 2
I a
. 2 -Lk . I" 1
+HWS YopeTEL T T Ay (3.72)

1 2 o -1k, . T
- 21"‘1(& Y g cosdre THEL as

S(gl,go) will he specialized for the forward direction in-
asmuch as it is of interest fto use the WKBJ technigues to
determine the scattering cross-section @ . With the use
of eguations (2.29) and (3.31) for the inside function,

(2
the forward scattered amplitude is:

k2 b
El b -
i 2
—— W ax'!
1 |2, 7k [ 1 (.2
S(kg ko) = - —5 Woe I+ af' - —= | Wag
K- k
I I
T T
-7 z
| T
-é- -?,i—:[ 11\{2(5.7('
- iiI/ Wl P cosg'ag (3.33)
A
-z x
oyl
-z - ?%f‘"’edx'
 1a 2 e T .
" 2%, Wocosg'dg' + [We dxdy.

i

~

h) ‘C ]
On order to proceed further, W~ should be determined. From

X 2 - , ,
its definition, W~ may be written as




5 alngth .

Sy
W o= i?m kI =7

=%[2k1r+k (r-!-a)]suz;é

where the latter relation involves the use of equation
(%.29). Hence

22y Jrsind (3.34)
12 ' v_ﬁ) I
W(r,4) = = —
1-5Fk(r+ a)sing
. 2 %kl’;';.f (z.24)
W (x,y)
Ly3 Ly J
1 - ;‘; kIy - a k

Inasmuch as the last two terms in the denominator of
equation (3.34)' are less than M, We may be taken as

Wix,y) = 2 ey (3.35)

Thus wz israpproximately Indepeicent of x, and the vallid-
ity condition fdr the WKBJ technigue given by equation
(%.30) is fulfilled. Note that equation (2.35) implies
that %&I may be considercd an undistorted plane wave for
purposes of calculating W . In othér words, the zero-
order approximation, the plane wave, 1is used to calculate
We. Now equation (3.3%2) is to be used to imporve the

first-order approximation.

The surface integrals of equation (3.33) will be considered
first. BRecause W° is an odd function of g, the second

and fourth integrals are zero. The integral of wg in

the phase part of %&I‘is
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1 2. - 2
?E_:[-w ax' = cg'(kla) singd' cosgd' .
b

Thus the remaining surface integrals of S(k,.k,) may be

written as

ei%% (kIa)gsinﬁ‘cosﬁ' sing'ag

1
n
£[0
~
-
i)
nﬂdk~__~JMd

(2.27)

and

-
2 & ’ 'l H 1
- i% (%{Ia)“? f o 12y (kga) sing' cosg sing'cosg'ag!
; T )

Ny

In order to facillitate evaluation of these integrals, only
their imeginary parts will be investigated, for their real
parts are of no concern in the evaluation of the cross-
section by means of equation (3.1%). The imaginsry part
of equation (%.37) is zerc because 1t is in the form of

a product of an even and odd function:

2T

-j' cos(zsin B)sin A dg.
0

Hence only equation (3.}6) remains of the surface integrals
for the imeginary part of S(EG,EO). Without trouble its
imaginary part may be reduced to :

T

- EM-/ﬂcos p sin(Mk;asin2 g) dp
0
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This integral may be put in the standard form of Lommel's
functions by changing the integration variable from § to
25(22) It will be convenient, however, to use Anger's
functions in place of Lommel's functions; in terms of
Anger's functiOnsSEQ) the imaginary part of equatlon

(3.36) is
- [3(2) - Ty(2) ] (3.38)
z 2

where 3;(2)«i$ the Anger»functibn of order Vv , and where
z 18 glven by

s
z = Me,a = a(ka)

I

The volume integral may be evaluated by the following
method, Note that the exponentisl term is an exact dif-
ferential:

% X

] - i j'gz

l [ deX' R % J Wrax?
b N

I -b

Hence the volume integral is given by
a X
3__ [ w2
kI e
-a

or
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The imaginary part of eguation (3.39) is Jjust

a
2k ¢ fl} - cose] dy (3.40)
-a
where
. ~5, 2 2 2
B ==7 L1 7 a -y .

By simple reductions, equation (Z.40) may also be put in
the form of Lommel's function or Anger's functlions;
expressed 1n terms of Anger's functions 1t Is

Chkre - kpaw [J:t(z) + ,_I_l_(z)-] (3.41)
z z

where

2
z = Mk,a =% (kIa)

ence from equations (3.14), {3.38), and (3.%1) the scat-
tering'crossfsection is given by

Equation (3.42) 1s the formal result of this Section. The
integral representation, the seriles expansion, the asymp-
totic expansion, and other related properties of Anger
functions are glven 1n Apvendix II. It is shown there
that in the 1lmit of z zero,

T(z) » Flz) = 3

2 2

=

~/ ~
J,(z) - J,(z) > 0
= -

oy
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Therefore the scattering cross-section is zero in the
1imit of zero fregquency or zero M. Furthermore, it 1s
shown that in the 1limit of large z,

Jl(z) - Jl(Z)JZ/FE" (sinz - cosz)

2

rol

Hence, for high frequencies the scattering cross-section
approaches twice the geometrlcal cross-section, to within
small oscillating terms. Thus the scatte%ing cross-section
for rotor scattering 1s behaviorally similar to that obtained

for ordinary scattering problems.

