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Abstract	
	
National	 Basketball	 Association	 (NBA)	 coaches	 spend	 a	 great	 deal	 of	 time	 analyzing	 the	
effectiveness	of	various	strategies.	Typically,	this	entails	countless	hours	pouring	over	videos	of	
games,	and	trying	to	derive	generalizable	conclusions	from	hundreds	of	thousands	of	examples.	
In	this	thesis,	we	present	a	methodology	for	quantitatively	approaching	this	task.	We	start	from	
player	tracking	data	that	records	the	position	on	the	court	of	each	player	25	times	per	second.	

We	use	an	unsupervised	machine	learning	pipeline	to	learn	a	low-dimensional	encoding	
for	 each	 player’s	 movement,	 over	 one	 possession	 on	 offense.	 Each	 encoding	 captures	 the	
semantics	of	a	single	player’s	movement,	such	as	locations	of	the	endpoints,	screen	actions,	court	
coverage,	and	other	spatial	features.	We	generate	3	million	such	trajectory-embeddings	from	3	
seasons	of	data.	These	can	be	clustered	to	reveal	trends	in	player	movement	between	sets	of	
games.	

Our	 framework	 can	 be	 used	 to	 answer	 such	 questions	 as	 “How	 did	 Klay	 Thompson’s	
movements	 change	 between	 wins	 and	 losses	 during	 the	 2016	 NBA	 Finals?”	 (18%	 of	 his	
trajectories	in	wins	were	movements	between	the	sidelines	and	corners,	compared	to	3.5%	in	
losses)	and	“How	much	more	frequently	did	Andre	Drummond	establish	position	on	the	right	
block	than	the	left	block	during	the	2015-2016	regular	season?”	(Almost	40%	of	his	trajectories	
from	2015-2016	were	right	of	the	basket,	compared	to	less	than	15%	to	the	left).		
	
Thesis	Supervisor:	John	Guttag	
Title:	Professor,	Electrical	Engineering	and	Computer	Science	

	 	



	 3	

Acknowledgments	
	
I	would	like	to	thank	my	thesis	advisor,	John	Guttag,	for	all	of	the	guidance	and	patience	over	the	
past	year	and	a	half.	
	
I	would	like	to	thank	my	lab	mate,	Joel	Brooks,	for	inspiring	me	to	believe	in	myself	and	put	forth	
my	best	effort.	
	
And	lastly,	I	would	like	to	thank	my	amazing	parents	and	sister	for	their	love	and	support.	

	 	



	 4	

	 	



	 5	

Table	of	Contents	
1.	INTRODUCTION	..............................................................................................................................	11	

1.1	MOTIVATION	.......................................................................................................................................	11	
1.2	PROBLEM	DESCRIPTION	.........................................................................................................................	11	
1.3	PROPOSED	SOLUTION	............................................................................................................................	12	
1.4	ORGANIZATION	OF	THESIS	......................................................................................................................	15	

2.	DATA	..............................................................................................................................................	16	
2.1	SPORTVU	DATA	...................................................................................................................................	16	
2.2	BASKETBALL-REFERENCE	DATA	...............................................................................................................	16	

3.	METHODOLOGY	..............................................................................................................................	17	
3.1	TRAJECTORY-IMAGES	.............................................................................................................................	17	
3.2	LEARNING	A	DENSE	REPRESENTATION	.......................................................................................................	19	
3.3	TRAJECTORY-EMBEDDINGS	.....................................................................................................................	23	
3.4	K-MEANS	CLUSTERING	..........................................................................................................................	23	

3.4.1	Choosing	K	................................................................................................................................	24	
3.4.2	Cluster	Descriptions	..................................................................................................................	25	
3.4.3	Defining	a	Cluster	Ordering	......................................................................................................	26	

3.5	SUMMARIZING	PLAYER	MOVEMENTS	WITH	CLUSTER-PROFILES	......................................................................	27	

4.	EXPERIMENTAL	RESULTS	................................................................................................................	29	
4.1	TRAJECTORY-EMBEDDING	EXPERIMENTS	...................................................................................................	30	

4.1.1	Evaluating	visual	similarity	of	nearby	trajectory-embeddings	..................................................	30	
4.1.3	Using	box-plots	to	analyze	cluster	variance	..............................................................................	34	
4.1.4	Trajectory-Images	of	embeddings	distant	from	their	cluster-mediod	......................................	35	

4.2	CLUSTER-PROFILE	EXPERIMENTS	..............................................................................................................	37	
4.2.1	Player	movement	homogeneity	................................................................................................	37	
4.2.2	Similarity	metric:	Hellinger	distance	.........................................................................................	39	
4.2.3	Cluster-profile	similarity	............................................................................................................	39	

5.	ANALYSIS	........................................................................................................................................	41	
5.1	CLUSTER-PROFILE	ANALYSIS	....................................................................................................................	41	

5.1.2	Cluster-profiles	for	each	listed	position	....................................................................................	43	
5.1.3	Trends	in	individual	cluster-profiles	throughout	the	game	.......................................................	45	
5.1.4	Trends	in	individual	cluster-profiles	throughout	the	season	.....................................................	49	

5.2	CASE	STUDIES	INTO	EFFECTS	OF	INJURES	AND	ROSTER/COACHING	CHANGES	ON	PLAYER	MOVEMENT	....................	50	
5.2.1	Paul	George’s	2014	injury	.........................................................................................................	50	
5.2.2	2014-2015	Cleveland	Cavaliers	.................................................................................................	51	
5.2.3	2014-2015	Golden	State	Warriors	............................................................................................	55	

5.3	CASE	STUDIES	INTO	CHANGES	IN	PLAYER	MOVEMENT	DURING	PLAYOFF	COMEBACKS	.........................................	60	
5.3.1	2016	Western	Conference	Finals:	Warriors	def.	Thunder	.........................................................	61	
5.3.2	2016	NBA	Finals:	Cavaliers	def.	Warriors	.................................................................................	63	

5.4	COMPARING	KOBE	BRYANT’S	MOVEMENTS	BETWEEN	HIS	LAST	SEASON	AND	FINAL	GAME	..................................	65	

6.	SUMMARY	AND	CONCLUSION	........................................................................................................	67	
6.1	SUMMARY	...........................................................................................................................................	67	
6.2	FUTURE	WORK	.....................................................................................................................................	68	

APPENDIX	...........................................................................................................................................	69	



	 6	

APPENDIX	A:	TRAJECTORY-IMAGES	NEAREST	TO	EACH	CLUSTER-MEAN	.................................................................	69	
APPENDIX	B:	CLUSTER-MEDIOD	DISTANCE	MATRIX	...........................................................................................	74	
APPENDIX	C:	TOP	100	PLAYERS	BY	NUMBER	OF	EXAMPLES	................................................................................	78	
APPENDIX	D:	EXAMPLE	CLUSTER-PROFILES,	SPLIT	BY	QUARTER	...........................................................................	83	

BIBLIOGRAPHY	...................................................................................................................................	85	
	



	 7	

List	of	Figures	
	
1.1	–	Five	trajectory-images	for	a	Warriors’	offensive	possession	during	the	2016	NBA	Finals	
1.2	–	The	central	trajectory-images	(mediods)	of	the	20	clusters	found	using	K-Means	
1.3	–	Carmelo	Anthony’s	cluster-profile	for	the	2013-2014	regular	season	
3.1	–	Trajectory-images	for	a	Warriors	offensive	possession	from	the	2016	NBA	finals	
3.2	–	Trajectory-images	for	a	Cavaliers	offensive	possession	from	the	2016	NBA	finals	
3.3	–	Basketball	court	with	dimensions	
3.4	–	Function	used	to	construct	trajectory-images	from	SportVU	time	series	data	
3.5	–	Pairs	of	trajectory-images	with	a	similar	Euclidean	distance	but	different	visual	similarity	
3.6	–	Examples	of	handwritten	digits	and	their	labels	from	the	MNIST	dataset		
3.7	–	Convolutional	autoencoder	architecture	
3.8	–	Four	trajectory-images	and	their	reconstructions	from	the	autoencoder	
3.9	–	Average	cluster	variance	(left)	and	its	slope	plot	(right)	
3.10	–	Cluster	mediods:	trajectory-image	of	the	nearest	embedding	to	each	cluster-mean	
3.11	–	Cluster-profiles	for	LeBron	James,	Stephen	Curry,	Andre	Drummond,	Anthony	Davis	
4.1	–	Example	trajectory-image	that	scored	a	10/10	in	our	evaluation	
4.2	–	Example	trajectory-image	that	scored	a	5/10	in	our	evaluation	
4.3	–	Nearby	embeddings	in	embedding-space	represent	movements	in	same	area	of	court	
4.4	–	Nearby	embeddings	of	shorter	movements	
4.5	-	Nearby	embeddings	of	longer	movements	
4.6	–	Boxplot	of	distances-from-cluster-mean	for	each	cluster	
4.7	–	Trajectory-image	of	each	cluster’s	50th-percentile-embedding	(median-embedding)	
4.8	–	Trajectory-image	of	each	cluster’s	75th-percentile	embedding	
5.1	–	Cluster-profile	of	all	players’	movements,	2013-2016	
5.2	–	Cluster-profile	for	each	listed	position	across	three	seasons	of	data	
5.3	–	Cluster-profile	of	all	player’s	movements,	separated	by	quarter	
5.4	–	Paul	George’s	cluster-profile	for	the	2013-2014	and	2015-2016	seasons	
5.5	–	LeBron	James’s	cluster-profiles	for	2013-2014,	2014-2015,	and	2015-2016	
5.6	–	Kyrie	Irving’s	cluster-profiles	for	2013-2014,	2014-2015,	and	2015-2016	
5.7	–	Kevin	Love’s	cluster-profiles	for	2013-2014,	2014-2015,	and	2015-2016	
5.8	–	Stephen	Curry’s	cluster-profiles	for	2013-2014,	2014-2015,	and	2015-2016	
5.9	–	Klay	Thompson’s	cluster-profiles	for	2013-2014,	2014-2015,	and	2015-2016	
5.10	–	Draymond	Green’s	cluster-profiles	for	2013-2014,	2014-2015,	and	2015-2016	
5.11	–	Cluster-profiles	for	Curry,	Thompson,	and	Green	for	the	2016	WCF	
5.12	–	Cluster-profiles	for	Westbrook,	Durant,	and	Ibaka	for	the	2016	Western	Conference	Finals	
5.13	–	Cluster-profiles	for	Curry,	Thompson,	and	Green	for	the	2016	Finals	
5.14	–	Cluster-profiles	for	Irving,	Love,	and	James	for	the	2016	Finals	
5.15	–	Kobe	Bryant’s	cluster-profile	for	his	final	game	and	the	rest	of	the	2015-2016	season	
	 	



	 8	

	 	



