
Smartphone Interface for Incentivized Energy
Optimization System - FMS Advisor

by

Narindra Peaks

B.S., Massachusetts Institute of Technology (2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 18, 2018

Certified by. .
Moshe Ben-Akiva

Professor of Civil and Environmental Engineering
Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

2

Smartphone Interface for Incentivized Energy Optimization

System - FMS Advisor

by

Narindra Peaks

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2018, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The TRIPOD project aims to provide a system that optimizes energy savings
during travel for a population of users, through personalized incentivization of effi-
cient travel alternatives. The Future Mobility Sensing (FMS) Advisor provides the
user interface for this system, allowing users to plan trips through a personalized
menu of travel alternatives, receive rewards for selecting energy efficient options, and
redeem those rewards for goods and services from partnered organizations. Pack-
aged into a smartphone application, the Advisor provides an efficient user interface
that allows users to plan trips, navigate those trips, view previously completed trips,
and redeem rewards in the marketplace. However, it also requires a method to opti-
mize usage of the sensors present in most smartphones to gather enough meaningful
data on the users’ travels in order to effectively personalize the trip planning pro-
cess, as well as leverage that data to detect and validate the users’ specified trips
within the application so that rewards can properly be awarded. The validation al-
gorithms are housed on a backend server that stores all the data for the system using
a blockchain implementation in order to keep a record of transactions for all the trips
and the marketplace. The FMS Advisor attempts to bring all four of these metrics,
personalization, detection, validation, and incentivization, together into one mobile
application framework, in a way that has not been done by any other applications
currently on market.

Thesis Supervisor: Moshe Ben-Akiva
Title: Professor of Civil and Environmental Engineering

3

4

Acknowledgments

I would like to take this space to acknowledge all those who have helped me

arrive at this point in my life: my wonderful coworkers in the ITS Lab, especially

Ajinkya, Xiang, and Mazen; my supervisors, Bilge and Carlos; my advisor Moshe; and

all of my friends and family that helped keep me energetic throughout my academic

career. You are all wonderful people and I couldn’t have made it this far without

your support, encouragement, and advice.

5

6

Contents

1 Introduction 13

2 Background Research 17

2.1 Relevant User Interfaces . 18

2.2 Mobile Applications and Other Methods for Trip Planning 21

2.3 Algorithms for Trip Validation . 22

3 Overview of Methods and Contributions 25

3.1 Overall Application Flow . 27

4 The User Experience 31

4.1 Dashboard . 31

4.1.1 Metrics of Emphasis . 33

4.1.2 Interface Design . 34

4.1.3 Implementation . 38

4.2 Trip Planner . 38

4.2.1 Interface Design . 39

4.2.2 Interface Implementation . 42

4.2.3 Route List and Trip Preview Interfaces 42

4.3 Travel Log . 43

4.3.1 Interface Design . 44

4.3.2 Implementation . 46

4.4 Marketplace . 47

7

4.4.1 Interface Design . 47

4.4.2 Implementation . 49

5 Algorithms for Trip Planner 51

5.1 System Optimization and Route Selection 51

5.2 Trip Energy Calculation . 53

5.3 Personalization . 54

5.3.1 User Optimization . 54

5.3.2 Preference Updater and Estimator 56

5.3.3 Results . 58

6 Algorithms for Trip Validation 61

6.1 Overall Architecture . 61

6.2 Mode, and Departure Time Validation 62

6.3 Route Validation . 63

6.4 Driving Style Validation . 66

6.5 Occupancy Validation . 68

7 Next Steps 69

A Application Flow 71

8

List of Figures

2-1 Uber Mobile Interface . 18

2-2 Lyft Mobile Interface . 19

2-3 Google Maps Mobile Interface . 20

2-4 Mobile Marketplace Examples . 21

4-1 Previous Dashboard Interface . 35

4-2 Dashboard First Iteration . 36

4-3 Dashboard Second Iteration . 37

4-4 Dashboard Third Iteration . 38

4-5 Existing Trip Planner Interface . 40

4-6 Implemented Trip Planner Interface 41

4-7 Route List Interfaces . 43

4-8 Trip Preview Interface . 44

4-9 Existing Travel Log Interface . 45

4-10 Implemented Travel Log Interface . 46

4-11 Existing Marketplace Interface . 48

4-12 Implemented Marketplace Interface 49

5-1 Base Case Personalization Menu . 58

5-2 Walker Personalization Menu . 58

5-3 Driver Personalization Menu . 59

6-1 Results of the Route Validation Algorithm - Correctly Failed Route . 64

6-2 Results of the Route Validation Algorithm - Borderline Route 65

9

6-3 Results of the Route Validation Algorithm - Perfectly Matched Route 66

A-1 Overall User Workflow Chart for the Advisor 72

A-2 Workflow Chart for the Trip Planner, Part 1 73

A-3 Workflow Chart for the Trip Planner, Part 2 74

A-4 Workflow Chart for the Trip History Statistics 75

A-5 Workflow Chart for the Marketplace 76

10

List of Tables

5.1 Table Format for Link Travel Speeds 52

5.2 Table Format for Paths in the Network 53

5.3 Preference Coefficients for Personalization 55

11

12

Chapter 1

Introduction

None can deny the prevalence and the importance of the smartphone in mod-

ern society. As computational resources became more common, smaller, and more

efficient, the science fiction concept of a pocket computer became reality, and with

the advent of these mobile computers came a revolution in the way software and

applications approach human centered problems. No longer is data confined to cen-

sus results and desktop surveys. Studies can be carried out passively while yielding

real-time results. Data can be collected on the fly without invasive devices dedicated

to such collection. These new innovations had a profound effect on urban studies,

introducing the mobile phone and the concept of smart mobility into urban planning

and transportation analysis.

In the modern world, virtual all working people own a smartphone and carry

it with them at all times. This essentially means that everyone commuting in a given

area is carrying a box full of sensors that has more processing power than most home

computers in the 1990s. People now use their phones to plan trips, to navigate to

their destinations, and to explore unfamiliar areas, all at the tap of a screen. These

pocket computers offer unique opportunities to leverage the data from day to day

travel in order to propose solutions to problems plaguing cities across the globe.

13

The Intelligent Transportation Systems lab conducts research using smart-

mobility and other modern concepts to improve the methods and modes of trans-

portation used around the world. One of the projects under development in the lab

is the TRIPOD project, also known as Sustainable Travel Incentives with Prediction,

Optimization, and Personalization [1]. The main goal of the TRIPOD project is to

collect data on users’ travel habits and propose more energy efficient alternatives to

optimize the energy usage of the overall traffic network, in real time. The user expe-

rience module of the TRIPOD project functions mainly as an extension of the Future

Mobility Survey (FMS) [4] data collection system, utilizing the FMS trip detection

algorithms as a means to verify the actions of users interacting with the interface

of the TRIPOD project. The interface is a mobile application known as the FMS

Advisor.

Built on top of the existing Future Mobility Sensing android application for

ease of implementation, the FMS advisor allows users to initiate a trip request and

then provides them with a set of personalized travel options. Each user is also associ-

ated with a set of preference parameters that are updated as the user makes choices

in the system. These features allow the FMS Advisor to tailor the travel alternatives

to each user, growing more and more personalized as the user makes more choices.

The options offered by the Advisor are calculated using real time traffic infor-

mation compiled by a behavioral model of the traffic network. This gives the offered

alternatives accurate travel times that are updated every 5 minutes. The travel op-

tions are also associated with some incentives, in the form of tokens, to encourage

users to take more energy efficient modes of travel. These tokens can be redeemed for

rewards in the marketplace section of the application, providing users with motivation

to take the travel alternatives recommended by the system. The marketplace needs

a set system to keep track of transactions that are made by users, in order to keep

the value offered by the incentives.

In addition to all of this, the actions of the users must be validated in order to

14

properly administer rewards. The advisor contains a framework designed to detect

and analyze users’ trips using the sensors present in most smartphones. The data

gotten from analysis of the trips is then used to validate the users’ trips based on the

metrics used by the Advisor: route choice, mode of transit, departure time, occupancy,

and driving style.

The route choice, mode, and departure time are based on the optimization

that runs in the Advisor backend, but the driving style metric comes from work

done on Trip Energy Consumption. Studies have shown that certain more aggressive

driving behaviors are detrimental to fuel efficiency in vehicles, and in order to inform

users of this, the TRIPOD application provides an incentive for environmentally

friendly driving habits. All of these metrics together combine to flesh out the Advisor’s

incentive scheme and really give depth to the application’s functionality.

