
A Roadmap-based Planner for Fast Collision-free
Motion in Changing Environments

by

Matthew Ralph Orton

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 25, 2018

Certified by. .
Andreas Hofmann
Research Scientist
Thesis Supervisor

Certified by. .
Brian Williams

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

A Roadmap-based Planner for Fast Collision-free Motion in

Changing Environments

by

Matthew Ralph Orton

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2018, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes the development of a roadmap-based planner to enable high-
DOF robotic arms to accomplish tasks based around motion planning problems with
motions that feel reactive and intuitive in changing environments. My approach to
accomplish this is to combine a roadmap-based motion planner with a sequential, con-
vex trajectory optimization library called TrajOpt. The roadmap is used to produce
collision-free seed trajectories, which are then provided to TrajOpt for optimization
based on path length and proximity to obstacles. The difficulty of this approach
arises from how to quickly update the roadmap as the environment changes to ensure
that the seed trajectory provided to TrajOpt is always collision-free. This difficulty
is addressed with a few different innovations. The roadmaps used by this planner are
relatively sparse, so they are faster to update and perform searches on. Next, the
sparse roadmaps are constructed offline along wih a cache of shortest path solutions
to minimize online search requirements. These solution caches are combined with
an iterative search algorithm based around A* search with lazy collision checking.
Finally, an adaptation of an incremental search algorithm, D* Lite, is developed to
take advantage of the full environment knowledge assumed by my motion planner and
the rapid optimization provided by TrajOpt while utilizing a lazier collision checking
approach than the original algorithm.

Thesis Supervisor: Andreas Hofmann
Title: Research Scientist

Thesis Supervisor: Brian Williams
Title: Professor of Aeronautics and Astronautics

3

4

Acknowledgments

I would like to start out thanking everyone in the Model-based Embedded Robotic

Systems Group (MERS) of the MIT Computer Science and Artificial Intelligence Lab-

oratory. Every member of the lab is both motivated and kind, and as a collective,

the members of the lab create a welcoming and productive research environment.

In particular I would like to thank Sylvia Dai, Steve Levine, Shawn Schaffert, and

Andreas Hofmann of the Humanoids Team in MERS. Sylvia developed testing envi-

ronments that are used for every experiment in this thesis. Steve is incredibly friendly

and patient, and I could not have integrated into the lab as quickly as I did without

frequent guidance by Steve. Shawn is an invaluable mentor who oversaw the bulk of

the software development I did as a member of the Humanoids Team. He provided

great insight about what building a robust robotic software stack entails and how I

could shape my work in that pursuit. Finally, I would not be here were it not for

Andreas Hofmann. Despite my lack of experience developing robotic software and

algorithms, Andreas saw enough else in me to see fit giving me a research position

under his supervision. Along the way, he consistently pushed me to hold my work to a

higher standard of scientific rigor and helped me distinguish between engineering and

research problems. There are others not mentioned here who definitely contributed

to my time in MERS and MIT as a whole, so I would like to conclude by giving

thanks one last time to everyone who has made an impact on me, my research, and

my education over my six years at MIT.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Introduction 17

1.1 Motivation . 17

1.2 Related Work . 19

1.3 Problem Statement . 22

1.4 Approach . 23

1.4.1 Roadmap Framework . 25

1.4.2 Offline Algorithms . 27

1.4.3 Online Algorithms . 27

1.5 Introduction Summary . 28

2 Methods Developed 29

2.1 An Interface for Interaction with Real and Simulated Robots 31

2.1.1 Development Environment . 31

2.1.2 Pick and Place Demonstrations 32

2.2 A Roadmap Based Motion Planner with Shortest Path Solution Cache 34

2.2.1 Software Modules . 34

2.2.2 Roadmap and Cache Construction 35

2.3 A Framework For Providing Collision Free Trajectories in Static Envi-

ronments . 37

2.4 Using Semantic Information to Extend the Ability of the Motion Plan-

ning Framework . 38

2.5 Offline All-Pairs Shortest Path Strategies for Avoiding Dynamic Ob-

stacles . 40

7

2.5.1 Simple Strategy . 40

2.5.2 Realistic Obstacles . 42

2.5.3 Improved APSP Solution Cache 43

2.6 Online Single Source Shortest Path Strategies for Avoiding Dynamic

Obstacles . 44

2.7 An Incremental Search Strategy for Avoiding Dynamic Obstacles . . . 49

3 Experiment Plan 59

3.1 Description of the Robot and Testing Environments 61

3.2 Development of and Characterization the Roadmap Framework . . . 64

3.2.1 Tuning Roadmap Hyper-Parameters 64

3.2.2 Characterizing Roadmap Performance 66

3.3 Semantic Sampling to Improve Roadmap Connectivity and Other Side

Explorations . 67

3.4 Incorporating Dynamic Obstacles to Augment and Evaluate Roadmap

Solution Caches . 69

3.5 Creating Experiments to Expose the Benefits of Incremental Planning 71

4 Experiment Results 75

4.1 Roadmap and TrajOpt Performance 75

4.2 Semantic Sampling and Sorting Heuristic 80

4.3 Training and Testing Results for Obstacle Insertion Experiments . . . 88

4.3.1 APSP Training Results . 88

4.3.2 Base Roadmap Results for A* Search 92

4.3.3 Training Comparison . 95

4.3.4 A* Repair Results . 97

4.4 Performance Comparison for Different Incremental Execution Imple-

mentations . 102

5 Discussion 107

5.1 Looking Forward . 107

8

5.2 Revisiting the Problem Statement . 111

A Additional Figures, Tables, and Graphs 113

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

List of Figures

1-2 A basic outline of how a roadmap is constructed. The static environ-

ment is showin in (a). Roadmap nodes are randomly sampled in (b)

and then nodes are checked for collisions in (c). Nodes in collision

are pruned from the roadmap. Edges are generated between nearby

nodes in (d) and then checked for collisions in (e). The final roadmap

is shown in (f) after edges in collision have been removed. 24

2-1 The Barrett Whole-Arm Manipulator (WAM) shown in a ROS visual-

ization of our hardware test-bed for pick and place tasks. 33

2-2 Yen’s algorithm . 37

2-3 A visualization of the end-effector poses within the shelf that were

tested for valid IK solutions to add to the roadmap 40

2-5 Image (a) shows a roadamp with 𝑝 = 2 shortest paths for a pair of

start and points. Image (b) shows how a single obstacle can invalidate

both of those paths while a valid shortest path exists in the roadmap

(shown in red) but not in the solution cache. 41

2-6 The five obstacles used to obstruct the robot in ways that are repre-

sentative of the environment . 43

2-9 The four versions of A* Repair and helper functions. CheckPathColli-

sions checks the path for collisions, obtain pairs of nodes surrounding

in-collision edges, and updates 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠 accordingly. 48

11

2-11 Illustration of a standard D* Lite implementation. A path has been

found through initial search in (a). The robot begins to execute the

trajectory in (b) and (c), and in (d), an obstacle is discovered inside

the visibility range. In response, all affected edges are updated and

a new plan is formed from the current state of the robot. The new

trajectory is executed to to the goal in (e) and (f). 50

2-13 Illustration of Adapted D* Lite. A path has been found through initial

search in (a) and is then optimized with TrajOpt in (b). The robot

begins to execute the trajectory in (c), and in (d), an obstacle is discov-

ered that invalidates the current trajectory. In response the roadmap

checks edges near the colliding edge in (e) and forms a new plan from

the current state of the robot in (f). The new trajectory is optimized

in (g) and is executed to to the goal in (h) and (i). 54

2-15 The standard D* Lite algorithm . 55

2-17 Adapted D* Lite main and helper functions 57

2-18 A* Repair with incremental execution and execution monitoring. Get-

CollisionFreePath can be any of the four versions of A* Repair. . . . 58

3-1 Rethink Robotics Baxter . 62

3-3 The four testing environments used for all experiments 63

3-4 Environment visualization of Tabletop with a Pole for incremental

planning analysis . 73

4-1 Roadmap performance assuming a static environment. No collision

checks were performed on roadmap edges as a result of the assumption.

For each roadmap, the number of cases that have a valid roadmap seed

is shown in green and the average duration for a roadmap query is

shown in blue. 77

4-2 TrajOpt performance when seeded with roadmap trajectories. TrajOpt

is provided a collision-free seed from the roadmap in all cases and a

static environment is assumed with no collisions in the roadmap. . . . 78

12

4-3 Graphs showing the difference between a seed trajectory from a roadmap

and an optimized trajectory from TrajOpt for three different cases.

Values are only shown for the first 4 DOFs because the roadmap nodes

have the same fixed values for the remaining DOFs. In each plot, the

roadmap trajectory is shown in red and the optimized trajectory is

shown in blue. TrajOpt is provided a pose target rather than a joint

target for these experiments, so the end joint state for an optimized

trajectory may differ from the corresponding roadmap trajectory. . . 79

4-4 Performance comparison between roadmaps with different sets addi-

tional points added to the same base 1000 node roadmap. Only mod-

ifications that add points specific to the shelf support queries where

"shelf" is provided to guide attempted connections to the roadmap.

Roadmap paths are checked for collisions before they are returned al-

though the static environment will not push any roadmap edges into

collision. For each roadmap, the number of cases that have a valid

roadmap seed is shown in green and the average duration for a roadmap

query is shown in blue. 81

4-6 Roadmap performance comparison to determine the effects of using

a sorting heuristic to guide connection to the roadmap. For each

roadmap, the number of cases that had a valid roadmap seed is shown

in green and the average duration for a roadmap query is shown in blue. 85

4-8 TrajOpt performance comparison to determine the effects of using a

sorting heuristic to guide connection to the roadmap 87

4-9 APSP Training obstacle avoidance graphs. For each roadmap, the

number of cases that have a valid roadmap seed is shown in green and

the average duration for a roadmap query is shown in blue. See the

Appendix for for a breakdown of the graphs by obstacle 91

13

4-11 Performance comparison in a static environment examining the impact

of checking the roadmap for collisions during A* search versus assuming

all roadmap edges are collision-free. For each roadmap, the number of

cases that have a valid roadmap seed is shown in green and the average

duration for a roadmap query is shown in blue. 94

4-14 A* Repair obstacle avoidance graphs. For each roadmap, the number of

cases that have a valid roadmap seed is shown in green and the average

duration for a roadmap query is shown in blue. See the Appendix for

for a breakdown of the graphs by obstacle. 101

4-15 Performance comparison of two incremental algorithms with both over-

lapping and non-overlapping (serial) replanning and execution. One

based around D* Lite and the other based around A* Repair. Both

heavily rely on lazy collision checking and have the roadmap solutions

provided to TrajOpt before execution. 106

5-2 Scenario illustrating the shortcomings of D* Lite when an obstacle is

detected near the goal. A collision-free path is shown for the static

environment in (a). In (b), an obstacle is detected near the goal and

updates are required for seven nodes in addition to the current state

before computing a new shortest path. For contrast, the obstacle in

(c) is detected closer to the current state and only updates are only

required for two nodes in addition to the current state. Nodes that

must be updated are shown in orange and the edges are in yellow that

provide the shortest path to the goal for any one of these nodes. . . . 108

14

List of Tables

4.1 Roadmap performance assuming a static environment 77

4.3 TrajOpt performance when seeded with roadmap trajectories 78

4.5 Performance comparison between roadmaps with different sets addi-

tional points added to the same base 1000 node roadmap 81

4.6 Roadmap performance comparison to determine the effects of using a

sorting heuristic to guide connection to the roadmap 84

4.7 TrajOpt performance comparison to determine the effects of using a

sorting heuristic to guide connection to the roadmap 86

4.8 APSP Training obstacle avoidance data for 500 node roadmaps. Orig-

inal Cached Solution Collides serves as a validation of the experiment

because the same roadmap is used for every test in a given environment

but with different solution caches. RRT Comparison describes the use

of RRT in OMPL with 100 maximum iterations to find a solution when

the original roadmap solution is in collision. Some cases were lost for

the RRT Comparison due to non-deterministic failures with the OMPL

planner. 90

4.9 A* search performance in a static environment examining the impact of

checking roadmap edges for collisions when they are expanded during

search. 93

4.10 Additional paths for solution caches developed with APSP Training . 96

15

4.11 Overview of solution caches developed with A* Training. Paths Re-

moved is an estimate determined by tracking whenever a new solution

is created for a pair of nodes that already have the maximum number

of allowed solutions. 96

4.12 A* Repair obstacle avoidance data for 500 node roadmaps. The Con-

trol Roadmap results are identical to the APSP Training Control Roadmap

results. 100

4.13 Performance comparison of two incremental algorithms with both over-

lapping and non-overlapping (serial) replanning and execution. Ef-

fective Planning Time is the difference between the Replanning and

Execution Time metric and the Execution Time Only metric. 105

16

Chapter 1

Introduction

1.1 Motivation

Imagine a child working to assemble a LEGO model from instructions with help from a

robotic arm on a stationary base. The child and robot are both following instructions

that require finding one or more particular LEGO pieces in a pile at a step in the

instructions. While the child is assembling pieces from the previous step, the arm can

attempt to find and grab a piece required by the next step. When multiple pieces

are required the robot can identify what piece the child is reaching for and reach for

a different required piece.

This scenario requires that the motion planner for the robot arm plans its motions

quickly enough that they are still relevant in the context of what the child is doing

when the motions are being executed. It requires that motion plans can be terminated

or modified during execution to account for changes in task-level goals or to avoid

children as they move in and out of the path of the robot after the initial planning.

This can be summarized to say the motion planner needs to be reactive.

Additionally, this scenario requires that the motion plans produced for the arm

are intuitive. Intuitive motions from the standpoint of the child in this scenario are

smooth and direct so the child can react to what it believes the robot is trying to

accomplish with any given motion. In the context of motion planning, this means the

motions are near-optimal.

17

Finally, it requires coordination with a task-level executive to receive motion plan-

ning goals that will move the robot towards accomplishing human understandable

tasks such as picking up a LEGO block in the context of completing a larger plan

such as a full LEGO instruction set, while accounting for any additional constraints

that are required.

Other areas of robotics deal with similar types of problems. Today, many compa-

nies are heavily investing in the development of robotic solutions for product man-

ufacturing. On most modern factory floors, you will see a variety of robots, each

performing a set of well-defined tasks. However, these robot-operated manufacturing

areas are often sectioned off with physical barriers to ensure human safety. These

robots tend to repeatedly execute a single sequence of actions without any awareness

of what is happening around them.

Different manufacturing robots, like those that transport material from one area

of the factory to another, have more variability in terms of the tasks they are given

which in turn require certain sensing capabilities and higher level decision-making

than just controlling arm motion along a fixed trajectory. They can be given a task,

create a full motion plan, and even pause execution and modify plans in the face

of obstacles. However, robots in this scenario are supported by heavily constrained

sets of possible motions, environmental factors, and tasks to execute. For different

kinds of motion planning problems such as the previously described LEGO scenario,

these existing motion planning and execution systems are not fast enough to react to

dynamic environments.

My goal is to enable high-DOF robotic arms to accomplish tasks based around

motion planning problems with motions that feel reactive and intuitive in changing

environments. My approach to accomplish this is to combine a roadmap-based motion

planner with a sequential, convex trajectory optimization library called TrajOpt. The

roadmap is used to produce collision-free seed trajectories, which are then provided

to TrajOpt for optimization based on path length and proximity to obstacles. The

difficulty of this approach arises from how to quickly update the roadmap as the

environment changes to ensure that the seed trajectory provided to TrajOpt is always

18

collision-free.

I address this difficulty with a few different innovations. The roadmaps I am

constructing are relatively sparse, so they are faster to update and perform searches

on. This makes the seed trajectories coarse relative to those produced by denser

roadmaps, but this is offset by trajectory optimization. Next, I am precomputing

a cache of shortest path solutions to minimize online search requirements. These

solution caches are built to include multiple useful path solutions in addition to the

all-pairs shortest path(APSP) solution set for the roadmap. The precomputed solu-

tion caches are combined with an iterative search algorithm based around A* search

with a heavy reliance on lazy collision checking. This algorithm prevents repeat-

ing any collision checks performed checking cached solutions or those returned by

previous iterations of the A* search. Finally, I have adapted an incremental search

algorithm, D* Lite, to take advantage of the full environment knowledge assumed by

the motion planner and the rapid optimization provided by TrajOpt while utilizing a

lazier collision checking approach than the original algorithm.

1.2 Related Work

Most existing sampling-based motion planners plan from scratch for every problem,

during what is referred to as online motion planning. A very popular example of

one of these online planners is Rapidly-exploring Random Trees (RRT) [1]. This

algorithm randomly samples robot states in an attempt to build a tree of states

from the current state to a known goal state. It is popular in large part due to its

ease of implementation and its ability to be adapted to a wide variety of motion

planning problems. In a sense, online planners are making the assumption that the

environment is static because every plan is for a particular static snapshot of the

environment. This assumption leads to having to fully replan whenever the current

plan becomes infeasible due to changes in the environment. For example, if the child

in our LEGO scenario reaches for a brick near the brick that the robot arm is moving

towards, the plan would be invalidated by the child colliding with a future state.

19

The robot arm would then stop and replan without any knowledge retained from the

previous plan. For high-DOF manipulators in particular, these planners struggle with

trade-offs between the planning speed and the optimality the plan returned.

Some existing sampling-based planners do save information between planning

problems or store information during a prior offline planning phase. Many of these

offline planners are variants of the Probabilistic Roadmap (PRM) algorithm [2]. De-

pending on the problem scenario, this algorithm can be adapted in a large number of

ways to construct roadmaps that are optimized for certain criteria. These adaptations

are often made to adhere to restrictions in terms of observability of the environment,

computation time, and memory. Since offline computation is free other than mem-

ory consumed, computation time in this case refers to what is required to search

the roadmaps during online motion planning and to update roadmaps for changing

environments.

A distinct class of motion planners are optimization-based motion planners. Optimization-

based robotic motion planners have become more popular in recent years in large part

due to the increased complexity of robots and environments. Covariance Hamilto-

nian Optimization for Motion Planning (CHOMP) [3], [4], Stochastic Trajectory Op-

timization for Motion Planning (STOMP) [5], Incremental Trajectory Optimization

for Real-time Replanning (ITOMP) [6] and TrajOpt [7], [8] are several state-of-the-

art optimization-based planners. Our group has chosen to focus on TrajOpt for three

reasons. First, the non-convex collision checking method used in TrajOpt can take

accurate object geometry into consideration to enhance the ability of getting trajec-

tories out of collision. In contrast, the distance field method used in CHOMP and

STOMP consider the collision cost for each exterior point on a robot, which means

two points might drive the objective in opposite direction. Second, the sequential

quadratic programming method used in TrajOpt can better handle deeply infeasi-

ble initial trajectories than the commonly used gradient descent method [7]. Third,

customized differential constraints, for example velocity constraints and torque con-

straints, can be incorporated in TrajOpt. Since the roadmap-based planner is purely

kinematic and always produces a collision-free seed trajectory, these last two points

20

are less important for the work specific to this thesis. However, they are very impor-

tant for other research conducted within my group using the same motion planner.

What is important about this class of planners is they can rapidly produce near-

optimal trajectories that avoid environment collisions, but they are very dependent on

the quality of the seed trajectories they are provided. In particular, they can struggle

to produce a collision-free trajectory when the seed trajectory they are provided is

in collision [9]. Our goal is to provide an optimization based planner a collision-free

seed from a roadmap, so it can be quickly optimized while remaining collision-free.

