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Abstract

This thesis describes the development of a roadmap-based planner to enable high-
DOF robotic arms to accomplish tasks based around motion planning problems with
motions that feel reactive and intuitive in changing environments. My approach to
accomplish this is to combine a roadmap-based motion planner with a sequential, con-
vex trajectory optimization library called TrajOpt. The roadmap is used to produce
collision-free seed trajectories, which are then provided to TrajOpt for optimization
based on path length and proximity to obstacles. The difficulty of this approach
arises from how to quickly update the roadmap as the environment changes to ensure
that the seed trajectory provided to TrajOpt is always collision-free. This difficulty
is addressed with a few different innovations. The roadmaps used by this planner are
relatively sparse, so they are faster to update and perform searches on. Next, the
sparse roadmaps are constructed offline along wih a cache of shortest path solutions
to minimize online search requirements. These solution caches are combined with
an iterative search algorithm based around A* search with lazy collision checking.
Finally, an adaptation of an incremental search algorithm, D* Lite, is developed to
take advantage of the full environment knowledge assumed by my motion planner and
the rapid optimization provided by TrajOpt while utilizing a lazier collision checking
approach than the original algorithm.
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Chapter 1

Introduction

1.1 Motivation

Imagine a child working to assemble a LEGO model from instructions with help from a
robotic arm on a stationary base. The child and robot are both following instructions
that require finding one or more particular LEGO pieces in a pile at a step in the
instructions. While the child is assembling pieces from the previous step, the arm can
attempt to find and grab a piece required by the next step. When multiple pieces
are required the robot can identify what piece the child is reaching for and reach for
a different required piece.

This scenario requires that the motion planner for the robot arm plans its motions
quickly enough that they are still relevant in the context of what the child is doing
when the motions are being executed. It requires that motion plans can be terminated
or modified during execution to account for changes in task-level goals or to avoid
children as they move in and out of the path of the robot after the initial planning.
This can be summarized to say the motion planner needs to be reactive.

Additionally, this scenario requires that the motion plans produced for the arm
are intuitive. Intuitive motions from the standpoint of the child in this scenario are
smooth and direct so the child can react to what it believes the robot is trying to
accomplish with any given motion. In the context of motion planning, this means the

motions are near-optimal.
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Finally, it requires coordination with a task-level executive to receive motion plan-
ning goals that will move the robot towards accomplishing human understandable
tasks such as picking up a LEGO block in the context of completing a larger plan
such as a full LEGO instruction set, while accounting for any additional constraints

that are required.

Other areas of robotics deal with similar types of problems. Today, many compa-
nies are heavily investing in the development of robotic solutions for product man-
ufacturing. On most modern factory floors, you will see a variety of robots, each
performing a set of well-defined tasks. However, these robot-operated manufacturing
areas are often sectioned off with physical barriers to ensure human safety. These
robots tend to repeatedly execute a single sequence of actions without any awareness

of what is happening around them.

Different manufacturing robots, like those that transport material from one area
of the factory to another, have more variability in terms of the tasks they are given
which in turn require certain sensing capabilities and higher level decision-making
than just controlling arm motion along a fixed trajectory. They can be given a task,
create a full motion plan, and even pause execution and modify plans in the face
of obstacles. However, robots in this scenario are supported by heavily constrained
sets of possible motions, environmental factors, and tasks to execute. For different
kinds of motion planning problems such as the previously described LEGO scenario,
these existing motion planning and execution systems are not fast enough to react to

dynamic environments.

My goal is to enable high-DOF robotic arms to accomplish tasks based around
motion planning problems with motions that feel reactive and intuitive in changing
environments. My approach to accomplish this is to combine a roadmap-based motion
planner with a sequential, convex trajectory optimization library called TrajOpt. The
roadmap is used to produce collision-free seed trajectories, which are then provided
to TrajOpt for optimization based on path length and proximity to obstacles. The
difficulty of this approach arises from how to quickly update the roadmap as the

environment changes to ensure that the seed trajectory provided to TrajOpt is always
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collision-free.

I address this difficulty with a few different innovations. The roadmaps I am
constructing are relatively sparse, so they are faster to update and perform searches
on. This makes the seed trajectories coarse relative to those produced by denser
roadmaps, but this is offset by trajectory optimization. Next, I am precomputing
a cache of shortest path solutions to minimize online search requirements. These
solution caches are built to include multiple useful path solutions in addition to the
all-pairs shortest path(APSP) solution set for the roadmap. The precomputed solu-
tion caches are combined with an iterative search algorithm based around A* search
with a heavy reliance on lazy collision checking. This algorithm prevents repeat-
ing any collision checks performed checking cached solutions or those returned by
previous iterations of the A* search. Finally, I have adapted an incremental search
algorithm, D* Lite, to take advantage of the full environment knowledge assumed by
the motion planner and the rapid optimization provided by TrajOpt while utilizing a

lazier collision checking approach than the original algorithm.