Unfortunately, the application still lacks a viable method to achieve the fea-

tures previously laid out. The current implementation of the core FMS android app

does track trips and has algorithms for stop, mode, and activity detection, but it

needs to be enhanced to provide the ability verify that the chosen alternative is ac-

tually performed (i.e. used the appropriate mode of transit, took the specified route,

etc.). In addition, the infrastructure to personalize the system for each specific user

must be put into place. The goal of this thesis is to provide a method to optimize

usage of the sensors present in most smartphones to gather enough meaningful data

on the users’ travel preferences and behaviors to be used by the Tripod overall op-

timization. This will allow for a smooth user experience in terms of travel planning

and token exchange, in addition to filling in all the rest of the gaps in functionality

of the application. Overall, the work presented here aims to combine the aspects

of personalization, detection, validation, and incentivization in a smartphone based

mobility application.

15

16

Chapter 2

Background Research

The FMS Advisor is an application that aims to combine previously studied

features in a novel way. This means that all the research done on the individual

features can be leveraged to strengthen the Advisor as a whole. At its core, the

Advisor brings together 3 different features:

1. A mobile interface centered around planning trips, viewing previous trips and

other historical data, and exchanging currency for products and services

2. Algorithms necessary for obtaining and processing real time information in order

to provide optimized routes on user given origins and destinations

3. Detecting these trips and validating the detected data against some ground

truth

Development of mobile interfaces has been on going since the advent of the

smartphone, as has optimization of mobile sensing, so a good amount has been done

on these features already. In addition to independent studies, other projects in the

ITS Lab have results that are relevant to the systems in the Advisor. The following

paragraphs detail a few different methods for approaching development of the high

level features of the Advisor.

17

2.1 Relevant User Interfaces

When designing interfaces for usability and overall user experience, there are

multiple schools of thought as to what elements to use and where they should be

placed. The Nielsen Norman Group is one of the most respected in this field has

published a series of heuristics to use when designing interfaces [12]. These heuristics

are the ones used when evaluating the interfaces used as inspiration for the Advisor.

Inspiration for user interfaces that plan trips is quite abundant in the modern

application ecosystem. In today’s era of mobility on demand services, many users

in cities have foregone ownership of vehicles in favor of services like taxis and ride-

sharing applications such as Uber and Lyft. These applications share the same sort

of trip planning goal as the FMS Advisor, and can be used as sign-posts for design

guidelines.

Figure 2-1: The interface for Uber’s android application. Notice the maps and the
visibility of all the different modes of transit.

The Uber mobile application has all the marks of a well designed mobile appli-

cation: text large enough to read, intuitive swipable screens, and intelligent display

18

Figure 2-2: Lyft’s user interface. Take note of the extra screen to reach the travel
options.

of information, following the heuristics of recognition and flexibility according to

Nielsen. The main screen is a map, which shows the user routes upon the selection

of a destination, and after the user inputs one, a second overlay appears, offering

different travel options for the user, while the map displays information relevant to

each option. This is similar to Lyft’s application, which uses the map to set origin

and destination nodes directly on separate map screens, before choosing the mode of

transit. In Uber’s case, the user cannot interact with the map until after selecting all

of the other parameters of the trip. One other difference is that Lyft’s travel options

are not directly presented to the user in a tabbed screen; the user must click on the

selected option to reveal a hidden menu with the rest of the options; this is not as

usable due to the extra screen.

A third interface to examine is the Google Maps interface. The main inter-

face of this app is the titular map, which is interactive and rife with information

through the entire trip planning process. However, in terms of trip planning flow, it

is a medium between Uber and Lyft, since it infers the user’s start location unless

explicitly changed. In addition to this, the different travel options presented are more

visible to the user than either Uber or Lyft, but the tabbed layout is more similar to

Uber’s. The one common factor across all of these trip planning applications is the

19

Figure 2-3: Google Maps has the least amount of screens of the three, requiring only
an overlay to find the directions button, and a single screen to show all the options.

interactive map used to receive user input. This design feature makes the interfaces

more engaging and aesthetically pleasing to users, and is worth implementing in other

trip planning applications.

In addition to other trip planning applications, the Advisor can look to mobile

marketplace applications such as the Apple App Store and the Google Play Store for

inspiration and design concepts. In general, these applications are centered around

presenting as much information to the user as possible. This follows the Nielsen

heuristic of visibility, and helps uses discover new items they might be interested in.

They also tend to have horizontal scrolls embedded within vertical scrolls, increasing

the efficiency of user interactions with these components by reducing the number of

screens a user needs to navigate in order find they want.

20

Figure 2-4: These are the Apple App Store and the Google Play Store. Take note of
the tabbed layouts and all the horizontal scrolls to fit more information on a single
screen.

2.2 Mobile Applications and Other Methods for Trip

Planning

At the basest level, the FMS Advisor is the mobile application front end for the

TRIPOD project, which is part of the TRANSNET program funded by the ARPA-E

government agency. Started in 2015, it deals with optimizing energy consumed by

personal transportation across a network of users, without major modifications to the

network or the transportation options. 6 teams received funding to work on solutions

to the challenges posed by this program, the most successful of which are the ITS

Lab at MIT and the incenTrip team at the University of Maryland.

incenTrip is an application with functionality very similar to the FMS Advisor;

it allows users to plan trips, while offering up some alternatives in an effort to reduce

energy consumption. It also offers users incentives to take the alternatives, with these

incentives being redeemable in a marketplace like interface. The team at incenTrip

attempts to reduce energy consumption based on the same metrics as the Advisor,

using route, departure time, driving style, and mode of transit to offer alternatives

to the requested trip. All of these things together make incenTrip a very mature

21

application, which has found success in the Baltimore-D.C. metropolitan area [13].

Separate from the work done by the University of Maryland on incenTrip,

MIT’s Intelligent Transportation Systems Lab has completed work on systems rele-

vant to the trip planning problem as well. One of the most relevant is the DynaMIT

2.0 system developed by Seshadri et. al [10]. The DynaMIT system is a real time

traffic prediction system that uses multiple data sources, as well as online simulation,

to estimate and predict network traffic in real time. DynaMIT first uses all of the

data at its disposal to estimate the state of the network; it then uses that state to

predict the state of the network in the short term future, before repeating the process

again. Given the speed at which this happens, DynaMIT is best suited to provide

guidance to an online traffic regulation system, or in our case, a system providing

optimal transportation policies.

In addition to the work done on predicting traffic, MIT has also completed

work on estimating the energy consumed by a given trip. The Trancik Lab’s Trip

Energy system takes in the data provided by a series of GPS tracked trips to train

a model that allows the energy consumption of new trips to be accurately estimated

[9]. By utilizing a database of gps matched to real driving patterns, Trip Energy can

account for variables in vehicles trips like driving style, traffic, average speed, length,

weather, and even vehicle type when calculating the energy estimates. Trip Energy is

best utilized as part of a larger system, and is the backbone of the energy estimates

provided by the Advisor’s trip planner.

2.3 Algorithms for Trip Validation

The Advisor leverages the algorithms employed by the FMS application for

mode and trip detection. These are sufficient for validating the mode of transit.

However, validating other aspects of the trip, like route and driving style, need new

implementations. A few different methods for this have been proposed already. Due to

22

the ubiquitous nature of smartphones in the current age, many people have conducted

studies on the utility of data collected from smart phones. The general consensus is

that the data is useful but noisy at times. In a study conducted on the accuracy

of popular GPS tracking applications, the researchers found a deviation in distance

of almost 2 kilometers over a marathon [2]. While the deviation is rather large, it

only resulted in a time difference of about 12 minutes for the trip, which in the

context of FMS seems to be a reasonable amount of error, especially for a marathon

length trip. In a 2011 study, Johnson and Trivedi found that the data used collected

from smartphones can be used to do driving style detection [8]. However, this system

employed heavy usage of the phones cameras in addition to the GPS and accelerometer

data. This provides an inconvenience to the users that prevents them from using the

phone for navigation, a key portion of the FMS Advisor. In another study done by a

team of researchers in Italy, the 1HZ data from phones was found to be appropriate

to assigning road safety measures to prevent collisions [7].

23

24

Chapter 3

Overview of Methods and

Contributions

During the time I worked on this project, most of the features of the application

went through some sort of redesign or reimplementation, including a redesign of the

flow of the entire application. From the users’ perspective, the FMS Advisor itself

is split into 3 main workflows: the Trip Planner, Travel Log, and Marketplace. This

is because the Advisor’s main functionality is centered around the idea of planning

trips. This means the Trip Planner flow contains the bulk of the algorithms and

back end structures for the application. Other than the Trip Planner, the rest of

the functionality is housed under the umbrella of incentivization. For the user, this

includes claiming incentives already earned and trying to alter habits in order to claim

more incentives. In order to change habits, the user needs a method to view past

trips and other summarizing statistics. This capability is housed under the Travel

Log flow. The capability to claim incentives is housed under the Marketplace Flow.