Note that by virtue of the smallness Qf%%, the term con-
taining the sum of the Anger functions 1s much gresater
+han the term containing the difference, except when the
former is zero. For plotiing purposes 1t 1s sufficient
to use only the sum term; the resulting plot of %ﬁ
vVersus MkIa i1s shown in Figure §. In order to plot this
curVg, a short table of Anger functions of order % has
peen constructed and is. included in Appendix II. The
error committed by excluding the % term from ’%a" may
be obtained by consulting the table in Appendix II; 1

1s slmost always negligible, for practlcally speaking,

3.

%
£2
v i i @
15 usually the order of 10°° or 10

Inspection of Figure 9 indlcates that rotor scattering is
indeed aimilar to ordinary scattering but with two 1mport—
ant exceptions. In ordinary scattering, the cross-section
becomes twice the geometrical cross-section at ka the order
of unity, and the oscillations become small at ka the order
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of ten. In the present case, however, the scattering cross-
section becomeq twice the geometrical creoss-section when
Mk & (or (k a) )is the order of unity, and the oscilla-
tions become small at Mkia (or n(k a} )the order of one
hundred. Thus a plot of 0; versus % kIa for rotor scat-
tering would be nearly identical tc a plot of §§ VEersus

ka for ordinary scattering, and the conceptual backround

of ordinary scattering may be applied to rotor scattering
(as far as total scattering is concerned). Thus the
frequency scale for rotor scattering 1s contracted rela-
tive to ordinary scattering by a similarity parameterqu?;
for example rotor scattering vtecomes important when

kr2 1s the order of or greater tharq[-ﬂ(or =) -

it 1s of‘interest to calculate the attenuation of a me-
dium containing rotors.by use of the scattering cross-
section computed by the WKBJ technique. ‘To do this,

the example given in Section B will be used. Consider
again a rotor in alir of dlameter 10 ft and of maximum
Mach number 3 X 107°. At 1000 cps, the cross-section 1is
about 4 ft per unit length. If the distance between |
rotors 1s assumed to be such that N 1s about 10'# per
ft2 * then by equation (%.28), the attenuation is about
I—Adecibels per 1000 ft. This 1s just the order of mag-
nitude of attenuation measured in the atmosphergls)
(outside of the shadow zone) for gently rolling, sparsely

treed terrain.

It must be emphasized that the agreement between measure-
ments and theory clted here and in the last Section is only

as good as the estimates of the parameters a, N, and N,

e e n - - e A R D Wm e D ME e e e e M T am e e v WO e me e e S am vw T e e S e e e oA S = e e

*Tre number of rotors in a field will depend upon the
number of obstacles producing the vorticlty and upon the
decay of vorticlty assoclated with each obstacle., For the:
problem_of interest here, the Reynold's number 1s greater
than 106 hence decay snoula be rapid and N should be more
characteribtic of the number of obstacles.
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and the extent te which the net flow can be idealized as
two-dimensional rotor motion. The net flow 1s no doubt
more complicated than the assumed rotor motion, but it

is expécted nevertheless that the order of magnitude of
the effects may still be predicted provided that the
mean wind direction and the sound direction are parallel.
The magnitude of the radius & may be predicted fairly
well; most meteorologlcal workers take the size of vor- .
tical disturbances to be either equal tc the helght above
goun&ﬁB)-or to the obstacle dimension projected normal

to the mean winéﬁ In the case of atmospheric acoustics,

~distinction need not be made between the two possibillities

for the measure of a ; the heights of interest and the
obstacles of interest are both roughly 10 ft. The maximum
velocity of vortical motion in the atmosphere is not well
known, but it 18 reasonéble to expect that 1t 1s the order
of magnitude of the mean transliatiocnal velocity, just as
it 1ig in the case of vortex shedding from cylinders or
plates measured 1in the *aboratorg 53 Finally the appro-
priate choice for N 1s not clear, but it appears reason-
2ble to suppose that it is asscclated with the roughness
of the terrain, to the extent that 1t is an approximate

- measure of the sguare of the anber of obstacles per unit

length in the sound path. These considerations have dic-
tated the estimates given 1n this Section and in Section B;
subjnct to the validity of these éstﬁmates it appears that
the BK approximaticn and the WKBJ appreximauion vield use-
ful results.



D, Comparison with Lighthill’s Result

M. J. Lighthill has recently cocmputed the scattering of
plane waves of sound from statistical turbulencé?7) He
makes no special assumpfions on the nature of the turbu-
lence, but for turbulence'macroscalesAlarger than the
sound wavelength, he has succeeded in obtaining an ap-
proXximate expression for the scattered power. In the
present notation, his result is
2 2

P =2k ."L M

T (3.43)

where P is the scattered power per unit incident in-
' tensity per unit volume,
L is the macroscale of the turbulence in the
direction of sound propagation,
) 15 the mean of the square Mach number of the

M disturbance.

Thus the scattering cross-section for & volume V is

q
It

-2 _§ .
2k, L MTav (3.44)
4 ,

In order to compare his results with the results given in
Section C, note that for rotor scattering, M2 and L may
be gilven by:



'~ The scattering cross-section for one rotor is then

L miP(epa)® (3.45)

subject to the restriction that kTa > T

Under the same conditions, equation (3.42) of Section C
reduces to

o ~ 2 2 2 Y
28 3—.*7—5 M (kIa) + O [(Mkla) ]

Thus Lighthill's result 1s eguivalent 1n form to the
present result provided that,

-

MkIa <1
In other words, agreement 1s obtained for the followlng
range of frequency:
) 1
T < kpa < (3.46)
In this range Lighthill's result is about a factor of 5
greater than that given in Section C; uncertainty as to

the appropriate value of L and V, however, may easily

account for the discrepancy.