There are existing approaches for rapidly validating whether or not a robot config-

uration is in collision that both do and do not make use of workspace representations

of the environment. Leven and Hutchinson have established a framework for con-

necting a workspace voxelization to a configuration space roadmap for rapid collision

checking [10]. Such systems are heavily dependent on an efficient 3D cell decomposi-

tion of the environment, but this can be enabled by existing open-source GPU voxel

libraries [11]. Implementing such a system is not a focus of this research, so collision

checking will be an accepted bottleneck for this system. Our system is instead fo-

cused on efficiently combining that collision information with precomputed shortest

path solutions and state-of-the-art search algorithms to rapidly produce collision-free

trajectories from the roadmap.

Extensive research has been done on finding optimized paths on a graph. The

best known single-source shortest path(SSSP) algorithm is likely Dijkstra’s algorithm

[12], but within the SSSP domain, a lot of developments have been made in the last

50 years. Many newer algorithms can be classified as either heuristic, incremental,

or both. Heuristic search algorithms use an approximate distance from the goal as

additional knowledge to speed up the search. A* is an example of heuristic search

that is simply Dijkstra’s algorithm with a heuristic added [13]. Incremental search

algorithms, on the other hand, use information from previous searches to speed up the

current search. D* Lite is an example of an incremental search algorithm [14]. Both

A* and D* Lite can be adapted in many ways to meet the individual requirements of

a system.

21

1.3 Problem Statement

The problem solved by this research is to plan and execute motions for high-DOF

robot arms in a reactive and inutitive manner while coordinating with a task-level

executive to accomplish tasks based around motion planning problems in a changing

environment. The environment changes in our motivating examples are often due to

collaboration with a human that acts in a manner not known to the robot a priori.

It is imperative for human-robot collaboration that the motion planner is reactive

so as to not execute plans that collide with the human or other moving obstacles,

but also to generate plans quickly enough that they are still relevant to the task at

hand by the time they are executed. Plans created by the motion planner must also

be intutive, so a human can determine what the robot is trying to accomplish and

therefore not interfere with the execution. By our definition, intuitive also means

near-optimal in accordance with objective function that can be specified to optimize

for energy efficiency, robustness, speed, smoothness, and a variety of other objectives

[15].

The motion plans for the problems I am addressing consist of trajectories con-

taining a sequence of robot states in configuration space. I am limiting the modeled

configuration space to the actuator positions, or joint state, of the robot arm. The

motion planning in the scope of my thesis will ignore robot dynamics by assigning

conservative time differences between robot states in a trajectory.

In addition to limiting the planner to purely kinematic motion planning, there are

a number of key assumptions made for the development of this motion planner. The

first assumption is that the manipulation workspace is characterized by a limited set

of pregrasp poses. Next, the motion between a pregrasp and a grasp pose is assumed

to be short and best handled by visual and force servoing loops rather than open-loop

planners. Finally, the environments encountered by a robot using our motion planner

are assumed to not be overly complex. Environments are assumed to consist of a

small set of potential obstacles, some static such as a workpiece or a table, and some

dynamic such as another robot or a human. The emphasis here is on achieving fast

22

performance in typical, practical situations [15].

1.4 Approach

The core of the motion planner is the combination of a roadmap-based motion planner

with an optimization based motion planner, TrajOpt. These trajectories must avoid

static obstacles observed during the construction of the roadmap as well as dynamic

obstacles introduced during or after the roadmap construction. The roadmaps con-

structed for this thesis are relatively sparse (1000 nodes) for the high-DOF robotic

arms that this research focuses around. Using a sparse roadmap for a high-DOF

arm allows for fast search and updates to the roadmap as required by changes in

the environment. Our system requires that roadmap trajectories are confirmed to

be collision-free before they are provided to TrajOpt. TrajOpt is being used for its

ability to quickly adjust a seed trajectory to minimize the required motion to get to

the goal state while avoiding obstacles in the environment. TrajOpt also makes the

roadmap-based planner more complete due to its complete coverage of the reachable

workspace for a robot compared to the coarse coverage provided by a sparse roadmap

alone.

23

(a) (b) (c)

(d) (e) (f)

Figure 1-2: A basic outline of how a roadmap is constructed. The static environment
is showin in (a). Roadmap nodes are randomly sampled in (b) and then nodes are
checked for collisions in (c). Nodes in collision are pruned from the roadmap. Edges
are generated between nearby nodes in (d) and then checked for collisions in (e). The
final roadmap is shown in (f) after edges in collision have been removed.

24

Additionally, these roadmaps are coupled with a solution cache containing paths

that are computed offline during roadmap construction. Precomputing paths for the

sparse roadmap reduces the amount of online search required and therefore the time

to produce a plan on average. Caching additional path solutions for a pair of roadmap

nodes that stray from the shortest path in interesting ways can provide additional

reduction in the online search required and overall planning time. These cached

solutions can be coupled with online search to limit the amount of repeated work

that is performed over the course of a planning problem.

The solutions that are produced by providing seeds from our sparse roadmaps

to TrajOpt are more optimal than what can be obtained by planners of comparable

speed and are produced more quickly than what can be obtained by planners of com-

parable optimality. My research investigates how to smooth the transition between

offline and online planning approaches with obstacle information introduced after

construction and how to synthesize solutions from a precomputed solution cache for

a roadmap to avoid obstacle collisions that arise during the execution of a solution.

The contributions are as follows:

1. A framework for the construction, augmentation and testing of roadmaps

2. Offline algorithms for precomputing useful paths for the solution cache for a

roadmap

3. Online algorithms for combining a precomputed solution cache with online

search and for otherwise performing fast online search

1.4.1 Roadmap Framework

The first stage of my research is the development of a module for constructing

roadmaps for testing with TrajOpt in the testing environments constructed by Sylvia

Dai of MERS. For a given environment, this module samples nodes for the roadmap

in configuration space and discards a node if the robot forward kinematics are in

collision with a static obstacle in the environment. Nodes are connected by edges

25

that are confirmed to be collision-free in the static environment after all nodes have

been sampled. After the full roadmap has been constructed, a cache of solutions is

computed and attached to the roadmap for storage. The justification for sampling in

configuration space, the specific sampling approaches, and the subsequent edge and

solution generation will be further explained in the Methods Developed chapter.

The difficulty in implementing a sparse roadmap has to do with selecting from dif-

ferent existing PRM implementation strategies and tuning different roadmap hyper-

parameters in order to achieve good workspace connectivity for our roadmaps with a

minimal set of configuration states. The surrounding software system has to allow for

flexible configuration of the roadmap construction process while allowing for a variety

of post-construction augmentations and remaining robust in the face of exhaustive

testing.

Something that our group is interested in is hard-coding pregrasp poses into the

roadmap for objects the robot will interact with. We are also interested in using

semantic information to aid roadmap construction. In addition to using this informa-

tion to increase roadmap connectivity in difficult sections of an environment, a goal

for using semantic information is to allow our motion planner to provide trajecto-

ries to pregrasp poses that have been generated dynamically. From there, a separate

controller will be used to handle the object interaction.

The early testing conducted for this thesis seeks to uncover an optimal roadmap

resolution along with values for other roadmap hyper-parameters for maximizing the

performance benefits provided by seeding TrajOpt with a non-optimal roadmap tra-

jectory. The performance benefit is the improvement of a trajectory in terms of path

length, proximity to obstacles, or any other costs modeled in the objective function

for TrajOpt. This improvement is at the expense of the extra time taken by the

optimization. The experiments hope to show that the extra time for optimization

is offset by obtaining a collision-free seed from a sparse roadmap more rapidly than

would be possible for a planner producing more optimal initial trajectories.

26

1.4.2 Offline Algorithms

The next stage of my research surrounds developing offline approaches for creating

roadmap solution caches that contain multiple useful solutions for a pair of roadmap

nodes. Using a precomputed all-pairs shortest paths solution cache is not a new idea.

What are novel, however, are the approaches I have developed to cache additional

solutions that are not the shortest paths between a pair of nodes for the static envi-

ronment. That being said, the approaches I have developed surrounding precomputed

solutions are based on a core assumption: A significant majority of the collisions that

the sparse roadmaps for stationary manipulators will encounter can be represented

with a relatively small set of objects and corresponding poses for those objects.

I believe this is a valid assumption because I believe the workspace coverage of

my roadmaps is coarse enough that there is small number of paths between any pair

of nodes that will avoid a significant majority of the collisions that can be avoided by

a path between those two nodes in that roadmap. From there, I believe those paths

can be discovered using a small set of objects and corresponding poses to obstruct

the roadmaps.

Given that assumption, it is worth noting that if those paths are captured in

the cache, TrajOpt will be provided a collision-free seed and produce a near-optimal

trajectory without any online search in most cases. There will still be times where

no collision-free solution exists in the cache due to obstacles in the environment. For

when that occurs, I have implemented online search routines that that build off of

the work that was performed checking the cached solutions to return a collision free

solution whenever one exists in the roadmap.

1.4.3 Online Algorithms

This brings me to the final stage of my research: fast online planning for changing

environments. Many of the algorithms developed in this stage of my research consist of

A* variants that iteratively search the roadmap while heavily relying on lazy collision

checking to minimize online computation. These algorithms utilize paths that already

27

exist in the solution cache. They also incorporate new paths found through online

search back into the solution cache for use in later planning problems.

The last section of my online planning research moves away from precomputed

paths and looks at incremental planning and execution. The primary exploration

surrounds an implemented search algorithm that is based on D* Lite, but diverges

from the established algorithm in interesting ways. These algorithmic divergences

potentially help limit delays caused by online replanning due to moving obstacles

while incorporating TrajOpt optimization into the incremental algorithm, but they

also open up the implementation to new corner cases that can cause inconsistency in

the search if not accounted for.

1.5 Introduction Summary

With the completion of this thesis research, I hope to provide a motion planner with

the ability to quickly produce motion plans through optimizing collision-free seed

trajectories from sparse roadmaps of robot states. The roadmaps used by this motion

planner can be quickly updated as dynamic obstacles move around the environment.

When the robot is already executing a trajectory, it will monitor execution and form a

new plan when the current plan becomes invalid. This new plan builds off information

learned during the generation and execution of the previous plan. The result is

a motion planner that enables high-DOF robotic arms to accomplish tasks based

around motion planning problems with reactive and intuitive motions.

28

Chapter 2

Methods Developed

The main software architecture developed for this thesis is the roadmap-based motion

planner. This motion planner consists of a PRM-style roadmap with robot poses as

nodes and and the trajectories to traverse between those poses as edges connecting

the nodes. Additionally, the motion planner has some representation of shortest

path solutions for the roadmap that it either develops offline, produces as necessary

online, or some combination thereof. In this chapter we will explain the different

augmentations applied to the motion planner within this core structure of a roadmap

and shortest path solutions.

While developing this motion planner, it was important to keep in mind that the

system is meant to be used on a real robots solving real motion planning problems.

With that consideration, one of the first software systems built for this thesis was a

means to executing trajectories on the real robots used for the roadmap based motion

planner. The MERS labspace includes a testbed containing a Rethink Robotics Bax-

ter [16] and a Barrett Whole-Arm Manipulator (WAM) [17] to be used for hardware

demonstrations and testing.

The motion planning capabilities explored here are mostly agnostic to task or

activity level goals. These capabilities have been developed with regards to solving

the large robot motions in between more activity specific tasks. That being said,

this motion planner has been integrated into an activity level planning and execution

system to allow for more compelling demonstrations of the motion planner [18].

29

Once the basic roadmap-based motion planner was integrated with the robot con-

trollers and an activity level planning and execution system, all development that

followed could be focused on addressing the research questions laid out in the Prob-

lem Statement. The first of these questions regards the optimal configuration of

hyper-parameters that dictate the construction of the roadmap for a given environ-

ment. The goal here is to develop roadmaps that effectively cover the reachable

workspace without being a burden to interact with from a space and computation

standpoint. Next, methods are investigated for utilizing semantic information about

an environment to more effectively cover the workspace around objects of interest or

within more constrained sections of the environment.

After the performance of the roadmap-based motion planner is sufficient in static

environments, the focus shifts to the main innovation of this thesis: collision avoid-

ance in changing environments. The research conducted to address this problem is

broken into three main arcs. The first of those is to use a cache of all-pairs shortest

path solutions with multiple solutions for each pair of points. The hope with this

approach is to find one solution in the set that is collision-free for any given motion

planning problem and layout of dynamic obstacles. In the second arc, path searches

are conducted online using a single-source shortest path algorithm and checking for

collisions in the solutions as they are produced. From there, I explore combinations

of the first two arcs where paths produced online are cached for later motion planning

problems. The third and final arc is very similar to the second, but involves using

incremental algorithms to continuously update knowledge of the environment while

producing shortest path solutions.

Finally, I return to one of our primary considerations: developing systems that

solve real motion planning problems with real robots. In order to adequately address

this, it is important to develop testing procedures in both simulation and hardware

that reflect the scenarios that we expect these robots to encounter.

30

2.1 An Interface for Interaction with Real and Sim-

ulated Robots

2.1.1 Development Environment

Early on in the inception of this thesis, it was determined that the robot environment

for the motion planner would be managed in OpenRAVE. This decision was made be-

cause OpenRAVE supports TrajOpt whereas ROS MoveIt! does not. While TrajOpt

is not directly necessary for the roadmap-based motion planner, we were interested in

its capabilities when provided seed trajectories of varying quality. In that sense, we

used the quality of optimized trajectories produced by TrajOpt as a means of judging

the quality of the seed trajectories produced by the roadmap-based motion planner.

How the quality of a trajectory was determined is explained in the Experiment Plan

chapter.

The issue with managing the environment in OpenRAVE is that the two robots

used for this research, Baxter [16] and WAM [17], both have their controllers wrapped

in ROS nodes. The Baxter SDK developed by Rethink exposes Baxter’s capabilities

through ROS topics and the WAM Joint Controller, developed by Steve Levine of

MERS, is a ROS node that wraps around the API provided by Barrett Technologies

to control the WAM.

ROS MoveIt! was the existing system used for receiving planning requests and

developing trajectories to be executed on the on the robots via ROS. This means an

interface needed to be developed to receive the planning requests over ROS, conduct

the planning problem in OpenRAVE, convert the plan output back to a ROS format,

and execute the newly formatted plan on the desired robot via ROS. This interface

allows the trajectory execution modules to behave the same if what they are executing

comes from the roadmap based motion planner, from TrajOpt, or from any other

standard motion planner, like those in OMPL.

31

2.1.2 Pick and Place Demonstrations

For hardware demonstrations, this interface is connected to a task planning and

dispatch module, also developed by Steve Levine, that performs pick and place tasks.

The pick and place module previously used MoveIt! to plan an entire pick or place

task as well as to execute the plan on the desired robot. These plans consist of a few

differnt components that will be illustrated for the task of picking up a block. For more

involved planning problems, an activity-level executive develops goals and constraints

from human instructions. This executive can also receive a temporal plan network

or qualitative state plan as input, both containing human-readable commands [18].

The executive will then dispatch actions necessary to complete the user-defined goals

to the appropriate agents and monitors action execution. For our case, the actions

received correspond to the aforementioned pick and place tasks which are further

broken down into goal poses for the motion planner to generate a full motion plan.

To pick up a block, a plan for large arm motion to a pregrasp poses is developed

using an online sampling-based motion planner, like RRT. This is followed by a call

directly to the robot to open its gripper. Then a Cartesian planner is used to move

from the pregrasp pose to a pose where the open gripper can pick up the block by

closing. The plan produced by this Cartesian planner is a straight-line trajectory in

workspace for the robot gripper. To complete the task, the gripper closes around the

block and uses the Cartesian planer to return to the pregrasp pose. From there a

place task could then begin with the planning of the large arm motion to a pregrasp

pose corresponding to where the held block should be placed.

In this description of pick and place tasks, the roadmap-based motion planner

replaces MoveIt! for planning the large arm motion, but MoveIt! is still used for the

Cartesian planner. This is facilitated by a wrapper developed for the roadmap-based

motion planner to mimic the API of the MoveIt! motion planner. The wrapper

dispatches planning requests to the appropriate planner, so the API is identical from

the vantage of the pick and place module. This separation is to ensure that the scope

of this thesis does not creep into problems involving grasp planning.

32

Additionally, I implemented ROS nodes to simulate the behavior of the two robots

used for testing. These simulated robots receive requests on the ROS topics used for

trajectory execution and publish information that mimics what the real robots would

be publishing during trajectory execution. Additional simulation functionality has

been added to these nodes as needed, which include ROS services for operating the

gripper attached the WAM. These simulations make it possible to use RVIZ to visually

confirm the execution of activity level plans that have been broken down into motion

planning problems without having to execute them on the real hardware.

Figure 2-1: The Barrett Whole-Arm Manipulator (WAM) shown in a ROS visualiza-
tion of our hardware test-bed for pick and place tasks.

33

2.2 A Roadmap Based Motion Planner with Short-

est Path Solution Cache

2.2.1 Software Modules

The implementation of the roadmap-based motion planner is a Python class called

RoadmapManager, so the roadmap-based motion planner will be referred to as the

RoadmapManager from here on out. The RoadmapManager wraps around a MAT-

LAB interface for building, storing, and loading roadmaps so they can be queried and

augmented in Python. Initially MATLAB was used for querying the roadmap for

shortest path solutions during online motion planning. This approach spent an un-

necessary amount of time loading the solution cache for each query, so later iterations

load the entire shortest paths cache into Python from MATLAB, leaving MATLAB

unused after the initialization of the RoadmapManager for a given roadmap.

The decision to use MATLAB within the RoadmapManager was made largely to

support the potential integration of existing software systems that had been devel-

oped in MATLAB. However, this decision has also allowed us to leverage MATLAB’s

easy to use parallel processing tools for roadmap construction, specifically for the

calculation of the all-pairs shortest path solution caches.

The module that provides the communication between the RoadmapManager and

the simulated or real robot is the RobotClient. For a specific robot, "Robot" is

replaced by the name of the robot used, WAMClient for example. The first iteration

of RobotClient that could call to MATLAB for a seed trajectory from a roadmap

existed before the roadmap interface was standardized with the RoadmapManager.

The roadmap it used had a fixed interval grid of nodes in configuration space with

edges between adjacent nodes in each dimension but only changing one dimension per

edge. For reference, a 900 node roadmap constructed for the 4 most proximal joints

of the WAM using this strategy for node and edge placement had 22082 edges. The

corresponding APSP cache took a week to generate using a non-optimal single-source

shortest path algorithm. This roadmap was overly dense in terms of the number

34

of nodes and the edges could not skip over nodes. This led to an all-pairs shortest

paths solution cache that was time consuming to calculate and memory bloated for

its performance capabilities.

Ensuing development of the RoadmapManager was guided by a handful of ques-

tions regarding offline roadmap construction as well as online adjustment and query-

ing of the roadmap and shortest paths solution cache. With regards to construction,

the main interests were the roadmap size in terms of number of sampled nodes, the

sampling resolution of the robot state, and how sampled nodes would be connected

by edges. For online behavior, the primary concern was how to incorporate obstacles

into the roadmap after construction. This involves how to efficiently invalidate parts

of the roadmap as well as how to use the solution cache given that precomputed

solutions may be partially or fully in collision.

2.2.2 Roadmap and Cache Construction

The roadmap construction is modeled loosely after the k-nearest variant of sPRM

[1]. The similarity to sPRM over the original PRM comes from sampling all roadmap

nodes before attempting any edge connections. Where our algorithm differs from

k-nearest sPRM algorithm is in edge generation. For a given node, rather than

attempting to connect edges to the k-nearest neighbors in the roadmap, the algorithm

iterates over its neighbors in order of increasing distance while attempting to connect

an edge to each neighbor from that node. This iteration terminates when k collision-

free edges have been found or N neighbors have been tested. Edges were determined

to be collision free by checking for collisions along a linear interpolation of the edge at

fixed intervals determined by the edge length. All of my roadmaps were constructed

with 𝑘 = 10 and 𝑁 = 100.