These interfaces had versions already in place from prior work. Jamar Brooks,

the previous research assistant, designed most of these interfaces previously [3]. His

version of the FMS Advisor included all the interfaces present in the Trip Planner,

Travel Log, and Marketplace flows, and all of his screens are present in this document

25

for comparison. However, all of these were redesigned in order to maximize the

efficiency, aesthetic appeal, and utility of the interfaces. In addition, an informative

dashboard was added to the main screen of the application. This dashboard helps

users keep track of previous information and energy optimization metrics, and allows

the app to explore more gamification concepts.

In addition to the interfaces, each workflow has a backend component that

helps fill out the functionality. As the most feature rich workflow, the Trip Planner

allows users to input an origin and destination pair, receive a personalized menu of

travel alternatives, choose one of them, and then receive token rewards at the con-

clusion of the trip. The advisor requires an extensive backend server to support all

of these features, including trip validation, serving personalized routes, and updating

the provided routes with real time traffic data. The trip validation is split up into

route, mode, departure time, occupancy, and driving style, and most of the algo-

rithms are housed in a backend server that collects all of the sensor data from the

smartphone and processes it appropriately, while the personalized routes are handled

with a database of user preferences and an algorithm that updates these preferences

with every choice made by the user. The up-to-date route offerings are handled by a

database of link travel times that gets updated with new estimates every 5 minutes.

The Travel Log flow deals mostly with historical data, so the backend compo-

nent for it is simply focused on returning previous trips with all their metadata, in-

cluding status of validation. This data is also used to supply the dashboard statistics.

For the Marketplace’s functionality, the advisor backend houses the infrastructure for

all of the products listed in the Marketplace and a blockchain implementation to keep

track of all the data in chronological order.

26

3.1 Overall Application Flow

A large part of the contributions in this thesis deal with the experience users

have when using the FMS Advisor, and designing for that experience requires a

understanding of the flow of data throughout the entire framework. These flows

are summarized visually in Appendix A and will be further elaborated upon in the

following paragraphs.

Upon opening the application, users are presented with the first screen of the

Trip Planner workflow. The screen provides access to all the other main components

of the application, as well as a straightforward, efficient way to continue through the

Trip Planner flow. The Trip Planner flow is the most substantial out of the three,

with the most transfers of data and logic between the phone interface and the backend

server. These transfers go as follows, summarized visually in Appendices A-2 and A-3:

1. The user enters the origin, destination, and departure time into the map inter-

face depicted in figure 4-6.

2. The app transitions to the route list interface (Figure 4-7), where the request

for routes is made.

(a) The request for routes goes to the backend server that houses the most

recent traffic data updates and returns a set a routes with energy estimates

based on real time data. This will be discussed in greater depth during

Chapters 5.1 and 5.2.

(b) These are currently only in place for driving options, but with further

development will add other modes of transit as well.

3. Once the routes come back, the user’s preferences are fetched from the backend

server so that a few optimizations can be performed. We then filter the routes

according to our personalization procedure, in which the user’s preferences are

used to select the 10 routes most relevant to the user’s interests as described by

27

their previous choices. This process is detailed in the Personalization section in

Chapter 5.3.

4. Once a user chooses a travel alternative, the app shifts to a preview of the trip

route (Figure 4-8), where the relevant information is summarized and the turn

by turn instructions for the trip are available to the user.

5. The user can either accept the alternative for the selected trip and start naviga-

tion, at which point the user’s choice is recorded, or return to the list of travel

alternatives. Navigation is currently handled by google maps, so when the user

chooses to start navigation, the application switches over to google maps until

the trip completes and also starts logging data from the phone’s location and

accelerometer sensors.

6. When the user accepts the selected alternative, the app records the choice made

by the user in the context of all the travel alternatives offered and sends the

data back to the server, where it is used to update the preferences stored for

that specific user. These updated preferences are then used the next time the

user plans a trip, allowing the application to further tailor the travel alternatives

presented to each user.

7. Once the user reaches the destination of the trip, the trip is marked completed

and all the collected sensor data and trip details are bundled and sent to the

server so the trip can be validated. Once the trip goes through our trip valida-

tion procedure, the results are sent back to the user, and tokens are awarded as

appropriate. This framework is discussed in Chapter 6.

The other two flows are much less involved and only involve singular interfaces

without any substantial backend procedures. In the Travel Log flow, discussed in

Chapter 4.3 and shown visually in Appendix A-4, trip data sent to the server once

the trip is marked complete, and the route, tokens, energy, and times of the trip

are recorded in the travel history of the user. The user can navigate to the travel

history from anywhere in the application excluding the route listing procedure, and

28

once there, the user can view all of the past trips in chronological order.

The Marketplace Flow can similarly be reached from any point in the appli-

cation by using the app bar and provides the user with a means to redeem the token

incentives for usable goods. The marketplace is where the true incentivization value

of the FMS Advisor manifests to the user. It lists goods in a modern interface and

allows the redemption of tokens received from the trip planner, completing the flow

of the entire application, from incentivization to reward. The Marketplace interface

is discussed in Chapter 4.4, and the flow can be seen in Appendix A-5.

In addition to these three workflows, the FMS Advisor also provides the users

with an attractive summary interface page. Here, the user can see how their previous

trips have put them in terms of the whole tripod community’s stats, as well as against

their own trips for the past month. This interface provides a skeleton for which future

developers can implement a competitive form of incentivization, one the encourages

users to compete with each other, not just against themselves. However, currently,

it show the user’s progress on the 5 different ways the advisor saves energy in the

system: trip distance, trip energy, trip duration, tokens, and the overall number of

trips. The Dashboard also contains links to start the other three flows. The design

philosophy behind this interface is detailed in Chapter 4.1.

Understanding the flow of data and logic throughout the FMS Advisor is key

to grasping how the features of the application have been implemented. This chapter

was dedicated to delivering a cursory understanding of the flows in the FMS Advisor,

which will also help clarify the ideas behind the design of the User Experience. The

User Experience of an application dictates how users interact with a system and is

the primary factor in determining user engagement with a product; a well designed

User Experience, with proper logic workflows, enhances the impact of any application.

The User Experience for the FMS Advisor is discussed in the next chapter.

29

30

Chapter 4

The User Experience

Now that the overarching ideas behind the user flow of the FMS Advisor have

been explained, the design of the interfaces can be elaborated upon. The Advisor’s

main goal is to reduce the energy consumption of a population of users through incen-

tivization, optimization, and personalization. In order for that goal to be achieved,

the User Experience has to be tailored to emphasize those ideas to the user. As the

main interfaces of the Advisor, the Dashboard, Trip Planner, Travel Log, and Mar-

ketplace each contribute to one or more aspects of this emphasis through their own

individual designs. This chapter is dedicated to explaining the methodology behind

each of these, to increase understanding of how the Advisor brings together all the

features that it does.

4.1 Dashboard

In many account based user applications, there is a central screen where the

user can go to view statistics about application usage, from the total number of hours

invested into the app to the total amount of rewards gained during application up-

time. These metrics are very important to the usability of any application, and add

a number interesting ways for users to engage with the platform. In addition to that,

31

the dashboard often serves as the hub for user activity, offering easy ways to access

the rest of the functionality present within the application. In order for a dashboard

to be effective, it needs to provide information to users that isn’t immediately avail-

able anywhere else but is also relevant to the continued usage of the application, and

overall, it must re-emphasize the features of the application to the user. This follows

the Nielsen heuristics of visibility and recognition, since the display of the statistics

here exposes the status of the users’ historical data, as well as helping the user rec-

ognize previous as actions, as opposed to having to remember them [12]. Dashboards

that follows these principles will add value to the interface and experience of any

application in which they are present.

These design principles can be seen in many modern interface designs. Take

for example, the homescreen for the Android Google Maps application, discussed in

the Background section previously. The main element is a large interactive map, to

encourage users to use the main feature of the app. However, underneath that is a

draggable menu that contains entry points into a plethora a new information for users.

It has 3 tabs, one that offers options to find new places of interest near the user, one

for configuring driving options, and another for configuring transit options. As google

maps is an application primarily used for finding directions and exploring surrounding

areas, these features help emphasize and introduce users to the main draws of the

application, engaging and encouraging them to make use of the functionality.

Another good example of these principles can be seen in the home screen for the

Facebook Android application. Also known as the News Feed, it contains a seemingly

infinite list of status updates and post from people relevant to the user. However,

above the feed, Facebook placed a bar that illustrates the principles mentioned earlier.