Outﬁide of the upper 1limit of the range given by equatlon
(%.46), the behavior of the two results are quite differ-
ent. The cross-section derived from Lighthill's statisti-
cal approach increases indefinitely; the cross-secticon
based on the rotor model tends to the limit of twice the
geometrical cross-section. Thus there appears to be én
essential physical difference bvetween scattering from a
region of statistlcal vorticity and a reglon of ordered
vorticity, at least for high frequencies. This difference
may be thought of aé arising from coherent phase effects
in‘the field of the rotor which have no counterpart in

the field of statistical vorticity. '
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These phase effects become important for kIa > 1/M, As
pointed at in the last Section, the total scattered energy
becomes large enough to be of importancein this range
also. Thus from the point of view of application to practi-
cal problems, it is of importance to defermine whether or
not the vortical motlon 1is statistlcal, in order to deter-
mine whether to use eguation (3.44) or {3.42) for 0. In
many problems of practical interest, 1t is probable that
neither the extreme of statlistical nor ordefed rotor mo-
tion is correct, but rather some mixture of both. In

the case of sound propagation over ground, it is known
that the disturbances are non—isotropié?js but it is not
known whether the vorticity is more ordered than statisti-
cal, although it appears reasonable to assume so., It 1is
clear that additiocnal experimental information is required
on the flow fileld before definife conclusions can be
drawn.




Iv-1

IV Refraction by Ideal Vortex Motion

In this Chapter, , the effect of ideal vortex motion on sound
waves will be studied. From a wave point of view, the
rotor, which was treated in the last Chapter, is fundament-
ally different from the ideal vortex. In the former case,
the effect of the motion 1s confined to a finite region

of space; in the latter case, the motion extends to in-
finity, glving rise to distortion of the wave over an in-
finite region of space. This 1is Iin a sense analogous to
the situation 1n guantum mechanics regarding the funda-
mental.difference between the scattering properties of

& sguare-well potential and a Coulomb potentlal. Just

~as in quantum mechanics, different technigques are required

to evaluate the effects of rotor motion and idsal vortex

motion.

The problem may be stated exactly as it was in the last
Chapter, except that in this case Region Il (the region
external to the core) undergoes a net motion. The pre-
sent case is illustrated in Figure 10.

Solutions of the approximate equations (2.75) and (2.76)
for 1deal vortex motion will be sought which behave like

eiio -z

at large distances from the vortex center. In Section A
of this Chapter, it is shown that the integral eguation
approximation technigues used in Chapter III are inap-

propriate for this case. Instead, in Section B, a WKBJ

procedure 1s used to determine the wave refraction; this

procedure is shown to contaln the essentlals of a ray so-
~

lution to the problem given by R. B. Lindsa§f6) as well

a8 information relavent to the intensity distributlon.
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Finally, in Section C, the effect of the inhomogeniety
terms omitted In the approximate differential equations
is investigated by use of the WKBJ-technique given 1in
Section C of Chapter III.

A. Integral Equation Approach

The development in this Section follows very closely that
of Section A in Chapter III. Conseguently only those
points that are substantially new are discussed. The ap-
proximate differential equations for the ideal vertex may
be written as

Ve + "+ W) (z) =0 (2.1)

where

o + I 28 < a

iz) - 28° 30

: ~ a o
ikoI ;—27 —5—3—, r > &

The contlnulty conditions at the core surface lead to
the followlng conditions on W

EYY .
o I W52 1T ~
SbI e ia—) -—-za = HL’II -+ .L“u-)' —Ta (Li .c)
S 3 S
ol _ 2Hir| |, s 21
or|- Dr a W aB‘ (4.3)
3 8 S

Use of equations (3.5), (2.6), (3.7), and (%.8), together.

with (%.1), (%#.2), and (4.%), leads to an expression for
901 correspending to the result In Chapter III:




ik, . r e @Y ,
Yr) = e'f0 - L - 1= 5‘( 5+ 0as
| 2 2 .
ﬂuf(wI W+ W ¢II) Gav' (4.4)

_\/‘(’S[’II —%I) g'%a a3’

Thus the field ocutside the core cannct be written ex-
plicitly in terms of the field in and on the surface of
the core. This fact would not be bad in itself, but the
volume integral diverges* for any reascnable guess of -
,¢&# The é1fflculty may be traced back through WIE to
the "flow" part of the total time derivative of Y, 1.e.

to
+ 0(M).

Thus the veloclity fileld does not fall off rapidly enocugh
to allow the use of eguation (4.4%) to improve a zero-order

approximation such as & plane wave.

This difficulty suggests the possibility of modifying

the r dependence of v outslde the core such that the

range of the net flow field is decreased.  As a mattler

of fact, in most cases of physical Interest the ideal
velocity field will be screened or interfered with by
neighboring vortex motion, by obstacles, and by viscosity.

*f Green's function other than the free-space Green's func-
tion may be used in the above formulation. It may be de-
fined sesparately for Reglons I and II, with apprepriate
joining condltions at S5, and it would lead to another form
for the surface integrals of eguation (4.4). However it
must still represent an outgoing wave at infinity and
hence the volume integral still leads to difficulty.
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When the external net flow field is no longer ideal,
however, it is no longer irrotational?® and suitable modi-
ficatlon must be made of equations(4.1), (4.2), and (&.3
Assuming these modifications to be made, the form of the
external net flow field must be determined. At present
however, there 1Is nc experimental or theoretical basis

for choosing a form for Vv; rotor motion studied 1n the

last Chapter appears to be as reasonable and simple a'
cholce as can be made. As a matter of fact, 1t is expected
that rotor scattering contains most of the qualitative
aspects and many of the quantitative aspects of scatter-
ing from any screened velocity field. Conseguently no
attempt will be made to use eguation (4.%) in conjunc-
tion with a screened velocity flelid. Rather, another
method will be used which will allowAthe retention of
the idéal velocity field, and which will yield at least
an approximate idea of the effect of the irrotationsal
part of ideal voriex motion.