This approach was taken in favor of a standard k-nearest approach or the ball

radius used by the original PRM algorithm to encourage roadmap connectivity while

limiting unnecessary edges. Given a configuration space roadmap with states in close

proximity to workspace obstacles, ensuring the roadmap is fully connected would be

more difficult using a fixed number of neighbors or a fixed distance to check within.

35

It is important for testing that roadmaps are fully connected.

Even though we are concerned with workspace connectivity and collisions, roadmap

nodes are sampled in configuration space for a couple reasons. First of all, TrajOpt

requires seed trajectories to be composed of joint states. Second, the roadmaps are

primarily being developed for redundant manipulators, so a point in workspace would

have multiple corresponding solutions in configuration space for our robots. Since our

group will eventually be incorporating dynamic constraints into the roadmap-based

motion planner, it is important to have a singular robot state for each node in the

roadmap.

Additionally, when constructing roadmaps for Baxter and WAM,which are both

7-DOF manipulators, random values are only sampled for the 4 most proximal joints,

while fixed values are assigned to the remaining 3 joints. This approach was im-

plemented to improve workspace coverage for a roadmap with a minimal number of

sampled joint states. The assumption is that for many-DOF manipulators, the posi-

tion of the end-effector is most greatly impacted by the more proximal joints, while

the more distal joints have a greater impact on the end-effector orientation. Further-

more, we assume that when connecting to the roadmap for a query, it is easier to

change orientation than position while avoiding collision, so it is more important to

have an existing roadmap node with a nearby position than a nearby orientation.

The algorithm used to construct the all-pairs shortest paths solution caches is

a Dijkstra’s variant called Yen’s Algorithm [19]. Yen’s Algorithm is a single-source

algorithm that finds the p-shortest paths between two nodes in a graph for a given p.

I use this algorithm between every pair of nodes in a roadmap in order to construct

the full solution set. Since this algorithm has to be run 𝑛2 times for 𝑛 roadmap nodes,

the ability to run it on parallel processors for different node pairs greatly speeds up

the cache construction time. While some of my experiments did compare different

values of p, the majority utilized this algorithm with 𝑝 = 1 so other single-source

shortest path algorithms could have been used in its place. Pseudocode for Yen’s

Algorithm is shown below.

36

1: function ComputePShortestPaths(𝐺, 𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑔𝑜𝑎𝑙, 𝑃)
2: 𝐴[0] = Dijkstra(𝐺, 𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑔𝑜𝑎𝑙);
3: 𝐵 = ∅;
4: for 𝑝 from 1 to 𝑃 do
5: for 𝑖 from 0 to 𝑆𝑖𝑧𝑒(𝐴[𝑝− 1])− 2 do
6: 𝑠𝑝𝑢𝑟𝑁𝑜𝑑𝑒 = 𝐴[𝑝− 1].𝑁𝑜𝑑𝑒(𝑖);
7: 𝑟𝑜𝑜𝑡𝑃𝑎𝑡ℎ = 𝐴[𝑝− 1].𝑁𝑜𝑑𝑒𝑠(0, 𝑖);
8: for each 𝑝𝑎𝑡ℎ in 𝐴 do
9: if 𝑟𝑜𝑜𝑡𝑃𝑎𝑡ℎ = 𝑝𝑎𝑡ℎ.𝑁𝑜𝑑𝑒𝑠(0, 𝑖) then

10: 𝐺.𝑅𝑒𝑚𝑜𝑣𝑒(𝑝𝑎𝑡ℎ.𝐸𝑑𝑔𝑒(𝑖, 𝑖+ 1));

11: for each 𝑛𝑜𝑑𝑒 in 𝑟𝑜𝑜𝑡𝑃𝑎𝑡ℎ except 𝑠𝑝𝑢𝑟𝑁𝑜𝑑𝑒 do
12: 𝐺.𝑅𝑒𝑚𝑜𝑣𝑒(𝑛𝑜𝑑𝑒);

13: 𝑠𝑝𝑢𝑟𝑃𝑎𝑡ℎ = Dijkstra(𝐺, 𝑠𝑝𝑢𝑟𝑁𝑜𝑑𝑒, 𝑠𝑔𝑜𝑎𝑙);
14: 𝑡𝑜𝑡𝑎𝑙𝑃𝑎𝑡ℎ = 𝑟𝑜𝑜𝑡𝑃𝑎𝑡ℎ+ 𝑠𝑝𝑢𝑟𝑃𝑎𝑡ℎ;
15: 𝐵.𝐴𝑝𝑝𝑒𝑛𝑑(𝑡𝑜𝑡𝑎𝑙𝑃𝑎𝑡ℎ);
16: restore edges to 𝐺;
17: restore nodes in 𝑟𝑜𝑜𝑡𝑃𝑎𝑡ℎ to 𝐺;
18: if 𝐵 is empty then
19: 𝑏𝑟𝑒𝑎𝑘;

20: 𝐵.𝑆𝑜𝑟𝑡();
21: 𝐴[𝑝] = 𝐵[0];
22: 𝐵.𝑃𝑜𝑝();

23: return 𝐴;

Figure 2-2: Yen’s algorithm

2.3 A Framework For Providing Collision Free Tra-

jectories in Static Environments

Once a roadmap has been constructed along with its corresponding APSP solution

cache, it can then be used to handle motion planning queries. A motion planning

query consists of a start point and an end point, both in configuration space. The first

thing that must happen for a successful query is that the the start and end points,

or query points, must be connected to existing nodes in the roadmap.

For each query point, check the nearest m roadmap nodes to that query node in

order of increasing euclidean distance in configuration space. At each of the m nodes,

check for a collision-free edge from the query point to that node. Stop the iteration

for that query point when the first collision-free edge is found or return a failure for

the query if no such edge is found to any of the m nodes. I used 𝑚 = 100 for all of

my experiments to allow a failure to be returned for a query within about one second

of unsuccessful collision checking.

37

Some additional exploration was done with using different sorting heuristics to

modify the order of the roadmap nodes that the query points attempt to connect to.

Namely, analysis was performed where the m nearest nodes were sorted by either a

weighted or unweighted euclidean distance to both query points rather than just the

query point attempting to connect to the m nodes. This meant that the roadmap

nodes connected to by the query points tended to be more along the way to one

another.

If a pair of roadmap nodes is successfully connected to by the pair of query points,

the node pair is used to obtain a corresponding set of cached solutions. Full paths

are then made for the query by bookending the cached solutions with the start and

end points for the query. From here, there are a few options depending on what

assumptions are made for the received queries.

If the environment is assumed to have not changed from the static environment

that the roadmap was constructed for, then the shortest cached path can be returned

with no collision checking. If that assumption is not made about the environment,

then the shortest cached path that is confirmed to be collision-free at the time of

the query is returned. Finally, if no cached paths are collision-free for the roadmap

nodes connected to at the time of the query, then there are steps that can be taken

to return a collision-free path that has been modified from from a cached solution.

The different approaches taken to modifying cached solutions will be explained later

in this chapter.

2.4 Using Semantic Information to Extend the Abil-

ity of the Motion Planning Framework

Something that is of interest to our group is how to effectively use semantic informa-

tion about objects in the environment to improve the performance of our roadmap-

based motion planner. The primary way we are currently using semantic information

in our end to end planning and execution demonstrations is in the use of pregrasp

38

poses. For objects in the environment that we expect our robot to manipulate, like

blocks or drawers, sets of end-effector poses are generated relative to the object that

would allow the robot to grasp the object. If the object is expected to be in a finite

number of states, like an open or closed drawer, then these poses can be added to

the roadmap as joint states using inverse kinematics. For objects like blocks, which

can exist in a wide variety of states in an environment, these poses are only used at

runtime to connect corresponding joint states to existing nodes in the roadmap.

The other use of semantic information that we have explored to some degree is

how to use information about objects in the environment to improve connectivity

in cluttered areas where we expect the robot to interact often. This exploration

was conducted in the "Shelf with Boxes" environment in an attempt to improve

connectivity in and around the narrow shelves. The approach taken was as follows.

For a given object of interest, in our case the shelf, obtain a planar grid of positions

at some fixed resolution relative to the object. The different planar grids I tested

were just outside the shelf, just within the shelf, and halfway inside the shelf.

For a given planar grid of positions, iterate over each position and at each position

iterate over a range of orientations. For each resulting pose, attempt to find a collision-

free inverse kinematic solution for the robot. Stop iterating over orientations when

the first collision-free solution is found for a given position and move on to the next

position. The collection of inverse kinematic solutions found are added to a base

roadmap for the environment and then new edges are generated for the augmented

roadmap along with the APSP solution cache. Although it will not be covered in this

thesis, our group hopes to extend this exploration to generating three-dimensional

grids of positions for some volume related to a given object of interest.

39

Figure 2-3: A visualization of the end-effector poses within the shelf that were tested
for valid IK solutions to add to the roadmap

2.5 Offline All-Pairs Shortest Path Strategies for Avoid-

ing Dynamic Obstacles

2.5.1 Simple Strategy

Offline APSP strategies refer to steps taken to modify an initial APSP solution cache

before the roadmap is used to handle any motion-planning queries. The main idea

is to precompute additional path solutions for roadmap nodes to handle cases where

the shortest path between two nodes is in collision at the time of the query. The

simple strategy to leverage the existing software systems being used is to increase p

for Yen’s Algorithm. For the case where 𝑝 = 2, this would find the shortest path and

the second shortest path between every pair of nodes in the roadmap. This strategy

40

(a) (b)

Figure 2-5: Image (a) shows a roadamp with 𝑝 = 2 shortest paths for a pair of
start and points. Image (b) shows how a single obstacle can invalidate both of those
paths while a valid shortest path exists in the roadmap (shown in red) but not in the
solution cache.

can be used for arbitrary values of 𝑝 provided that there are enough distinct paths

between a pair of nodes.

The issue with this simple strategy is demonstrated below for the case of 𝑝 = 2.

Very often, the difference between the shortest path and the second shortest will

only be a few edges. As a result, an obstacle that obstructs the shortest path will

very likely obstruct the second shortest path. This will also hold true for the 𝑛𝑡ℎ

shortest path and the (𝑛+1)𝑡ℎ shortest path. The takeaway from this is that storing

a collection of paths for a given pair of roadmap nodes is is more useful if the paths

in that collection differ from one another significantly enough to be able to avoid

obstacles that obstruct other paths in the collection.

41

2.5.2 Realistic Obstacles

With that in mind, I looked at how to invalidate parts of the roadmap prior to

computing shortest path solutions in order to create many different sets of all-pairs

shortest path solutions. The idea I settled on is to use a set of generated obstacles

and poses for those obstacles to simulate collisions. Of course you cannot simulate

all of the infinite possibilities of of obstacle collisions for a given robot. As mentioned

in the Problem Statement, this approach is based on an assumption that a sparse

set of objects and corresponding poses can be representative of a significant majority

of the obstacle collisions the robot will encounter when solving real world planning

problems.

The obstacles I have chosen as representative of these collision scenarios are shown

below along with their dimensions in meters. For each of the five obstacles, I have

selected eight poses for each environment that I believe will obstruct the robot in in-

teresting or representative ways for that obstacle in the real world. The cup, thermos,

and monitor are arranged in a variety of ways on the flat surfaces in the environment

whereas the bent and straight arms are in different floating orientations around the

robot to simulate a person reaching around or just generally interacting with the

robot. The five obstacles with eight poses each create forty total object-pose tuples

for each environment. I will refer to the set of obstacles I have chosen as realistic

obstacles from here on.

42

Figure 2-6: The five obstacles used to obstruct the robot in ways that are represen-
tative of the environment

2.5.3 Improved APSP Solution Cache

The offline approach developed to utilize the realistic obstacles is a means of com-

puting multiple solutions for a pair of nodes in the APSP solution cache that are

significantly different from one another. This is in contrast to the simple strategy

where the multiple solutions are fairly similar due to the nature of being the 𝑝 short-

est paths for a pair of nodes. The steps taken to make these roadmaps with improved

APSP solution caches is as follows:

1. Construct a roadmap by sampling nodes and connecting them with edges for

the static environment. Then use 𝑝 = 1 for generating the initial APSP solution

cache.

2. Randomly select a subset of object-pose tuples and insert that subset into the

43

static environment. The subset is sampled from the full set using a binomial

distribution with 0.1 probability of selecting any one of the forty object-pose

tuples. This leads to scenarios where obstacles overlap with one another, but

for our purposes, that creates more difficult obstacle configurations to navigate

around.

3. Temporarily remove any edges from the roadmap that are in collision with the

obstacles that have been inserted into the environment. This requires individ-

ually checking every edge for collisions.

4. Generate a new APSP solution cache for the current state of the roadmap using

𝑝 = 1 without discarding the existing cache. Add any newly generated solutions

to the existing cache that are not already stored in the cache.

5. Remove all inserted obstacles from the environment. Repeat steps 2, 3, and 4

to generate additional solutions.

Roadmap solution caches have been constructed with this approach using 5, 10,

15, 20, and 25 iterations of inserting obstacles and computing new solutions. Moving

forward, this approach will be referred to as APSP Training.

2.6 Online Single Source Shortest Path Strategies

for Avoiding Dynamic Obstacles

The online single-source shortest path strategies developed for avoiding dynamic ob-

stacles all wrap around an implementation of A* developed for the RoadmapManager.

This A* implementation attempts to connect query nodes to the roadmap as with the

standard shortest path query. When expanding roadmap nodes, it can either check

for edge collisions as it expands nodes in the search, or it can just rely on an initial

set of edges known to be in collision and assume all others are collision-free. For the

approaches outlines below, the latter of the two collision checking approaches is used.

44

This lazy collision checking approach allows for minimal collision checking by only

checking edges that the A* implementation believes are part of a collision-free solution

and then iteratively providing A* a more accurate knowledge of edges in collision.

This occurs until A* eventually returns a solution that is in fact collision free at the

time of the query or it returns no roadmap solution at all indicating that none exist for

the current state of the environment, so a failure is returned for the query. While the

following are referred to as multiple approaches, it is important to note that each step

is a development iteration on the step before. Each of the following approaches are

for a shortest path query after the two query points have been connected to existing

nodes in the roadmap:

1. For the pair of roadmap nodes connected to, check the shortest cached path for

collisions. If it is in collision, use A* with the lazy collision checking approach

described above to find a collision-free solution between the pair of roadmap

nodes.

2. Once again, check the shortest cached path for collisions. Now if it is in collision,

identify each series of edges in collision and the corresponding pairs of collision-

free nodes that bookend the colliding edges. Then use A* to find a collision-free

solution between pair of collision-free nodes to construct a new collision-free

solution between the original pair of roadmap nodes. This approach repairs the

cached solution rather than replacing it all together as in approach 1.

3. This iteration incorporates roadmaps with multiple cached solutions for a pair

of nodes. Instead of just checking the shortest cached solution for collisions,

check each cached solution for collisions in order of increasing distance. The first

solution that is collision-free is returned, or if none are collision-free, the solution

with the smallest percentage of edges in collision is identified and repaired using

approach 2.

4. The final approach approach takes solutions that have been repaired during

online motion planning and incorporates them back into the cache over the

45

lifetime of the particular roadmap. Every solution in the cache has a whole

number attached to it that corresponds to the number of times that solution

has been returned for an online motion planning query since that roadmap was

first constructed. That is to say the solution was used without needing to be

repaired. Additionally, a roadmap is allowed to have a maximum of s solutions

between any pair of roadmap nodes. If a pair of roadmap nodes are connected to

during a query and none of the existing s solutions are collision-free, a repaired

solution found using the approach from the previous iteration will replace the

solution from the s cached solution with the fewest uses and will be assigned

𝑢𝑠𝑒𝑠 = 1.

The idea behind the final approach is that as more planning is performed with a

particular roadmap, the solutions that will remain in the cache are the shortest paths

in the roadmap that are able to avoid collisions that other cached or repaired solutions

are not. For an uncluttered environment, the shortest path will be collision-free and

will have its uses incremented, but for obstacle configurations that collide with the

shortest path, there will be paths in the cache that typically avoid those collisions

while still being fairly short. Moving forward I will refer to the first three of these

approaches as A* Repair 1, A* Repair 2, and A* Repair 3. The final approach will

be referred to as A* Training. Pseudocode for the four approaches is shown below.

46

1: function GetCollisionFreePath(𝐺, 𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑔𝑜𝑎𝑙,
𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠)

2: for all 𝑒 ∈ 𝐺.𝐸𝑑𝑔𝑒𝑠 do
3: 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠.𝐴𝑑𝑑(𝑒);
4: 𝑝𝑎𝑡ℎ = GetShortestCachedPath(𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑔𝑜𝑎𝑙);
5: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑇𝑟𝑢𝑒;
6: while 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 do
7: 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒,_ = CheckPathCollisions(

𝑝𝑎𝑡ℎ, 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠);
8: if 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒 then return 𝑝𝑎𝑡ℎ;

9: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑝𝑎𝑡ℎ = ComputeShortestPath(𝐺,
𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑔𝑜𝑎𝑙, 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠);

10: return Failure;

A* Repair 1

1: function GetCollisionFreePath(𝐺, 𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑔𝑜𝑎𝑙,
𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠)

2: for all 𝑒 ∈ 𝐺.𝐸𝑑𝑔𝑒𝑠 do
3: 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠.𝐴𝑑𝑑(𝑒);
4: 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑎𝑡ℎ = GetShortestCachedPath(

𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑔𝑜𝑎𝑙);
5: 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒, 𝑛𝑜𝑑𝑒𝑃𝑎𝑖𝑟𝑠 = CheckPathColli-

sions(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑝𝑎𝑡ℎ, 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠);
6: if 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒 then
7: return 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑎𝑡ℎ;

8: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑇𝑟𝑢𝑒;
9: while 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 do

10: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑝𝑎𝑡ℎ = RepairPath(𝐺,
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑎𝑡ℎ,
𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠, 𝑛𝑜𝑑𝑒𝑃𝑎𝑖𝑟𝑠);

11: 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒,_ = CheckPathColli-
sions(𝑝𝑎𝑡ℎ, 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠);

12: if 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒 then
13: return 𝑝𝑎𝑡ℎ;
14: return Failure;

A* Repair 2
1: function GetCollisionFreePath(𝐺, 𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑔𝑜𝑎𝑙,

𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠)
2: for all 𝑒 ∈ 𝐺.𝐸𝑑𝑔𝑒𝑠 do
3: 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠.𝐴𝑑𝑑(𝑒);
4: 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑎𝑡ℎ = GetLeastCollidingCached-

Path(𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑔𝑜𝑎𝑙);
5: 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒, 𝑛𝑜𝑑𝑒𝑃𝑎𝑖𝑟𝑠 = CheckPathColli-

sions(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑎𝑡ℎ, 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠);
6: if 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒 then
7: Increment the number of uses for the path;
8: return 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑎𝑡ℎ;
9: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑇𝑟𝑢𝑒;

10: while 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 do
11: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑝𝑎𝑡ℎ = RepairPath(𝐺,

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑎𝑡ℎ,
𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠, 𝑛𝑜𝑑𝑒𝑃𝑎𝑖𝑟𝑠);

12: 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒,_ = CheckPathColli-
sions(𝑝𝑎𝑡ℎ, 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠);

13: if 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒 then
14: if 𝑆𝑖𝑧𝑒(𝐺.𝑃𝑎𝑡ℎ𝑠(𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑔𝑜𝑎𝑙))

< 𝑚𝑎𝑥𝑃𝑎𝑡ℎ𝑠 then
15: remove longest path with minimum uses
16: 𝐺.𝑃𝑎𝑡ℎ𝑠(𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑔𝑜𝑎𝑙)).𝐴𝑝𝑝𝑒𝑛𝑑(𝑝𝑎𝑡ℎ);
17: Set number of uses for the new path to 1;
18: return 𝑝𝑎𝑡ℎ;
19: return Failure;