	 9	

List	of	Tables	
	
3.1	–	SportVU	time	series	data	for	part	of	a	Pacers’	possession,	2013-2014	
3.2	–	Cluster-mediod	descriptions	with	near-reflection	clusters	paired	together	
4.1	–	Top	10	players	across	the	2013,	2014,	2015	NBA	seasons	by	number	of	examples	
4.2	–	The	number	of	players	for	each	given	position	in	our	analysis	
4.3	–	Summary	of	cluster-mediod	distance	matrix	
4.4	–	Distance	between	cluster-mediods	of	symmetric	clusters	
4.5	–	10	player-seasons	with	highest	cluster-profile	homogeneity	
4.6	–	10	player-seasons	with	lowest	cluster-profile	homogeneity	
4.7	–	Average	cluster-profile-homogeneity	per	listed	position,	per	season	
4.8	–	Average	self-similarity	and	position-similarity-index	by	position	
5.1	–	Size	and	percentage	of	total	trajectories	in	each	cluster	
5.2	–	Size	and	percentage	of	total	trajectories	in	each	cluster	
5.3	–	Number	of	trajectory-images	per	quarter	in	our	dataset	
5.4	–	Ten	players	with	highest	cross-quarter-homogeneity	(most	homogenous	across	quarters)	
5.5	–	Ten	players	with	lowest	cross-quarter-homogeneity	(least	homogenous	across	quarters)	
5.6	–	Players	with	more	frequent	movements	along	sideline	in	the	4th	quarter	
5.7	–	Players	with	more	frequent	high-screens	in	the	4th	quarter	
5.8	–	Players	with	more	frequent	screen	actions	above	wings	in	the	4th	quarter	
5.9	–	James	per	36	minutes,	2013	to	2016	
5.10	–	Irving	per	36	minutes,	2013	to	2016	
5.11	–	Love	per	36	minutes,	2013	to	2016	
5.12	–	Curry	per	36	minutes,	2013	to	2016	
5.13	–	Thompson	per	36	minutes,	2013	to	2016	
5.14	–	Green	per	36	minutes,	2013	to	2016	
5.15	–	Number	of	trajectory-images	used	to	generate	Kobe	Bryant’s	cluster-profiles	
	 	



	 10	

	 	



	 11	

1.	Introduction	

1.1	Motivation	

Analytics	have	taken	an	increasingly	important	role	in	sports	over	the	past	decade.	Many	

sports	teams	went	from	employing	just	one	statistician	to	having	entire	analytics	departments.	

Startups	have	also	emerged	as	consultants	in	this	space,	attempting	to	help	teams	analyze	data	

in	 new	 and	 innovative	ways,	with	 the	 hope	 of	 improving	 player	 performance	 and	 ultimately	

leading	to	more	wins.	Although	analytics	may	not	have	the	final	say	in	a	team’s	decisions,	they	

are	“always	part	of	the	conversation	and	internal	debate”	when	front	offices	deliberate	on	how	

to	assemble	a	winning	roster,	according	to	Celtics	GM	Danny	Ainge	[1].	

NBA	teams	have	historically	relied	on	film	analysts	to	filter	through	videos	from	previous	

games.	In	2011,	SportVU	fundamentally	changed	the	way	that	basketball	can	be	analyzed.	STATS	

SportVU	utilizes	a	six-camera	system	installed	in	basketball	arenas	to	track	the	real-time	positions	

of	players	and	the	ball.	This	system	has	opened	the	door	for	a	whole	new	era	of	data	analysis	in	

basketball.	

1.2	Problem	Description	

Our	goal	was	to	develop	a	framework	to	quantitatively	examine	players’	movements	on	

offense,	where	a	movement	on	offense	describes	a	single	player’s	movement	over	the	course	of	

one	offensive	possession.	This	process	currently	entails	a	film	analyst	watching	hundreds	of	hours	

of	game	footage,	carefully	examining	each	possession	and	taking	notes	on	certain	plays.	When	a	

coach	wants	 to	 look	 at	 a	 new	play	 or	movement,	 the	 entire	 process	must	 be	 repeated.	 This	
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approach	is	neither	efficient	(it	takes	hundreds	of	hours)	nor	comprehensive	(film	analysts	don’t	

retrieve	all	examples	of	a	certain	movement).	

Some	 examples	 of	 the	 types	 of	 questions	 we	 want	 to	 be	 able	 to	 answer	 with	 our	

framework	are:	

• What	fraction	of	Russell	Westbrook’s	total	movements	from	the	2013-2014	season	

were	screen	actions	above	the	left	wing?	

• How	did	 Kevin	 Love’s	movements	 on	offense	 change	between	 the	 2013-2014	 and	

2014-2015	season,	when	he	went	from	being	the	#1	option	for	the	Timberwolves	to	

the	#3	option	on	the	Cavaliers?	

• Who	are	the	players	who	scored	from	the	left	block	most	frequently	during	the	2015	

playoffs?	

• Which	player	has	the	most	similar	patterns	of	movement	to	LeBron	James?	

1.3	Proposed	Solution	

Basketball	plays	evolve	as	the	offense	and	defense	read	and	react,	leading	to	a	variety	of	

possible	movements	on	offense.	However,	certain	types	of	players	tend	to	move	similarly	and	

occupy	the	same	court	positions	across	many	possessions.	For	example,	Pistons’	center	Andre	

Drummond	often	posts	up	on	the	right	block.	As	an	excellent	3-point	shooter,	Kyle	Korver	of	the	

Cleveland	Cavaliers	is	often	stationed	on	the	perimeter.	More	versatile	players	such	as	LeBron	

James	and	Stephen	Curry	have	a	number	of	different	patterns	of	movement	in	many	areas	on	

the	court.	

To	 approach	 the	 problem	 of	 quantitatively	 describing	 player	 movement,	 we	 first	

developed	a	way	to	build	an	image	to	capture	each	player’s	movement	on	offense.	Each	such	
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trajectory-image	 captures	 a	 single	 player’s	 movement	 on	 offense	 over	 the	 course	 of	 one	

possession.	 Figure	 1.1	 shows	 the	 five	 trajectory-images	 for	 the	 Warrior	 players	 for	 a	 single	

Warriors’	 possession	 during	 the	 2016	 NBA	 finals.	 These	 trajectory-images	 represent	 all	

movement	for	all	players	on	offense	for	a	single	possession,	not	just	when	a	player	has	the	ball.	

Figure	1.1	
Five	trajectory-images	for	a	Warriors’	offensive	possession	during	the	2016	NBA	Finals	

	

We	then	used	an	autoencoder	neural	network	to	learn	a	low-dimensional	encoding	for	

each	of	these	images.	We	ran	K-Means	clustering	on	the	full	set	of	encodings	to	identify	a	subset	

of	trajectory-images	that	are	representative	of	all	movements	on	offense	(Figure	1.2).	

Figure	1.2	
The	central	trajectory-images	(mediods)	of	the	20	clusters	found	using	K-Means	
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We	proceed	to	construct	cluster-profiles	for	each	player.	A	cluster-profile	summarizes	a	

player’s	movements	for	a	given	set	of	possessions.	Figure	1.3	shows	Carmelo	Anthony’s	cluster-

profile	 for	 the	 2013-2014	 season.	 Each	 column	 contains	 the	 fraction	 of	 Anthony’s	 total	

movements	that	follow	a	certain	pattern.	For	example,	clusters	5	and	6	–	movements	on	either	

side	of	the	paint	–	account	for	nearly	23%	of	Anthony’s	total	movements.	Clusters	13	and	14	–	

movements	along	either	sideline	to	the	3-point	corner,	account	for	 less	than	7%	of	Anthony’s	

total	movements.	 Cluster-profiles	 can	be	used	 to	 answer	 the	 types	 of	 questions	 proposed	 in	

Section	1.2,	and	much	more.	

Figure	1.3	
Carmelo	Anthony’s	cluster-profile	for	the	2013-2014	regular	season	
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1.4	Organization	of	Thesis	

The	remainder	of	this	thesis	 is	organized	as	follows.	Chapter	2	 introduces	the	SportVU	

and	Basketball-Reference	data.	Chapter	3	goes	through	our	methodology	in	full	detail.	Chapter	4	

presents	 our	 experimental	 results.	 Chapter	 5	 contains	 our	 analysis	 and	 demonstrates	 why	

cluster-profiles	 are	 a	 useful	 tool	 for	 analyzing	 player	movement.	 Chapter	 6	 concludes	with	 a	

summary	and	discussion	of	future	work.	
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2.	Data	

This	chapter	describes	the	data	we	were	provided,	and	the	techniques	we	used	to	filter	

possessions	and	build	trajectory-images	from	raw	time	series	data.	

2.1	SportVU	Data	

SportVU’s	six	cameras	in	each	NBA	arena	record	the	X	and	Y	coordinate	of	each	player	on	

the	court,	as	well	as	the	X,	Y,	and	Z	coordinates	of	the	ball.	These	positions	are	recorded	25	times	

a	second.	We	use	data	from	the	2013-2014,	2014-2015,	and	2015-2016	seasons.	

We	use	this	position	data	to	build	five	trajectory-images	for	each	possession	–	one	for	

each	player	on	offense.	This	process	is	described	further	in	Section	3.1.	We	recognize	that	there	

are	possessions	 (such	as	 fast	breaks)	 in	which	some	players	don’t	participate	 in	 the	play.	We	

therefore	skip	possessions	that	are	shorter	than	4	seconds	long	or	have	fewer	than	five	players	

(indicating	that	not	all	players	crossed	half	court).	

2.2	Basketball-Reference	Data	

Some	of	our	experimental	 results	 and	analysis	 takes	players’	 listed	positions	and	box-

score	 statistics	 into	 account.	 We	 got	 this	 data	 from	 Basketball-Reference.com,	 a	 website	

operated	by	Sports	Reference,	LLC.	
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3.	Methodology	

3.1	Trajectory-images	

We	 build	 five	 images	 for	 each	 possession	 using	 the	 raw	 player-tracking	 data	 from	

SportVU.	 Each	 trajectory-image	 captures	 one	 offensive	 player’s	movement	 in	 a	 64x64	 binary	

image.	Building	an	image	for	each	player-trajectory	gives	a	starting	point	for	comparing	player	

movements	across	many	different	possessions	[2].	Trajectory-images	allow	us	to	represent	any	

possession	in	a	common,	fixed-size	input	space.	Representing	possessions	as	images	also	allows	

us	 to	 take	 advantage	 of	 convolutional	 neural	 networks	 and	 other	 vision-based	 techniques.	

Trajectory-images	for	ten	players	(from	two	possessions)	are	shown	in	Figures	3.1	and	3.2.	

Figure	3.1	
Trajectory-images	for	a	Warriors	offensive	possession	from	the	2016	NBA	finals	

	
	
Figure	3.2	
Trajectory-images	for	a	Cavaliers	offensive	possession	from	the	2016	NBA	finals	
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Each	 player’s	 (X,	 Y)	 time	 series	 data	 for	 a	 given	 possession	 is	 pruned	 to	 include	 only	

coordinates	from	the	moment	that	all	players	on	offense	have	crossed	half	court.	Pruning	each	

player’s	time	series	ensures	that	all	trajectory-images	for	a	given	possession	capture	the	same	

period	of	time.	Table	3.1	shows	the	pruned	time	series	data	for	a	Pacers’	possession.	Figure	3.3	

displays	a	basketball	court	and	its	dimensions.	The	code	in	Figure	3.4	shows	how	each	trajectory-

image	is	constructed	from	the	time	series	data.	