T M e e e e e % e S mm T T W e En Me e e e m e em e G = e e e m D T e S e e e e o - S e - -

*The only appropriate net velocity field whiih gives rise
to divergenceless and curl-less flow is the = field of the
ideal vortex,
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B. The WKBJ Solution

Before starting this calculation it is appropriate to
note again that the core of the vortex is ldentical to
the rotor treated in the last Chapter. It 1s therefore
intultively expected that the scatfering from an ideal
vortex is similar to the scattering from a rotor, éxcept
that the incident and scattered waves are refracted by
the net flow fleld external to the core. The fallure of

"simple trial functilons in the integral equation techni—

que suggests the use of 31mp1er {and heunce less accurate )
techniques to evaluate the refraction. One such technl-
que that may be applied is the WKBJ method used earlier
to calculate a trial function for the rotor; another,

and less accurate:%echnique, is the method of ray acoust-
ics. Aétually, WKBJ solutlons are not expected tc be

| very much better than ray solutions, in as much as the

WKBJ method as applied here requlres the two-dimensional
problem to be broken up into an ensemble of one-dlmenslonal
problems. Nevertheless, 1t shall prove convenient to
proceed along the lines of the WKBJ method.

In order to apply this method to the case of the ideal

" vortex, the appropriate differential equation (4.1) is

written in rectangular coordinates:

2 T
SQE%) + (kI2 Wl o+ EB;SW)¢= 0 (4.5)

Formally, the WKBJ solution for a wave originating at
X—>—0°‘is.2

'1,0/0[1&12 + Wl o+ aalg“’]dx
Yix;y) = 28 yl
EKIE + We aln ]E

(4.6)
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This equation 1s to be interpreted as a wave depending on
X, and traveling on a line y = constant. Strictly, equa-
tion (4.6) 1s an integral equation for . W° and the

y derivative term are small¥ however, so that 1t is as-
sumed that approximations to (¥ in we and 1n the y deriva-
tive term will yield improved values of (¢,

w2 and %glgﬁhave simple physlcal interpretations. w2 is
essentialgy determined by the % derivative of the phase

of ¢, and may therefore be considered the coupling agent
between waves in the Incldent x direction and the y direc-
tion, <%;¥?éis essentlally a measure of the extent to

which W° has distorted the incident wave.

In addition to the usual validity condition for the WKEJ
solution (see equation (3.30) in Section C of Chapter III),
and to the condition that w2 and —gi%3¢are small, two

other conditions at the core surface must be met. Consider
the quantities

A, = v/ 5 Mr  eYrr
1 (¢I Sbl-.l.) + Lo ( 57 - S¢ ) )
S a8 k
: {4.7)
A - (9% 1, 2 © °¥r
27 \3v T~ or | TZw 28 .
S s

The quantities are zero when the jolning condilitions given
in eguations (4.2) and (4.3) are satisfled. But the re-
quirement that ¢ be a one-dimensional wave will make it
impossible to satlisfy the Jjolning conditions exactly.

B T R e T YN S ——

¥The y derivative term must go tozero as W2 does to Zero. o,
Hence 1t is assumed that 1t 1s the order of magnitude of W
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The maximum values of‘A | and ‘A |compared to ‘¢ land

Ex

\respentlvely will be taken as additional measures

- of the validity of the present approach; both ratios will

be reguired to be ‘small.

Just as in the case of the BK approximation used in Chapter
III, the zero-order wave will be taken as a first guess

for integral equation (L.6).

b= Y =‘9bo=eﬂCX

the "validity" parameters are:

2

o Kp¥
W
0
()7 =
I
) a
2= k_.y —
o I TE
0
2
1 %o | ¢
% dx
21{1 g(g)E
W'y
2 1n :
1 g o
2 9¢°
kI y
144
= 0
| #1]
|4, <,
|z

Thus for,

r < a

r>a

r<a (4.8)

T > a
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Thus the zero-ordér.solution is in error by no more than
the order of M(=%k1a) and-%% as expected. The first it-
erate'¢i may be calculated with the hope that error of
vi will be smaller. It will be necessary to distinguish
the field outside the core and its geometrical shadow,
inside the geometrical shadow, and 1n the core. The
wave functions will be designated ¢’, ¢£S, and #%c
respectively. The integrations involved are straight-

forward, and the results are:

o I |
W, (x39) = [1 +1‘%§% ] Skox 16(x;¥)
r
- — 2 e
W (xsy) =1+ WL etlr® o6 -J2f-v55y) 1e(xy)
.5 (x57) = W (x57) 1K (¥)
| 'e(x;y) = Mkpa [tan T X g] (%.9)
(use + for y > 0, - for y < O)
"e(x;0) = ©

a(x;y) =ML (= + va]
X {y) = 2Mk ;& {q(g)g - tan-lq]'
X{0) =0
1
_ 1 2 2=
Cl—;j[a —y]?
Application of the "validity parameters” similar to "those
of equation {4.8) and a great deal of algebra not worth