A* Repair 4

1: function GetCollisionFreePath(𝐺, 𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑔𝑜𝑎𝑙,
𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠)

2: for all 𝑒 ∈ 𝐺.𝐸𝑑𝑔𝑒𝑠 do
3: 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠.𝐴𝑑𝑑(𝑒);
4: 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑎𝑡ℎ = GetLeastCollidingCached-

Path(𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑔𝑜𝑎𝑙);
5: 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒, 𝑛𝑜𝑑𝑒𝑃𝑎𝑖𝑟𝑠 = CheckPathColli-

sions(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑎𝑡ℎ, 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠);
6: if 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒 then
7: return 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑎𝑡ℎ;

8: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑇𝑟𝑢𝑒;
9: while 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 do

10: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑝𝑎𝑡ℎ = RepairPath(𝐺,
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑎𝑡ℎ,
𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠, 𝑛𝑜𝑑𝑒𝑃𝑎𝑖𝑟𝑠);

11: 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒,_ = CheckPathColli-
sions(𝑝𝑎𝑡ℎ, 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠);

12: if 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒 then
13: return 𝑝𝑎𝑡ℎ;
14: return Failure;

A* Repair 3

47

1: function ComputeShortestPath(𝐺, 𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑔𝑜𝑎𝑙,
𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠)

2: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 = ∅;
3: 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 = ∅;
4: 𝑝𝑎𝑟𝑒𝑛𝑡𝑀𝑎𝑝 = ∅;
5: for all 𝑠 ∈ 𝐺.𝑆𝑡𝑎𝑡𝑒𝑠 do
6: 𝑓(𝑠) = 𝑔(𝑠) = ∞;
7: 𝑔(𝑠𝑠𝑡𝑎𝑟𝑡) = 0;
8: 𝑓(𝑠𝑠𝑡𝑎𝑟𝑡) = ℎ(𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑔𝑜𝑎𝑙);
9: while 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 is not empty do

10: 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑.𝑃𝑜𝑝();
11: if 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑠𝑔𝑜𝑎𝑙 then
12: 𝑝𝑎𝑡ℎ = ReconstructPath(𝑝𝑎𝑟𝑒𝑛𝑡𝑀𝑎𝑝,

𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
13: return True, 𝑝𝑎𝑡ℎ;
14: 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑.𝑅𝑒𝑚𝑜𝑣𝑒(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡);
15: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑.𝐴𝑑𝑑(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡);
16: for 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈ 𝐺.𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡) do
17: if 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈ 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 then
18: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒;

◁ This check is the only deviation from standard A*
19: if 𝐺.𝐸𝑑𝑔𝑒(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) ̸∈ 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠

then
20: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒;
21: if 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈ 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 then
22: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒;
23: if 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ̸∈ 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 then
24: 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑.𝐴𝑑𝑑(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟);
25: 𝑠𝑐𝑜𝑟𝑒 = 𝑔(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡)+𝑐𝑜𝑠𝑡(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟);
26: if 𝑠𝑐𝑜𝑟𝑒 ≥ 𝑔(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) then
27: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒;
28: 𝑝𝑎𝑟𝑒𝑛𝑡𝑀𝑎𝑝(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) = 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡;
29: 𝑔(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) = 𝑠𝑐𝑜𝑟𝑒;
30: 𝑓(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) = 𝑔(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) +

ℎ(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 𝑠𝑔𝑜𝑎𝑙);
31: return False, []

A* search algorithm adapted to incorporate knowledge
of in-collision edges for an inputted graph

1: function ReconstructPath(𝑝𝑎𝑟𝑒𝑛𝑡𝑀𝑎𝑝, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
2: 𝑝𝑎𝑡ℎ = [𝑐𝑢𝑟𝑟𝑒𝑛𝑡];
3: while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝑀𝑎𝑝.𝐾𝑒𝑦𝑠 do
4: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑝𝑎𝑟𝑒𝑛𝑡𝑀𝑎𝑝(𝑐𝑢𝑟𝑟𝑒𝑛𝑡);
5: 𝑝𝑎𝑡ℎ.𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑢𝑟𝑟𝑒𝑛𝑡);
6: return 𝑝𝑎𝑡ℎ;

7: function RepairPath(𝐺, 𝑝𝑎𝑡ℎ, 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠,
𝑛𝑜𝑑𝑒𝑃𝑎𝑖𝑟𝑠)

8: 𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑𝑃𝑎𝑡ℎ = [];
9: 𝑝𝑎𝑡ℎ𝐼𝑛𝑑𝑒𝑥 = 0;

10: for (𝑢, 𝑣) ∈ 𝑛𝑜𝑑𝑒_𝑝𝑎𝑖𝑟𝑠 do
11: 𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑𝑃𝑎𝑡ℎ.𝐸𝑥𝑡𝑒𝑛𝑑(𝑝𝑎𝑡ℎ[𝑝𝑎𝑡ℎ𝐼𝑛𝑑𝑒𝑥 :

𝑝𝑎𝑡ℎ.𝐼𝑛𝑑𝑒𝑥(𝑢)]);
12: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =

ComputeShortestPath(𝐺, 𝑢, 𝑣, 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠);
13: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ̸= 𝑇𝑟𝑢𝑒 then
14: return Failure;
15: 𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑𝑃𝑎𝑡ℎ.𝐸𝑥𝑡𝑒𝑛𝑑(𝑠𝑒𝑔𝑚𝑒𝑛𝑡);
16: 𝑝𝑎𝑡ℎ𝐼𝑛𝑑𝑒𝑥 = 𝑝𝑎𝑡ℎ.𝐼𝑛𝑑𝑒𝑥(𝑣) + 1;
17: return 𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑𝑃𝑎𝑡ℎ;

ReconstructPath for A* Search and RepairPath for A*
Repair

Figure 2-9: The four versions of A* Repair and helper functions. CheckPathCollisions
checks the path for collisions, obtain pairs of nodes surrounding in-collision edges, and
updates 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠 accordingly.

48

2.7 An Incremental Search Strategy for Avoiding Dy-

namic Obstacles

The offline and online approaches described above both seek to minimize the amount

of online search and roadmap validation required for motion planning problem. In

particular, collision checking in configuration space is a bottleneck of the system,

so the developed approaches avoid repeated checks of any nodes or edges in the

roadmap over the course of a planning problem. Something important to consider is

how to modify, or revalidate knowledge of the environment collected during planning

as the environment changes during plan execution. This is not accounted for by the

aforementioned approaches, which would have to fully replan from scratch in cases

where a plan becomes invalid during execution.

This scenario is one of the motivation for incremental search algorithms. Accord-

ing to the authors of the D* Lite incremental search algorithm, these methods "use

heuristics to focus their search and reuse information from previous searches to find

solutions to series of similar search tasks much faster than is possible by solving each

search task from scratch," [14]. At a high level, D* Lite consists of the following

steps:

1. Search for a plan from the goal to the current state of the robot

2. Move from the current state to the state that brings the robot closest to the

goal and update the current state accordingly

3. Check if knowledge of obstacles has changed within a scan radius of the robot

∙ If so, update all edges with changed costs and update the shortest path

from the goal to the new current state

4. Repeat steps 2 and 3 until the goal has been reached

The incremental search strategy taken here is to adapt the D* Lite algorithm to a

high-dimensional configuration space rather than the low-dimensional grid world often

49

(a) (b) (c)

(d) (e) (f)

Figure 2-11: Illustration of a standard D* Lite implementation. A path has been
found through initial search in (a). The robot begins to execute the trajectory in (b)
and (c), and in (d), an obstacle is discovered inside the visibility range. In response,
all affected edges are updated and a new plan is formed from the current state of the
robot. The new trajectory is executed to to the goal in (e) and (f).

50

used to illustrate the benefits of the algorithm. Additionally, the configuration space

is represented by a sparse roadmap coupled with trajectory optimization that requires

a collision-free seed trajectory for the full path. Finally, D* Lite is often demonstrated

in examples where the robot has limited observability of the environment. While our

system can fully observe the environment, that would not be tenable for the collision

checking used and planning times required.

The differences from the standard D* Lite implementation create implementation

requirements for the adaptation. The adaptation employs a heuristic-based scan for

dynamic obstacles as the execution proceeds. During execution, if the trajectory

is a full solution for the motion planning problem, only the executed trajectory is

checked for collisions until a collision is found in that trajectory. The difference in

scanning approach creates inconsistencies in the cost to goal and estimated path costs

for roadmap nodes during successive searches required to repair an initial path. These

inconsistencies are addressed with a method that checks for cycles and invalid cost

values when nodes are expanded and updated during the path search.

In order to incorporate trajectory optimization into the adaptation, a few things

are required. The first requirement is a path reconstruction method similar to A*

except it uses the minimum cost to goal for a node instead of the predecessor for

a node in the search in order to build the path. After the roadmap path is recon-

structed, it is checked for collision and a collision-free subpath is identified starting

from the current state of the robot. This path reconstruction and subsequent collision

check allow TrajOpt to optimize as much of a solution as could be guaranteed to be

collision-free from the path search. After a trajectory has been optimized, a method

is required to map the optimized trajectory back to the seed trajectory TrajOpt was

provided. This allows the optimized trajectory to be incrementally executed in seg-

ments corresponding to the roadmap trajectory. Incremental trajectory execution in

this case means that the trajectory is broken up into segments that are sent to the

robot controller one at a time rather than sending the whole trajectory at once. This

allows execution monitoring to assess if the remaining trajectory to execute is still

valid at each step or if replanning needs to be performed.

51

Something important to highlight about this adaptation of D* Lite is how it

interleaves planning and execution. If a collision is discovered in optimized trajectory,

but not in the next segment of that trajectory, the next segment is sent to the robot

for execution. Immediately after the segment is sent for execution, the necessary

collision checking and replanning takes place using the end of the segment as the new

current state. This creates stretches of time that trajectory execution overlaps with

planning a repaired roadmap trajectory. This approach can be extended to allow

more of the optimized trajectory to be executed in parallel with replanning, but the

current implementation only executes the next segment. A similar adaptation has

also been implemented to equip the different A* Repair algorithms with interleaved

planning and execution.

The adapted D* Lite implementation can be reduced to the following high level

steps:

1. Search the roadmap for an initial path

2. Identify the collision-free subpath and delay other collision checking

3. Smooth the collision-free roadmap subpath with trajectory optimization

4. Move along the optimized trajectory

5. Scan for collisions along the optimized trajectory

∙ If a collision is identified in the optimized trajectory, or the collision-free

subpath did not contain the full roadmap path, replan from the current

state of the robot and smooth the collision-free subpath within the result.

∙ Before replanning, map the collision in the optimized trajectory to roadmap

nodes in the collision-free subpath. If the optimized trajectory is collision-

free, identify the last node in the collision-free subpath. In either case,

perform collision checks on all edges for the identified nodes. Then update

end nodes for edges for whom collision status has been updated by the

checks.

52

6. Repeat steps 4 and 5 until the goal has been reached

Full pseudocode for D* Lite and our adaptation are shown below.

53

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2-13: Illustration of Adapted D* Lite. A path has been found through initial
search in (a) and is then optimized with TrajOpt in (b). The robot begins to execute
the trajectory in (c), and in (d), an obstacle is discovered that invalidates the current
trajectory. In response the roadmap checks edges near the colliding edge in (e) and
forms a new plan from the current state of the robot in (f). The new trajectory is
optimized in (g) and is executed to to the goal in (h) and (i).

54

1: function CalculateKey(𝑠)
2: return [min(𝑔(𝑠), 𝑟ℎ𝑠(𝑠) + ℎ(𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠) + 𝑘𝑚);

min(𝑔(𝑠), 𝑟ℎ𝑠(𝑠))];

3: function Initialize()
4: 𝑈 = ∅;
5: 𝑘𝑚 = 0;
6: for all 𝑠 ∈ 𝑆 do
7: 𝑟ℎ𝑠(𝑠) = 𝑔(𝑠) = ∞;
8: 𝑟ℎ𝑠(𝑠𝑔𝑜𝑎𝑙) = 0;
9: 𝑈.𝐼𝑛𝑠𝑒𝑟𝑡(𝑠𝑔𝑜𝑎𝑙,CalculateKey(𝑠𝑔𝑜𝑎𝑙));

10: function UpdateVertex(𝑢)
11: if 𝑢 ̸= 𝑠𝑔𝑜𝑎𝑙 then
12: 𝑟ℎ𝑠(𝑢) = min𝑠′∈𝑆𝑢𝑐𝑐(𝑢)(𝑐(𝑢, 𝑠

′) + 𝑔(𝑠′));
13: if 𝑢 ∈ 𝑈 then
14: 𝑈.𝑅𝑒𝑚𝑜𝑣𝑒(𝑢);
15: if 𝑔(𝑢) ̸= 𝑟ℎ𝑠(𝑢) then
16: 𝑈.𝐼𝑛𝑠𝑒𝑟𝑡(𝑢,CalculateKey(𝑢));

17: function ComputeShortestPath()
18: while 𝑈.𝑇𝑜𝑝𝐾𝑒𝑦() < CalculateKey(𝑠𝑠𝑡𝑎𝑟𝑡) or

𝑟ℎ𝑠(𝑠𝑠𝑡𝑎𝑟𝑡) ̸= 𝑔(𝑠𝑠𝑡𝑎𝑟𝑡) do
19: 𝑘𝑜𝑙𝑑 = 𝑈.𝑇𝑜𝑝𝐾𝑒𝑦();
20: 𝑢 = 𝑈.𝑃𝑜𝑝();
21: if 𝑘𝑜𝑙𝑑 < CalculateKey(𝑢) then
22: 𝑈.𝐼𝑛𝑠𝑒𝑟𝑡(𝑢, CalculateKey(𝑢));
23: else if 𝑔(𝑢) > 𝑟ℎ𝑠(𝑢) then
24: 𝑔(𝑢) = 𝑟ℎ𝑠(𝑢);
25: for all 𝑠 ∈ 𝑃𝑟𝑒𝑑(𝑢) do
26: UpdateVertex(𝑠);
27: else
28: 𝑔(𝑢) = ∞;
29: for all 𝑠 ∈ 𝑃𝑟𝑒𝑑(𝑢) ∪ 𝑢 do
30: UpdateVertex(𝑠);

1: function Main()
2: 𝑠𝑙𝑎𝑠𝑡 = 𝑠𝑠𝑡𝑎𝑟𝑡;
3: Initialize();
4: ComputeShortestPath();
5: while 𝑠𝑠𝑡𝑎𝑟𝑡 ̸= 𝑠𝑔𝑜𝑎𝑙 do
6: ◁ if 𝑔(𝑠𝑠𝑡𝑎𝑟𝑡) = ∞ then there is no known path
7: 𝑠𝑠𝑡𝑎𝑟𝑡 = 𝑎𝑟𝑔min𝑠′∈𝑆𝑢𝑐𝑐(𝑠𝑠𝑡𝑎𝑟𝑡)(𝑐(𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠

′) +
𝑔(𝑠′));

8: Move to 𝑠𝑠𝑡𝑎𝑟𝑡;
9: Scan graph for changed edge costs;

10: if any edge costs changed then
11: 𝑘𝑚 = 𝑘𝑚 + ℎ(𝑠𝑙𝑎𝑠𝑡, 𝑠𝑠𝑡𝑎𝑟𝑡);
12: 𝑠𝑙𝑎𝑠𝑡 = 𝑠𝑠𝑡𝑎𝑟𝑡;
13: for all directed edges (𝑢, 𝑣) with changed

edge costs do
14: Update the edge cost 𝑐(𝑢, 𝑣);
15: UpdateVertex(𝑢);
16: ComputeShortestPath();

Figure 2-15: The standard D* Lite algorithm

55

1: function CalculateKey(𝑠)
2: return [min(𝑔(𝑠), 𝑟ℎ𝑠(𝑠) + ℎ(𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠) +

𝑘𝑚);min(𝑔(𝑠), 𝑟ℎ𝑠(𝑠))];

3: function UpdateVertex(𝑣)
4: if 𝑢 ̸= 𝑠𝑔𝑜𝑎𝑙 then
5: 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = [];
6: for 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈ 𝐺.𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣) do
7: if 𝐺.𝐸𝑑𝑔𝑒(𝑣, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) ∈ 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠

and CheckValidNeighborExpan-
sion(𝑣, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) then

8: 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠.𝐴𝑝𝑝𝑒𝑛𝑑(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟);
◁ Reset our knowledge of the node if it is not reach-

able in the current environment con-
figuration as determined by having no
collision-free edges to neighbors other
than those discovered via that node

9: if 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑁𝑒𝑖𝑏𝑜𝑟𝑠 is empty then
10: 𝑔(𝑣) = ∞;
11: 𝑟ℎ𝑠(𝑣) = ∞;
12: 𝑝𝑎𝑟𝑒𝑛𝑡.𝑅𝑒𝑚𝑜𝑣𝑒(𝑣);
13: return
14: 𝑚𝑖𝑛𝑆𝑢𝑐𝑐 = 𝑎𝑟𝑔min𝑛′∈𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(

𝑐(𝑣, 𝑛′) + 𝑔(𝑛′));
15: 𝑟ℎ𝑠(𝑣) = 𝑔(𝑚𝑖𝑛𝑆𝑢𝑐𝑐) + 𝑐(𝑣,𝑚𝑖𝑛𝑆𝑢𝑐𝑐);
16: 𝑝𝑎𝑟𝑒𝑛𝑡𝑀𝑎𝑝(𝑣) = 𝑚𝑖𝑛𝑆𝑢𝑐𝑐;
17: if 𝑣 ∈ 𝑈 then
18: 𝑈.𝑅𝑒𝑚𝑜𝑣𝑒(𝑣);

19: if 𝑔(𝑣) ̸= 𝑟ℎ𝑠(𝑣) then
20: 𝑈.𝐼𝑛𝑠𝑒𝑟𝑡(𝑣,CalculateKey(𝑣));

1: function CheckValidNeighborExpan-
sion(𝑣, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)

2: 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 = 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟;
3: while 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 ̸= 0 do
4: if 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 = 𝑣 then
5: return False
6: if 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 ̸∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝑀𝑎𝑝 then
7: return False
8: 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 = 𝑝𝑎𝑟𝑒𝑛𝑡𝑀𝑎𝑝(𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒);
9: return True

10: function Initialize()
11: 𝑈 = ∅;
12: 𝑘𝑚 = 0;
13: for all 𝑠 ∈ 𝐺.𝑁𝑜𝑑𝑒𝑠 do
14: 𝑟ℎ𝑠(𝑠) = 𝑔(𝑠) = ∞;
15: for all 𝑒 ∈ 𝐺.𝐸𝑑𝑔𝑒𝑠 do
16: 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠.𝐴𝑑𝑑(𝑒);
17: 𝑟ℎ𝑠(𝑠𝑔𝑜𝑎𝑙) = 0;
18: 𝑝𝑎𝑟𝑒𝑛𝑡𝑀𝑎𝑝(𝑠𝑔𝑜𝑎𝑙) = 0;
19: 𝑈.𝐼𝑛𝑠𝑒𝑟𝑡(𝑠𝑔𝑜𝑎𝑙, CalculateKey(𝑠𝑔𝑜𝑎𝑙));

20: function ComputeShortestPath()
21: while 𝑈.𝑇𝑜𝑝𝐾𝑒𝑦() < CalculateKey(𝑠𝑠𝑡𝑎𝑟𝑡) or

𝑟ℎ𝑠(𝑠𝑠𝑡𝑎𝑟𝑡) ̸= 𝑔(𝑠𝑠𝑡𝑎𝑟𝑡) do
22: 𝑘𝑜𝑙𝑑 = 𝑈.𝑇𝑜𝑝𝐾𝑒𝑦();
23: 𝑣 = 𝑈.𝑃𝑜𝑝();
24: if 𝑘𝑜𝑙𝑑 < CalculateKey(𝑣) then
25: 𝑈.𝐼𝑛𝑠𝑒𝑟𝑡(𝑣, CalculateKey(𝑣));
26: else if 𝑔(𝑣) > 𝑟ℎ𝑠(𝑣) then
27: 𝑔(𝑣) = 𝑟ℎ𝑠(𝑣);
28: for all 𝑠 ∈ 𝐺.𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣) do
29: UpdateVertex(𝑠);
30: else
31: 𝑔(𝑣) = ∞;
32: for all 𝑠 ∈ 𝐺.𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣) ∪ 𝑣 do
33: UpdateVertex(𝑠);

56

1: function Main(𝐺, 𝑠𝑔𝑜𝑎𝑙, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛)
2: 𝑠𝑙𝑎𝑠𝑡 = 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡;
3: Initialize();
4: ComputeShortestPath();

◁ Same path reconstruction as in A* except each edge is checked for collision and reconstruction
stops when an invalid edge is found in the path so the return is a collision-free
subpath of the full path from search. A boolean is returned to indicate if the
full path was reconstructed.