1.2 Related Work

Most existing sampling-based motion planners plan from scratch for every problem,
during what is referred to as online motion planning. A very popular example of
one of these online planners is Rapidly-exploring Random Trees (RRT) [1]. This
algorithm randomly samples robot states in an attempt to build a tree of states
from the current state to a known goal state. It is popular in large part due to its
ease of implementation and its ability to be adapted to a wide variety of motion
planning problems. In a sense, online planners are making the assumption that the
environment is static because every plan is for a particular static snapshot of the
environment. This assumption leads to having to fully replan whenever the current
plan becomes infeasible due to changes in the environment. For example, if the child
in our LEGO scenario reaches for a brick near the brick that the robot arm is moving

towards, the plan would be invalidated by the child colliding with a future state.
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The robot arm would then stop and replan without any knowledge retained from the
previous plan. For high-DOF manipulators in particular, these planners struggle with

trade-offs between the planning speed and the optimality the plan returned.

Some existing sampling-based planners do save information between planning
problems or store information during a prior offline planning phase. Many of these
offline planners are variants of the Probabilistic Roadmap (PRM) algorithm |[2]. De-
pending on the problem scenario, this algorithm can be adapted in a large number of
ways to construct roadmaps that are optimized for certain criteria. These adaptations
are often made to adhere to restrictions in terms of observability of the environment,
computation time, and memory. Since offline computation is free other than mem-
ory consumed, computation time in this case refers to what is required to search
the roadmaps during online motion planning and to update roadmaps for changing

environments.

A distinct class of motion planners are optimization-based motion planners. Optimization-
based robotic motion planners have become more popular in recent years in large part
due to the increased complexity of robots and environments. Covariance Hamilto-
nian Optimization for Motion Planning (CHOMP) [3], [4], Stochastic Trajectory Op-
timization for Motion Planning (STOMP) [5], Incremental Trajectory Optimization
for Real-time Replanning (ITOMP) [6] and TrajOpt [7], [8] are several state-of-the-
art optimization-based planners. Our group has chosen to focus on TrajOpt for three
reasons. First, the non-convex collision checking method used in TrajOpt can take
accurate object geometry into consideration to enhance the ability of getting trajec-
tories out of collision. In contrast, the distance field method used in CHOMP and
STOMP consider the collision cost for each exterior point on a robot, which means
two points might drive the objective in opposite direction. Second, the sequential
quadratic programming method used in TrajOpt can better handle deeply infeasi-
ble initial trajectories than the commonly used gradient descent method [7]. Third,
customized differential constraints, for example velocity constraints and torque con-
straints, can be incorporated in TrajOpt. Since the roadmap-based planner is purely

kinematic and always produces a collision-free seed trajectory, these last two points
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are less important for the work specific to this thesis. However, they are very impor-

tant for other research conducted within my group using the same motion planner.

What is important about this class of planners is they can rapidly produce near-
optimal trajectories that avoid environment collisions, but they are very dependent on
the quality of the seed trajectories they are provided. In particular, they can struggle
to produce a collision-free trajectory when the seed trajectory they are provided is
in collision [9]. Our goal is to provide an optimization based planner a collision-free

seed from a roadmap, so it can be quickly optimized while remaining collision-free.

There are existing approaches for rapidly validating whether or not a robot config-
uration is in collision that both do and do not make use of workspace representations
of the environment. Leven and Hutchinson have established a framework for con-
necting a workspace voxelization to a configuration space roadmap for rapid collision
checking [10]. Such systems are heavily dependent on an efficient 3D cell decomposi-
tion of the environment, but this can be enabled by existing open-source GPU voxel
libraries [11]. Implementing such a system is not a focus of this research, so collision
checking will be an accepted bottleneck for this system. Our system is instead fo-
cused on efficiently combining that collision information with precomputed shortest
path solutions and state-of-the-art search algorithms to rapidly produce collision-free

trajectories from the roadmap.