repeating, shows that the error assoclated with.¢& is
still the order of <% and M.
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Hence iteration of ¢b'to obtain the iterate {4 1is mnot justi-
fied; the process is not convergent. Inspection of the
Validity parameters however, reveals that in thevfar—field'
(r>w) all the parameters go to zero with the exception
of those associated'with the core reglon and the core sur-
face, Bubt this 1s just the expected situation, for the
terms associated with the core must give rise to a scat-
tered wave, a situation which has not been explicltly al-
1lowed for in this formulation., This difficulty may be re-
moved however, Dy the following physical reasoning: Suppose
the errors assoclated with the Joining conditions and per-
turbation terms of the core are arranged tc be arbitrarily
small by the addition of a suitable wave to the WKBJ solu-
tion. Then in the far-field, this modified WKBJ process
would lead to an arbitrarily small error in the iterate

¢i. ‘Physically, the wave which adjusts 1tself to produce.
an arbitrarily small error at the core is just the total
wave (incident plus scattered) studied in connection with
rotor motion in Chapter III*. Thus it is expected physé
ically that 1f the incldent wave

ik %
e T

is replaced by the rotor wave in equation (4.9), ¢& is
then a reagsonable approximation to the total wave for ideal
vortex scattering. Hence the total wave is Just that due
to scattering from the core (the rotor) and refraction

in the external irrotational velocilty field. Denote ¢ﬁ

et e - s - e = W — o — T - - e m e e e e M e e g S W G W e VR e

*This statement i1s not qulte correct, for although the

net flow fields of the rotor and the core are identlcal,

the Joining condltious on ¥ are slightly different.

Hence the scattered amplltudes will differ by an additional
surface integral term.. Inspection of the sclutions for W
reveals however, that the scattered amplitude is mainly
determined by the volume perturbation; the surface pertur-
bations modify the result only secondarily. :
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to be the asymptotic rotor fiela, and let r »= in equa-
tions (4.9); the expliclt result 1s:

Sbl(r,fé) ~ SUR(I‘:FS) ei@
(4+.10)

§3(0,8) ~ th(r,8) (%)

where
o(r,8) = 6(4) = Mksa [ tan etng) + L ]~
{use + for ¢_+, - for 4 -)
e(r) = O

Equation (4.10) is toreregarded only as a seml-guantitative
result from which several important qualitative ph&sical
interpretations may be drawn. First of all, the forward
scattering amplitude 1s Just that for rotor scattering;

to this approximation the external field of the ideal
vortex does not effect the total power scattéred. Thus
the assumptions made in Chapter III concerning the appli-
cabllity of rotor theory to measurements on sound pfopa~
gatiod over ground appear Justifiable.

Secondly, the phase asymmetry caused by the ideal vortex
is much more important than that caused by rotor scatter-
ing, for it effects the total wave and extends to infinity,

For example, consider the points (r,~£§ and (r,g). The
phase difference 1s (MkIa)(zg- independent of r. For the

range of important scattering (MkIa>1),this phase dilffer-
ence is cbviously important. However, even for small

Mk.a, the phase change may be measurable. Consider the

I




[
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case in which a vortex moves between 2 source and a receilver,

Suppose the vortex has the properties consldered in Chapter
ITI: M=% x 1072 and 2a = 10 ft. Then at 1000 cps the
total phase fluctuation at the recelver is greater than
240° as the measurement point passes from —E to %4 At 100
the phase fluctuation is greater than 240, and represents

a sizeable effect. Thus it can be conéluded that ldeal
vortex motion may give rise to important phase fluctuation
effects 1n sound propagated over the ground for almost

the entire audio frequency range. Lindsa§26) was the first
to recognize this effect. ‘In his ray analysis, he was

forced to neglect the scattering from the core, which is

‘taken 1lnto account seml-quantltatively in the present
‘analysis. Incidentally, the phase term © calculated by
‘the WKBJ technlique 1s identiczl to the result ofﬁLindsay

obtained by a ray technique,

Cpe,
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C. Scattering Associated with the Concomitant

Inhomogenelty

All the scattering calculations thus far have been based
upbn approximate differential equations which neglected
effects the order of M2. Thus scattering due to density
gradients has been disgarded because they are of thag
order. Tt is recalled that terms the order of M2,'§% ,
and M 2/w were omitted in o6rder to enable the vector
potential A to be expresgsed simply, and thus reduce the
coupled equatlons to a slingle equatlon in ¢ . Subject
to this approximation, the scattering cross-section for
a rotor was determined, and was found to tend to a finite
iimit as the frequency tended to be very large., It was
also shown that to a first approximation the scattering
cross-section for an 1deal vortex is identical fo that
of a rotor, indicating that the external irrotational
flow field deces not contribute to the scattered power,
But it may be supposed that the medium inhomogeneity
assoclated with the irrotational flow will give rise to
non-negligihle scattering because the Iinhomogeneilty ex-
tends over an infinite domain. '

Conséquently it .1s appropriate to investigate the scat-
tering cross-section associated with the concomitant in-
homogenelty of the medium. In order to do thls rigorously,
the coupled equations in ¥ and A must be solved, but this
presents a hopelessly difficult tésk. Instead, in order
to get a first appreximation to the brdss-section assocl-
ated with the inhomogeneity, the fdllowing problem will

be solved: Suppose that the density field of an ideal
vortex 1is reproduced by the proper temperature distribu-
tion and by the proper addition of body forces, in such

a way that the veloclty may be identically zerc everywhere,
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Then the scéttering from this stationary density field
should provide an estimate of the scattering from the
inhomogeneity of the vortex,

The equations appropriate for the stationary problem
are (2.43) and (2.55).
following form.