5: 𝑝𝑎𝑡ℎ, 𝑖𝑠𝐹𝑢𝑙𝑙 = ReconstructPath(𝑝𝑎𝑟𝑒𝑛𝑡𝑀𝑎𝑝, 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
6: 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑃𝑎𝑡ℎ, 𝑝𝑎𝑡ℎ𝑀𝑎𝑝 = OptimizePath(𝑝𝑎𝑡ℎ);
7: 𝑝𝑎𝑡ℎ𝐼𝑛𝑑𝑒𝑥 = 0;
8: while 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ̸= 𝑠𝑔𝑜𝑎𝑙 do
9: 𝑛𝑒𝑥𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑃𝑎𝑡ℎ[𝑝𝑎𝑡ℎ𝑀𝑎𝑝[𝑝𝑎𝑡ℎ𝐼𝑛𝑑𝑒𝑥] : 𝑝𝑎𝑡ℎ𝑀𝑎𝑝[𝑝𝑎𝑡ℎ𝐼𝑛𝑑𝑒𝑥+ 1]];

10: 𝑒𝑥𝑐𝑢𝑡𝑒𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ = True;
11: 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑁𝑜𝑑𝑒𝑠 = ∅;
12: if 𝑛𝑒𝑥𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡 is in collision then
13: 𝑒𝑥𝑐𝑢𝑡𝑒𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑣𝑎𝑙𝑖𝑑𝑃 𝑙𝑎𝑛 = False;
14: 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑁𝑜𝑑𝑒𝑠.𝐴𝑑𝑑(𝑝𝑎𝑡ℎ[𝑝𝑎𝑡ℎ𝐼𝑛𝑑𝑒𝑥]);
15: 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑁𝑜𝑑𝑒𝑠.𝐴𝑑𝑑(𝑝𝑎𝑡ℎ[𝑝𝑎𝑡ℎ𝐼𝑛𝑑𝑒𝑥+ 1]);
16: for 𝑖 from 𝑝𝑎𝑡ℎ𝐼𝑛𝑑𝑒𝑥+ 1 to 𝑆𝑖𝑧𝑒(𝑝𝑎𝑡ℎ)− 1 do
17: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑃𝑎𝑡ℎ[𝑝𝑎𝑡ℎ𝑀𝑎𝑝[𝑖] : 𝑝𝑎𝑡ℎ𝑀𝑎𝑝[𝑖+ 1]];
18: if 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 is in collision then
19: 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ = False;
20: 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑁𝑜𝑑𝑒𝑠.𝐴𝑑𝑑(𝑝𝑎𝑡ℎ[𝑖]);
21: 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑁𝑜𝑑𝑒𝑠.𝐴𝑑𝑑(𝑝𝑎𝑡ℎ[𝑖+ 1]);
22: if 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 = False and (𝑣𝑎𝑙𝑖𝑑𝑃 𝑙𝑎𝑛 = False or 𝑖𝑠𝐹𝑢𝑙𝑙 = False) then
23: 𝑒𝑥𝑐𝑢𝑡𝑒𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = False;
24: if 𝑒𝑥𝑐𝑢𝑡𝑒𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = True then
25: Move the robot along 𝑛𝑒𝑥𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡 and update 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡;
26: 𝑘𝑚 = 𝑘𝑚 + ℎ(𝑠𝑙𝑎𝑠𝑡, 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡);
27: 𝑠𝑙𝑎𝑠𝑡 = 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡;

◁ Only scan for changes if their is not a valid full path to the goal
28: if 𝑣𝑎𝑙𝑖𝑑𝑃 𝑙𝑎𝑛 = False or 𝑖𝑠𝐹𝑢𝑙𝑙 = False then
29: Perform collision checks on all edges for nodes in 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑁𝑜𝑑𝑒𝑠 and for the last node

in 𝑝𝑎𝑡ℎ if 𝑖𝑠𝐹𝑢𝑙𝑙 = False;
30: for all edges (𝑢, 𝑣) with changed collision status do
31: UpdateVertex(𝑢);
32: UpdateVertex(𝑣);
33: ComputeShortestPath();

Figure 2-17: Adapted D* Lite main and helper functions

57

1: function Main(𝐺, 𝑠𝑔𝑜𝑎𝑙, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛)
2: for all 𝑒 ∈ 𝐺.𝐸𝑑𝑔𝑒𝑠 do
3: 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠.𝐴𝑑𝑑(𝑒);
4: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑝𝑎𝑡ℎ = GetCollisionFreePath(𝐺, 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠𝑔𝑜𝑎𝑙, 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠);
5: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = False then
6: return False
7: 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑃𝑎𝑡ℎ, 𝑝𝑎𝑡ℎ𝑀𝑎𝑝 = OptimizePath(𝑝𝑎𝑡ℎ);
8: 𝑝𝑎𝑡ℎ𝐼𝑛𝑑𝑒𝑥 = 0;
9: while 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ̸= 𝑠𝑔𝑜𝑎𝑙 do

10: 𝑛𝑒𝑥𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑃𝑎𝑡ℎ[𝑝𝑎𝑡ℎ𝑀𝑎𝑝[𝑝𝑎𝑡ℎ𝐼𝑛𝑑𝑒𝑥] : 𝑝𝑎𝑡ℎ𝑀𝑎𝑝[𝑝𝑎𝑡ℎ𝐼𝑛𝑑𝑒𝑥+ 1]];
11: 𝑒𝑥𝑐𝑢𝑡𝑒𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ = True;
12: if 𝑛𝑒𝑥𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡 is in collision then
13: 𝑒𝑥𝑐𝑢𝑡𝑒𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑣𝑎𝑙𝑖𝑑𝑃 𝑙𝑎𝑛 = False;
14: for 𝑖 from 𝑝𝑎𝑡ℎ𝐼𝑛𝑑𝑒𝑥+ 1 to 𝑆𝑖𝑧𝑒(𝑝𝑎𝑡ℎ)− 1 do
15: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑃𝑎𝑡ℎ[𝑝𝑎𝑡ℎ𝑀𝑎𝑝[𝑖] : 𝑝𝑎𝑡ℎ𝑀𝑎𝑝[𝑖+ 1]];
16: if 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 is in collision then
17: 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ = False;
18: if 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 = False and (𝑣𝑎𝑙𝑖𝑑𝑃 𝑙𝑎𝑛 = False or 𝑖𝑠𝐹𝑢𝑙𝑙 = False) then
19: 𝑒𝑥𝑐𝑢𝑡𝑒𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = False;
20: if 𝑒𝑥𝑐𝑢𝑡𝑒𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = True then
21: Move the robot along 𝑛𝑒𝑥𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡 and update 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡;

◁ Only scan for changes if their is not a valid full path to the goal
22: if 𝑣𝑎𝑙𝑖𝑑𝑃 𝑙𝑎𝑛 = False then
23: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑝𝑎𝑡ℎ = GetCollisionFreePath(𝐺, 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑠𝑔𝑜𝑎𝑙, 𝑣𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠);
24: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = False then
25: return False
26: 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑃𝑎𝑡ℎ, 𝑝𝑎𝑡ℎ𝑀𝑎𝑝 = OptimizePath(𝑝𝑎𝑡ℎ);
27: 𝑝𝑎𝑡ℎ𝐼𝑛𝑑𝑒𝑥 = 0;

Figure 2-18: A* Repair with incremental execution and execution monitoring. Get-
CollisionFreePath can be any of the four versions of A* Repair.

58

Chapter 3

Experiment Plan

The overarching goals for the experiments here are twofold. First, we want the ex-

periments to guide the development of the roadmap-based motion planner. Second,

we want to refine and verify our hypotheses regarding using a roadmap-based motion

planner and precomputed solution cache in conjunction with an optimization-based

motion planner. As a reminder, the planner should produce motions that are reac-

tive and intuitive in changing environments. For our testing, we define reactive and

intuitive to be to rapidly providing near-optimal, collision-free trajectories in a large

majority of typical motion planning problems. The motion planner does not account

for the motion of obstacles directly. Instead, it reacts to changing environments by

taking a snapshot of the environment and computing a full plan quickly enough that

the snapshot is still relevant. The motion planner should be able to solve most cases

that will be encountered rather than to be able to solve every possible case on a

longer timeline. To test this, realistic environments have been constructed along with

test cases in those environments that are feasible for the motion planner to solve.

With the environments characterized and the test cases for them developed, the first

iteration of the motion planner can be constructed.

The core of the motion planner is a roadmap of robot states connected by edges

containing the trajectories to traverse between the states. For each test environment,

a separate roadmap must be constructed and maintained for modifications and path

queries. The roadmaps built for these tests do not have any nodes or edges in collision

59

with the obstacles in the environment, and there are no dynamic obstacles. There

are many hyper-parameters associated with the construction of these roadmaps, so

it is important to have a good framework for comparing and conducting experiments

on multiple roadmaps. This first iteration of the roadmap-based motion planner

is measured by its ability to quickly provide high quality seed trajectories to an

optimization-based motion planner for as many test cases as possible. What high

quality means will be explained later in this chapter.

Our group is also interested in exploring the use of semantic information about

the environment to guide the selection of nodes in the roadmap. The goal for this

exploration is to improve the likelihood of solving motion planning problems that

involve certain objects of interest or that require avoiding obstacles in a constrained

environment. The experiments conducted for this thesis regarding semantic informa-

tion are preliminary, and it is unclear when or if future research will be pursued for

this topic.

The next focus for my experiments will be testing how well motion planner avoids

dynamic obstacles in the environment. For these experiments, the dynamic obstacles

referred to are stationary obstacles inserted into the environment after the roadmap

has been constructed for the initial or static environment. Offline and online strategies

for the development and repair of shortest path solutions for the roadmap go hand in

hand with the development of the experiments to test these shortest path strategies.

As these strategies are developed, the roadmaps will in a sense be trained to solve

planning problems for the obstacle configurations used. In order to avoid, or at least

be aware of, over-fitting the roadmap solution caches to the realistic obstacles, it is

important to have different caches that have been trained across a range of values.

The experiments are then conducted on each cache to observe trends in the relevant

performance metrics as a solution cache is trained more.

The final collection of experiments for this thesis will surround demonstrating

the the capabilities of the incremental search algorithm, D* Lite. What separates

incremental search algorithms from more traditional search algorithms, like A*, is

that the node expansion, or in my case collision checking, is interleaved with the

60

execution of the trajectory that is being actively being modified with new knowledge

of the environment. In that regard, experiments must be developed to showcases

improvements brought by the incremental search algorithm particularly in cases where

the environment changes in the middle of execution.

For the experiments regarding dynamic obstacles in particular, the goal is to

test the hypothesis that offline computation and caching of roadmap paths results in

improved performance online. Additionally, the tests should show the benefit provided

by reusing information both within a single planning problem and between planning

problems. The hope is to observe noticeable differences in the success rate of the

planner being able to produce a collision-free trajectory and the average duration of

a motion planning query depending on the algorithm and solution cache used.

3.1 Description of the Robot and Testing Environ-

ments

The robot used for all experiments developed and conducted in simulated environ-

ments for this thesis is the Rethink Robotics Baxter. This is in spite of having de-

veloped controllers and surrounding ROS infrastructure to demonstrate the roadmap

based motion planner on a Barrett WAM as well. The reason for limiting testing to

one robot is to remove another element of variability when trying to compare results

from different tests. We expect the findings uncovered through our experiments with

Baxter to be generalizable to other robotic systems.

61

Figure 3-1: Rethink Robotics Baxter

Four practical environments have been developed for testing the performance of

the roadmap-based motion planner [9]. The goal for the environments selected was

to mimic settings the robot may be placed in as far as its position relative to large

furniture objects, ie. a table or a shelf. From there, the environments are filled with

obstacles of realistic size, shape, and orientation relative to the large furniture objects

and one another, ie. placing a box on a tabletop. Three of these environments, Table-

top with a Pole, Tabletop with a Container, and Shelf with Boxes, were developed in

OpenRAVE using collision objects by Sylvia Dai. The fourth, Kitchen, is provided

by the TrajOpt package, but additional objects were placed in the stock environment

for testing.

For the remainder of this thesis, I will order the environments by relative difficulty

as determined by the experiments that will be explained in this chapter. That order

is Tabletop with a Pole, Tabletop with a Container, Kitchen, and Shelf with Boxes.

Visualizations of the environments can be seen below. Although this has not been

specifically confirmed by experiments, it is generally believed that within our four

62

(a) Tabletop with a Pole (b) Tabletop with a Container

(c) Kitchen (d) Shelf with Boxes

Figure 3-3: The four testing environments used for all experiments

environments, difficulty is strongly correlated with how much surrounding space the

robot has to maneuver around any individual collision object.

In addition to the development of environments for testing, 5000 test cases have

been created for each of the four environments [9]. Each of these test cases has a

feasible solution as determined by solving the cases with existing planners, like RRT.

Therefore, we can reasonably assess the performance of the roadmap based motion

planner in one of the four environments using the 5000 feasible cases corresponding

to that environment.

63

3.2 Development of and Characterization the Roadmap

Framework

The roadmap framework, implemented as the RoadmapManager, was developed to

allow convenient modification of different roadmap hyper-parameters. This allows

testing a range of values for a given hyper-parameter in order to find inflection points

along the range for the different performance metrics used. The roadmap hyper-

parameters initially considered relevant for testing were the number of nodes in the

roadmap, the number of edges that connect each node in the roadmap, and the

number of solutions between every pair of roadmap nodes in the all-pairs shortest

path solution cache. As development and testing of the RoadmapManager ensued, it

became clear that number of roadmap nodes used for attempting to connect query

points to the roadmap and the number of interpolations to perform on an edge for

collision checks are two additionally important hyper-parameters.

3.2.1 Tuning Roadmap Hyper-Parameters

The first hyper-parameter experiments focused on was the number of roadmap nodes.

For each of the four testing environments, roadmaps were constructed with 250, 500,

and 1000 nodes. These roadmaps were constructed using 𝑘 = 10 when forming

edges by connecting nodes to their k-nearest neighbors and 𝑝 = 1 for creating the

APSP solution cache with Yen’s Algorithm [19]. Additionally, 2000 node roadmaps

were constructed for the Kitchen and Shelf with Boxes environments after they were

determined to be the two most difficult for connecting query points to the roadmap.

Across these different roadmaps, the number of edges scaled fairly linearly with

the number of nodes, and at no point were there indications of having too many

or not enough edges connecting nodes in the roadmap. As a result, no experiments

were conducted comparing roadmaps with different values of 𝑘, and 𝑘 = 10 has been

used for all roadmaps constructed for this thesis. Similarly, having more than one

path for a pair of roadmap nodes is only useful if the state of the environment when

64

handling roadmap queries is different than when the roadmap was constructed, so

the majority of the roadmaps constructed for testing use 𝑝 = 1 when constructing

the APSP solution cache with Yen’s Algorithm.

As for the additional two hyper-parameters, no series of experiments was targeted

at testing either of them directly, but information gained from other experiments

impacted how the hyper-parameters were treated. Take, for example, deciding how

many roadmap nodes to attempt connections to when trying to connect a query point

to the roadmap. The trade-off at hand is to limit the amount of time spent performing

collision checking before returning a failure for a query versus limiting the number

of false negatives where a query node could have been connected to the roadmap

had more nodes been attempted. Early experiments made it clear that only checking

the nearest 𝑚 = 10 roadmap nodes yielded too many false negatives, but allowing

all roadmap nodes to be checked yielded cases for the 1000 node roadmaps where

the RoadmapManager would spend more than 5 seconds collision-checking before

returning a failure. From these observations it was determined that 𝑚 = 100 would

be the maximum number of roadmap nodes that a query point would attempt to

connect to before a failure would be returned for a query.

Determining how densely to interpolate edges when checking them for collisions

is a little more complicated of a matter. For many of my roadmap experiments,

online collision checking is a bottleneck that slows down the overall times for the

RoadmapManager by an order of magnitude. My research group is aware that collision

checking in the context of our motion planning problems is highly parallelizable and

would lend itself to GPU programming quite well. However, collision checking is not

within the scope of our research interests, so at this point in time, my group has no

plans to implement such a collision checking system.

As a result, simpler fixes were developed for speeding up our sequential collision

checking for online motion planning queries. The first of these is to check an edge

sparsely for collision before checking it densely. This allows the RoadmapManager

to quickly move on from edges that are very evidently in collision. This approach

is used when generating edges during roadmap construction, when attempting to

65

connect query points to roadmap nodes with collision-free edges, and when validating

that edges in the roadmap are collision-free at the time of a query. The sparse check

performs a collision check at each of 10 interpolated joint states for the end nodes

of a given edge, while the dense check performs collision checks at 1000 interpolated

joint states during offline roadmap construction and at 100 interpolated joint states

during online motion planning problems.

Over the course of the experiments evaluating roadmap performance in the static

environments, a small number of cases arose where an edge in the roadmap would be

improperly marked collision-free at the time of a query. This bug was soon identified

to be due to the fact that all roadmap edges were interpolated the same number of

times for collision checks, meaning longer edges had larger spaces in between collision

checks and could potentially miss a collision in one of those spaces. This was addressed

by modifying edge collision checking to interpolate an edge 10, 100, and 1000 times per

radian of euclidean distance traversed by the edge for sparse, dense online, and dense

offline checks respectively. With this modification, no additional cases have been

observed of improperly marked collision-free during online motion planning queries.

3.2.2 Characterizing Roadmap Performance

In order to gain insight into the impact of different values for roadmap hyper-parameters,

it was important to establish a set of performance metrics to compare roadmaps that

reflect the goals for the motion planner. Again, the planner should be able to solve

most typical motion planning problems with motions that feel reactive and intuitive.

With that in mind, the first performance metric used to compare roadmaps is the

rate of failure to produce a collision-free roadmap solution. Often this is caused by

the lack of a straight-line, collision-free connection from the start or end points in a

motion planning query to existing nodes in the roadmap. For experiments run in the

unchanged static environments, this is the only way for this kind of failure to occur

because all roadmap edges are collision-free for the static environment. However

for experiments with changing environments, this can also occur when there is no

collision-free solution in the cache for the pair of nodes connected to. Depending on

66

the experiment being performed, the RoadmapManager may return an in-collision

solution or no solution at all for these kinds of failures.

The next two metrics are the average duration of a roadmap query and the average

euclidean length of solutions returned by the RoadmapManager. The bulk of the time

for a roadmap query is consumed by collision checking, so comparisons for average

query duration between different roadmaps or query strategies are mainly exploring

the trade-off of how many edges to check before returning a failure for a query.