Table	3.1	
SportVU	time	series	data	for	part	of	a	Pacers’	possession,	2013-2014	

	

	
Figure	3.3	
Basketball	court	with	dimensions	

	

Gameclock		(seconds)	 Player	 X	 Y	
715.34	 David	West	 58.64	 16.14	
715.34	 Roy	Hibbert	 75.86	 37.16	
715.34	 George	Hill	 47.75	 23.55	
715.34	 Paul	George	 71.53	 6.07	
715.34	 Lance	Stephenson	 69.02	 43.11	
715.30	 David	West	 59.09	 16.13	
715.30	 Roy	Hibbert	 75.34	 37.07	
715.30	 …	 …	 …	
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Figure	3.4	
Function	 used	 to	 construct	 trajectory-images	 from	 SportVU	 time	 series	 data.	 coord_to_pixel	
converts	a	(X,Y)	coordinate	on	a	94x50	full	court	to	the	corresponding	pixel	in	the	64x64	half	court		
trajectory-image	

	

3.2	Learning	a	dense	representation	

We	 constructed	 nearly	 3	million	 trajectory-images	 from	 three	 seasons	 of	 data	 (2013,	

2014,	 2015).	 Our	 goal	 is	 to	 find	 similar	 patterns	 of	 movement	 across	 all	 possessions,	 but	

comparing	 the	 images	 directly	may	 not	 be	meaningful.	 The	 Euclidean	 distance	 between	 two	

trajectories	that	represent	similar	movements,	separated	by	a	few	pixels,	will	be	the	same	as	the	

Euclidean	distance	between	two	trajectories	that	represent	vastly	different	movements.	Figure	

3.5	depicts	 two	pairs	of	 trajectory-images	 that	have	similar	Euclidean	distances,	although	 the	

second	 pair	 represents	 vastly	 different	 movements.	 The	 similarity	 in	 Euclidean	 distance	 is	

because	of	the	sparseness	of	each	trajectory-image.	

Figure	3.5	
Pairs	of	trajectory-images	that	have	a	similar	Euclidean	distance	but	different	visual	similarity	
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We	want	our	representation	for	each	movement	on	offense	to	support	operations	such	

as	nearest	neighbors.	The	Euclidean	distance	between	a	pair	of	 image-representations	should	

correlate	with	the	similarity	 in	the	 images’	movements.	We	want	an	encoding	for	each	image	

that	captures	the	semantics	of	what	occurred	during	the	possession.	

We	recognized	that	it	would	be	a	tedious	process	to	filter	through	these	images	and	label	

them	with	the	correct	information,	such	as	the	locations	of	screen	actions	and	sharp	turns,	the	

endpoints,	and	so	forth.	Even	developing	an	algorithm	to	extract	these	labels	would	be	difficult	

since	there	is	no	good	way	to	evaluate	its	accuracy	across	such	a	large	dataset.	We	therefore	turn	

to	unsupervised	learning	as	a	way	to	gain	new	insights	into	trajectory-images.	

Unsupervised	 learning	 has	 been	 used	 to	 compute	 low-dimensional,	 neighborhood	

preserving	embeddings	of	high	dimensional	data	[3].	Autoencoders	are	a	type	of	unsupervised	

learning	 that	 have	 emerged	 in	 recent	 years	 as	 an	 effective	way	 of	 learning	 low-dimensional	

encodings	 for	 high-dimensional	 input	 vectors	 [4].	 These	 low-dimensional	 encodings	 would	

facilitate	 operations	 such	 as	 nearest	 neighbors	 and	 clustering.	 An	 autoencoder	 architecture	

consists	of	a	series	of	encoder	layers	that	reduce	the	input	vector	to	a	low-dimensional	encoding,	

followed	by	a	series	of	decoder	layers	that	attempt	to	reconstruct	the	original	vector	from	the	

encoding.	

Convolution	and	pooling	layers	have	been	found	to	give	improved	results	when	training	

an	autoencoder	to	reconstruct	images	from	the	MNIST	dataset,	which	contains	binary	images	of	

handwritten	digits	[5].	Although	trajectory-images	are	substantially	different	than	handwritten	

digits,	they	do	share	certain	characteristics	that	encourage	us	to	pursue	a	similar	approach.	Figure	

3.6	shows	some	examples	from	the	MNIST	dataset.	
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An	MNIST	image	and	a	trajectory-image	are	both	binary	images	with	a	variety	of	curves,	

edges,	and	angles,	and	a	varying	number	of	endpoints.	Most	importantly,	MNIST	images	are	all	

different	 from	each	other,	with	 slight	 variations	 between	 two	 images	 of	 the	 same	digit.	 This	

variation	 is	 true	 of	 basketball	 movements	 as	 well;	 e.g.	 two	 trajectory-images	 that	 contain	 a	

movement	from	the	top	of	the	key	to	the	basket	will	have	pixels	in	slightly	different	locations.	

Figure	3.6	
Examples	of	handwritten	digits	and	their	labels	from	the	MNIST	dataset		

 
 
Figure	3.7 
Convolutional	autoencoder	architecture	
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Figure	3.7	displays	the	architecture	we	used	[6].	It	consists	of	a	series	of	convolution	and	

pooling	operations	that	reduce	the	input	64x64	trajectory-image	to	a	4x4x8	volume.	This	volume	

is	flattened	to	a	128-dimensional	array	and	connected	(with	a	fully-connected	layer)	to	the	32-

dimensional	 encoding.	 This	 encoding	 is	 connected	 to	 a	128-dimensional	 array,	 reshaped	 to	 a	

4x4x8	volume,	and	put	through	a	series	of	deconvolution	and	upsampling	operations	to	build	the	

reconstructed	trajectory-image.	Having	fully-connected	layers	in	the	middle	permits	the	network	

to	learn	patterns	from	different	parts	of	each	image,	in	addition	to	the	spatial	patterns	it	learns	

from	convolution	and	pooling	operations.	

We	trained	the	network	to	optimize	the	binary	cross	entropy	loss	between	the	original	

and	 reconstructed	 trajectory-images.	We	used	binary	cross	entropy	as	 the	 loss	 function	after	

empirically	finding	it	to	give	higher-quality	reconstructions	than	mean	squared	error.		

The	 network	 was	 trained	 for	 500	 epochs	 with	 a	 70/30	 split	 between	 training	 and	

validation	data,	and	achieved	its	lowest	validation	loss	of	0.0282	on	the	409th	epoch.	We	then	

recovered	 the	 32-dimensional	 encoding	 for	 each	 of	 the	 3	 million	 trajectory-images.	 These	

encodings	are	referred	to	as	trajectory-embeddings	for	the	rest	of	this	thesis.	Figure	3.8	displays	

four	trajectory-images	and	their	reconstructions	using	the	optimized	model.	

Learning	a	low-dimensional	encoding	for	each	trajectory-image	lets	the	network	abstract	

away	certain	details	about	each	movement	while	preserving	more	important	ones.	Although	the	

reconstructions	in	Figure	3.8	are	blurred,	they	still	capture	the	overall	movement	and	endpoints	

of	their	input	trajectory-images.	

	 	



	 23	

Figure	3.8	
Four	trajectory-images	and	their	reconstructions	from	the	autoencoder	

	

3.3	Trajectory-embeddings	

We	chose	to	use	a	32-dimensional	embedding	to	represent	each	trajectory-image.	This	

was	an	empirical	decision	based	on	the	fact	that	32	is	the	lowest	dimension	we	tested	that	gave	

reconstructions	that	resembled	the	 input	trajectory-images.	We	found	that	nearby	trajectory-

embeddings	 (by	 Euclidean	 distance)	 almost	 always	 encode	 visually	 similar	 trajectory-images.	

Even	 in	 instances	 where	 nearby	 trajectory-embeddings	 encode	 different	 movements,	 the	

movements	 tend	 to	 occupy	 the	 same	 area	 of	 the	 court.	 This	 result	 demonstrates	 that	 our	

autoencoder	network	did	a	good	 job	of	capturing	spatial	patterns	 in	 trajectory-images.	These	

experimental	results	are	discussed	in	more	detail	in	Section	4.1.1.	

3.4	K-Means	Clustering	

Running	a	clustering	algorithm	on	all	3	million	trajectory-embeddings	gives	us	a	way	to	

group	 together	 similar	 trajectory-images.	We	 can	 then	 look	 at	 the	original	 trajectory	of	 each	
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cluster’s	 central	 element	 (mediod)	 to	 get	 a	 sense	 of	 what	 kind	 of	 movement	 each	 cluster	

represents.	

3.4.1	Choosing	K	

We	used	K-Means	clustering	because	it	is	suitable	for	large	datasets	and	is	not	as	sensitive	

to	outliers	as	other	clustering	techniques.	To	choose	the	number	of	clusters,	we	ran	K-Means	for	

all	even	numbers	between	10	and	60,	and	looked	at	the	average-cluster-variance	for	each	run	of	

K-Means.	Given	each	trajectory-image	T,	its	embedding	E,	its	cluster	C,	and	its	cluster-mediod’s	

embedding	M,	the	average	cluster	variance	is	calculated	as	follows.	

variance T = [𝑛𝑜𝑟𝑚 E −M ]3	

in_cluster_variance(C) =
variance(𝑇)∀>∈@

#points	in	cluster	C
	

𝐚𝐯𝐞𝐫𝐚𝐠𝐞_𝐜𝐥𝐮𝐬𝐭𝐞𝐫_𝐯𝐚𝐫𝐢𝐚𝐧𝐜𝐞 =
𝐢𝐧_𝐜𝐥𝐮𝐬𝐭𝐞𝐫_𝐯𝐚𝐫𝐢𝐚𝐧𝐜𝐞(𝑪)∀𝑪

#𝐜𝐥𝐮𝐬𝐭𝐞𝐫𝐬
	

The	 plot	 and	 slope-plot	 for	 average	 cluster	 variance	 is	 in	 Figure	 3.9.	 The	 slope	 graph	

exhibits	an	“elbow”	between	K=20	and	K=30,	indicating	that	values	of	K	that	fall	in	this	range	are	

reasonable.	We	chose	K=20	as	it	is	the	smallest	value	of	K	in	this	“reasonable”	range.	

Figure	3.9	
Average	cluster	variance	(left)	and	its	slope	plot	(right)	
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3.4.2	Cluster	Descriptions	

We	 computed	 each	 cluster’s	 cluster-mean,	 and	 found	 the	 ten	 trajectory-embeddings	

nearest	 to	 this	 cluster	mean.	 The	 corresponding	 trajectory-images	 for	 these	 embeddings	 are	

given	in	Appendix	A.	The	nearest	embedding	to	each	cluster-mean	is	denoted	as	that	cluster’s	

cluster-mediod.	Each	cluster-mediod’s	trajectory-image	is	shown	in	Figure	3.10.	

Figure	3.10	
Cluster	mediods:	trajectory-image	of	the	nearest	embedding	to	each	cluster-mean	

	
	
We	looked	at	the	trajectory-images	of	the	ten	embeddings	nearest	to	each	cluster-mean,	

and	assigned	a	description	to	each	cluster.	Seven	pairs	of	clusters	contain	movements	that	are	

symmetrical	along	an	imaginary	line	that	connects	both	baskets.	For	example,	clusters	1	and	2	

are	movements	to	the	right/left	block	from	the	top	of	the	key.	Clusters	7	and	8	are	screen	actions	

above	the	right	and	left	wing.	
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Five	of	the	remaining	clusters	have	movements	that	are	inherently	stand-alone,	in	that	

they	equally	span	both	the	left	and	right	sides	of	the	halfcourt.	For	example,	cluster	15	is	a	run	

along	the	baseline	and	cluster	18	is	a	lateral	movement	in	the	high	post.	

Only	cluster	20	is	neither	stand-alone	nor	is	symmetric	to	another	cluster.	Table	3.2	has	a	

full	list	of	these	cluster-mediod	descriptions,	with	symmetric	clusters	paired	together.	