They may be writften in the

(% + 1 + W)W (z) = 0 (4.11)

where

and where

' 2
2 y-1 .2 r- .
cy [} - e M2 - ;5)] , P < a

2 - L 2]

kY

, T > a

The joining conditions assoclated with equation (4.11)

are *hat Y and éifmust be continuous across the surface
of the core, Hence the 1ntegral equation form for the

gscattered amplitude may be readily found to be,

5k k) :Af e eTH I v, (4.11)

where the integral 1s to be taken over all space. The
WKBJ trial function used in Chapfer III will be used
here also (see equatlon (3.29)). Thus the forward

scattered amplitude igs given by:



x TV-15
/Wzdx'. oo
[ oo :1

-0

[~ )

- o

Sk k) = e ) P ay.  (¥.12)

] '_O""O i . .
I

W2 is defined differently in Region I and in Region II

(corresponding to r > a, and r < a, respectively), Hence
equation (4.12) must be expanded into the following form

for calculation: -a a0 o
1 WI dx?
2k 2k
I 1°-
Slkgoky) = 1 [[e s -1—] dy
=3 o0
1 2
D, é—;/ Wy ax!
T (.-e - -1| dy (4.13)
a .
-b b oo
a 2
S T 1 )[ 2 1 o
QkI 5 - —afI dx! EEE A WII ax! 5—: . WI ax!
+ A [e e e + -1 ay
-a
where

sl
b = [32 - yc] 2

In order to proceed further, it will be convenlent to

evaluate the x' integrals of Wz.

From equation (4.10), We may be reduced to

Wo =Dk - 37357 v

where
2

1.2,
15—-M (2 - ?2) , P <a

, > a
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and where Muvhas been'considered small compared to unity.
In order to calculate We as given in equation (.14), ¢
may be taken as an undlstorted plane wave (this procedure
1g analogous to that followed in Chapter IIT). Then

2 2 2 T

Wpp© = kD + 1M kI';E-cosﬁ , T <a

We = (4.15)
W2 = k.?D + IM°k a” cosgd r> a
I 177 I3 >0

T
. 2 2 .. .

A1l the 1ntegrals of WI and WIT appearing in equation
(4.13) are easily evaluated in terms of elementary func-
tlons. After some amount of algebra, the imaginary part
of S(EO,EO) divided by kI,.i.e,, the sgattering CTrOoSss -
section T, 1s:

I
B E 1
g _ sin“ 2 L .2
25 = T8 f_/’ig dA -+ ltjsmL [gF] ag (4,16)
0 C
where )
-1 .2

o

r(e) =3[ Lem e+ 2167 (5267 |

g has been plotted as a function of g, for g between O
and 15; the range O to 5 is shown 1n Figure 11. The
cross-section 1ls proportional to g2 in the 1imit of
smail g. As g approaches unity, T becomesz an oscilla+-
‘ing functlon, the osclllatlons decreasing in importance
for g greater than about 3. The average value about
which the oscillatlions of T occur may be expressed very
closely by |
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I ¥ 5g (4.17)
for g greater than about 3,

Although T increases wlthout 1imit as g 1lncreases, for
most cases of interest it 1is smaller than the cross-
section computed for the rotor (or core) alone. For
example, consider the case discussed in Chapter IIIL:
M=3x 1077
GE and the ccncomitant inhomogenelty cross—section.G}

» and 2a = 10 ft. The core cross-section

are compared below for three frequencies{

frequency, cps c , ft r , ft
100 - 5 x 107° 5 x 1072
1000 .y 5 x 1077
10,000 | 20 5 x 1071

Of course, the cross-section computed by equation (4.16)
represents an artificial problem;‘nevertheless it seems
reasonable that the stationary problem considered gives
at least the order of magnitude of the effect of the
iInhomogeneity assoclated wilith the veloeity field of vor-
tex motlon., Therefore 1t appears that the concomitant
inhomogeneity of vortex motion may be neglected for_most
cases of practical interest.

Hencé the results of thils and the previcus Section show
that to a good approximation the total energy scattered
by an idezl vortex i1s ldentical to that scattered by a
rotor, In othef words, the scattering is associated
more nearly with the vortical region of the core than
with the external irrotational region. ‘



V Experimental Conslderations

A. Preliminary Underwater Experiments

Preliminary experiments were attempted underwater in an
effort to measure the effect of vortical flow on sound
propagation, particularly for large kIa. The equipment
consisted of:
1. A 1 megacycle pulse modulated source drliving
an 1 cm dlameter X - cut quartz transducer,
2. Another X - cult guartz transducer used as a
receiver in conjunction with a callbrated
atﬁenuator, tuned amplifier, and display
oscliloscope,
3. A thin plastic tube, 1 cm diameter, mounted
in a large {compared to wavelength) water
tank. ' |
No effects were observed on sound pulses Transmitted
through regions of rotation. In the 1light of the theory
developed in Chapters III and IV, this is not surprising.
From the BK calculation, the scattered intensity for a
1 cm dilameter rotor 1is at best the order of 30 to 50
decibels less than the incident wave, depending upon the
Mach number and the distance of observation, and provided
that the angle of observation is less than about 14°
(the first zero of.Ag(Ka)). However the first zero of
the directivity pattern of the incident beam occurs at
an angle of about 100, as measured from its surface,*
or perhaps 20° as measured from the center of the'roﬁor.
Thus the*@eak of the scattered wave 1s completely masked
by the beam; the subsidiary peaks of the scattered wave