Facebook’s main draw for many people is the ease of communication on the platform;

the application emphasizes sharing updates with other users as well as spreading

content and news around the network of users. In order to complement these goals,

the dashboard of Facebooks app contains a bar that lists all the Stories of a user’s

friends, above the feed with other updates from the same group of people. It also

32

contains a tab for news updates and other information the user might not receive

from their friends. These two features, along with the list of notifications and a few

others, serve to reemphasize Facebook’s main draws and provide a very easy, efficient

way for users to access all the main functionality from the same screen.

4.1.1 Metrics of Emphasis

The FMS Advisor, at heart, is a trip planning application. The main user

feature centers around planning trips from an origin to a destination and helping

users complete their transit. However, the purpose of the application is to optimize

energy usage of the whole system of users using the FMS Advisor. To that end,

the Advisor offers a menu of different travel alternatives to users when they plan a

trip, incentivizing them to pick the most energy optimal. The alternatives offered to

the user are incentivized through token rewards that can be redeemed through the

marketplace interface found elsewhere in the app. These tokens are awarded to the

user when they agree to compromise on one of the dimensions of the trip to make it

more energy efficient. These dimensions include the energy consumed during the trip,

the overall trip distance, the duration of the trip, and the number of overall trips. In

order for the FMS Advisor dashboard to be effective, these metrics should be echoed

back to the user in way that isn’t found in other parts of the application but still has

utility.

In addition to that, the FMS advisor has a strong community component to

it. As the app aims to reduce the overall energy consumption of all of its users, it

follows that these users would be interested in what others in the system are doing,

and how they compare among the rest of the users. This sense of competition could

drive engagement with the application higher. The app already encourages users to

carpool as one of the ways to reduce energy consumption. The people carpooling

would likely be acquaintances in real life, and could use the app more often if more

rewards were given for saving more energy than their friends who also use the advisor.

33

4.1.2 Interface Design

Previous Iteration

The previous iteration of the FMS Advisor’s dashboard attempted to follow a

few of these principles, but overall did not add enough value to warrant inclusion in

the application. The screen consisted of a mostly blank space with a large star, the

user’s name, a number of tokens, and a large button to start the trip planner. While

the page was functional, it definitely left some things to be desired. First, the screen

had a lot of empty space. This can be useful, if there are specific components that

need more emphasis, but in this case, it only served to draw attention to the large

star in the middle of the screen. The star was supposed to be the implementation of

an incentive for users to reduce the total number of trips taken in a set time period,

but was never implemented fully. In addition to that, it only provided access to the

trip planner, neglecting the other two features of the Advisor, not to mention the fact

that there isn’t a way to access the dashboard after the user leaves it. Though this

version of the dashboard lacked many things, it did attempt to follow the concepts

mentioned previously, and paved the way for further iterations of the dashboard.

Version 1

The first iteration of the dashboard took some of the design considerations

of the previous iteration and expanded upon them slightly. Here, I tried to use all

of the space available on the screen in order to provide as much information to the

user as possible, without crowding the screen unnecessarily. The tiled design would

provide the ability to emphasize different pieces of information, or tie a few together,

depending on the colors used in the boxes. This version of the interface provides the

user with information about the overall number of all the trips taken, nd indicates a

concrete for the user to receive another bonus. This was the goal of the star in the

previous interface. Unfortunately, there are still a few issues with this one. While

34

Figure 4-1: Existing dashboard interface

the interface is more aesthetically pleasing than the last, it doesn’t actually offer the

right kinds of information or interaction. Most of the information present on it is

redundant, as it all references the number of different modes of trips taken, while the

bonus is related to the same number of things. Also, it still only provides access to

trip planner, and there still wasn’t a way to return to the dashboard once the user

left.

Version 2

The second version of the dashboard was mostly a redesign of the first, designed

to be less cluttered and more in line with rest of the project. In this version, the fonts

were updated to match the rest of the app. For this iteration, I focused on bringing

the dashboard into parity with the rest of the FMS experience: the Advisor is one

piece in an entire framework of Mobility applications, all of which have a dashboard.

Most of these are quite different from one another, which is very confusing for users

of more than one of the platforms. To help fix this problem, I rearranged the graphs

to flow from left to right, and also eliminated the redundancy in the boxes. This

35

Figure 4-2: First iteration of the Dashboard interface. Notice the tiled design that
allows for different blocks of information.

version of the dashboard uses the icons found on the web, and also in the Advisor,

which provides even more consistency with the rest of the FMS suite. Despite these

improvements, the interface could be stronger still. There is a wealth of information

in the application that this dashboard ignores, while it still has not addressed the

lack of access to the rest of the app’s features.

Version 3

The third iteration of the dashboard finally takes the design principles men-

tioned earlier and acts on them, transforming the application for the better. This

version of the dashboard is found as a pull up window present at the bottom of the

first activity the user sees, the trip planner. Not only does this new home page em-

phasize the trip planning portion of the app, it reduces the number of steps taken

for a user to actually plan a trip. In addition to this, dashboard includes icon based

buttons to reach the other workflows in the app, allowing the user to find all the

functionality very easily.

36

Figure 4-3: Second iteration of the Dashboard interface. The graph here is more in
line with the other FMS dashboards.

As far as the data goes, this version of the Dashboard contains more data

than any of the other iterations of the dashboard. This is because we decided that

each metric of incentivization warranted its own visualization in the Dashboard, so

that users could both see all the things the FMS Advisor incentivizes and track

their own progress towards each of these goals. This increases the transparency of

the application with the users. This version of the dashboard also finally specifies the

time interval over which the advisor checks and calculates these numbers. I also added

a section for community statistics underneath the user’s personal statistics. This is an

early foray into the competitive gamification of the Advisor and can easily be adapted

to include more community aspects. With all of these things in consideration, the

Advisor’s dashboard is now an effective information gathering tool for the users of

the app, providing relevant information and emphasizing the important features of

the application.

37

Figure 4-4: Third iteration of the Dashboard interface. This iteration was the most
information rich of the 3 designs. These are two alternate color schemes for this
version of the dashboard.

4.1.3 Implementation

The Final Dashboard interface was implemented using the MPAndroidChart

library and some of the new material design concepts in Android. The screen is

housed in a fragment that encapsulates all of the data grabbing logic and can be

housed anywhere in the application. Currently, it is tied to the main Trip Planner

Screen, where it resides as a bottom sheet that can be pulled up when the user needs

to view the information. This interface was demoed to real users at the 2018 ARPA-E

summit, where it was met with positive feedback.

4.2 Trip Planner

The main screen of the FMS advisor is the first stage of the Trip Planner

workflow and contains the bulk of the functionality in the application. It contains an

interface for the selection of departure time, origin, and destination, one for choosing

38

the appropriate travel alternative, and one for the trip preview and navigation. In

addition to the interfaces, the Trip Planner workflow also uses a series of algorithms

and backend storage to provide full functionality to the user. Once the user requests

a trip, the app queries a database updated with real time traffic data to get all the

options for route that are available at the specified time, as well as an energy estimate

for each one. Once these routes are retrieved, the 16 best are chosen using the User

Optimization algorithms that consider a series of preferences specific to the user.

These trips are then assigned a token value based on which ones the user is likely to

choose, and displayed to the user. Once the user chooses a route, the choice, along

with the entire menu of alternatives, is recorded and sent back to the server, which

then updates the user’s personalized preferences based on their choice of trips. While

user is on the trip, the smartphone records their location as precisely as possible,

and once the trip ends, the GPS traces are sent the backend for validation of all the

metrics of the trip. Once the results of the validation are available, they are posted

back to the user, and tokens are rewarded. The algorithms behind this workflow are

discussed in Chapters 5 and 6, while the overall is visualized in Appendices A-2 and

A-3. The rest of this section will focus on the interfaces of the workflow.

4.2.1 Interface Design

The interface of the trip planner has gone through a number of different revi-

sions, all centered around emphasizing different elements to the user. The previous

iteration of the trip planner looked very similar to a basic list view application. As de-

scribed by Jamar Brooks in his 2017 thesis [3], the trip planner interface implemented

during previous terms focused on minimalist user interface and clean aesthetic appeal.

While the approach worked pretty well, as the project grew, more factors needed to

be considered when designing the user interface for the planner. The previous iter-

ation’s biggest accomplishment was separating the interfaces for entering the origin,

destination, and departure time for the trip, and viewing the actual alternatives for

the trip. The original interface for the trip planner collapsed the entire work flow

39

Figure 4-5: The existing interface for the Trip Planner. Notice how the only way to
input arguments is through the text.

into one screen. Though it technically helped with the efficiency of the application,

having everything on one screen was confusing and made the screen really cluttered

and difficult to read. Splitting things up afforded more space to help the aesthetics

and the usability of the interfaces, as well as allowing users to move through the flow

of the planner more naturally. However, there was still room for improvement on top

of the changes made before.