Table	3.2	
Cluster-mediod	descriptions	with	near-reflection	clusters	paired	together	
Cluster(s)	 Descriptions	
1,	2	 Movement	from	top	of	key	to	right/left	block	from	top	of	key	
3,	4	 Movement	from	top	of	key/above	wings	to	right/left	short	corner	
5,	6	 Movement	or	screen	action,	on	either	side	of	the	paint	
7,	8	 Screen	action	above	the	wings	
9,	10	 Movement	above	wings	
11,	12	 Movement	above	wings,	nearer	to	the	sideline	
13,	14	 Movement	along	each	sideline	to	corner	
15	 Run	along	baseline	
16	 Arc-like	movement	from	sideline	to	sideline	
17	 Screen	action	in	paint	
18	 Lateral	movement	in	high	post	
19	 Run	past	halfcourt,	screen	action	above	the	key	
20	 Movement	from	above	left	wing	to	right	block	
	
3.4.3	Defining	a	Cluster	Ordering	

We	order	the	clusters	based	on	their	court	positions,	cluster	symmetry,	and	observations	

from	the	cluster	mediods.	We	found	that	doing	so	gives	more	meaning	to	cluster-profiles	(Section	

3.5).	Clusters	1	 through	14	are	the	seven	pairs	of	symmetric	clusters.	The	movements	of	odd	

clusters	 (1,3,…,13)	 fall	 in	 the	 right	 half	 of	 the	 court,	 and	 movements	 of	 the	 even	 clusters	

(2,4,…,14)	fall	into	the	left	half	of	the	court.	The	clusters	are	also	sorted	by	court	position,	with	

clusters	 1	 and	 2	 having	 movements	 closest	 to	 the	 basket	 and	 clusters	 13	 and	 14	 having	

movements	 furthest	 from	 the	 basket.	 Clusters	 15	 through	 19	 have	 the	 five	 self-symmetric	
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clusters,	also	sorted	by	distance	from	the	basket.	Cluster	20	has	the	only	stand-alone	cluster	of	

movements.	

3.5	Summarizing	player	movements	with	cluster-profiles	

A	player’s	patterns	of	movement	over	the	course	of	many	games	can	be	summarized	with	

a	cluster-profile.	A	cluster-profile	is	a	20-dimensional	vector,	that	represents	how	frequently	a	

player’s	 trajectory-images	 over	 a	 given	 span	 of	 games	 fall	 into	 each	 of	 the	 20	 clusters	 from	

running	K-Means.	Each	element	of	a	cluster-profile	 for	a	player	 represents	 the	 fraction	of	his	

trajectories	that	fall	into	that	corresponding	cluster.		

𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑃, 𝑖 =
#𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠	𝑓𝑜𝑟	𝑝𝑙𝑎𝑦𝑒𝑟	𝑃	𝑖𝑛	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑖

#𝑡𝑜𝑡𝑎𝑙	𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠	𝑓𝑜𝑟	𝑝𝑙𝑎𝑦𝑒𝑟	𝑃
	

In	Figure	3.11,	we	show	the	cluster-profiles	for	four	players,	computed	across	all	regular	

season	games	played	in	the	2015-2016	season.	LeBron	James	(blue)	and	Stephen	Curry	(orange)	

have	 similar	 cluster-profiles,	 speaking	 to	 their	 versatility	 on	 offense.	 They	 are	 both	 strong	

passers,	 and	 capable	 of	 scoring	 on	 their	 own,	 from	 both	 inside	 and	 outside.	 This	 is	 in	 stark	

contrast	to	the	cluster-profile	of	Andre	Drummond	(gray),	who,	as	a	pure	center,	is	much	more	

limited	 in	the	types	of	movements	he	makes	on	offense.	The	cluster-profile	of	Anthony	Davis	

(yellow),	a	versatile	center,	is	also	given.	

LeBron	James	shoots	with	his	right	hand	but	is	naturally	left-handed.	His	cluster-profile	

reveals	that	more	of	his	movements	fall	into	the	left	half	of	the	court	(clusters	4,	6,	8)	than	in	the	

right	half	 (clusters	3,	5,	7).	The	opposite	 is	 true	 for	Andre	Drummond,	who	 is	naturally	 right-

handed	and	heavily	favors	the	right	side	of	the	court.	Drummond	has	more	than	twice	as	many	

movements	in	clusters	1,	3,	and	5	(right-half)	than	in	clusters	2,	4,	and	6	(left-half).	
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James	and	Curry	also	have	significantly	more	movements	in	clusters	9,	10,	11,	and	12	than	

Drummond	and	Davis.	These	clusters	all	contain	screen	actions	and	movements	above	the	wings,	

with	clusters	11	and	12	nearer	the	sidelines.	James	and	Curry	are	both	strong	passers	and	capable	

shooters,	and	often	engage	in	screen	actions	above	the	wings	to	create	mismatches.	Drummond	

and	Davis	do	more	of	 their	damage	 in	 the	paint,	with	a	 large	 fraction	of	 their	movements	 in	

clusters	17	and	18.	

Figure	3.11	
Cluster-profiles	for	LeBron	James,	Stephen	Curry,	Andre	Drummond,	Anthony	Davis	
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4.	Experimental	Results	

We	ran	a	 series	of	experiments	 to	determine	 the	utility	of	 trajectory-embeddings	and	

cluster-profiles.	We	ran	these	experiments	on	the	embeddings	and	cluster-profiles	of	the	100	

players	 with	 the	 most	 examples	 in	 our	 dataset	 –	 meaning	 they	 participated	 in	 the	 most	

possessions	greater	than	4	seconds	–	between	2013	and	2016.	Appendix	C	has	a	full	list	of	these	

players.	The	top	10	players	are	shown	in	Table	4.1.	Table	4.2	has	the	number	of	players	per	listed	

position.	

Table	4.1	
Top	10	players	across	the	2013,	2014,	2015	NBA	seasons	by	number	of	examples	(trajectory-
images)	
Player	 Position	 Number	of	

examples	
Damian	Lillard	 Point	guard	 13,477	
Monta	Ellis	 Shooting	guard	 13,441	
Gordon	Hayward	 Small	forward	 13,233	
Kyle	Lowry	 Point	guard	 13,039	
John	Wall	 Point	guard	 13,039	
James	Harden	 Shooting	guard	 12,797	
Joe	Johnson	 Shooting	guard	 12,780	
DeMar	DeRozan	 Shooting	guard	 12,715	
Trevor	Ariza	 Small	forward	 12,531	
Nicholas	Batum	 Small	forward	 12,433	
	
Table	4.2	
The	number	of	players	for	each	given	position	in	our	analysis.	
Position	 Number	of	players	

in	top	100	
Point	guard	(pg)	 23	
Shooting	guard	(sg)	 21	
Small	forward	(sf)	 23	
Power	forward	(pf)	 20	
Center	(c)	 13	
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4.1	Trajectory-embedding	experiments	

4.1.1	Evaluating	visual	similarity	of	nearby	trajectory-embeddings	

We	 designed	 an	 experiment	 to	 evaluate	 the	 visual	 similarity	 of	 nearby	 trajectory-

embeddings.	 For	 100	 randomly	 chosen	 trajectory-embeddings,	 we	 found	 the	 10	 nearest	

neighbors	in	embedding-space	and	retrieved	their	trajectory-images.	We	gave	each	trajectory-

embedding	a	score	between	0	and	10,	indicating	how	many	of	its	ten	nearby	embeddings	have	a	

visually	similar	trajectory-image.	We	define	two	trajectory-images	to	be	visually	similar	if	their	

movements	have	endpoints	in	similar	locations	on	the	court	and	span	a	similar	area	on	the	court.	

Figure	4.1	has	the	ten	nearest-neighbors	of	a	trajectory-image	that	scored	a	10/10.	Figure	4.2	has	

the	ten	nearest-neighbors	of	a	trajectory-image	that	did	not	fare	as	well,	scoring	a	5/10.	

Figure	4.1	
The	trajectory-image	in	the	first	row	is	visually	similar	to	its	10	nearest	neighbors	and	scored	a	
10/10	in	our	evaluation.	
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Figure	4.2	
The	trajectory-image	in	the	first	row	scored	a	5/10	in	our	evaluation.	It	is	visually	similar	to	its	1st,	
3rd,	5th,	9th,	and	10th	nearest	neighbors.	

	

The	average	score	for	the	100	randomly	chosen	trajectory-embeddings	was	9.1	(out	of	a	

possible	10),	demonstrating	that	nearby	embeddings	are	visually	similar.	A	few	observations	we	

made	from	this	experiment	are	that	nearby	trajectory-embeddings	that	are	not	visually	similar	

still	 contain	 movements	 in	 the	 same	 area	 of	 the	 court	 (Figure	 4.3),	 and	 that	 trajectory-

embeddings	of	shorter	movements	have	less	variation	in	their	nearest-neighbors	than	trajectory-

embeddings	of	longer	movements	(Figures	4.4,	4.5).	
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Figure	4.3	
Nearby	trajectory-embeddings	represent	movements	in	the	same	area	of	the	court.	Although	the	
trajectory-images	in	each	row	are	not	the	same	movement,	they	are	nearby	in	embedding-space	
as	they	contain	movements	in	the	same	area	of	the	court.	

	
	

Figure	4.4	
Images	2	to	6	are	the	five	nearest-trajectories	in	embedding-space	to	Image	1.	These	trajectories	
represent	shorter	movements	and	have	little	variation.	

	

	
Figure	4.5	
Images	2	to	6	are	the	five	nearest-trajectories	in	embedding-space	to	Image	1.	These	trajectories	
represent	longer	movements	and	have	more	variation	than	than	nearby-trajectories	of	shorter	
movements	(Figure	4.4).	

	

	 	



	 33	

4.1.2	Cluster	mediod	distance	matrix	

We	computed	the	Euclidean	distance	between	all	cluster-mediods,	and	normalized	the	

results	 so	 the	 distance	 between	 the	 furthest	 cluster-mediods	 is	 1.0.	 The	 full	 cluster-mediod	

distance	matrix	can	be	found	in	Appendix	B.	