*The directlvity pattern of a plane piston radiator is
A (Ka).
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will also be masked by the beam, for their directivity
patterns are behaviorally similar. '

Thls unfavorable situation is not helped materially by
increasing frequency. Although it is true that the
beam becomes sharper, the scattering peak negates this
by moving to smaller angles. Furthermore, the beam can-
not be made too directive, for in order to approximate

a plane wave it 1is required that the incident ampliftude
and phasé fronts are plane over at least the dimensions
of the scatterer,

Thus it may be concluded that the measurement of vortical

scattering by a single rotor or ideal vortex in water is

highly unfavorable. Workers in othér laboratories have

come to the same conclusion.(28)
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B. Atmospheric Field Measurements

The agreement cited between the BK and WKBJ solutiouns
(equations(3.23)and (3.42)), and the available experimental
data of propagation over the ground, can only be regarded
as semli-quantitative; estimates of the maximum Mach number,
the radius a of the core, and the number of vortices, were
necessary 1n order to compare predicted and measuredhvalues.
In.future'experiments designed to test the present theory
with greater precision, 1t would be essential to measure
the net flow field between the source and receiver. That

- 1s, a complete specification of the net flow field is
required at essentially the same time at which the sound

is propagated. This presents an almost overwhelming

task (although it can be eased to some extent by a care-
ful choice of terrain). Further more, careful attention
must be given to cther micrometecrological effecﬁs guch |
ag temperature gradients, molecular composition of the

air, etc, In other words, the medium must be specified

to an extent which 1s uncommonly detailed, even for -
micrometeorological research. Thus 1t appears that from-

a pfacbical point of view 1t will be necessary to esti-
mate some of the unknown parameters, and that semi-
guantitative agreement between theory‘and measurement 1is
21ll that can be hoped for,

There 1s the need for additional measurements of the type
carried out by IngardSlB) for varylng terraius and for
varylng average micrometeorological conditlons. With
such measurements 1t would be possiblé tc check the
presént theory further, at least éemi-quantitativeiy.
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VI Conclusions

The major findings of this thesis investigation may be
summarized as follows:

In general the sound particle veloclty in a moving in-
homogeneous medium is composed of a longltudinal part
and a transverse part. The longitudinal part 1is charac-
teristic of its wave properties; the transversé part is
assoclated with the properties of the net flow and the
boundary conditions. If the net flow 1ls zero, the trans-
verse part must be zero (despite any inhomogeneities of
the medium); if the net flow is irrotational, the trans-
verse part is zero (if the boundary conditlons speclfy

a curl-less velocity); 1If the net flow is rotational,
the transverse part is non-zero.

In the case of circuiar cylindrical vortex motion, the
transverse part of the souund particle veloclty has the
following approximate properties: It is normal to both
the vorticity of the flow and to the longitudinal part

of the sound particle velocity. Iun addition, it is the
order of 2/ compared to the longitudinal part, and 90°
out of phase from it. (2 is the magnitude of the vorti-
city, and @ is the sound frequency). '

The effects of net flow of the medium are greater than

the effects of the concomitant inhomogenelty, as far as
wave motion 1s concerned. To a good approximation, the
effects of the latter may be neglected compared to the

former.

According to a Born-Kirchoff approximation solution, the
sound scattered by a rotor (essentially the core of an
1deal vortex) is dipolar at low frequencies (the maxima

occur at i»W/Q from the forward direction), and is mainly
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forward at high frequencies. The scattered energy is
symmetrical with respect to the forward direction;.the
scattered phase is asymmetrical,

According to a WKBJ 1integral equation solution, the

total scattered energy depends upon Mkla or % kIa, where
M is the maximum Mach number occuring in the flow and
where kIa is the ratio of the rotor clrcumference to the
wavelength. For Mk;a (or %%!&Ia) the order of unity,

the scattered energy becomes important; the cross-section
for scattering approaches twilce the geometrical cross-
section for MkIa > 1,

Both the Born-Kirchoff and the WKBJ solutions show that
scattering from a single roftor is too small to be detected.
Scattering from a medium containing a large anumber of
rotors, however, is measurable., This effect is import-
ant in atmospheric acoustics, and may account for the
scattered energy appéaring'in shadow zones, and for long
distance attenuation not accounted for by molecular or
ground absorption., With the assumption of reasocnable
parameters for atmospheric velocitles and scales, the
Born-Kirchoff and WKBJ solutions agree with measurements.

For intermediate frequencies (7 < kIa < %), the scatter-
ing cross-sectlon predicted by the WKBJ integral equation
solution agrees with a result obtained by Lighthlll based
on turbulence theory. For hilgher freguencies, however,
the WKRJ calculated cross-section tends teo a constant,
whereas the Lighthill calculated cross-sectlon becomes
indefinitely large, This difference 1s attributed to

the essentlal physical difference between ordered and
statlstical vorticity.

The scattering from an ldeal vortex is shown to be semi-‘
quantitatively determined by the scatterihg from 1ts core
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or rotor alone; to a first approximation, the velocity
field external to 1ts core refracts the total wave,
without changing the total scattered power. Similarly,
the scatter{hg from any vortical disturbance 1s expected
fo be described qualitatlvely by the scattering from a
rotor of size properly adjusted to enclose the region of
vorticity, provided that the external velocity field is
short range.