The main flow of the trip planner consists of the following steps: entering an

origin and destination, selecting a travel alternative from the options presented by

the planner, previewing the selected trip’s route and turn by turn directions, and

finally, navigating through the trip itself. The current version of the trip planner

only offered one way to select the origin and destination for a trip, as it forced the

user to click on the origin button, search for the start location, and select it from the

options presented by the search. While it presented a number of attractive features,

this approach to the interface failed to take advantage of a number characteristics

inherent to problems of this nature. One of the largest of these is the fact that users

generally want to plan a trip from their current location to somewhere else, and the

40

Figure 4-6: The new Trip Planner interface. There are now more ways to specify the
origin and destination.

current interface lacks a method to specify current location. In addition to that, the

search function used to find the places offered results from all over, not just the area

immediately around the user. These two shortcomings meant that users were forced

to take extra steps to click on this search button, enter a location that was close to

their current one, and sift through potentially irrelevant results in order to start the

Trip Planner flow, not to mention the whole process would be impossible if the user

didn’t know the name of their current location, or if the places search couldn’t locate

them properly.

In order to fix these shortcomings, the main interface of the trip planner was

transformed into an interactive map. Many contemporary trip planning interfaces,

like Uber, Lyft, Google Maps, and others, all use maps as their primary interface,

mainly because it reduces the amount of overheard users must go through to arrive

at the main interface of the application. Now, upon entry into the trip planner flow,

the users would find the origin automatically populated with their current location,

reflected by a pin on the map. The color of this pin matches the color of a button that

contains a text representation of the user’s current location. This can be tapped to

41

open a Google places search, in case the user wants to start the trip from somewhere

other than their current location. Entering the destination can now be done in two

ways as well. The old places search can still be performed, but the user can tap on

the map to drop a pin anywhere they wish. These changes to the flow of the input for

the trip planner benefit the user’s efficiency in a few different ways. First and fore-

most, they reduce the amount of network usage by the application for this operation.

Now, the user can find their origin and destination and start the user optimization

process after only having loaded the map. Previously, the user would have had to

go through two autocomplete transactions before being able to move on. In addition

to this, moving the interface onto an interactive map increases the aesthetic appeal

of the interface, offering the user more information about their surrounding area and

allowing them to fine tune the exact destination of the trip.

4.2.2 Interface Implementation

The implementation of this interface relies on support libraries provided by

google to allow the usage of its features other applications. The main map interface is

a support map fragment from the Google Maps android library. This map is rendered

in full view, with the controls and logo visible to the user. In addition, the view port

given by the map is used to bias places search results to the location present on the

screen. This means that the user is less likely to receive irrelevant places results from

the searches performed by the buttons. The dashboard is loaded as a nested bottom

sheet, a nice feature of the newer material design initiative started for android mobile

devices.

4.2.3 Route List and Trip Preview Interfaces

The subsequent screens of the Trip Planner list the menu of travel alternatives

for the user to select, and once a selection has been made, displays a preview of the

42

Figure 4-7: The two left screens are the previous implementation. The new interface
on the right adds only a few indicators to the driving options, in order to accommodate
new features.

route. The user can either accept the alternative at this screen and begin navigation,

or return to the route list and choose another alternative. These two interfaces have

not changed much. The tabbed layout is a standard way to display routes in trip

planning applications. The only real alterations are the eco driving and the occupancy

indicators for car trips, shown in Figure 4-7. These are shown for trips that have the

potential to save tokens with eco friendly driving practices (more on this in Chapter

6.4), or when the trip has an occupancy of greater than one. This indicates a rideshare

trip and activates the occupancy validation detailed in Chapter 6.5.

4.3 Travel Log

The FMS Advisor’s main functionality offering is the ability to plan trips and

optimize energy usage, and in order to accomplish that goal, users have to plan and

complete a large number of trips. The users can then look at some historical data

on the Dashboard, in order gauge their most recent habits, but the dashboard ony

provides an overall statistical view into that information. If users really want to know

detailed information about their past trips, the travel log will provide it. The travel

43

Figure 4-8: This is the screen for users to confirm their travel alternative selection. It
gives a preview of the trip route, along with the other trip details across the bottom.

log lists all of the users’ past trips in a friendly, readable interface that displays all

of the relevant information about each trip. Trips are readable here once they have

been completed and submitted to the validation process.

4.3.1 Interface Design

The Travel Log’s previous design was very functional and displayed all the

information users needed in a clear way, without any extra flair. All of the information

was presented in a single list, with each trip represented in its own block. These blocks

contained a map with the route specified by the trip, the mode of the trip, and the

energy and token values as well. At the time, this was all the information needed for

the log, so this interface was perfectly adequate. Unfortunately, this version of the

interface is very pleasing to the eye, and also did not leave much room for adding new

components. In the current interface, users had no way to know about the validaiton

results from the block displayed.

The new version of the Travel Log addresses these concerns. The aesthetic

44

Figure 4-9: The existing Travel Log interface.

appeal is based off of trip histories in other applications similar to ours. In keeping

with the design of the rest of the application, the shadows and rounded edges were

removed in favor of block colors and sharp edges. In addition to this, the amount

of data that needs to be stored in each log has increased quite a bit. Trips now

include information about driving style, the tokens related to driving style savings,

the validation results for each different metric used int eh validation process, and even

new modes of transit.

All of these new metrics are rolled into the redesigned units of the travel log list.

The mode icon and trip start and end times are now in the font of the application,

while the main information bar is underneath the map. The eco-driving indicator

from the route list can be found here as well, indicating the status of the eco friendly

validation. The main validation can be found in a small check next to the number of

tokens received from the trip. If the trip failed, then there is a red X instead.

45

Figure 4-10: The implemented interface for the Travel Log. The increase in informa-
tion required a redesign to effectively convey all the necessary components.

4.3.2 Implementation

The Implementation for the Travel Log relies largely on the RecyclerView class

in android. The RecyclerView’s ability too contain custom views makes holding and

displaying the information about the trips very straightforward, and since the main

list is a RecyclerView, we can use it to add new trips relatively easily. The map class

required a few optimizations in order to make sure that the list was still performant.

First, the full maps cannot be loaded, as they are too large and too memory intensive

to each have all of the advertised full functionality. The ’lite-mode’ option provided

in the code for the map fragments converts the maps to bitmap images which greatly

enhances the performance of the list. In addition to this, using a RecyclerView means

that we can reuse the maps as we go down the scroll list. This saves memory for the

application as well.

46

4.4 Marketplace

Once users of the FMS Advisor complete trips, they are awarded tokens upon

successful validation of the trips. These tokens are at the heart of the optimization of

the TRIPOD system, as they exist at the crux of the methodology aimed at reducing

energy consumption: if users are effectively and optimally incentivized, then they

will take the routes required by the system. The optimality of the token incentives is

handled by the DynaMIT system discussed in later sections, but the efficacy of the

incentives is handled by the Marketplace. The Marketplace offers a variety of goods

and services in exchange for the tokens earned through completing trips. These goods

and services offer tangible rewards for following the rules of the Advisor , and the

effectiveness of the incentive policy hinges on the fact that these rewards are attractive

enough that users will respond positively to the offers. Part of this is based on the

actual goods and services offered in the marketplace, but some of it comes from

how the rewards are presented and the usability of the interface through which users

interact with them.

4.4.1 Interface Design

The existing interface for the FMS Advisor Marketplace was based on the

findings of a small design study done on mobile app marketplaces across a variety

of platforms. The results of this study indicated that most marketplaces split their

goods into multiple sections, with the majority of the details of each item present on

a separate screen after the user chooses an item. This makes sense for a few reasons.

First, there isn’t enough room in the list to effectively display all the information

about an item; the interface would get too cluttered and unreadable. Second, having

two screens to confirm the selection of a reward increases the safety of the interface

from unwanted taps.

The actual layout of the interface consists of multiple tabs with large, blocky

47

Figure 4-11: The existing interface for the Marketplace. Some of the UI elements are
distracting and do not add any value to the interface.

cards representing each item available. The Tabs organize all the items by category,

and can change their labels quickly and easily. This gives the old version of the

interface adaptability and readability. Unfortunately, the extra tabs make it hard to

view different types of items at once. In addition to this, the UI elements are rather

clumsy and confusing, like the star, for example. This version of the interface also has

no notion of transactions or any sort of wallet. These short comings are addressed in

the new interface implementation.

The new version of the interface borrows a number of elements from modern

marketplace applications, including the Google Play Store and the Apple App Store.