Table	4.3	
Summary	of	cluster-mediod	distance	matrix	
Cluster	 Description	 Nearest	cluster	

(distance)	
Furthest	cluster	
(distance)	

1	 Movement	from	top	of	key	to	right	block	 3	(0.493)	 4	(0.936)	
2	 Movement	from	top	of	key	to	left	block	 19	(0.456)	 11	(0.873)	
3	 Movement	to	right	short	corner	 9	(0.427)	 4	(0.905)	
4	 Movement	to	left	short	corner	 8	(0.474)	 11	(0.947)	
5	 Movement	or	screen	action,	right	of	paint	 3	(0.441)	 10	(0.972)	
6	 Movement	or	screen	action,	left	of	paint	 17	(0.461)	 9	(0.849)	
7	 Screen	action	above	right	wing	 11	(0.493)	 20	(1.0)	
8	 Screen	action	above	left	wing	 12	(0.463)	 16	(0.918)	
9	 Movement	along	right	wing	 3	(0.427)	 4	(0.921)	
10	 Movement	along	left	wing	 2	(0.545)	 5	(0.972)	
11	 Movement	along	right	wing,	closer	to	sideline	 13	(0.434)	 4	(0.947)	
12	 Movement	along	left	wing,	closer	to	sideline	 14	(0.459)	 1	(0.903)	
13	 Run	along	right	sideline	to	corner	 11	(0.434)	 10	(0.899)	
14	 Run	along	left	sideline	to	corner	 12	(0.459)	 1	(0.807)	
15	 Run	along	baseline	 16	(0.479)	 10	(0.896)	
16	 Arc-like	movement	across	court	 15	(0.479)	 19	(0.924)	
17	 Screen	action	in	the	paint	 6	(0.461)	 11	(0.880)	
18	 Lateral	movement	in	high	post	 9	(0.532)	 15	(0.899)	
19	 Run	past	halfcourt,	screen	action	at	top	of	key	 2	(0.456)	 16	(0.924)	
20	 Movement	from	above	left	wing	to	right	block	 8	(0.594)	 7	(1.0)	

	
Table	4.3	summarizes	the	cluster-mediod	distance	matrix.	 It	has	a	description	for	each	

cluster	and	lists	each	cluster’s	nearest	and	further	cluster.	Nearby	clusters	have	movements	in	

similar	areas	of	the	court.	For	example,	clusters	4,	8,	and	12	all	have	movements	around	the	left	

wing.	Clusters	15	and	16	are	each	other’s	nearest-cluster	 and	have	arc-like	movements	 from	

sideline	to	sideline.	Distant	clusters	have	movements	in	different	areas	of	the	court.	Clusters	16	

and	 19	 are	 each	 other’s	 furthest-cluster,	 an	 observation	 supported	 by	 their	 descriptions	 and	
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mediod-trajectories.	 Table	 4.4	 shows	 the	 distance	 between	 cluster-mediods	 of	 symmetric	

clusters.	We	observe	that	cluster	symmetry	has	little	effect	on	distance	between	mediods.	

Table	4.4	
Distance	between	cluster-mediods	of	symmetric	clusters	
Pair	of	
symmetric	
clusters	

Distance	between	
cluster-mediods	

1,	2	 .662	
3,	4	 .696	
5,	6	 .545	
7,	8	 .814	
9,	10	 .883	
11,	12	 .794	
13,	14	 .565	
	
4.1.3	Using	box-plots	to	analyze	cluster	variance	

We	 want	 to	 evaluate	 how	 tight	 each	 cluster	 is;	 i.e.	 the	 closeness	 of	 	 each	 cluster's	

trajectory-embeddings.	To	do	so,	we	computed	the	Euclidean	distance	between	each	embedding	

and	its	cluster’s	mediod-embedding,	and	normalized	the	results	so	that	the	furthest	such	distance	

is	1.0.	We	use	a	box	plot	(Figure	4.6)	to	visualize	the	results	for	each	cluster	and	conduct	further	

analysis.	

Most	pairs	of	symmetric	clusters	have	very	similar	boxplots.	The	only	exception	is	cluster	

9	and	cluster	10.	Clusters	13	and	14	are	the	tightest.	These	clusters	contain	movements	along	the	

sideline	to	the	3-point	corners.	Clusters	16	and	20	are	the	least-tight	clusters.	Cluster	16	has	arc-

like	movements	across	the	court	and	cluster	20	from	above	the	left	wing	to	the	right	block.	Both	

of	these	clusters	contain	movements	that	span	significantly	larger	areas	of	the	court	than	other	

clusters,	which	explains	the	larger	spread	in	their	boxplots.	
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Figure	4.6	
Boxplot	of	distances-from-cluster-mean	for	each	cluster	

	
	
4.1.4	Trajectory-Images	of	embeddings	distant	from	their	cluster-mediod	

The	 trajectory-images	 of	 the	 ten	 embeddings	 nearest	 to	 each	 cluster-mean	 closely	

resemble	reach	other	(Appendix	A).	However,	this	does	not	imply	that	all	movements	within	a	

cluster	look	similar	to	each	other.	Some	trajectories-images	of	embeddings	that	lie	further	away	

from	 the	 cluster-mean	 look	 significantly	different	 than	 the	 cluster-mediod’s	 trajectory-image,	

and	contain	patterns	of	movement	similar	to	those	in	other	clusters	as	well.	Figure	4.7	shows	the	

trajectory-image	 of	 each	 cluster’s	 50th-percentile	 embedding,	 and	 Figure	 4.8	 shows	 the	

trajectory-image	of	each	cluster’s	75th-percentile	embedding.	Despite	being	far	from	the	cluster-

mean,	these	trajectories	look	remarkably	similar	to	the	median-trajectories	(Figure	3.8),	and	are	

consistent	with	the	cluster-mediod	descriptions	(Table	3.2),	indicating	that	the	twenty	clusters	

do	an	excellent	job	of	capturing	a	diverse	and	comprehensive	set	of	player	movements.	
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Figure	4.7	
Trajectory-image	of	each	cluster’s	50th-percentile-embedding	(median-embedding)	

	
	
Figure	4.8	
Trajectory-image	of	each	cluster’s	75th-percentile	embedding	

	



	 37	

4.2	Cluster-profile	experiments	

A	player’s	cluster-profile	is	a	summary	of	his	aggregate	patterns	of	movement	over	the	

course	 of	 many	 games.	 We	 calculated	 three	 cluster-profiles	 for	 each	 of	 the	 100	 players	 in	

Appendix	C	–	one	per	each	season	of	data.	

4.2.1	Player	movement	homogeneity	

We	calculated	 the	 variance	of	 each	 cluster-profile	 to	 get	 a	measure	 of	 how	diverse	 a	

player’s	movements	are.	A	higher	variance	indicates	that	more	of	a	player’s	trajectory-images	

are	concentrated	in	a	few	clusters;	a	lower	variance	indicates	that	a	player	has	trajectory-images	

in	many	clusters.	

𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑝𝑟𝑜𝑓𝑖𝑙𝑒_ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦(𝑃) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑝𝑟𝑜𝑓𝑖𝑙𝑒[𝑃, 𝑖] 3

d_efghijkh

lmn

	

Cluster-profile-homogeneity	is	similar	to	variance.	The	differences	are	we	do	not	subtract	

the	mean	from	each	element	before	squaring,	and	we	do	not	divide	the	final	result	by	the	size	of	

the	set	(n_clusters).	This	results	in	the	maximum	possible	cluster-profile-homogeneity	being	1.0,	

which	would	occur	if	all	of	a	given	player’s	movements	fall	into	one	cluster.	

The	10	players	with	the	highest	and	lowest	cluster-profile-homogeneities	are	shown	in	

Tables	4.5	and	4.6.	Table	4.7	summarizes	the	average	cluster-profile-homogeneity	for	each	listed	

position,	across	all	three	seasons.	Centers	have	the	highest	average	cluster-profile-homogeneity,	

and	point	guards/small	forwards	have	the	lowest	average	cluster-profile-homogeneity.	
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Table	4.5	
10	player-seasons	with	highest	cluster-profile	homogeneity	

	

	
	
Table	4.6	
10	player-seasons	with	lowest	cluster-profile	homogeneity	
Player,	Season	 Listed	

Position	
Cluster-profile-
homogeneity	

Giannis	Antetokounpo,	2015	 sf	 0.054	
Tobias	Harris,	2015	 pf	 0.054	
Jeff	Green,	2015	 sf	 0.054	
Rudy	Gay,	2015	 sf	 0.056	
Rudy	Gay,	2014	 sf	 0.056	
Giannis	Antetokounpo,	2014	 sf	 0.056	
Matt	Barnes,	2015	 sf	 0.057	
LeBron	James,	2013	 sf	 0.057	
Dwyane	Wade,	2015	 sg	 0.057	
Kevin	Love,	2015	 pf	 0.057	
	
	
Table	4.7	
Average	cluster-profile-homogeneity	per	listed	position,	per	season	
	 Point	

guards	
Shooting	
guards	

Small	
forwards	

Power	
forwards	

Centers	 All	players	

2013	 0.081	 0.075	 0.074	 0.098	 0.122	 0.087	
2014	 0.079	 0.072	 0.076	 0.095	 0.119	 0.085	
2015	 0.079	 0.075	 0.073	 0.090	 0.116	 0.084	
All	seasons	 0.080	 0.074	 0.075	 0.095	 0.119	 0.085	

Player,	Season	 Listed	
Position	

Cluster-profile-
homogeneity	

Zach	Randolph,	2013	 pf	 0.166	
Zach	Randolph,	2014	 pf	 0.160	
Andre	Drummond,	2015	 c	 0.156	
Robin	Lopez,	2014	 c	 0.156	
Zach	Randolph,	2015	 pf	 0.152	
Robin	Lopez,	2013	 c	 0.150	
Roy	Hibbert,	2013	 c	 0.146	
Roy	Hibbert,	2014	 c	 0.140	
Marc	Gasol,	2014	 c	 0.140	
Robin	Lopez,	2015	 c	 0.136	
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4.2.2	Similarity	metric:	Hellinger	distance	

The	Hellinger	distance	 is	 the	probabilistic	analog	of	Euclidean	distance,	and	 is	used	 to	

measure	the	difference	between	two	probability	distributions.	Although	they	are	not	probability	

distributions,	cluster-profiles	do	have	the	property	that	their	elements	sum	to	1,	which	makes	

them	suitable	for	such	a	similarity	metric.	

𝐻𝑒𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝑃, 𝑄 =
1
2
∗ 𝑃 − 𝑄

3
	

4.2.3	Cluster-profile	similarity	

We	designed	an	experiment	to	evaluate	the	utility	of	cluster-profiles.	We	calculated	two	

values	 for	 each	 player:	 their	 self-similarity	 and	 their	 position-similarity-index.	 If	 players	 are	

significantly	more	similar	to	themselves	than	to	other	players	of	the	same	listed	position,	then	

this	would	indicate	that	cluster-profiles	have	some	underlying	meaning.	

For	each	player,	we	compute	the	Hellinger	distance	between	the	cluster-profiles	for	each	

pair	of	seasons,	i.e.	2013	and	2014,	2013	and	2015,	2014	and	2015.	A	player’s	self-similarity	is	

defined	as	follows.	

𝑠𝑒𝑙𝑓_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑃) = 1 −
𝐻𝑒𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑝𝑟𝑜𝑓𝑖𝑙𝑒>,tu, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑝𝑟𝑜𝑓𝑖𝑙𝑒>,t3

3
		

	𝑆1, 𝑆2 ∈ {2013, 2014, 2015}	

	 For	every	player,	we	also	compute	the	Hellinger	distance	between	his	cluster-profile	and	

all	cluster-profiles	for	players	of	the	same	listed	position.	The	average	of	these	values	is	a	player’s	

position-similarity-index.	 The	 maximum	 possible	 value	 for	 both	 self-similarity	 and	 position-

similarity-index	is	1.0.	
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𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑖𝑛𝑑𝑒𝑥(𝑃) = 1 −
𝐻𝑒𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑝𝑟𝑜𝑓𝑖𝑙𝑒>, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑝𝑟𝑜𝑓𝑖𝑙𝑒~
#𝑝𝑙𝑎𝑦𝑒𝑟𝑠	𝑜𝑓	𝑠𝑎𝑚𝑒	𝑙𝑖𝑠𝑡𝑒𝑑	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑎𝑠	𝑃

	

𝑄 ∈ {𝑎𝑙𝑙	𝑝𝑙𝑎𝑦𝑒𝑟𝑠	𝑜𝑓	𝑠𝑎𝑚𝑒	𝑙𝑖𝑠𝑡𝑒𝑑	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑎𝑠	𝑃}	

Table	4.8	summarizes	our	results	with	the	average	self-similarity	and	position-similarity-

index	for	each	listed	position.	The	full	table	of	self-similarity	and	position-similarity-index	values	

for	 all	 players	 is	 given	 in	 Appendix	 C.	 There	 are	 only	 two	 players,	 Jose	 Calderon	 and	 Lance	

Stephenson,	who	on	average	are	more	similar	to	other	players	of	the	same	listed	position,	than	

they	are	to	themselves.	Calderon	and	Stephenson	both	played	on	multiple	teams	between	2013	

and	 2016.	 This	 could	 be	 an	 influencing	 factor	 in	 their	 self-similarity	 being	 lower	 than	 their	

position-similarity-index.	