Path length of a roadmap solution is fairly straightforward metric that is primarily

impacted by the density of the roadmap, but experiments have also been conducted

to show that it is impacted by the choice of roadmap nodes to connect to start and

end query points. While the path length of the roadmap seed is not necessarily

reflected in the resulting trajectory after optimizing with TrajOpt, our experiments

have indicated that there is correlation between the length of a seed trajectory and

the amount of time TrajOpt takes to optimize that seed.

The last two metrics used to compare roadmap performance are obtained after

the RoadmapManager has produced a seed trajectory. Those metrics are the average

duration of the optimization performed by TrajOpt and the average euclidean length

of the resulting optimized trajectory. While TrajOpt is expected to terminate fairly

quickly when provided a collision-free seed, its duration is important to track because

it contributes to the total query duration for our motion planner. Finally, the length

of the optimized trajectory is important because that is the trajectory that is actually

being outputted by our motion planner and executed by the robot.

3.3 Semantic Sampling to Improve Roadmap Con-

nectivity and Other Side Explorations

The primary experimental explorations regarding offline methods surround tuning

roadmap parameters and developing solution cache augmentation and repair strate-

gies, but there are a couple tangential explorations containing smaller sets of ex-

67

periments in order to potentially provide directions for future research. The first of

these explorations is the aforementioned use of semantic information to improve the

connectivity of a roadmap. Each roadmap tested is an augmentation on the same

base 1000 node roadmap for the "Shelf with Boxes" environment. This exploration

was only conducted for the most difficult of the four environments. The different

augmentations are as follows:

∙ Baseline Control: The base 1000 node roadmap with 3 nodes pruned for being

disconnected from the main subgraph giving the roadmap 997 nodes

∙ Just Outside the Shelf: End-effector poses in a planar grid just outside the shelf

were checked for valid IK solutions and resulted in 123 joint states added giving

the roadmap 1120 nodes

∙ Just Within the Shelf: Poses in a planar grid just within the shelf were checked

with 61 valid joint states added giving the roadmap 1058 nodes

∙ Halfway in the Shelf: Poses in a planar grid halfway in the shelf were checked

with 42 valid joint states added giving the roadmap 1039 nodes

∙ Additional Samples Control: An additional 42 valid nodes were randomly sam-

pled and added to the base roadmap giving the roadmap 1039 nodes

These roadmaps were each tested for the static environment using the 5000 feasible

cases. Nodes added to the base roadmap were demarcated with an abbreviated la-

bel for the augmentation performed to obtain those points. When these augmented

roadmaps are queried, a label is provided to indicate to the RoadmapManager that

if no connection can be made from a query point to the nearest 𝑚 roadmap nodes,

roadmap nodes containing that label will be additionally checked regardless of whether

or not they are in the nearest 𝑚. The idea is that roadmap connectivity can be im-

proved if a roadmap contains nodes specific to objects in the environment and then

the RoadmapManager is provided indication that the query involves a specific object.

The second of these explorations, and the less involved of the two, regards the

implementation of a sorting heuristic when attempting to connect query points to

68

roadmap nodes during a motion planning query. When the nearest 𝑚 nodes are

obtained for connecting to either the start or the end point for a query, they are

normally in order of increasing distance to whichever point is being connected to,

start or end. The implemented sorting heuristic takes the nearest 𝑚 nodes and sorts

them again by the sum of their distances to both the start and end points for the

query. The idea behind this is that the query points will first attempt to connect to

roadmap nodes that are more along the way to one another, so the resulting roadmap

trajectory will be shorter.

The associated experiments did not involve any roadmap augmentation. All that

was different is a flag indicating that the sorting heuristic should be used for a query.

The performance metrics particularly important to compare to the control of not

performing an additional sort are the average query duration and roadmap trajectory

length. However, all performance metrics used for comparing roadmaps with different

hyper-parameters are recorded for these experiments as well.

3.4 Incorporating Dynamic Obstacles to Augment

and Evaluate Roadmap Solution Caches

A significant portion of the methods developed for this thesis involve strategies for

augmenting the solution cache of a roadmap to better account for obstacles intro-

duced into the environment after the roadmap has been constructed for the static

environment. These strategies are largely focused on using a set of realistic obstacles

that are assumed to be representative of the obstructions the robot is expected to

encounter in the real world despite being a fairly sparse set of geometries and poses.

These realistic obstacles are inserted into the environment to block roadmap edges,

so paths can be computed between pairs of nodes that hopefully differ significantly

from the shortest path in the static environment.

This brings up the issue of how to effectively evaluate these roadmaps while using

the same sparse set of obstacles. To generate experimentally meaningful results, it is

69

important to apply the same set of tests to each roadmap. This means that there can

be no probabilistic aspect to how the environments are modified. For contrast, when

training roadmap solution caches with repeated generations of an APSP solution set,

the environment is modified at each iteration by inserting a set of object-pose tuples

using a binomial distribution for sampling.

The test set for evaluating the ability of a roadmap to plan around an obstacle

inserted before the start of planning is also based around the 5000 feasible cases for

each of the four practical environments. Each case is given to the RoadmapManager

as a planning query for the static environment. If a plan is returned, it means that the

start and end joint states can be connected to the roadmap. Each of these successful

cases is then repeatedly tested with a different object-pose tuple inserted into the

environment at each iteration for a total of 40 additional iterations for the case with

a single added obstacle in the environment for each test.

The solution cache training only involves a couple different cache augmentation

approaches but ranges on the number of rounds used to train the solution cache for a

given roadmap. Additionally, there is a lot of similarity between the environment con-

figurations used for training and evaluating the performance of the different trained

solution caches. Because of this, what is most interesting in the results for these ex-

periments are the trends and inflection points across a range for a given roadmap and

augmentation strategy. In particular, the trends are on how many cases the roadmap

is still able to find or produce a collision-free solution and how long on average does it

take to produce that solution or return a failure. Some thought was given to inserting

multiple obstacles for a single test, but the decision was made to constrain the testing

to hopefully make the trends more apparent.

70

3.5 Creating Experiments to Expose the Benefits of

Incremental Planning

All of the experiments described up to this point measure motion planning perfor-

mance when planning from scratch in some environment configuration. For many

of the experiments, the environment configuration is the static configuration, so the

constructed roadmaps are entirely collision-free. The others have involved insert-

ing realistic obstacles to obstruct the roadmap in ways that are representative of

what would be encountered in the real world. For those experiments, the goal is

to demonstrate how offline computation and caching of roadmap paths can benefit

online motion planning performance even when faced with dynamic obstacles.

However, the perceived benefits are demonstrated through fast planning in con-

figurations that differ from the static environment without any regard for replanning

in cases where an initial plan becomes invalid. For contrast, as previously mentioned,

the goal for incremental search algorithms like D* Lite is to reuse information from

a previous search to speed up subsequent searches as the search result is executed

and knowledge of the environment changes [14]. Because of that, it does not make

sense to compare an incremental search algorithm to a non-incremental search algo-

rithm in experiments that surround planning from scratch in different environment

configurations.

Instead, the experiment to asses performance of an incremental search algorithm

should force replanning by invalidating an initial plan during execution. This idea is

realized by obtaining an initial plan from a RobotClient method wrapping a given

search algorithm with with incremental trajectory execution and execution monitor-

ing. The plan obtained from the RobotClient is used to identify the end-effector pose

at a waypoint that is halfway along the trajectory as determined by the total euclidean

distance of the trajectory in configuration space. A cube with a 10cm side-length is

then inserted into the environment with its center at the identified end-effector pose.

This is guaranteed to invalidate the initial plan, which in turn forces replanning by

the search algorithm in use.

71

As mentioned in the Methods Developed chapter, one of the innovations for these

implemented adaptations of incremental algorithms is the interleaving of replanning

with execution. In accordance, it was important to establish a metric that highlights

that innovation. That metric, "Effective Planning Overhead", is the difference be-

tween the total measured time of planning and execution and the estimated time

of just execution. Planning and execution time is measured from when the initial

plan is completed to when the final trajectory segment has been executed. Execution

time alone is estimated from the joint displacements between consecutive waypoints

of executed trajectory segments and the known maximum joint velocities of the robot

controller. The final metric of interest for these tests is the length of the executed

trajectory measured by euclidean distance in configuration space.

The two algorithm implementations evaluated for these experiments are Adapted

D* Lite and A* Repair 1. For each of these implementations, a flag can be used

to toggle the interleaving of replanning and execution. When interleaving is disabled

and replanning is required, the implementations will not send the next segment of the

previous trajectory to be executed even when the segment is still collision-free. For

each of the two implementations, serially replanning and then executing a trajectory

is used as the de facto base case to illustrate the benefits of interleaving planning and

execution.

72

Figure 3-4: Environment visualization of Tabletop with a Pole for incremental plan-
ning analysis

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

Chapter 4

Experiment Results

4.1 Roadmap and TrajOpt Performance

The first set of experiment results evaluates roadmap performance in each of the four

static environments. For these tests, no collision checks are performed on roadmap

edges because the environment is assumed to be unchanged from the static envi-

ronment. Since the roadmaps are constructed to be collision-free in the static en-

vironment, all nodes and edges in the roadmap will be collision-free for these tests.

This means all failures in these experiments are caused by not being able to make a

straight-line, collision-free connection from the start or end point for a case and an

existing node in the roadmap. Additionally, all paths returned by the roadmap come

from a precomputed solution cache, so the majority of the time for a roadmap query

is consumed by establishing the collision-free connections to the roadmap.

What is of particular interest for these tests is how roadmap performance changes

with the number of nodes in the roadmap. From the Figure 4-1, a clear trend emerges

that the roadmap can be connected to as more nodes are sampled for a given roadmap.

This should not come as a surprise, but what is surprising is the percentage of suc-

cessful cases for the sparser roadmaps. With the exception of the Shelf with Boxes

environment, a 250 node roadmap can connect to more than 95% of tested cases.

This supports the hypothesis that a sparse roadmap can be used to cover enough of

the reachable workspace for a robot to account for a significant majority of typical

75

planning problems.

Other trends in the data are less apparent, so the other metrics are likely less

dependent on the size of a roadmap. However, it should be noted from Table 4.3 that

the average path length of of roadmap seed trajectories decreases as the size of the

roadmap increases in most cases as does average length of the optimized trajectories.

76

Environment
Number of
Roadmap

Nodes
Failure Rate Average

Runtime (s)
Average Path
Length (rad)

Tabletop
with a
Pole

250 0.22% 0.1522 1.260
500 0.18% 0.1596 1.284
1000 0.18% 0.1434 1.238

Tabletop
with a

Container

250 1.46% 0.1846 1.354
500 1.40% 0.2054 1.310
1000 0.76% 0.1806 1.320

Kitchen

250 2.58% 0.3832 1.282
500 2.80% 0.4248 1.289
1000 1.92% 0.3792 1.285
2000 1.58% 0.3978 1.280

Shelf with
Boxes

250 18.34% 0.4052 1.316
500 15.50% 0.4456 1.308
1000 12.06% 0.3876 1.302
2000 10.20% 0.3434 1.283

Table 4.1: Roadmap performance assuming a static environment

Figure 4-1: Roadmap performance assuming a static environment. No collision checks
were performed on roadmap edges as a result of the assumption. For each roadmap,
the number of cases that have a valid roadmap seed is shown in green and the average
duration for a roadmap query is shown in blue.

77

Environment
Number of
Roadmap

Nodes

Average
Roadmap

Path Length
(rad)

Average
TrajOpt

Runtime (s)

Average
Optimized

Path Length
(rad)

Tabletop
with a
Pole

250 1.260 0.4348 0.873
500 1.284 0.5029 0.853
1000 1.238 0.4456 0.821

Tabletop
with a

Container

250 1.354 0.5096 1.042
500 1.310 0.5471 1.012
1000 1.320 0.5185 1.017

Kitchen

250 1.282 0.6943 0.8505
500 1.289 0.713 0.8597
1000 1.285 0.7039 0.8572
2000 1.280 0.8836 0.8343

Shelf with
Boxes

250 1.316 0.6072 1.034
500 1.308 0.6187 1.028
1000 1.302 0.6138 1.020
2000 1.283 0.9056 0.9677

Table 4.3: TrajOpt performance when seeded with roadmap trajectories

Figure 4-2: TrajOpt performance when seeded with roadmap trajectories. TrajOpt is
provided a collision-free seed from the roadmap in all cases and a static environment
is assumed with no collisions in the roadmap.

78

Figure 4-3: Graphs showing the difference between a seed trajectory from a roadmap
and an optimized trajectory from TrajOpt for three different cases. Values are only
shown for the first 4 DOFs because the roadmap nodes have the same fixed values for
the remaining DOFs. In each plot, the roadmap trajectory is shown in red and the
optimized trajectory is shown in blue. TrajOpt is provided a pose target rather than
a joint target for these experiments, so the end joint state for an optimized trajectory
may differ from the corresponding roadmap trajectory.

79

4.2 Semantic Sampling and Sorting Heuristic

The first table and graph pair shown is for an experiment testing the benefit of

adding a small number of points to the roadmap that were selected using semantic

information from the environment. Specifically, the different sets of these points were

selected due to their proximity to the shelf in the Shelf with Boxes environment. This

is after it was hypothesized that this environment was the most difficult of the four

due to much of the reachable workspace being divided by the shelves and then further

cluttered by collections of boxes that must be maneuvered around. As a reminder, the

sets of additional points were developed by testing a grid of end-effector poses near

the shelf for valid IK solutions. An additional control roadmap was also constructed

by randomly sampling additional points for the base roadmap.

Despite finding the fewest number of valid IK solutions when testing the grid of

poses halfway in the shelf, these points provided the largest increase in additional

cases passed compared to the control roadmap. This supports the hypothesis that

many of the failures were caused by an inability to interact around the shelf in close

proximity as well as the hypothesis that a small number of well selected points can

have a dramatic improvement on roadmap performance.

It should be noted that the dramatic increase in average query duration for these

results when compared with the previous section is due to checking the full roadmap

solutions for collisions before they are returned. These collision checks will be per-

formed for all experiments moving forward to guarantee the satisfaction of the re-

quirement that TrajOpt must be provided a collision-free.

80

Modification
Description

Number of
Roadmap

Nodes

Succeeded
with

Standard
Query

Succeeded
when

Providing
Object Name

Average
Query

Duration (s)

Control with
Disconnected

Subgraphs Pruned
997 4397 4397 1.566

42 Randomly
Sampled Nodes added
to Control Roadmap

1039 4405 4405 1.662

42 Nodes added
Halfway in the Shelf 1039 4480 4512 1.716

61 Nodes added Just
Within the Shelf 1058 4464 4482 1.745

123 Nodes added Just
Outside the Shelf 1120 4427 4456 1.744

Table 4.5: Performance comparison between roadmaps with different sets additional
points added to the same base 1000 node roadmap

Figure 4-4: Performance comparison between roadmaps with different sets additional
points added to the same base 1000 node roadmap. Only modifications that add
points specific to the shelf support queries where "shelf" is provided to guide at-
tempted connections to the roadmap. Roadmap paths are checked for collisions before
they are returned although the static environment will not push any roadmap edges
into collision. For each roadmap, the number of cases that have a valid roadmap seed
is shown in green and the average duration for a roadmap query is shown in blue.

81

The goal for the sorting heuristic experiments was to identify if approaches should

be explored for performing additional work at the start of a query to guide how

the query is handled. The sorting heuristic orders roadmap nodes in terms of their

summed distance from both the start and end points for a query instead of either the

start point or the end point. This decreases the length of the roadmap seed trajectories

provided to TrajOpt at the expense of the time taken to sort the roadmap nodes for

each attempted connection. The roadmap nodes connected to when using the sorting

heuristic will tend to be farther away from the point attempting to connect to the

roadmap since the roadmap nodes will no longer be checked in order of increasing

distance from the point. This could result in delays caused by having to check more

nodes on average in order to establish the collision-free connection.

Looking at the average durations in Figure 4-6, we can see that the use of a

sorting heuristic increases the average duration for the two tabletop environments but

decreases the average duration for the Kitchen and Shelf with Boxes environments.

I believe that the increase in query duration for the tabletop environments is caused

by the reasons stated in the previous paragraph. The results for the Kitchen and

Shelf with Boxes environments are contrary to expectation, but I believe uncover a

valid result. I believe that the decrease in average query duration is the result of the

decrease in average path length for roadmap seed trajectories. Collision checking in

these two environments is more time consuming than in the tabletop environments,

so while their is an increase in average duration caused by sorting and potential extra

connection attempts, this is offset by the overall decrease in required collision checking

due to a shorter average path length.

That being said, the difference in optimization duration for TrajOpt could lend

itself to a different interpretation of the results. While these differences are smaller

than for the average roadmap query duration, they have the same trend across the

four environments. This could indicate a similar narrative about collision checking

with the speculative addendum that TrajOpt took longer when using the sorting

heuristic in the tabletop environments due to increased proximity to obstacles for

more aggressive seed trajectories. However, this could also indicate that the computer

82

used for testing was under greater stress for the experiments with increased TrajOpt

duration, which would imply that conclusions should not be drawn from the average

duration results.

The shorter paths produced by the roadmaps when using the sorting heuristic are

likely the primary cause for the shorter optimized paths produced by TrajOpt. The

differences in average path length for the optimized paths are not pronounced enough

that the sorting heuristic should be considered universally beneficial, but the results

here by and large indicate that there are likely scenarios where it is beneficial to

perform additional work at the start of a roadmap query to guide how it is handled.

83

Environment Roadmap Description Failure Rate Average
Runtime (s)

Average Path
Length (rad)

Tabletop
with a
Pole

500 Node Roadmap
Control 0.18% 1.033 1.284

500 Node Roadmap
with Sorting Heuristic 0.18% 1.241 1.073

1000 Node Roadmap
Control 0.18% 1.001 1.238

1000 Node Roadmap
with Sorting Heuristic 0.18% 1.182 1.024

Tabletop
with a

Container

500 Node Roadmap
Control 1.40% 1.170 1.310

500 Node Roadmap
with Sorting Heuristic 1.40% 1.413 1.142

1000 Node Roadmap
Control 0.80% 1.159 1.320

1000 Node Roadmap
with Sorting Heuristic 0.80% 1.372 1.132

Kitchen

500 Node Roadmap
Control 2.84% 2.441 1.289

500 Node Roadmap
with Sorting Heuristic 2.84% 2.186 1.059

1000 Node Roadmap
Control 1.94% 2.279 1.285

1000 Node Roadmap
with Sorting Heuristic 1.94% 2.089 1.059

Shelf with
Boxes

500 Node Roadmap
Control 15.56% 1.569 1.308

500 Node Roadmap
with Sorting Heuristic 15.56% 1.299 1.139

1000 Node Roadmap
Control 11.98% 1.566 1.302

1000 Node Roadmap
with Sorting Heuristic 11.98% 1.282 1.134

Table 4.6: Roadmap performance comparison to determine the effects of using a
sorting heuristic to guide connection to the roadmap

84

Figure 4-6: Roadmap performance comparison to determine the effects of using a
sorting heuristic to guide connection to the roadmap. For each roadmap, the number
of cases that had a valid roadmap seed is shown in green and the average duration
for a roadmap query is shown in blue.