Both of these marketplaces open with a page full of summaries. This principle is

effective because it shows the user a large breadth of goods on first load, and allows

more information gain upon further interaction with the interface. This principle is

48

Figure 4-12: The redesigned interface for the Marketplace. The different sections on
the first page allow more information to be absorbed by the user on first glance.

followed through in the new Marketplace interface, where the landing page is com-

prised of multiple sections with different content in each. Each of these takes the

user to a separate tab with more goods of the same type. As the Marketplace grows

in size, this will allow further customization of the methodology through which the

products are displayed.

4.4.2 Implementation

The new interface was implemented using a series of RecyclerViews that con-

tain RecyclerViews. I used a modular approach that allows one to specify a few

different arguments to put in the ViewHolder. This allows the interface to render a

second, horizontal list in the item slot, or another singular item, depending on what

parameters are specified. The whole thing is wrapped in a View Pager that allows

49

the interface to have separate tabs, and each tab has its own different set of rules.

These can be customized depending on the layout desired for that type of market.

50

Chapter 5

Algorithms for Trip Planner

As the main source of functionality for the FMS advisor, the trip planner

workflow also housing all of the substantial algorithms present in the application.

These algorithms are what make the advisor special and differentiates it from other

trip planning applications on the market. By utilizing the choices given to us by each

user, as well as historical traffic data running through a behavioral model optimizer,

the Advisor can effectively personalize all of the travel alternatives show to the user

and incentivize each user with the optimal number of tokens to reduce the overall

system wide energy consumption. These algorithms and backend components are

split up into the System Optimization path set database, the effective trip energy

calculation, the User Optimization procedure, and the Preference Updater. Each of

these components has its own design and implementation details, as well as its own

spot in the over framework of the Trip Planner.

5.1 System Optimization and Route Selection

The FMS advisor boasts the ability to provide up-to-date routes for its users

so they can help optimize energy usage across the whole system, and the way that

it does this is through the utilization of the DynaMIT platform [10]. The DynaMIT

51

Table 5.1: This is the format used in the MySQL table that stores all the link speeds
from the updates by the SO framework.

system is a behavioral model that simulates traffic on a supply and demand basis in

order to provide accurate travel times for all the links in a network over all times of

day. Users from all over the system are simulated within this system, each with a

demand for travel capacity, while the links across the whole system have a limited

supply of this same capacity. By then simulating trips for each of these users, the

DynaMIT platform can predict the travel speeds of each link in the network, which

allows accurate estimation of overall trip travel times. What’s really important about

this, however, is that it also allows a more accurate assessment of the amount energy

one might spend completing a trip that goes along certain links in a transit network.

Using that estimation of energy, the optimal energy value for each token offered by

the advisor can be set. This will allow us to incentivize our users such that the

largest number of them will be likely to take the most energy efficient routes. These

characteristics combined make DynaMIT an essential part of the optimization portion

of the FMS Advisor.

In the current implementation, DynaMIT is used to simulate car trips only,

but this will change in the future. The simulation is run so that the estimates for

all the links are available every 5 minutes through out the day. These estimates are

provided in the form of files that list all of the links in the entire network, each with

the corresponding speed at the specified time. In addition to that, the optimal token

value, based on the budget of tokens and the time of day is also provided. All of this

information needs a way to be stored and accessed such that when a user requests a

new trip, the system can effectively leverage all of the link data to provide a solution

quickly. In order to do this, I made a framework to query all the data indexed on

52

Table 5.2: This is the format used in the MySQL table that stores all the paths that
users can take in the System Optimization framework.

link and also time. The previous database stored the data by constructing a guidance

table within a mysql instance running in the backend server. The new version takes

that table and expands the dimension of the table by the time of day, allowing the

user to get accurate measurements of link travel speeds for the entire 24 hour period.

In addition to that, there needs to be a table that houses the paths used by the

optimization to calculate the link speeds. These paths are the ones actually returned

to the user when the trip planner is used and are stored in a MySQL table similar to

the link speeds and is indexed on the origin column in order to speed up the searches,

otherwise a simple select query took almost a minute.The formats for these tables are

listed in Tables 5.1 and 5.2.

It is through this platform that the FMS advisor is able to claim that it op-

timizes energy savings. The optimization that happens through the usage of the

DynaMIT platform provides the Advisor with real time data and link speeds, allow-

ing it to make predictions and suggest routes that are least likely to involve energy

intensive travel.

5.2 Trip Energy Calculation

The Trip Energy calculation is essential to the routes returned by the route

selection algorithms and data structures. It is these estimates that are used when

determining which routes are the most energy efficient, and without this calculation,

the Advisor would have no way to claim that it optimizes energy for travel. Currently,

53

the Trip Energy calculations are computed using the link distance, the link speed

gotten from the system optimization, and the type of vehicle. These calculation is

based on the research pursued by the TrancikLab at MIT, and more information can

be found in [9].

5.3 Personalization

One of the main draws of the FMS Advisor is its ability to tailor results to a

user’s preferences, presenting each user with a menu of travel options suited to the

choices made in the past. This is important because a user will be more likely to

select a route that is more inline with their travel habits and preferences than one

that is irrelevant to them. The functionality in this part of the Advisor is based on

the work done by Xiang Song, Mazen Danaf, et al [14].

5.3.1 User Optimization

In order to compute and present this personalized menu of travel alternatives,

the Advisor needs a measure of the user’s preferences in relation to our application.

These preferences are the metrics that user would use when deciding which route to

take from a menu of choices and include things like the mode of transit, the number

of tokens offered, the trip duration, the cost, and others. All of the specific metrics

used in the Advisor are listed in Table 5.3. Each one of these metrics is represented

in a utility coefficient that ranges from -1 to 1 and gives information on how useful a

certain metric is to the user. For example, a coefficient of -1 means the user actively

seeks to avoid that metric, while a positive coefficient indicates that the metric has

an attractive quality to the user. All of these coefficients are stored in a MySQL table

for easy access when the need arises.

The actual filtering itself is carried out by a matrix operation on the list of

54

Table 5.3: These are all of the metrics considered for each trip and choice when
personalizing the FMS Advisor to each user.

routes returned by the System Optimization, detailed in the following paragraph.

Once the user requests a trip, and the System Optimization framework returns a

series of routes, the preliminary menu of routes must be converted into a form that

explicitly considers the previously discussed metrics. Once these routes have been

converted, the preferences of the user, in the form of utility coefficients for each of the

metrics discussed previously, are grabbed from storage. These coefficents are then

used to calculate the expected utility of each option on the menu, and then use that

utility to calculate the probabilty of the option being chosen. Once these probabilities

have been obtained, they are used to find the menu subset of all the routes that has

the highest expected chance of a user choosing one of the routes(i.e. the expected hit

rate).

One caveat to this process is that at least one option from each mode of transit

must be offered to the user. This is to leave the user the option to change their

preferences later on. If this condition were not in place, the user would eventually

only find routes of the mode of transit most preferred, assuming there were enough

routes to accommodate that.

55

In addition to filtering the routes returned by the System Optimization, the

preferences are used to assign token values to each of the routes. The process is

similar to route filtering procedure, but its applied to incentivizing the user instead.

The utility of all the routes is again calculated, and the probability of each route

computed. However, this time, these probabilities are used to compute a reference

energy for the menu. This reference energy is the value used to compare all the other

trips to when assigning tokens; essentially, it is the baseline energy consumption for

the routes returned by System Optimization. As such, the choice of what calculation

to use is important. For our purposes, the expected energy consumption is used: this

is the energy of each route multiplied by the probability of each route being chosen,

summed over all routes.

Once this baseline energy is calculated, it is used to assign token values to all

of the trips. the token energy efficiency value from the System Optimization is used

for this. Not only does the System Optimization framework provide optimized travel

time estimates, it also computes the optimal token per energy value for the system

at any given time. In essence, it computes the energy value that will maximize the

number users of the Advisor that choose alternatives off the menu. The actual token

value of the trips is taken as the difference between the energy of the trip and the

reference energy, bounded at 0 and multiplied by the token energy efficiency.

5.3.2 Preference Updater and Estimator

The User Optimization procedure takes the user’s preferences and tailors the

menu of options to fit their past choices. However, it does not do anything to alter

or update those preferences. The actual personalization logic is handled separately

by the Preference Updater and Estimator algorithms. These algorithms are housed

in the backend and called every time the user makes a choice of route from the menu

of options presented by the User Optimization.

The preference updater and estimator are based on the principle of Bayesian

56

Estimation, in which observations on an unknown model are used to infer qualities of

the model. In this case, our model is the preferences of the user, and the observations

are the choices of route they make from the menu presented by User Optimization.

The Advisor employs the hierarchical Bayes estimator developed by Danaf et. al [5].