Table	4.8	
Average	self-similarity	and	position-similarity-index	by	position	
Position	 Average	self-

similarity	
Average	position-
similarity-index	

pg	 0.886	 0.829	
sg	 0.875	 0.792	
sf	 0.875	 0.777	
pf	 0.863	 0.730	
c	 0.880	 0.781	
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5.	Analysis	

5.1	Cluster-profile	Analysis	

A	cluster-profile	is	a	summary	of	a	set	of	trajectory-images,	and	is	not	restricted	to	one	

player	or	just	one	season	of	data.	In	section	3,	we	looked	at	cluster-profiles	for	player-seasons,	

where	each	cluster-profile	summarized	one	player’s	movements	over	the	course	of	one	season.	

In	this	section,	we	compute	and	analyze	cluster-profiles	for	varying	sets	of	players	over	different	

durations	of	time.	

In	section	5.1.1,	we	compute	the	cluster-profile	for	all	players’	movements	and	find	its	

nearest	neighbors	to	determine	the	average	NBA	players,	by	aggregate	movement.	 In	section	

5.1.2,	we	look	at	cluster-profiles	for	each	listed	position,	to	see	how	the	five	traditional	positions	

correlate	with	player	movement.	In	Section	5.1.3,	we	look	at	cluster-profiles	for	individual	players	

on	a	per-quarter	basis,	which	 reveals	 some	trends	 in	player	movements	over	 the	course	of	a	

game.	Section	5.1.4	examines	cluster-profiles	for	individual	players	on	a	per-month	basis	

5.1.1	The	most	average	NBA	players	by	movement	

	 Figure	5.1	 shows	 the	 cluster-profile	 for	 all	 players’	movements.	We	 computed	 this	 by	

dividing	the	number	of	embeddings	in	each	cluster	by	the	total	number	of	embeddings	(Table	

5.1).	Each	column	contains	the	fraction	of	total	trajectory-images	across	all	players	that	fall	into	

that	cluster.	This	distribution	of	trajectories	represents	the	aggregate	movement	of	the	entire	

league.	
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Figure	5.1	
Cluster-profile	of	all	players’	movements,	2013-2016	

	
	
Table	5.1	
Size	and	percentage	of	total	trajectories	in	each	cluster	
Cluster	 Size	 %Total	 	 Cluster	 Size	 %Total	
1	 163,763	 5.57	 11	 182,326	 6.20	
2	 163,144	 5.55	 12	 133,335	 4.54	
3	 133,380	 4.54	 13	 181,999	 6.19	
4	 127,343	 4.33	 14	 160,659	 5.47	
5	 184,306	 6.27	 15	 142,661	 4.85	
6	 174,157	 5.92	 16	 100,741	 3.43	
7	 145,582	 4.95	 17	 145,572	 4.95	
8	 148,071	 5.04	 18	 155,132	 5.28	
9	 133,601	 4.54	 19	 146,272	 4.98	
10	 115,411	 3.93	 20	 102,220	 3.48	

Total:	2,939,675	
	

Most	players	have	movements	distinctive	of	their	role	and	position	and	therefore	don’t	

have	 cluster	 distributions	 similar	 to	 the	 average	 cluster-profile.	 The	 ten	 player-seasons	 with	
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cluster-profiles	most	 similar	 to	 the	 cluster-profile	 in	 Figure	 5.1	 (using	Hellinger	 distance	 as	 a	

similarity	metric)	are	given	in	Table	5.2.	

Table	5.2	
Player-seasons	with	cluster-profiles	most	similar	to	the	average	cluster-profile	
Rank	 Player	 Similarity	 	 Rank	 Player	 Similarity	
1	 Giannis	

Antetokounmpo,	2015	
0.8866	 6	 LeBron	James,	2013	 0.856	

2	 Marvin	Williams,	2015	 0.8747	 7	 Rudy	Gay,	2015	 0.8540	
3	 Tobias	Harris,	2015	 0.8747	 8	 Matt	Barnes,	2015	 0.8537	
4	 Kevin	Love,	2015	 0.8677	 9	 Draymond	Green	 0.8518	
5	 Jeff	Green,	2015	 0.8614	 10	 Giannis	

Antetokounmpo,	2014	
0.8494	

	
5.1.2	Cluster-profiles	for	each	listed	position	

Figure	5.2	
Cluster-profile	for	each	listed	position	across	three	seasons	of	data	
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In	 this	 subsection,	we	 look	 at	 the	 aggregate	 cluster-profile	 for	 each	 listed	 position	 to	

investigate	whether	the	five	traditional	positions	are	a	good	indicator	of	player	movement.	Figure	

5.2	shows	the	aggregate	cluster-profile	for	each	listed	position.	

Clusters	1	and	2	contain	movements	to	the	right	and	left	block	from	the	top	of	the	key.	

These	clusters	make	up	around	11%	of	all	players’	movements	but	nearly	30%	of	the	movements	

for	centers	and	20%	for	power	forwards.	These	players	often	get	positioned	in	either	block	early	

in	possessions,	the	movement	captured	by	these	clusters.	

Clusters	5	and	6	make	up	12%	of	all	players’	movements,	but	over	20%	for	both	centers	

and	power	forwards.	These	clusters	contain	trajectories	of	movements	on	either	side	of	the	paint.	

Similar	to	clusters	1	and	2,	frontcourt	players	are	often	positioned	on	either	side	of	the	paint	(to	

set	screens	for	cutting	guards,	get	offensive	rebounds,	post	up,	etc.).	

Clusters	 7	 and	 8	 contain	 screen	 actions	 above	 the	 wings,	 usually	 executed	 by	 ball-

handlers.	The	cluster-profile	data	supports	this	observation,	as	these	clusters	only	account	for	

10%	of	total	movements	for	all	players,	but	over	20%	for	point	guards.	

Clusters	9,	10,	11,	and	12	contain	screen	actions	and	movements	above	the	wings,	with	

clusters	11	and	12	being	closer	to	the	sidelines.	These	movements	are	usually	executed	by	good	

ball-handlers	and	shooters.	Supporting	 this,	 these	clusters	account	 for	29%	of	movements	by	

point	guards,	28%	of	movements	by	shooting	guards,	and	35%	of	movements	by	small	forwards.	

8%	of	all	power	forwards’	movements	and	less	than	3%	of	centers’	movements	fall	 into	these	

clusters.	

Clusters	 13	 and	 14	 contain	 movements	 along	 the	 sidelines	 to	 each	 corner,	 usually	

executed	by	spot-up	shooters.	Point	guards	bring	the	ball	up	the	floor	and	run	plays	to	pass	it	to	
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one	of	these	spots.	These	clusters	account	for	almost	20%	of	movements	by	shooting	guards	and	

small	forwards,	compared	to	just	under	11%	of	total	movements.	These	clusters	account	for	less	

than	5%	of	movements	by	point	guards.	

Cluster	17	has	movements	indicative	of	screen	action	in	the	paint,	spanning	from	the	high	

post	to	the	restricted	area.	A	big	man	usually	sets	a	pick	in	this	area	and	rolls	to	the	basket.	This	

observation	 is	 supported	 by	 the	 corresponding	 cluster-profile	 for	 centers	 (12%	 of	 their	

movements)	 and	 power	 forwards	 (9%	 of	 their	 movements).	 Cluster	 18	 has	 short,	 lateral	

movements	 in	 the	high	post.	 It	accounts	 for	around	10%	of	movements	 for	both	centers	and	

power	forwards,	players	who	set	high-screens	in	that	area.	Cluster	17	and	cluster	18	each	account	

for	5%	of	total	movements	across	all	players.	

5.1.3	Trends	in	individual	cluster-profiles	throughout	the	game	

We	looked	at	a	quarter-by-quarter	breakdown	of	each	player’s	cluster-profile,	with	the	

hope	of	gaining	insight	into	how	player	movements	evolve	over	the	course	of	a	game.	Figure	5.3	

shows	the	average	cluster-profile	for	all	players,	broken	down	by	quarter.	There	is	little	variation	

between	quarters	in	the	average	cluster-profile,	implying	that	any	variation	that	does	occur	in	an	

specific	 player’s	 cluster-profile	 could	 be	 significant.	 Table	 5.3	 has	 the	 number	 of	 trajectory-

images	in	our	dataset	for	each	quarter.	
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Figure	5.3	
Cluster-profile	of	all	player’s	movements,	separated	by	quarter	

	
	
Table	5.3	
Number	of	trajectory-images	per	quarter	in	our	dataset	
Quarter	 #Trajectory-images	
1	 702,640	
2	 689,935	
3	 690,005	
4	 673,515	
	

To	get	a	sense	of	how	similar	each	player’s	movements	are	across	the	game,	we	introduce	

a	metric	called	cross-quarter-homogeneity.	We	once	again	use	Hellinger	distance	as	the	similarity	

metric	between	two	profiles.	Table	5.4	reports	the	ten	players	with	the	highest	cross-quarter-

homogeneity,	and	Table	5.5	reports	the	ten	players	with	the	lowest	cross-quarter-homogeneity.	

The	per-quarter	cluster-profiles	for	the	players	in	bold	are	shown	in	Appendix	D.	
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𝐻𝑒𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝑄�, 𝑄� =
1
2
∗ 𝑄� − 𝑄� 3

	

𝐶𝑄𝐻 𝑃 = 𝐶𝑟𝑜𝑠𝑠_𝑄𝑢𝑎𝑟𝑡𝑒𝑟_𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦(𝑃) = 1 −
𝐻𝑒𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝑄l, 𝑄�l,�

6
	

𝑖, 𝑗 ∈ 1,2 , 1,3 , 1,4 , 2,3 , 2,4 , {3,4} 	

	
Table	5.4	
Ten	players	with	highest	cross-quarter-homogeneity	(most	homogenous	across	quarters)	
Rank	 Player	 CQH	 	 Rank	 Player	 CQH	
1	 Jeremy	Lin	 0.9512	 6	 Enes	Kanter	 0.9473	
2	 Ben	McLemore	 0.9509	 7	 Khris	Middleton	 0.9472	
3	 Chandler	Parsons	 0.9503	 8	 Robin	Lopez	 0.9471	
4	 Nicholas	Batum	 0.9493	 9	 Wesley	Matthews	 0.9460	
5	 Dion	Waiters	 0.9476	 10	 Nikola	Vucevic	 0.9454	
	
Table	5.5	
Ten	players	with	lowest	cross-quarter-homogeneity	(least	homogenous	across	quarters)	
Rank	 Player	 CQH	 	 Rank	 Player	 CQH	
1	 Taj	Gibson	 0.8867	 6	 Carmelo	Anthony	 0.9025	
2	 Harrison	Barnes	 0.8937	 7	 Dwyane	Wade	 0.9105	
3	 KC	Pope	 0.8990	 8	 Jonas	Valanciunas	 0.9146	 	
4	 LeBron	James	 0.9006	 9	 DeAndre	Jordan	 0.9146	
5	 Kevin	Durant	 0.9018	 10	 PJ	Tucker	 0.9163	
	

The	players	with	the	lowest	cross-quarter-homogeneity	values	have	the	most	variance	in	

these	cluster-profiles	between	quarters.	This	variance	tends	to	manifest	itself	in	a	few	clusters	

rather	than	across	the	entire	cluster-profile.	For	example,	Taj	Gibson’s	cluster	distribution	has	

over	an	8%	decrease	in	clusters	1	and	2	(movements	from	the	top	of	the	key	to	the	right/left	

block)	 between	 the	 first	 and	 fourth	 quarters,	 and	 a	 6%	 increase	 in	 cluster	 5.	 The	 remaining	

clusters	remain	relatively	steady	between	quarters.	