Appendix I Cross-Section Theory

. The scettered intenslity can be written as

= 90 9¢s
I, = 7% Im (g Vs =) (a1.1)
where 50; is the complex conjugate of %, and where n ig the
outward normal vector of the surface through which I

is to be computed. The total scattered power passing
through a closed surface, S, is

Tne incident plane wave intensity 1s

Iin =

of

kIu)p .

Hence the ratio of the scattered power to the incldent

intensity, 1.e.; the snattering cross-section 1is
1 3% 5
=% J% as . (Al.2)

With the use of the asymptotic form of %S,O‘may be
written as

~

T B_Ei.J]S(kl,k )‘L (A1.3)

which proves equation (3.13).
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To prove equation (3.14), the following method is used.
Write '

ho=t -eos

then

o
-~

1 * Y “tk.r MW
: s

* 9 ik..r
«[5&155 (e™=0"%) 48 } .

5

If there 1s nc-absorptién in Region II, the power leav-
ing the scatterer surface is equal to the power passing
through s. Hence s may be tsken as the rotor surface,
and the continulty conditions of equations (3.3) and
(3.%) applied. Thus

1 *‘9¢I e -ik..r 9¢%¢
G_W*EI Im fl‘L’T-a-Eiids —je —0 "= 5T

T as
4 . 11
(a1.1)
e | -ik..r V11 . 2 1k, .1
-1-8--5Je 0T ds-[‘%n-ﬁ (e*%0°L)y as
II
3 S
* .
2 ¢
Q I 2 ik,.r
+1wfﬁann(e—o)és

The integral equation for ¢iI speclalized for the measure-
ment direction in the forward directicn, and valid for r
large compared to wavelength and the rotor radius, may

be written as
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Then, by using the scattered amplitude S(ko,ko) in the
forward direction, and equation (Al.5), equation (Al.4)
becomes

1 x 21 4 ) . ' .
=k Im[ Vi 57>, 98 + S(Eo’éo)]’ (AL.6)
I II
< |

where use has been made of the fact that
Im F{z) = - Im F*(z).

The power lost to the scatterer by absorption is

wp U1
Pa = - Im\J&i

CE
and the absorption cross-sectlon is

*
o
qé‘z"-iz Im]% ¢I as.

Hence the total cross-section is

T, = 0+0T = %1 m 8(ky k) (A1.7)
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. Appendix II The Anger Function

: (22
The Anger function may be defined by
T
pg 1 . ‘
J,(z) = = cos{ 8 - z sing) dp.
0

Its expansion in ascending powers cf z 1s

T (z) = sinvm (z) - vsinvw

v T “o T §1N(Z)'
where
. 3 £
p z ZJ )
C,v < _ 2 LoD D 2 ) ~ ‘
7=y (1500 ) (35-Y) (122 5)(3°-)(5°%- 3
5, ,(2) = N 2" 2 : +
- \’ = = ) = (53 I8} 75 .
s F SRS STy Y)
are Lommel's functions of order C and -1. t can be shoun

that the Anger functlon may be connected with the Weber
functio£?2) and that for integer values of v, the Anger

function becomes the Bessel function.

The asymptotic expansion of fv is

N | 2 2 2 2y(x2_ 2 :
Jv(z)gjv(z)+%2}.)_1.r_ 1,_1_?25_ e v)ii v)_...]
VA Z
2 2 '
sinym [» _ vw(25- ¥ o
apr ]y W), ]

where Jy(z) is the Bessel functicn of order v.

TIn the following table, values of % times the sum and
difference of the Anger function of order %'and -5
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are given, Thus let

VIS

r__l
hle
N
e
e
N
f

v

Alz) =

oy
———
™
]
NE
r—’—1 .
4
—
N
N
1
ey
o 8
N
—
[ —

The values of A and B are given to the nearest hundreth,

-

with an accuracy estimated at better than one hundredth.

Z A B Z A B
4] 2.00 .00 3.5 - O.8§ 0.66
g.z 1.08 .27 Lo - £.G1 0.18
0.4 1.92 ¢.52 h .5 - 0.7% - 0.24
.6 1.80 - 0.77 5.0 - 0.4%0 - 0.50
0.8  1.66 0.99 5.5 - 0.02 - 0.58
1.0 1.5C 1.15 5.0 0.3% - Q.47
1.2 1.30 1.35 8.5 0.58 - g.22
1.0 1.06 1,48 7.0 0.66  0.10
1.6 o0.84  1.57 7.5 0.58  0.40
1.8 0.60  1.62 8.0 0.37  0.63
2.0 0.3 1.63 8.5 0.08 0.72
2.2 0.10 1.60 9.0 - 0.21 0.66
2.4 - 0,16 1.43 3.5 - 0.44 c.u8
5.0 - Q.64 1.14 10,0 - 0.55% 0.22
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Coordinate System for Rotor Scattering
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Coordinate Transformation to 6 = g' + %(w - 8)
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Figure
The decrease of sound pressure lsvel In the shalow zone
1000 fset from the source. The source and recelver ars
both: 10 Teet abcwp the ground. The average transiational
velocity is aboubt 4.4 mebers/sec or apoulb 1 fwntfﬂrﬁ
The uppsy curve rafe
ef

"t

8 to propagation against the wind,

kel
the center cupve refers to propagation at 45 degress
against the wind, and tbe lower Lufga refars Lo pray?ga-
3 a9 o e I MR “ “
tion dt right aﬂgle to the wind, {afier Ingard (18) ).
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Figure 10

Coordinate System and Velocity Field for Ideal
Vortex Scattering ’
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