This estimator provides a solution to the issues of scalability in large Bayesian mix-

ture models, but allowing each successive observation to update the model without

recalculating the whole thing. In addition to this, the estimator employs the notion

of individual specific parameters versus population level parameters. The approach

to scalability involves using the new choices in addition to the population level pa-

rameters to provide updates to the individual parameters without needing to consider

the entire history of choices. This makes the update viable to run in real time after

every new choice. The population level parameters are estimated once a week using

the entire population’s history of choices. This estimation takes quite a long time

and is not computationally efficient.

In order to properly update the preferences, the structure of the choice obser-

vations has to be chosen carefully. The goal is to capture the essence of the choice

in a way that interfaces well with the Bayesian Estimator. In this case, every option

must be represented as a binary choice, even if the choice is one among a range of

values. The structure chosen uses all of the metrics listed in Table 5.3. Here, each

characteristic of the alternative is represented in a separate attribute of the choice.

First, we have whether the choice is available or not in this choice observation. Not

every menu is the same size, so we have to make sure that the estimator knows how

many options were in the choice. Then, we have a column for each parameter of the

preferences from each alternative in the menu. Since there are 18 preference parame-

ters, there will be 18𝑛 columns, where 𝑛 is the number of alternatives in the menu. In

addition to this, the algorithm needs to keep track of which trips are recommended

by the User Optimization, so a separate column is kept for that as well.

57

Figure 5-1: The base case for the Personalization, before any choices have been made.

Figure 5-2: This is the menu seen by a user that favors walking trips. It’s very similar
to the base case because the base parameters already favor non-vehicular more than
the other modes.

5.3.3 Results

The Personalization framework performs pretty well in practice. In order to

test the framework, two users were initialized with the population level preferences.

Then, each user went through 5 route choices to simulate a few days worth of travel.

One user chose exclusively car routes, while the other chose walking routes. At the

end of the simulation, the menus were quite different. The car loving user had nearly

4 times the driving options as the walking user. The menus are summarized in Figures

5-1 to 5-3.

58

Figure 5-3: If a user choose car trips very often, the menu would start to look like
this. Notice the abundance of car options and the fact that all the other modes still
have at least one option.

59

60

Chapter 6

Algorithms for Trip Validation

In order to ensure that the incentivization of the FMS Advisor fulfills its role

in the system, it is necessary to validate the actions of the user to verify that they

meet the criteria for the incentives. To that end, the Advisor includes a validation

framework that centers on 5 metrics provided for the users to reduce their energy

consumption: route choice, mode choice, departure time, eco friendly driving, and

occupancy. Each one of these metrics is independently verified, and tokens are not

awarded until each trip completed by the user passes the required test. The route,

mode, departure time, and driving style metrics are verified in the backend server,

while occupancy is done in the mobile application. In order to get the tokens for trip,

the user must pass all of the checks except for driving style, while passing the driving

style check will merit the eco driving tokens.

6.1 Overall Architecture

The Trip Validation Architecture is encompassed within the Trip Planner

workflow discussed earlier. It begins with the user selecting a trip from the menu

of travel alternatives presented after User Optimization runs. Once the user chooses

a trip and begins navigation, the first part of the Trip Validation framework activates

61

and runs. This is the occupancy validation and is the only part of the framework that

happens on the user’s phone. Once the trip completes, all of the relevant metadata

about the trip, as well as the sensor data collected while the trip was taking place,

is bundled up and sent to the backend server. There, the rest of the trip valida-

tion framework is performed, validating the route, mode, departure time, and driving

style. Once all of these have been checked and validated, the results are sent back

to the user. This validation framework is what makes the incentivization feasible; if

the users are held accountable, they will be more likely to perform the actions incen-

tivized by the Advisor. As such, the validation framework is integral to the project’s

success.

6.2 Mode, and Departure Time Validation

In order to validate mode, route, and departure time, the framework relies on

the FMS Core stop and mode detection algorithms. When a user approaches the

destination specified in the trip, they enter a Geofence, which triggers the end of the

trip on the mobile app. The app then bundles all of the GPS data and trip information

(origin and destination pair (OD), specified route, and departure time), and sends

it to the server. The server will then start a Mode and Stop detection job on the

collected GPS data. This partitions the user’s day into a series of structures known

as intervals. Basically, each interval represents either a stop or a transit between two

stops. The intervals of interest are those that correspond to the OD from the trip

and the transit between them.

Once the results of the Mode and Stop detection are available, they are checked

against the trip information sent in with all the data. The two stops outside the travel

interval can tell us if the user started and stopped in the correct places.

First, the framework checks for stops that correspond to the origin and desti-

nation of the trip. If two stops cannot be found, in the proper order, that are within

62

100m of the origin and destination specified by the selected option, the trip fails.

For departure time, the origin stop must end within 5 minutes (the frequency

of predictions from the System Optimization) of the specified departure time. This is

because the user could have been at the stop for a long time before deciding to plan

and complete the trip. This means that the algorithm needs to check the end of the

stop to find out when the user actually started the trip.

The FMS Algorithms assign a transit mode to each travel interval. This as-

signed transit mode can be used to see if the user completed the trip using the mode

required by the planner. The intervals that correspond to the are checked, and the

assigned mode of each one is compared to the mode from the trip data sent in. If the

mode is the same, then the check passes. This is complicated by transit trips, which

are often multimodal and are comprised of multiple intervals in the FMS represen-

tation. To remedy this, the algorithm compares all the intervals in between the two

stops found for the OD. This comparison is the same as detailed above.

6.3 Route Validation

The route validation is based on a partial route matching algorithm shown by

Gjaldbaek [6]. The algorithm takes two routes in the form of a list of coordinates

and rasterizes them to produce a series of intervals. It them computes the similarity

between the two sets of intervals. The overall procedure is as follows:

1. The desired route from the trip metadata and the intervals associated with the

user’s actual route are taken and converted to a list of points. In our case, they

are stored as encoded polyline strings, so they can simply be decoded to get the

associated list of lat/long coordinates.

2. A grid is made from the bounding box of the two routes. This is to provide a

set number of grid cells for the rasterization

63

Figure 6-1: This is an example of a route in which the user deviated from the desired
route. Notice the deviation shown in the rasters on the left and the lack of a complete
path of matched cells in the dynamic programming matrix in the center.

3. Each route is then rasterized on this grid, producing two lists of cells through

which each route passes, along with the overall distance passed by each route

through each cell.

4. After obtaining a list of the rasters passed through by each route, we use a

dynamic programming string matching algorithm with a tailored cost metric

and proximity matching function to compute the similarity for the two routes.

This algorithm takes advantage of some of the concepts of partial string match-

ing algorithms by converting each route into a representation similar to a string. Since

both routes are rasterized on the same grid, each cell can be viewed as a letter, and

the rasterized route as a word. The similarity matching algorithm basically looks at

these two words and computes how similar the two words are. The main difference

here is the cost function used to fin the optimal matching. For strings, the simple edit

distance would suffice. In our case, the distance between the lat long coordinates,

as calculated by the Haversine formula, is a more appropriate metric. In addition to

this, since this is only an application of the string matching algorithm, not an actual

string matching, the matching process happens requires some scrutiny. GPS data is

64

Figure 6-2: The routes here definitely match but not all the way due to a few artifacts
from the matching process. Routes like these are an example of why the threshold
was set to .85.

rather noisy, and discretizing the cells introduces the possibility for the two routes

to be split along a boundary, rendering them different in the eyes of the grid. To fix

this, a proximity constraint is introduced to the matching process. Practically, this

is treating the cells in a 3x3 grid around the desired cell as matching, not just cells

that match exactly.

The algorithm performed pretty well on the GPS traces found in the advisor.

Since most of the testing is done in Boston where GPS tends to be messy, the con-

sideration of proximity in the matching algorithm was essential in correctly matching

the traces correctly. Some experimentation found that a threshold of about .85 was

sufficient to avoid false negatives and false positives. Figures 6-1 to 6-3 show the re-

sults observed in a few of the trips from users of the Advisor. The leftmost box shows

the rasterized routes, the middle cell shows the output of the dynamic programming

matrix used to construct the similarity measure, and the right shows the two traces

on the map.

65

Figure 6-3: These routes matched perfectly. The dynamic programming matrix has
a perfect path all the way down the diagonal and the rasters overlap extensively.

6.4 Driving Style Validation

The driving style validation aims to verify that the user has followed certain

criteria during the completion of the trip and necessarily only runs on car trips. These

criteria, developed by Miotti et al. in [11], include avoiding the following actions:

1. Driving at speeds over 65 mph

2. Sharp acceleration and hard brakes at higher speeds

3. Braking harshly and accelerating right afterward, like you might do in heavy

traffic

These actions are proven to increase trip energy consumption, and the goal of the

validation is to check whether the user avoided them while driving through the use

of the GPS data provided by the user during use of the Advisor. Unfortunately,

the GPS data collected by the Advisor tends to be very buggy and requires quite a

bit of preprocessing before it is usable for validation purposes. The data is process

according to the following procedure before moving on to assess the driving style of

the user.