Extensive research has been done on finding optimized paths on a graph. The
best known single-source shortest path(SSSP) algorithm is likely Dijkstra’s algorithm
[12], but within the SSSP domain, a lot of developments have been made in the last
50 years. Many newer algorithms can be classified as either heuristic, incremental,
or both. Heuristic search algorithms use an approximate distance from the goal as
additional knowledge to speed up the search. A* is an example of heuristic search
that is simply Dijkstra’s algorithm with a heuristic added [13]. Incremental search
algorithms, on the other hand, use information from previous searches to speed up the
current search. D* Lite is an example of an incremental search algorithm [14]. Both
A* and D* Lite can be adapted in many ways to meet the individual requirements of

a system.
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1.3 Problem Statement

The problem solved by this research is to plan and execute motions for high-DOF
robot arms in a reactive and inutitive manner while coordinating with a task-level
executive to accomplish tasks based around motion planning problems in a changing
environment. The environment changes in our motivating examples are often due to
collaboration with a human that acts in a manner not known to the robot a priori.
It is imperative for human-robot collaboration that the motion planner is reactive
so as to not execute plans that collide with the human or other moving obstacles,
but also to generate plans quickly enough that they are still relevant to the task at
hand by the time they are executed. Plans created by the motion planner must also
be intutive, so a human can determine what the robot is trying to accomplish and
therefore not interfere with the execution. By our definition, intuitive also means
near-optimal in accordance with objective function that can be specified to optimize
for energy efficiency, robustness, speed, smoothness, and a variety of other objectives

I15].

The motion plans for the problems I am addressing consist of trajectories con-
taining a sequence of robot states in configuration space. I am limiting the modeled
configuration space to the actuator positions, or joint state, of the robot arm. The
motion planning in the scope of my thesis will ignore robot dynamics by assigning

conservative time differences between robot states in a trajectory.

In addition to limiting the planner to purely kinematic motion planning, there are
a number of key assumptions made for the development of this motion planner. The
first assumption is that the manipulation workspace is characterized by a limited set
of pregrasp poses. Next, the motion between a pregrasp and a grasp pose is assumed
to be short and best handled by visual and force servoing loops rather than open-loop
planners. Finally, the environments encountered by a robot using our motion planner
are assumed to not be overly complex. Environments are assumed to consist of a
small set of potential obstacles, some static such as a workpiece or a table, and some

dynamic such as another robot or a human. The emphasis here is on achieving fast

22



performance in typical, practical situations [15].

1.4 Approach

The core of the motion planner is the combination of a roadmap-based motion planner
with an optimization based motion planner, TrajOpt. These trajectories must avoid
static obstacles observed during the construction of the roadmap as well as dynamic
obstacles introduced during or after the roadmap construction. The roadmaps con-
structed for this thesis are relatively sparse ( 1000 nodes) for the high-DOF robotic
arms that this research focuses around. Using a sparse roadmap for a high-DOF
arm allows for fast search and updates to the roadmap as required by changes in
the environment. Our system requires that roadmap trajectories are confirmed to
be collision-free before they are provided to TrajOpt. TrajOpt is being used for its
ability to quickly adjust a seed trajectory to minimize the required motion to get to
the goal state while avoiding obstacles in the environment. TrajOpt also makes the
roadmap-based planner more complete due to its complete coverage of the reachable
workspace for a robot compared to the coarse coverage provided by a sparse roadmap

alone.
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Figure 1-2: A basic outline of how a roadmap is constructed. The static environment
is showin in (a). Roadmap nodes are randomly sampled in (b) and then nodes are
checked for collisions in (c). Nodes in collision are pruned from the roadmap. Edges
are generated between nearby nodes in (d) and then checked for collisions in (e). The
final roadmap is shown in (f) after edges in collision have been removed.
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Additionally, these roadmaps are coupled with a solution cache containing paths
that are computed offline during roadmap construction. Precomputing paths for the
sparse roadmap reduces the amount of online search required and therefore the time
to produce a plan on average. Caching additional path solutions for a pair of roadmap
nodes that stray from the shortest path in interesting ways can provide additional
reduction in the online search required and overall planning time. These cached
solutions can be coupled with online search to limit the amount of repeated work
that is performed over the course of a planning problem.

The solutions that are produced by providing seeds from our sparse roadmaps
to TrajOpt are more optimal than what can be obtained by planners of comparable
speed and are produced more quickly than what can be obtained by planners of com-
parable optimality. My research investigates how to smooth the transition between
offline and online planning approaches with obstacle information introduced after
construction and how to synthesize solutions from a precomputed solution cache for
a roadmap to avoid obstacle collisions that arise during the execution of a solution.

The contributions are as follows:

1. A framework for the construction, augmentation and testing of roadmaps

2. Offline algorithms for precomputing useful paths for the solution cache for a

roadmap

3. Online algorithms for combining a precomputed solution cache with online

search and for otherwise performing fast online search

1.4.1 Roadmap Framework

The first stage of my research is the development of a module for constructing
roadmaps for testing with TrajOpt in the testing environments constructed by Sylvia
Dai of MERS. For a given environment,