85

Environment Roadmap Description

Average
Roadmap

Path Length
(rad)

Average
TrajOpt

Runtime (s)

Average
Optimized

Path Length
(rad)

Tabletop
with a
Pole

500 Node Roadmap
Control 1.284 0.5672 0.8219

500 Node Roadmap
with Sorting Heuristic 1.073 0.5967 0.7554

1000 Node Roadmap
Control 1.238 0.5662 0.7694

1000 Node Roadmap
with Sorting Heuristic 1.024 0.6002 0.6887

Tabletop
with a

Container

500 Node Roadmap
Control 1.310 0.6868 0.9586

500 Node Roadmap
with Sorting Heuristic 1.142 0.7860 0.8812

1000 Node Roadmap
Control 1.320 0.7315 0.9533

1000 Node Roadmap
with Sorting Heuristic 1.132 0.8014 0.8734

Kitchen

500 Node Roadmap
Control 1.289 0.7587 0.8514

500 Node Roadmap
with Sorting Heuristic 1.059 0.5912 0.7783

1000 Node Roadmap
Control 1.285 0.7732 0.8457

1000 Node Roadmap
with Sorting Heuristic 1.059 0.5982 0.7789

Shelf with
Boxes

500 Node Roadmap
Control 1.308 0.8415 0.9915

500 Node Roadmap
with Sorting Heuristic 1.139 0.6329 0.9076

1000 Node Roadmap
Control 1.302 0.8639 0.9813

1000 Node Roadmap
with Sorting Heuristic 1.134 0.6474 0.8959

Table 4.7: TrajOpt performance comparison to determine the effects of using a sorting
heuristic to guide connection to the roadmap

86

Figure 4-8: TrajOpt performance comparison to determine the effects of using a
sorting heuristic to guide connection to the roadmap

87

4.3 Training and Testing Results for Obstacle Inser-

tion Experiments

4.3.1 APSP Training Results

The first experiments involving the insertion of the realistic obstacles are to evalu-

ate the solution caches trained different amounts using the APSP Training approach.

These experiments are exclusively concerned with whether or not a collision-free so-

lution can be found and how long the RoadmapManager takes to make that decision.

For testing solution caches constructed with APSP Training, that first metric is eval-

uated only by checking solutions in the cache, but for experiments later in this section

involving A*, that metric will be evaluated by whether or not a collision-free solution

exists in the roadmap at all.

In Table 4.8, Original Solution Collides is tracked both to verfiy that the exper-

iment runs properly and to provide context for the adjacent metric, Collision-free

Solution Found. All experiments in a given environment use the same roadmap but

with different amounts of training for the solution caches, so the original cached so-

lution should be the same path for all caches. When that solution is invalidated by

the insered obstacle, the RoadmapManager is queried for a collision-free solution in

the updated environment configuration. The Control Roadmap is still able to find

collision-free solutions in many of these cases because the start and points for the

query connect to different roadmap nodes than in the static environment case. The

RRT Comparison uses the RRT implementation provided by OMPL [20] capped at

100 iterations for time, and some cases were lost due to non-deterministic failures in

the off the shelf planner.

Unsurprisingly, as solution caches are trained more with the realistic obstacles,

they in general are then more able to avoid the same obstacles during testing. What

is interesting to note is that Average Runtime does not significantly increase with the

number of training rounds in all instances. This leads me to believe that the extra

collision checking performed on edges for the additional cached solutions impacts the

88

query duration less than the time required to initially connect the start and end

points for the query to nodes in the roadmap. What is interesting to note is that the

greatest payoff in increased performance is in the first five rounds of APSP Training

and performance effectively levels off after 15 rounds of APSP Training.

89

Environment Number of
Training Rounds

Original Cached
Solution Collides

Collision-free
Solution Found

Average
Runtime (s)

Tabletop
with a
Pole

RRT Comparison 84085 22129 2.781
0 Rounds (Control

Roadmap) 84086 9881 0.5041

5 Rounds 84086 28360 0.5851
10 Rounds 84086 31344 0.5653
15 Rounds 84086 34987 0.6242
20 Rounds 84086 34955 0.6396
25 Rounds 84086 32912 0.6886

Tabletop
with a

Container

RRT Comparison 85859 17355 3.035
0 Rounds (Control

Roadmap) 85860 9118 0.4982

5 Rounds 85860 20956 0.4894
10 Rounds 85860 22607 0.4965
15 Rounds 85860 27517 0.5710
20 Rounds 85860 27567 0.5698
25 Rounds 85860 28343 0.5684

Kitchen

RRT Comparison 78810 21764 2.874
0 Rounds (Control

Roadmap) 78848 6499 0.9681

5 Rounds 78848 17472 0.9071
10 Rounds 78848 20810 1.020
15 Rounds 78848 23527 1.078
20 Rounds 78848 22907 1.110
25 Rounds 78848 23616 1.086

Shelf with
Boxes

RRT Comparison 64807 5756 1.821
0 Rounds (Control

Roadmap) 64832 4096 0.6046

5 Rounds 64832 10300 0.5139
10 Rounds 64832 14091 0.5918
15 Rounds 64832 13355 0.5934
20 Rounds 64832 14761 0.6235
25 Rounds 64832 14968 0.6254

Table 4.8: APSP Training obstacle avoidance data for 500 node roadmaps. Original
Cached Solution Collides serves as a validation of the experiment because the same
roadmap is used for every test in a given environment but with different solution
caches. RRT Comparison describes the use of RRT in OMPL with 100 maximum
iterations to find a solution when the original roadmap solution is in collision. Some
cases were lost for the RRT Comparison due to non-deterministic failures with the
OMPL planner.

90

Figure 4-9: APSP Training obstacle avoidance graphs. For each roadmap, the number
of cases that have a valid roadmap seed is shown in green and the average duration
for a roadmap query is shown in blue. See the Appendix for for a breakdown of the
graphs by obstacle

91

4.3.2 Base Roadmap Results for A* Search

The online algorithms developed for avoiding dynamic obstacles are all based around

A* search in varying forms [13]. In order to understand how A* search should be

incorporated into the roadmap-based planner and solution cache, it is important

to first understand how the search algorithm performs in the static environment

with a roadmap absent of the solution cache. As with previous testing in static

environments, an important distinction to make is whether the roadmap is assumed

to be collision-free and therefore does not require collision checking for its edges. This

is a particularly important distinction for searching the roadmap online because edges

are expanded during the search that do not end up in the final solution, so checking

those edges for collision would be time validating parts of the roadmap that are not

relevant to the motion planning problem at hand. As a result, whether or not edges

are checked for collision when expanded during A* search is the primary comparison

these experiments examine.

Table 4.9 shows that checking the roadmap for collisions during A* search does

not impact the rate of failure for producing a solution or the length of the solutions

produced. This is expected because every collision check should validate the edge

checked as collision-free. Average Runtime, however, is dramatically impacted by

these collision checks. The takeaway from these results is that checking the roadmap

for collisions edge by edge during online search is not a viable for avoiding dynamic

obstacles for a reactive motion planner. As a result, all subsequent experiments

involving online search will heavily rely on lazy collision checking.

92

Environment Roadmap Description Failure Rate Average
Runtime (s)

Average Path
Length (rad)

Tabletop
with a
Pole

500 Node Roadmap No
Edge Collision Checks 0.18% 0.7798 1.284

500 Node Roadmap
Checking Edges on

Expansion
0.18% 11.48 1.284

1000 Node Roadmap No
Edge Collision Checks 0.18% 0.7656 1.238

1000 Node Roadmap
Checking Edges on

Expansion
0.18% 12.20 1.238

Tabletop
with a

Container

500 Node Roadmap No
Edge Collision Checks 1.40% 0.8052 1.310

500 Node Roadmap
Checking Edges on

Expansion
1.40% 13.03 1.310

1000 Node Roadmap No
Edge Collision Checks 0.80% 0.8100 1.320

1000 Node Roadmap
Checking Edges on

Expansion
0.80% 23.04 1.320

Kitchen

500 Node Roadmap No
Edge Collision Checks 2.84% 1.059 1.289

500 Node Roadmap
Checking Edges on

Expansion
2.84% 27.93 1.289

1000 Node Roadmap No
Edge Collision Checks 1.94% 1.041 1.285

1000 Node Roadmap
Checking Edges on

Expansion
1.94% 37.24 1.285

Shelf with
Boxes

500 Node Roadmap No
Edge Collision Checks 15.56% 0.8464 1.308

500 Node Roadmap
Checking Edges on

Expansion
15.56% 16.09 1.308

1000 Node Roadmap No
Edge Collision Checks 11.98% 0.8680 1.302

1000 Node Roadmap
Checking Edges on

Expansion
11.98% 24.30 1.302

Table 4.9: A* search performance in a static environment examining the impact of
checking roadmap edges for collisions when they are expanded during search.

93

Figure 4-11: Performance comparison in a static environment examining the impact
of checking the roadmap for collisions during A* search versus assuming all roadmap
edges are collision-free. For each roadmap, the number of cases that have a valid
roadmap seed is shown in green and the average duration for a roadmap query is
shown in blue.

94

4.3.3 Training Comparison

The range of training rounds for APSP Training was selected based on a hypothesis

that by 25 rounds, the solution cache would be saturated with paths that would

avoid every object-pose tuple from the set of realistic obstacles. The resolution of 5

rounds was chosen to be as large as possible while still revealing trends in the range.

This decision was made because APSP Training is computationally intensive through

its use of parallel processing to generate the APSP solution set for each round, so

training limited the ability for other experiments to be run.

Training a roadmap solution cache with 25 rounds of APSP training takes be-

tween two and three days to complete. As a comparison, the range of training rounds

for A* Training was selected so the maximum number of rounds, 100000, also takes

between two and three days to complete. Since A* Training does not utilize parallel

processing, a finer resolution, 10000 rounds, could be selected relative to the range

without inhibiting surrounding experiments. With this distinction, A* Training pro-

duces significantly fewer path solutions for a comparable training duration, so the

solution caches for A* Training ware capped at a maximum of five solutions for a

pair of roadmap nodes. This cap lends itself to a training metric, "Estimated Paths

Removed", that provides insight as to when a solution cache may be saturated with

path solutions to avoid every object-pose tuple. It does not appear that any roadmap

solution caches are approaching saturation after 100000 rounds of A* Training.

Estimated Paths Removed is incremented when the pair of roadmap nodes for

which a solution is returned have the maximum number of cached solutions and the

returned solution has the minimum number of uses, indicating it is a newly found

solution. Valid Rounds are training rounds where a solution exists in the roadmap

for the given environment configuration, and Paths Added is the difference in the

number of paths at the end and start of training.

95

Environment
Number of
Training
Rounds

Number of
Paths Added

Tabletop
with a
Pole

0 0
5 176540
10 241756
15 397286
20 448964
25 486812

Tabletop
with a

Container

0 0
5 153506
10 250194
15 438846
20 433287
25 536634

Environment
Number of
Training
Rounds

Number of
Paths Added

Kitchen

0 0
5 219588
10 314759
15 482592
20 489732
25 625298

Shelf with
Boxes

0 0
5 144287
10 407702
15 335305
20 445083
25 521494

Table 4.10: Additional paths for solution caches developed with APSP Training

Env
Name

Training
Rounds

Valid
Rounds

Paths
Added

Paths
Removed

Tabletop
with a
Pole

10000 3989 2284 42
20000 8072 3990 116
30000 12091 5216 203
40000 16376 6484 310
50000 20140 7310 424
60000 24194 8388 491
70000 28081 8878 621
80000 32116 9468 723
90000 36283 10230 835
100000 40398 10914 927

Tabletop
with a

Container

10000 3357 1922 3
20000 6745 3462 20
30000 9993 4870 51
40000 13510 6304 69
50000 16797 7090 123
60000 20091 8204 164
70000 23275 8930 194
80000 26715 9800 262
90000 30156 10566 314
100000 33277 11370 387

Env
Name

Training
Rounds

Valid
Rounds

Paths
Added

Paths
Removed

Kitchen

10000 3494 1932 3
20000 7011 3652 23
30000 10388 5070 42
40000 14019 6218 100
50000 17522 7330 158
60000 21083 8330 196
70000 24358 9044 274
80000 27544 9830 362
90000 31342 10574 425
100000 34650 11220 481

Shelf
with
Boxes

10000 2873 1222 0
20000 5593 1986 2
30000 8361 2826 13
40000 11272 3616 21
50000 14128 4296 28
60000 17057 4872 52
70000 19696 5466 71
80000 22370 6018 110
90000 25160 6516 115
100000 27859 6712 125

Table 4.11: Overview of solution caches developed with A* Training. Paths Removed
is an estimate determined by tracking whenever a new solution is created for a pair
of nodes that already have the maximum number of allowed solutions.

96

4.3.4 A* Repair Results

The experiments conducted to evaluate the performance of the different combinations

of algorithms and solution caches utilizing A* search are the same set of experiments

used to evaluate the solution caches developed with APSP Training. To provide

points of comparison, the first three entries in each graph in Figure 4-14 also exist

in Figure 4-9. In general, the trade-off of concern is how often does an approach

yield a collision-free solution versus how long on average does a query take with that

approach. The first result of note is that all entries that use A* search in some form

are able to find a collision-free solution in the roadmap whenever one exists. This

makes Average Query Time the most important metric for these experiments.

The first two A* Repair approaches only use the shortest cached path to guide the

search, and as a result, they both take longer on average than A* Repair 3 with the

various solution caches. What is surprising about this, however, is that A* Repair 2

does not outperform A* Repair 1. As a reminder, after checking the shortest cached

path for collisions, A* Repair 1 iteratively performs an end-to-end A* search on the

roadmap while A* Repair 2 performs A* searches using pairs of nodes that bookend

collisions in the original solution. The thought is that A* Repair 2 would have to

search less of the roadmap to produce a full collision-free solution and therefore would

finish faster. Since that is not the case, it is possible that A* Repair 2 yields solutions

that are significantly longer than the shortest possible collision-free solution due to

backtracking of some form. It is also possible that searching in the proximity of

obstacles, as A* Repair 2 does, leads to more collision checks performed on edges

that do not end up in the final solution because it checks nearby edges that collide

with the same obstacle. However, the most likely cause is that the small size of the

roadmaps result in paths that are too short for there to be any benefit in breaking

up the path into collision-free segments and searching to connect the segments.

The most significant result from these experiments comes from the unification of

trained solution caches and online search provided by A* Repair 3. By checking a

cache of useful path solutions and then performing online search only when necessary,

97

the RoadmapManager is able to return a collision-free solution whenever one exists in

the roadmap while handling queries in almost the same time as just using the solution

cache. The explanation for that result is two-fold. Comparing A* Repair 3 with 15

rounds of APSP Training to only the APSP Training, one can see that the majority of

cases where a collision-free solution is found that solution exists in the solution cache.

This means that online search is not used for those cases and therefore does not slow

down the query at all. The cases where online search is used will have slower query

times, but collision checking for the A* Repair has likely already been performed in

large part from checking the cached solutions.

Finally, Figure 4-14 provides a comparison of using solution caches developed with

APSP Training and A* Training for guiding subsequent A* searches. It is unclear

from the data collected how substantial the diminishing returns are for A* Training at

100000 rounds, but at least for the Shelf with Boxes environment, there is not much

improvement in average query time from 50000 rounds. Additionally, 15 rounds of

APSP Training reduces average query times more than 100000 rounds of A* Training

in all four environments. However, this should not be surprising considering more

than 40 times as many paths were added to the solution cache through 15 rounds

of APSP Training. What is perhaps more surprising is how close their respective

performance is considering the discrepancy in the number of paths added, but the

results should be interpreted with the understanding that A* Training more directly

trains solution caches for the experiments conducted.

98

Environment Roadmap and Algorithm
Description

Original Cached
Solution Collides

Collision-free
Solution Found

Average
Runtime (s)

Tabletop
with a
Pole

Control Roadmap 84086 9881 0.5041
A* Repair Approach 1 84086 37773 0.8118
A* Repair Approach 2 84086 37773 0.7929

A* Repair Approach 3 -
5 Rounds of APSP

Training
84086 37770 0.6203

A* Repair Approach 3 -
15 Rounds of APSP

Training
84086 37773 0.5612

A* Repair Approach 3 -
10000 Rounds of A*

Repair Training
84086 37762 0.6891

A* Repair Approach 3 -
50000 Rounds of A*

Repair Training
84086 37760 0.6155

A* Repair Approach 3 -
100000 Rounds of A*

Repair Training
84086 37759 0.5895

Tabletop
with a

Container

Control Roadmap 85860 9118 0.4982
A* Repair Approach 1 85860 30610 0.6903
A* Repair Approach 2 85860 30610 0.7562

A* Repair Approach 3 -
5 Rounds of APSP

Training
85860 30609 0.6196

A* Repair Approach 3 -
15 Rounds of APSP

Training
85860 30609 0.5318

A* Repair Approach 3 -
10000 Rounds of A*

Repair Training
85860 30610 0.6652

A* Repair Approach 3 -
50000 Rounds of A*

Repair Training
85860 30608 0.5971

A* Repair Approach 3 -
100000 Rounds of A*

Repair Training
85860 30608 0.5576

99

Environment Roadmap and Algorithm
Description

Original Cached
Solution Collides

Collision-free
Solution Found

Average
Runtime (s)

Kitchen

Control Roadmap 78848 6499 0.9681
A* Repair Approach 1 78848 26752 1.377
A* Repair Approach 2 78848 26752 1.341

A* Repair Approach 3 -
5 Rounds of APSP

Training
78848 26751 1.143

A* Repair Approach 3 -
15 Rounds of APSP

Training
78848 26752 1.038

A* Repair Approach 3 -
10000 Rounds of A*

Repair Training
78848 26752 1.223

A* Repair Approach 3 -
50000 Rounds of A*

Repair Training
78848 26752 1.106

A* Repair Approach 3 -
100000 Rounds of A*

Repair Training
78841 26744 1.012

Shelf with
Boxes

Control Roadmap 64832 4096 0.6046
A* Repair Approach 1 64832 16015 0.7939
A* Repair Approach 2 64832 16011 0.8665

A* Repair Approach 3 -
5 Rounds of APSP

Training
64832 16011 0.7166

A* Repair Approach 3 -
15 Rounds of APSP

Training
64832 16012 0.6185

A* Repair Approach 3 -
10000 Rounds of A*

Repair Training
64832 16011 0.7513

A* Repair Approach 3 -
50000 Rounds of A*

Repair Training
64832 16010 0.6775

A* Repair Approach 3 -
100000 Rounds of A*

Repair Training
64832 16008 0.6457

Table 4.12: A* Repair obstacle avoidance data for 500 node roadmaps. The Control
Roadmap results are identical to the APSP Training Control Roadmap results.

100

Figure 4-14: A* Repair obstacle avoidance graphs. For each roadmap, the number
of cases that have a valid roadmap seed is shown in green and the average duration
for a roadmap query is shown in blue. See the Appendix for for a breakdown of the
graphs by obstacle. 101

4.4 Performance Comparison for Different Incremen-

tal Execution Implementations

There are two goals for the analysis of the incremental search algorithms implemented

for the RoadmapManager. The first is to compare the performance of Adapted D* Lite

and A* Repair 1. The second goal is to examine how each algorithm implementation

benefits from interleaving replanning and trajectory execution. As a reminder this

occurs when the previously found plan becomes invalid. At that point, if the next

segment of the trajectory from the previous plan is still valid, the segment is sent

to the robot controller for execution while replanning occurs. Effective Planning

time is the metric created to capture the benefit gained by interleaving replanning

and trajectory execution. It is defined as the difference between the Replanning and

Execution Time metric and the Execution Time Only metric.

All tested algorithm implementations incorporate trajectory optimization, incre-

mental trajectory execution, and execution monitoring. The discrepancies in Solution

Found between the different algorithm implementations likely have a few causes. The

most apparent is indicated by the fact that, in general, solutions are found less often

by the overlapping implementations. The suspected cause is that executing the addi-

tional trajectory segment while replanning can cause the robot to move too close to

an obstacle to then connect to an existing roadmap node. This is supported by the

fact that TrajOpt covers the entire reachable workspace and therefore can move the

robot into positions that are not accessible by a given roadmap.