Many	good	shooters	have	a	significantly	higher	fraction	of	their	movements	for	clusters	

13	and	14	(running	along	either	sideline	to	the	corner)	in	the	4th	quarter	than	in	the	3rd	quarter,	
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indicating	that	 these	players	may	utilize	 their	shooting	prowess	more	 in	 late-game	situations.	

Table	5.6	shows	these	cluster-profile-values	for	a	few	players.	

Table	5.6	
- Columns	1,2,	4,	5	are	the	fraction	of	each	player’s	total	trajectory-images	in	clusters	13/14.	
- Columns	3,	6	are	the	%increase	in	a	player’s	movements	between	the	3rd	and	4th	quarters.	
- Columns	7,	8	are	the	number	of	total	trajectory-images	for	the	3rd	and	4th	quarters.	

	 1	 2	 3	 	 4	 5	 6	 	 7	 8	
Player	 Cluster	

13:	3rd	
quarter	

Cluster	
13:	4th	
quarter	

%	
increase	

	 Cluster	
14:	3rd	
quarter	

Cluster	
14:	4th	
quarter	

%	
increase	

	 nPoss:	
3rd	
quarter	

nPoss:	
4th	
quarter	

Trevor	
Ariza	

.135	 .168	 +24.4%	 	 .105	 .110	 +4.8%	 	 3,593	 2,596	

Klay	
Thompson	

.120	 .133	 +10.8%	 	 .094	 .130	 +38.3%	 	 3,322	 2,409	

Kyle	
Korver	

.071	 .081	 +14.1%	 	 .156	 .210	 +34.6%	 	 3,057	 2,533	

	
Cluster	19	contains	movements	of	players	running	past	halfcourt,	with	a	screen	action	at	

the	top	of	the	key.	Many	players	who	are	primary	ball-handlers	for	their	teams	have	a	significantly	

higher	fraction	of	their	movements	in	cluster	19	in	the	4th	quarter	than	in	the	3rd	quarter.	In	the	

fourth	quarter	of	close	games,	teams	tend	to	play	more	in	the	half-court	and	rely	on	these	ball-

handlers	to	create	plays	from	the	top	of	the	key.	Table	5.7	shows	the	cluster-profile-values	for	

cluster	19	for	a	few	players.	

Table	5.7	
- Columns	1,2	are	the	fraction	of	each	player’s	total	trajectory-images	in	cluster	19.	
- Column	3	is	the	%increase	in	a	player’s	movements	between	the	3rd	and	4th	quarters.	
- Columns	4,5	are	the	number	of	total	trajectory-images	for	the	3rd	and	4th	quarters.	
	 1	 2	 3	 	 4	 5	
Player	 Cluster	19:	

3rd	quarter	
Cluster	19:	
4th	quarter	

%	increase	 	 nPoss:	3rd	
quarter	

nPoss:	4th	
quarter	

James	Harden	 .143	 .160	 +11.9%	 	 3,947	 2,373	
LeBron	James	 .067	 .078	 +16.4%	 	 3,662	 2,361	
Damian	Lillard	 .115	 .139	 +20.9%	 	 3,834	 2,855	
John	Wall	 .131	 .162	 +23.7%	 	 4,	058	 2,580	
Victor	Oladipo	 .085	 .106	 +24.7%	 	 3,106	 2,662	
Goran	Dragic	 .069	 .091	 +31.9%	 	 3,396	 2,405	
Stephen	Curry	 .084	 .112	 +33.3%	 	 3,716	 2,055	
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Cluster	7	and	Cluster	8	contain	lateral	movements	and	screen	actions	above	either	wing.	

Point	guards	and	shooting	guards	have	a	significant	fraction	of	their	movements	in	these	clusters.	

These	players	can	either	make	a	play	with	the	ball	as	a	triple-threat	or	can	catch-and-shoot	after	

coming	off	a	screen.	Several	guards	have	a	higher	fraction	of	their	movements	for	these	clusters	

in	the	4th	quarter	than	in	the	3rd	quarter.	Table	5.8	shows	these	cluster-profile-values	for	a	few	

players.	

Table	5.8	
- Columns	1,2,4,5	are	the	fraction	of	each	player’s	total	trajectory-images	in	clusters	7/8	
- Columns	3,6	are	the	%increase	in	a	player’s	movements	between	the	3rd	and	4th	quarters.	
- Columns	7,8	are	the	number	of	total	trajectory-images	for	the	3rd	and	4th	quarters	

	 1	 2	 3	 	 4	 5	 6	 	 7	 8	
Player	 Cluster	

7:	3rd	
quarter	

Cluster	
7:	4th	
quarter	

%	
increase	

	 Cluster	
8:	3rd	
quarter	

Cluster	
8:	4th	
quarter	

%	
increase	

	 nPoss:	
3rd	
quarter	

nPoss:	
4th	
quarter	

JR	
Smith	

.077	 .082	 +6.49%	 	 .088	 .109	 +23.9%	 	 3,026	 2,159	

Mike	
Conley	

.097	 .107	 +10.3%	 	 .116	 .146	 +25.9%	 	 3,064	 2,113	

Stephen	
Curry	

.117	 .151	 +29.1%	 	 .104	 .117	 +12.5%	 	 3,716	 2,055	

Russell	
Westbrook	

.134	 .151	 +12.7%	 	 .113	 .158	 +39.8%	 	 2,706	 1,745	

	
5.1.4	Trends	in	individual	cluster-profiles	throughout	the	season	

We	computed	cluster-profiles	for	each	of	the	top	100	players	on	a	monthly	basis,	for	the	

months	November	through	March	(the	months	with	regular	season	basketball	from	start	to	end).	

We	did	not	find	any	general	trends	as	we	did	in	section	5.1.3.	A	single	player’s	movement	over	

the	course	of	a	season	is	influenced	by	many	factors	–	working	back	into	form	from	injury;	being	

asked	to	fill	in	different	roles	due	to	roster	and	coaching	personnel	changes,	and	so	on.	Because	

of	this,	it	is	difficult	to	find	general	trends	across	players	of	the	same	position	or	the	same	team,	
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and	to	pinpoint	any	one	factor	as	being	the	sole	reason	why	a	player’s	cluster-profile	differs	from	

month	to	month.	

5.2	Case	studies	into	effects	of	injures	and	roster/coaching	changes	on	player	movement	

In	this	section,	we	look	at	a	few	specific	cluster-profiles	to	study	the	effects	of	 injures,	

trades,	and	roster	changes	on	individual	players’	patterns	of	movement.	In	doing	so,	we	hope	to	

demonstrate	the	efficacy	of	cluster-profiles	as	an	effective	tool	for	analyzing	player	movement.	

5.2.1	Paul	George’s	2014	injury	

During	a	2014	off-season	scrimmage	with	the	US	national	basketball	team,	Paul	George	

landed	awkwardly	at	the	base	of	a	basket	stanchion	and	suffered	a	compound	fracture	of	both	

bones	in	his	lower	right	leg.	He	missed	most	of	the	2014-2015	season,	only	playing	six	games	and	

averaging	15	minutes.	He	made	a	full	recovery	for	the	2015-2016	season,	playing	in	81	games	

and	averaging	career	highs	in	points	and	assists.	Figure	5.4	shows	George’s	cluster-profile	for	the	

2013-2014	and	2015-2016	seasons.	

Figure	5.4	
Paul	George’s	cluster-profile	for	the	2013-2014	(pre-injury)	and	2015-2016	(post-injury)	seasons	

	

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fr
ac
tio

n	
of
	to

ta
l	t
ra
je
ct
or
ie
s	
in
	c
lu
st
er

Paul	George

2013-2014 2015-2016



	 51	

We	observe	that	Paul	George	made	significantly	more	plays	in	the	right	half	of	the	court	

during	the	2015-2016	season	than	the	2013-2014	season.	Aggregate	movement	in	the	right	half	

of	 the	 court	 –	 clusters	 1,	 3,	 5,	 7,	 9,	 11,	 and	 13	 –	 increased	 from	 16.5%	 to	 46.6%,	 whereas	

movements	in	the	left	half	of	the	court	–	clusters	2,	4,	6,	8,	10,	12,	and	14	–	decreased	from	54.1%	

to	31.0%.	

5.2.2	2014-2015	Cleveland	Cavaliers	

Following	LeBron	James’s	2014	decision	to	return	to	the	Cleveland	Cavaliers	after	a	four-

year	 stint	 with	 the	 Miami	 Heat,	 the	 Cavaliers	 underwent	 a	 roster	 and	 coaching	 personnel	

overhaul.	Anthony	Bennett	and	Andrew	Wiggins	(the	Cavaliers’	2014	draft	pick)	were	traded	for	

Kevin	 Love.	 Brendan	 Haywood,	 James	 Jones,	 Shawn	 Marion,	 Mike	 Miller,	 Timofey	 Mozgov,	

Kendrick	Perkins,	Iman	Shumpert,	and	JR	Smith	were	all	new	additions	through	free	agency	or	

trade.	

In	this	subsection,	we	look	at	the	cluster-profiles	of	the	Cavaliers’	All-Star	core	–	LeBron	

James,	Kyrie	 Irving,	Kevin	 Love	–	 for	 the	2013-2014,	2014-2015,	and	2015-2016	 seasons,	 and	

make	observations	on	significant	changes.	

The	Cavaliers	had	three	coaches	over	these	three	seasons.	They	fired	Mike	Brown	towards	

the	end	of	the	2013-2014	season	and	hired	Mike	Blatt.	Mike	Blatt	was	fired	midway	through	the	

2015-2016	season	and	replaced	by	Tyronn	Lue,	who	was	the	Cavaliers’	associate	head	coach	from	

the	start	of	the	2014-2015	season.	

LeBron	James	is	one	of	the	greatest	scorers	and	playmakers	the	game	has	seen	and	has	

been	the	focal	point	of	his	team’s	offense	ever	since	he	entered	the	league,	often	singlehandedly	
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controlling	the	pace	and	flow	of	a	game.	His	cluster-profile	(Figure	5.5)	changed	the	least	amongst	

the	Cavaliers’	All-Star	core.	

Clusters	5	and	6	–	movements	on	either	side	of	the	paint	–	went	down	from	11.9%	to	

6.6%	of	LeBron’s	trajectory-images	between	his	 last	season	on	the	Heat	and	first	season	back	

with	the	Cavaliers.	James	played	the	power	forward	position	frequently	for	the	Miami	Heat	in	a	

small-ball	 lineup	 featuring	 Chris	 Bosh	 at	 center.	With	 a	 frontcourt	 featuring	 Kevin	 Love	 and	

Tristan	Thompson,	James	did	not	play	this	position	as	much	in	Cleveland.	