66

1. Interpolate the traces to 1 hz frequency. The data must be at 1 hz so that

the profiles of interest have even datapoints and can be properly smoothed and

averaged.

2. Smooth the route with a moving average. This helps remove inconsistencies in

the data from jumps in the GPS.

3. If a gap in data is larger than 10 seconds, mark the data as lost. This is necessary

to avoid unrealistic profiles by not interpolating data where there isn’t any.

4. Convert the GPS coordinates to speed profiles, using the distance gotten from

the Haversine formula, divided by the 1 hz frequency.

5. Convert the speed profile into an acceleration profile by taking the difference

of values, and convert the acceleration profile into a jerk profile with the same

method.

6. Remove an outlying, illogical, or impossible values in the speed and acceleration

profiles, taking care to make sure the profiles stay the same length.

Once all of the data has been successfully processed, three indicators, one for

each of the previously discussed metrics, can be calculated. The values gotten from

these metrics are compared against distributions of numbers that are associated with

energy savings. These distributions were calculated by analyzing many speed profiles

gotten from the GPS data of FMS users.

The first metric deals with how long the user spent driving over 65 mph. In

order to calculate this, the area between the parts of the speed profile curve that are

above 65mph and the 65mph threshold is divided by the length of the whole trip. The

second metric does the same thing, but calculates it for the acceleration profile and

a threshold linearly dependent on the speed, again dividing by the length of the trip.

The third metric uses the jerk profile. We smooth the jerk profile over 6 seconds, and

then take the area of the curves where the jerk is above .15 m/s, where the speed is

between 4 and 17 m/s.

67

6.5 Occupancy Validation

The Occupancy validation is the only part of the framework that happens

on the phone itself, as well as during the trip. Occupancy is only considered for

carpooling trips, since these are the only ones that require more than one person and

also use up energy. There are a few different ways this check could be performed.

The one most in line with the rest of the framework, albeit a bit indirect, is to take

the traces of the two individuals on the trip together, and run the route matching

algorithm on them. If the similarity is high enough, then the check is considered

passed. The reason this isn’t done is that it requires a measure of infrastructure

not yet present in the FMS Advisor, and also that it is a post event check. This is

currently handled by connecting the two riders’ phones through bluetooth. This way,

the proximity of the two users can be checked directly during the duration of the

entire trip. Unfortunately, this does drain the battery of the phones more than the

other method would.

68

Chapter 7

Next Steps

Compared to the state it was in one year ago, the FMS advisor has made

significant strides. The interfaces have all been updated and missing functionality

has been filled in. The preference updater and User Optimization algorithms are

integrated and functioning. There is a trip validation framework working from end

to end, validating trips on most of the metrics of the framework. The integration

loop with the System Optimization framework has been closed, and the framework

is runnable for simulations. All of these things have pushed the Advisor towards the

final vision for the application.

Despite all the progress that has been made on the Advisor, there are still

many things to be done. The entire framework does not run end to end without

bugs, and some functionality is missing. For example, the System Optimization algo-

rithms currently only considers car routes, while the Advisor incentivizes 4 different

modes of travel. In addition to this, many of the algorithms are found in very dis-

jointed places. The preference updater algorithms are not on the same server as the

Trip Validation algorithms, while the latter algorithms aren’t complete or optimized

properly. Separate from all of these things, the Advisor also lacks a proper method

to navigate the user from origin to destination. All of these things, and even more,

remain to be done before the Advisor is ready for live user testing.

69

The FMS Advisor constitutes a unique look at the problem of personalizing a

framework for its users. While the concept of personalization is nothing new, it has

not been widely applied in the field of transportation. When one considers the added

dimension of the incentives, the value of the Advisor becomes even more apparent.

The advisor presents an optimized way to incentivize users to change their behavior.

It is currently applied to travel, but the interfaces could easily be adapted to any other

sort of problem. For example, if one wanted to track user’s consumerism, to encourage

more intelligent flow of capital, the advisor could be adapted here. The choice model

and preferences would be centered around types of stores and other sellers, while the

validation algorithms could be a linked bank account statement or something of that

nature. One could even apply incentive alignment for the Marketplace, giving users

discounts at stores according to their displayed preferences. This is only one example

of how the Advisor framework could be applied to other projects.

In general, the work completed on the FMS Advisor has helped to bring to

fruition the vision of an optimized application that grows with its userbase. Applied

to the realm of transportation with a goal of reducing energy consumption during

transit, the Advisor attempts to solve a problem in a way not done by any other

applications on the market, and by virtue of the functionality achieved by the work

discussed in this thesis, I believe it succeeds in many ways. Regardless, there is

always room for improvement and further development, and I hope that this thesis

will provide a strong foundation for all the future work to come.

70

Appendix A

Application Flow

71

Figure A-1: This figure shows the overall user interface flows within the Advisor.

72

Figure A-2: This diagram shows the logic and data flows in the Advisor for the Trip
Planner until the trip starts.

73

Figure A-3: The logic and data flows in the Advisor for the Trip Planner from when
the trip starts until when the validation framework finishes.

74

Figure A-4: The logic and data flows in the Advisor for the Travel Log and Dashboard.

75

Figure A-5: The marketplace flows, including the distribution of tokens after trip
validation.

76

Bibliography

[1] Carlos Lima Azevedo, Ravi Seshadri, Song Gao, Bilge Atasoy, Arun Prakash
Akkinepally, Eleni Christofa, Fang Zhao, Jessika Trancik, and Moshe Ben-Akiva.
Tripod: Sustainable travel incentives with prediction, optimization, and person-
alization. Technical report, 2018.

[2] Christine Bauer. On the (in-) accuracy of gps measures of smartphones: a study
of running tracking applications. In Proceedings of International Conference on
Advances in Mobile Computing & Multimedia, page 335. ACM, 2013.

[3] Jamar Brooks. Mobile interface for mobility incentives schemes: FMS-Advisor.
PhD thesis, Massachusetts Institute of Technology, 2017.

[4] Caitlin Cottrill, Francisco Pereira, Fang Zhao, Iněs Dias, Hock Lim, Moshe
Ben-Akiva, and P Zegras. Future mobility survey: Experience in developing
a smartphone-based travel survey in singapore. Transportation Research Record:
Journal of the Transportation Research Board, (2354):59–67, 2013.

[5] Mazen Danaf, F Becker, Xiang Song, Bilge Atasoy, and Moshe Ben-Akiva. Per-
sonalized recommendations using discrete choice models with inter-and intra-
consumer heterogeneity. In International Choice Modelling Conference 2017,
2017.

[6] Martin Gjaldbaek. Practical polyline matching for gps data. Master’s thesis,
Technical University of Denmark, 2010.

[7] Giuseppe Guido, Alessandro Vitale, Vittorio Astarita, Frank Saccomanno, Vin-
cenzo Pasquale Giofré, and Vincenzo Gallelli. Estimation of safety performance
measures from smartphone sensors. Procedia-Social and Behavioral Sciences,
54:1095–1103, 2012.

[8] Derick A Johnson and Mohan M Trivedi. Driving style recognition using a
smartphone as a sensor platform. In Intelligent Transportation Systems (ITSC),
2011 14th International IEEE Conference on, pages 1609–1615. IEEE, 2011.

[9] James McNerney, Zachary A Needell, Michael T Chang, Marco Miotti, and Jes-
sika E Trancik. Tripenergy: Estimating personal vehicle energy consumption

77

given limited travel survey data. Transportation Research Record: Journal of the
Transportation Research Board, (2628):58–66, 2017.

[10] Martin Milkovits, Eric Huang, Constantinos Antoniou, Moshe Ben-Akiva, and
Jorge Alves Lopes. Dynamit 2.0: The next generation real-time dynamic traffic
assignment system. In Advances in System Simulation (SIMUL), 2010 Second
International Conference on, pages 45–51. IEEE, 2010.

[11] Marco Miotti, Zachary A Needell, and Jessika E Trancik. Quantifying reductions
in personal vehicle energy consumption due to driving style changes. Technical
report, 2018.

[12] J Nielsen. Usability heuristics for user interface design. nielsen norman group.
1995, 10.

[13] University of Maryland. incentrip, 2015. https://incentrip.org.

[14] Xiang Song, Mazen Danaf, Bilge Atasoy, and Moshe Ben-Akiva. Personalized
menu optimization with preference updater: A boston case study. Transportation
Research Record, page 0361198118758674, 2018.

78