Figure 4-15 contains graphs highlighting the important metrics from Table 4.13,

namely Executed Path Length, Replanning and Execution Time, and Effective Plan-

ning Time. For all environments and roadmap sizes, the A* Repair implementation is

substantially faster than the Adapted D* Lite. While the paths produced by A* Re-

pair are on average shorter leading to shorter execution times, the difference is more

prominent in Effective Planning Time. This difference can likely be traced to how

both D* Lite and A* have been adapted to address the collision checking bottleneck

presented by the surrounding software system. A* Repair only checks roadmap edges

102

for collisions after they are returned as part of a full roadmap path, whereas Adapted

D* Lite identifies the roadmap edge in collision from the previous plan and then

checks all neighboring edges for collisions before replanning. Additionally, the small

size of the tested roadmaps likely results in a very short A* search, so the possible

benefit to be had from performing that search during execution is fairly minimal. For

both algorithms and roadmap sizes, Effective Planning Time is reduced by interleav-

ing replanning with execution, but the difference is much larger for Adapted D* Lite.

This result indicates that interleaving replanning and execution is a viable strategy

for a reactive motion planner. This is especially the case for the scenarios outlined in

the introduction because motion delay caused by replanning would be more heavily

penalized than sub-optimality in the executed trajectory.

103

Environment Roadmap and Algorithm
Description

Solution
Found

Executed
Path

Length
(rad)

Replanning
and

Execution
Time (s)

Execution
Time

Only (s)

Effective
Planning
Time (s)

Tabletop
with a
Pole

500 Node Roadmap with
Overlapping D* Lite 3497 6.827 10.164 5.396 4.768

500 Node Roadmap with
Serial D* Lite 3595 6.448 10.871 5.137 5.734

500 Node Roadmap with
Overlapping A* Repair 3390 6.447 7.346 5.064 2.282

500 Node Roadmap with
Serial A* Repair 3635 6.061 7.161 4.781 2.380

1000 Node Roadmap with
Overlapping D* Lite 3598 6.379 9.883 5.061 4.822

1000 Node Roadmap with
Serial D* Lite 3666 6.014 10.872 4.824 6.048

1000 Node Roadmap with
Overlapping A* Repair 3687 6.065 7.165 4.794 2.371

1000 Node Roadmap with
Serial A* Repair 3762 5.665 6.939 4.493 2.446

Tabletop
with a

Container

500 Node Roadmap with
Overlapping D* Lite 4068 6.963 10.138 5.439 4.699

500 Node Roadmap with
Serial D* Lite 4111 6.844 10.870 5.383 5.487

500 Node Roadmap with
Overlapping A* Repair 4131 6.619 7.431 5.148 2.283

500 Node Roadmap with
Serial A* Repair 4179 6.351 7.386 4.953 2.433

1000 Node Roadmap with
Overlapping D* Lite 3965 6.692 9.669 5.293 4.376

1000 Node Roadmap with
Serial D* Lite 4014 6.576 11.110 5.242 5.868

1000 Node Roadmap with
Overlapping A* Repair 4072 6.457 7.435 5.075 2.36

1000 Node Roadmap with
Serial A* Repair 4123 6.193 7.463 4.884 2.579

104

Environment Roadmap and Algorithm
Description

Solution
Found

Executed
Path

Length
(rad)

Replanning
and

Execution
Time (s)

Execution
Time

Only (s)

Effective
Planning
Time (s)

Kitchen

500 Node Roadmap with
Overlapping D* Lite 3945 6.407 12.217 5.012 7.205

500 Node Roadmap with
Serial D* Lite 4052 6.225 13.113 4.907 8.206

500 Node Roadmap with
Overlapping A* Repair 4096 6.249 7.919 4.871 3.048

500 Node Roadmap with
Serial A* Repair 4176 5.970 7.845 4.682 3.163

1000 Node Roadmap with
Overlapping D* Lite 3843 6.254 11.969 4.918 7.051

1000 Node Roadmap with
Serial D* Lite 3921 5.974 13.014 4.763 8.251

1000 Node Roadmap with
Overlapping A* Repair 4081 6.099 8.001 4.780 3.221

1000 Node Roadmap with
Serial A* Repair 4150 5.829 8.027 4.596 3.431

Shelf with
Boxes

500 Node Roadmap with
Overlapping D* Lite 3534 7.002 11.366 5.575 5.791

500 Node Roadmap with
Serial D* Lite 3547 6.923 12.533 5.556 6.977

500 Node Roadmap with
Overlapping A* Repair 3662 6.769 7.920 5.361 2.559

500 Node Roadmap with
Serial A* Repair 3694 6.582 8.037 5.229 2.808

1000 Node Roadmap with
Overlapping D* Lite 3566 6.747 10.877 5.398 5.479

1000 Node Roadmap with
Serial D* Lite 3513 6.624 12.180 5.339 6.841

1000 Node Roadmap with
Overlapping A* Repair 3778 6.514 7.891 5.177 2.714

1000 Node Roadmap with
Serial A* Repair 3808 6.357 8.059 5.066 2.993

Table 4.13: Performance comparison of two incremental algorithms with both over-
lapping and non-overlapping (serial) replanning and execution. Effective Planning
Time is the difference between the Replanning and Execution Time metric and the
Execution Time Only metric.

105

Figure 4-15: Performance comparison of two incremental algorithms with both over-
lapping and non-overlapping (serial) replanning and execution. One based around
D* Lite and the other based around A* Repair. Both heavily rely on lazy collision
checking and have the roadmap solutions provided to TrajOpt before execution.

106

Chapter 5

Discussion

5.1 Looking Forward

Roadmap-based motion planning and fast online search are both active areas of re-

search in the robotics community, so it should come as no surprise that there are

open questions remaining at the close of this research. The first question that must

be looked at is what are the limitations of this roadmap-based motion planner as it

stands in its current configuration. Over the course of the research presented here,

but particularly during the development of online search algorithms, collision check-

ing proved to be a bottleneck that had to be continually tip-toed around with lazy

collision checking. Collision checking is both the reason that looking up cached solu-

tions in a static environment is not near-instant, and it is likely the reason that the

adaptation of the more recent D* Lite incremental search algorithm is slower dur-

ing replanning than the more established A* heuristic search algorithm. Our group

currently has plans to address these limitations with a GPU-based collision checking

approach.

The question that follows is if this roadmap-based planner were equipped with

faster collision checking, how should the algorithmic approaches associated with the

planner be modified. The adaptations made to D* Lite for this planner were focused

around limiting collision checking with a lazy approach and incorporating trajectory

optimization. With faster collision checking, the first of these adaptations can be

107

(a) (b) (c)

Figure 5-2: Scenario illustrating the shortcomings of D* Lite when an obstacle is
detected near the goal. A collision-free path is shown for the static environment in
(a). In (b), an obstacle is detected near the goal and updates are required for seven
nodes in addition to the current state before computing a new shortest path. For
contrast, the obstacle in (c) is detected closer to the current state updates are only
required for two nodes in addition to the current state. Nodes that must be updated
are shown in orange and the edges are in yellow that provide the shortest path to the
goal for any one of these nodes.

replaced with the approach used by the standard implementation of D* Lite. However,

D* Lite was selected for these adaptations because its structure lends itself to limited

collision checking more than other state of the art search algorithms. In practice,

D* Lite does not perform well when changes to the search graph are close to the

current location of the robot, as is often the case with robot arms. Motion planning

in the context of robot arms also tends towards scenarios where the full state of the

environment can be observed, so changes to the roadmap can occur anywhere with

respect to the current state of the robot. D* Lite does not perform well when changes

occur near the goal configuration for a planning problem because these changes often

invalidate work done in previous search iterations. This leaves the question of whether

or not D* Lite is the right search algorithm for our problem scenarios.

Since the invention of D* Lite over 15 years ago, other researchers have investigated

alternative search strategies that have been demonstrated to improve upon the results

produced by D* Lite. Adaptive A*(AA*) was developed around 2006 [21]. AA* runs

A* and then starts executing the returned path. If the cost of the path increases

during execution, it updates all observable edge costs, and again performs A* search.

108

When constructing a path after finishing A* search, it maintains a dicitionary is

maintained mapping a node in the path to the next node in the path. This is the

revserse of the dictionary developed during A* search that maps each node to the

node it was expanded from during search. When increased edge costs are observed,

AA* removes the nodes from the next node dictioanry. After each iteration of a full

A* search, heuristic values are updated for all expanded nodes based off of the path

it found. Generalized Adaptive A* (GAA*) was developed around 2008 and builds

off AA* by adding extra methods to reestablish consistency in the heuristic values

for cases when edge costs decrease as well [21].

Multipath Adaptive A* (MPAA*) was developed around 2014 and is very similar

to the implementation of AA* [22]. The only difference is in the goal condition. In-

stead of just returning success if the state to be expanded is the goal state, MPAA*

will also return success if the state can be traced to the goal state through the dictio-

nary mapping a node to the next node in a previously found path. This allows the

search to terminate when it reaches a state that the goal state is known to be reach-

able from. Multipath Generalized Adaptive A* (MPGAA*) was developed around

2015 and makes the same ajustment to MPAA* that GAA* makes to AA* [23].

This adaptation requires slightly more from an implementation standpoint than the

adaptation for GAA* due to the modified goal condition.

These four algorithms require updating all states that have been affected by

changed edge costs within a visbility range along with establishing consistency in

the heuristic values that have been affected. This can require a substantial update

for a given environment change, which is the reason these algorithms were not im-

plemented for the research presented here. In fact, the the authors of MPAA* and

MPGAA* address how MPGAA* performance suffers when presented with extned

visibility ranges due to the number of heuristic updates required. That being said,

developments have been made as recently as 2017 to address this limitaion [24].

The implementation of A* Repair 1 has similarities to AA* in terms of handling

A* in an iterative nature. The main difference is AA* helps successive searches

by updating the heuristics for all nodes within a visibility range while A* Repair 1

109

only updates nodes that are perceived to be in a shortest path via a lazy collision

checking approach. As such, should not be difficult to modify A* Repair 1 to more

closely align with AA*. From there, the implementation could be further adapted to

resemble MPGAA*.

However, the problem scenarios addressed by this research use a full visibility

range, which could slow down an implementation of MPGAA* or its improved vari-

ants. The MPGAA* authors talk about this slowing down the algorithm because of

the time it takes to reestablish consistency in the heuristics, but for our system in

its current state, it would also require a lot of collision checking which would slow

down the implementation. The improved MPGAA* addresses the slowdown from

reestablishing consistency, and as mentioned earlier, a GPU-based collision checking

approach could address that system bottleneck. In summary, there is likely novel

research to be explored by combining improved MPGAA* with fast collision check-

ing of the full environment, but implementing any of the above algorithms without

fast collision-checking would yield results that are no better than what is currently

obtained with A* Repair 1.

Finally, our research group hopes to adapt the roadmap-based planner developed

here to be used for the Toyota Human Support Robot (HSR). The HSR presents a

unique challenge in that it has a robot arm on a moving base. This means environment

configurations are expected to change dramatically with respect to the base, and

therefore larger portions of the reachable workspace for the HSR can be expected

to move in and out of collision over the course of accomplishing a task-level plan.

It is possible that this can be addressed by constructing a roadmap for an empty

environment and then updating the roadmap with the lazy approach established in

A* Repair 1. Implementing a GPU-based collision checking approach could make

these lazy updates fast enough to satsify the requirements of the problem scenario. If

that is not the case, another possible solution is the implementation of a Probabilisitc

Roadmap for Changing Environments (PRMCE) developed around 2002 [10]. This

algorithm requires a workspace cell decomposition in order to perform all collision

checking in workspace. The innovation of PRMCE is an efficient mapping of the

110

workspace collision information back to the configuration-space roadmap. However,

this approach would still be dependent on fast collision checking, so the GPU-based

approach would likely be required regardless.

5.2 Revisiting the Problem Statement

The goal for this research was to develop a system that can plan and execution motions

for high-DOF robot arms in a reactive and intuitive manner. This motion planner

must coordinate with a task-level executive to accomplish tasks surrounding motion

planning problems in a changing environment. The motion planner must be reactive

so executed plans do not collide with a human or other moving obstacles, but also

so that the motion plans are still relevant to larger task-level plan when the motions

are executed. Additionally, the motion planner must be intuitive, which we define

as near-optimal, so humans or other agents can determine what the robot intends to

accomplish while it is executing a motion.

The sparse roadmap-based planner developed for this research demonstrated its

capability to rapidly produce collision-free seed trajectories in static environments.

The roadmap-based planner is able to achieve short planning times in large part due

to a precomputed cache of shortest path solutions. Roadmap seed trajectories are

provided to TrajOpt for trajectory optimization that leaves the resulting trajectory

near-optimal. To address changing environments, offline approaches were developed

to provide useful paths to the solution cache in addition to the all-pairs shortest

path solution set for the static environment. For environment configurations where

no collision-free solution exists in the cache, online search algorithms were developed

that build off the information stored in the cache to minimize repeating work during

online motion planning that has been performed offline. Finally, incremental search

algorithms were developed to provide fast replanning when a motion plan becomes

invalid during execution.

The combination of these developments for the roadmap-based planner with tra-

jectory optimization result in a motion planner that rapidly produces near-optimal,

111

collision-free trajectories for high-DOF robot arms in a significant majority of typ-

ical planning problems. By rapidly producing collision-free trajectories in changing

environments in coordination with a task-level executive, the motion planner demon-

strates itself to be reactive. By producing trajectories that are near-optimal with

respect to any objective function, the motion planner demonstrates itself to be intu-

itive. By satisfying the requirements of being reactive and intuitive, this roadmap-

based motion planner demonstrates itself to be capable of accomplishing motion-based

tasks in the context of human-robot collaboration.

112

Appendix A

Additional Figures, Tables, and

Graphs

113

(a) Tabletop with a Pole (b) Tabletop with a Container

(c) Kitchen (d) Shelf with Boxes

Figure A-2: Cup obstacle in its eight poses for each of the four environments

114

(a) Tabletop with a Pole (b) Tabletop with a Container

(c) Kitchen (d) Shelf with Boxes

Figure A-4: Thermos obstacle in its eight poses for each of the four environments

115

(a) Tabletop with a Pole (b) Tabletop with a Container

(c) Kitchen (d) Shelf with Boxes

Figure A-6: Monitor obstacle in its eight poses for each of the four environments

116

(a) Tabletop with a Pole (b) Tabletop with a Container

(c) Kitchen (d) Shelf with Boxes

Figure A-8: Bent Arm obstacle in its eight poses for each of the four environments

117

(a) Tabletop with a Pole (b) Tabletop with a Container

(c) Kitchen (d) Shelf with Boxes

Figure A-10: Straight Arm obstacle in its eight poses for each of the four environments

118

Figure A-11: Performance of solution caches developed with APSP Training in ob-
stacle insertion experiment with Cup obstacle for all four environments

119

Figure A-12: Performance of solution caches developed with APSP Training in ob-
stacle insertion experiment with Thermos obstacle for all four environments

120

Figure A-13: Performance of solution caches developed with APSP Training in ob-
stacle insertion experiment with Monitor obstacle for all four environments

121

Figure A-14: Performance of solution caches developed with APSP Training in ob-
stacle insertion experiment with Bent Arm obstacle for all four environments

122

Figure A-15: Performance of solution caches developed with APSP Training in ob-
stacle insertion experiment with Straight Arm obstacle for all four environments

123

Figure A-16: Performance of solution caches developed with APSP Training in ob-
stacle insertion experiment with Cup obstacle for all four environments

124

Figure A-17: Performance of solution caches developed with APSP Training in ob-
stacle insertion experiment with Thermos obstacle for all four environments

125

Figure A-18: Performance of solution caches developed with APSP Training in ob-
stacle insertion experiment with Monitor obstacle for all four environments

126

Figure A-19: Performance of solution caches developed with APSP Training in ob-
stacle insertion experiment with Bent Arm obstacle for all four environments

127

Figure A-20: Performance of solution caches developed with APSP Training in ob-
stacle insertion experiment with Straight Arm obstacle for all four environments

128

Bibliography

[1] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” The International Journal of Robotics Research, vol. 30, no. 7, pp.
846–894, 2011.

[2] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEEE
transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[3] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient opti-
mization techniques for efficient motion planning,” in Robotics and Automation,
2009. ICRA’09. IEEE International Conference on. IEEE, 2009, pp. 489–494.

[4] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M.
Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant hamiltonian opti-
mization for motion planning,” The International Journal of Robotics Research,
vol. 32, no. 9-10, pp. 1164–1193, 2013.

[5] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “Stomp:
Stochastic trajectory optimization for motion planning,” in Robotics and Au-
tomation (ICRA), 2011 IEEE International Conference on. IEEE, 2011, pp.
4569–4574.

[6] C. Park, J. Pan, and D. Manocha, “Itomp: Incremental trajectory optimization
for real-time replanning in dynamic environments.” in ICAPS, 2012.

[7] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Finding
locally optimal, collision-free trajectories with sequential convex optimization.”
in Robotics: science and systems, vol. 9, no. 1. Citeseer, 2013, pp. 1–10.

[8] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil,
K. Goldberg, and P. Abbeel, “Motion planning with sequential convex optimiza-
tion and convex collision checking,” The International Journal of Robotics Re-
search, vol. 33, no. 9, pp. 1251–1270, 2014.

[9] S. Dai, M. Orton, S. Schaffert, A. Hofmann, and B. Williams, “Improving tra-
jectory optimization using a roadmap framework.” International Conference on
Intelligent Robots and Systems, 2018.

129

[10] P. Leven and S. Hutchinson, “A framework for real-time path planning in chang-
ing environments,” International Journal of Robotics Research, vol. 21, no. 12,
pp. 999–1030, 2002.

[11] F. R. C. for Computer Science at the Karlsruhe Institute of Technology, “Gpu
voxels,” http://www.gpu-voxels.org/author/gpuvoxels/.

[12] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
Mathematik, vol. 1, pp. 269–271, 1959.

[13] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[14] S. Koenig and M. Likhachev, “D*lite,” in Eighteenth National Conference on
Artificial Intelligence. American Association for Artificial Intelligence, 2002,
pp. 476–483.

[15] A. Hofmann, E. Fernandez, J. Helbert, S. Smith, and B. Williams, “Reactive
integrated motion planning and execution.” AAAI Press/International Joint
Conferences on Artificial Intelligence, 2015.

[16] RethinkRobotics, “Baxter,” http://www.rethinkrobotics.com/baxter/.

[17] B. Technology, “The wam arm,” https://www.barrett.com/wam-arm/.

[18] S. J. Levine and B. C. Williams, “Concurrent plan recognition and execution
for human-robot teams,” International Conference on Automated Planning and
Scheduling, 2014.

[19] J. Y. Yen, “Finding the k shortest loopless paths in a network,” Management
Science, vol. 17, no. 11, pp. 712–716, 1971.

[20] K. Lab, “The open motion planning library,” https://ompl.kavrakilab.org/.

[21] X. Sun, S. Koenig, and W. Yeoh, “Generalized adaptive a*,” in Proceedings of
the 7th International Joint Conference on Autonomous Agents and Multiagent
Systems - Volume 1. International Foundation for Autonomous Agents and
Multiagent Systems, 2008, pp. 469–476.

[22] C. Hernandez, J. A. Baier, and R. J. A. Acha, “Making a* run faster than d*-lite
for path-planning in partially known terrain,” 2014.

[23] C. Hernandez, R. Asin, and J. Baier, “Reusing previously found a* paths for fast
goal-directed navigation in dynamic terrain,” 2015.

[24] ——, “Improving mpgaa* for extended visibility ranges,” 2017.

130