Figure	5.5	
LeBron	James’s	cluster-profiles	for	2013-2014,	2014-2015,	and	2015-2016	

	

Table	5.9	
James	per	36	minutes,	2013	to	2016	
	 PTS	 REB	 AST	 FG%	
2013-2014	 25.9	 6.6	 6.1	 .567	
2014-2015	 25.5	 6.0	 7.4	 .488	
2015-2016	 25.5	 7.5	 6.8	 .520	
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Clusters	7	and	8	–	screen	actions	above	either	wing	–	went	up	from	18.4%	to	25.7%	of	

James’	 total	 movements	 during	 his	 first	 season	 in	 Cleveland,	 then	 decreased	 to	 20.3%	 the	

following	season.	

Many	clusters	–	1,	2,	5,	6,	9,	12,	13,	14	–	experienced	a	small	decrease	or	increase	between	

2013-2014	 and	 2014-2015	 but	 returned	 to	 their	 previous	 value	 during	 2015-2016.	 Potential	

contributing	factors	to	this	phenomenon	are	1)	James	adjusted	his	game	more	during	his	first	

season	 in	Cleveland	as	he	 fit	 in	with	 co-stars	 Irving	and	Love,	 and	2)	Tyronn	Lue	adapted	his	

offense	more	to	LeBron’s	game	than	David	Blatt	did	the	previous	season.	

Figure	5.6	
Kyrie	Irving’s	cluster-profiles	for	2013-2014,	2014-2015,	and	2015-2016	

	
	
	
Table	5.10	
Irving	per	36	minutes,	2013	to	2016	
	 PTS	 REB	 AST	 FG%	
2013-2014	 21.3	 3.7	 6.2	 .430	
2014-2015	 21.5	 3.1	 5.1	 .468	
2015-2016	 22.5	 3.4	 5.4	 .448	
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Apart	from	a	few	clusters,	Irving’s	cluster-profile	(Figure	5.6)	did	not	change	much	over	

these	three	seasons.	He	was	the	focal	point	of	the	Cavaliers’	offense	for	the	first	three	seasons	

of	his	career,	and	remained	a	primary	option	until	he	was	traded	in	2017.	

Clusters	7	and	8	–	movements	of	a	screen	action	above	either	wing	–	went	up	from	19.4%	

to	 24.7%	 of	 Irving’s	 movements	 between	 2013-2014	 and	 2014-2015.	 These	 clusters	 also	

increased	for	LeBron	James	and	Kevin	Love.	The	Cavaliers	 ran	more	screen	actions	above	the	

wings	once	they	acquired	two	All-Stars	who	are	both	proficient	shooters	and	passers.	

Figure	5.7	
Kevin	Love’s	cluster-profiles	for	2013-2014,	2014-2015,	and	2015-2016	

	

Table	5.11	
Love	per	36	minutes,	2013	to	2016	
	 PTS	 REB	 AST	 FG%	
2013-2014	 25.9	 12.4	 4.4	 .457	
2014-2015	 17.5	 10.4	 2.4	 .434	
2015-2016	 18.3	 11.3	 2.8	 .419	
	

Kevin	Love	was	the	focal	point	of	the	Timberwolves’	offense	from	2010	to	2014.	His	role	

with	 the	Cavaliers	changed	drastically	as	he	became	the	third	option	on	offense	after	LeBron	
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James	and	Kyrie	Irving.	This	manifests	itself	in	his	box-score	statistics	(Table	5.11)	as	well	as	his	

cluster-profile	(Figure	5.7).	

Love	liked	to	post	up	on	the	left	block	in	Minnesota,	a	place	he	did	not	occupy	as	much	in	

Cleveland.	Cluster	2	(run	to	the	left	block	from	the	top	of	the	key)	decreased	from	17.9%	to	9.4%	

of	Love’s	movements	during	his	first	season	in	Cleveland.	Cluster	6	(movement	left	of	the	paint)	

also	decreased	from	20.9%	to	13.3%	of	Love’s	movements	during	this	time	span.	

Clusters	9	through	12	are	perhaps	the	biggest	indicator	of	the	vastly	different	role	Love	

had	for	the	Cavaliers	than	he	did	for	the	Timberwolves.	Clusters	9	and	10	contain	movements	

along	either	wing;	 clusters	11	and	12	also	 contain	movements	along	 the	wings,	 closer	 to	 the	

sidelines.	 These	 four	 clusters	 accounted	 for	 just	 4.8%	of	 Love’s	 trajectory-images	 from	2013-

2014,	a	number	that	increased	to	14.0%	in	2014-2015	and	17.5%	in	2015-2016.	Clusters	13	and	

14	(movements	along	each	sideline	to	the	corner)	also	increased	from	1.5%	to	7.3%	during	this	

same	 time	 span.	 Love	 accepted	 a	 new	 role	 in	 the	 Cavaliers	 offense	 and	 became	more	 of	 a	

perimeter	player,	veering	away	from	his	favorite	spot	near	the	left	block.	

5.2.3	2014-2015	Golden	State	Warriors	

Mark	Jackson	coached	the	2013-2014	Golden	State	Warriors	to	a	51-31	record.	However,	

after	losing	in	the	first	round	to	the	Los	Angeles	Clippers,	Jackson	was	fired	and	replaced	with	

Steve	Kerr.	Kerr	ran	a	fast,	 free-flowing	offense,	taking	advantage	of	Draymond	Green’s	court	

vision	and	Steph	Curry’s	and	Klay	Thompson’s	shooting	range,	which	extends	back	to	30	feet.	He	

led	the	Warriors	to	a	65-17	record	and	an	NBA	championship	in	his	first	season	as	head	coach.	

The	Warriors	won	an	NBA-record	73	games	in	2015-2016,	but	lost	to	the	Cleveland	Cavaliers	in	a	

tightly	contested	7-game	NBA	finals.		In	this	subsection,	we	look	at	the	regular	season	cluster-
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profiles	of	the	Warriors’	All-Star	core	–	Stephen	Curry,	Klay	Thompson,	Draymond	Green	–	and	

make	observations	on	significant	differences.	

Stephen	Curry	won	back-to-back	league	MVP	(Most	Valuable	Player)	awards	during	Steve	

Kerr’s	 first	 two	 seasons	as	head	 coach.	His	 second	MVP	was	 the	 first	unanimous	 selection	 in	

league	history,	after	a	record-shattering	season	that	saw	Curry	make	over	400	3-pointers	and	

lead	the	league	in	many	statistical	categories	on	offense.	

Figure	5.8	
Stephen	Curry’s	cluster-profiles	for	2013-2014,	2014-2015,	and	2015-2016	

	

Figure	5.8	displays	Curry’s	 cluster-profile	 for	 the	 three	seasons	 in	our	analysis.	Curry’s	

movements	 in	cluster	19	 (high-screen	at	 the	top	of	 the	key)	more	than	halved	from	12.6%	 in	

2013-2014	 to	5.8%	 in	2014-2015,	as	Draymond	Green	picked	up	more	ball-handling	duties	 in	

Kerr’s	offense.	Curry	was	involved	in	more	off-the-ball	screens	and	movements	in	Kerr’s	offense.	

Cluster	16	(movement	along	the	baseline)	increased	from	4.2%	to	7.1%	during	2014-2015,	and	

remained	steady	the	next	season.	
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Table	5.12	
Curry	per	36	minutes,	2013	to	2016	
	 PTS	 REB	 AST	 FG%	
2013-2014	 23.7	 4.2	 8.4	 .471	
2014-2015	 26.2	 4.7	 8.5	 .487	
2015-2016	 31.7	 5.7	 7.0	 .504	
	

Klay	Thompson,	the	Warriors	second	All-Star	guard,	is	one	of	the	best	3-point	shooters	in	

NBA	history.	He	is	also	a	capable	defender,	often	picking	up	the	opposing	team’s	toughest	guard	

assignment.	His	points	per	36	minutes	increased	the	most	amongst	the	Warriors’	core,	as	Steve	

Kerr	 incorporated	 Thompson’s	 sharpshooting	 abilities	 in	 his	 offense.	 Figure	 5.9	 displays	

Thompson’s		cluster-profiles	for	2013	to	2016.	

Table	5.13	
Thompson	per	36	minutes,	2013	to	2016	
	 PTS	 REB	 AST	 FG%	
2013-2014	 18.7	 3.1	 2.3	 .444	
2014-2015	 24.5	 3.6	 3.3	 .463	
2015-2016	 23.9	 4.1	 2.2	 .470	
	

Clusters	13	and	14	–	movements	along	either	sideline	to	the	3-point	corners	–	accounted	

for	 over	 28%	 of	 Thompson’s	 trajectory-images	 in	 2013-2014.	 This	 number	 reduced	 to	 17.2%	

during	Kerr’s	first	season	as	coach.	Kerr	had	a	more	free-flowing	offense	and	employed	more	off-

ball	screens	and	movements	to	free	up	his	3-point	shooters.	This	is	also	supported	by	cluster	16	

–	an	arc-like	movement	between	sidelines	–	which	for	Thompson	increased	from	4.7%	to	nearly	

7%	during	Kerr’s	first	two	seasons.	
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Figure	5.9	
Klay	Thompson’s	cluster-profiles	for	2013-2014,	2014-2015,	and	2015-2016	

	

Thompson	was	involved	in	14.3%	more	screen	actions	and	movements	above	the	wings	

during	2014-2015	than	the	previous	season.	These	movements	are	captured	by	clusters	7	and	8	

(screen	actions	above	the	wings),	clusters	9	and	10	(movements	above	the	wings),	and	clusters	

11	and	12	(movements	above	the	wings,	closer	to	the	sidelines).	Kerr’s	decision	to	use	Thompson	

less	as	a	spot-up	shooter	and	more	as	an	off-ball	threat	 led	to	a	huge	boost	for	the	Warriors’	

offense.	

Draymond	Green	is	one	of	the	most	versatile	players	in	the	league.	He	can	pass	the	ball,	

set	screens,	and	fill	a	variety	of	other	roles	on	offense.	He	can	also	defend	all	five	positions	and	

was	the	league’s	Defensive	Player	of	the	Year	in	2017.	This	versatility	is	reflected	in	his	cluster-

profile	 (Figure	 5.10),	 with	 movements	 spread	 across	 many	 clusters	 rather	 than	 being	

concentrated	in	a	few.	This	resulted	in	many	clusters	increasing	or	decreasing	slightly	during	the	

three	seasons	in	our	analysis.	
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Figure	5.10	
Draymond	Green’s	cluster-profiles	for	2013-2014,	2014-2015,	and	2015-2016	

	

Table	5.14	
Green	per	36	minutes,	2013	to	2016	
	 PTS	 REB	 AST	 FG%	
2013-2014	 10.2	 8.2	 3.0	 .407	
2014-2015	 13.3	 9.4	 4.2	 .443	
2015-2016	 14.5	 9.9	 7.7	 .490	
	

Cluster	19	–	movements	of	a	high	screen	at	the	top	of	the	key	–	increased	from	9.7%	of	

Green’s	trajectory-images	in	2013-2014	to	17.7%	and	21.6%	during	Kerr’s	first	two	years	as	coach.	

Green	brought	the	ball	up	the	floor	more	frequently	in	Kerr’s	offense.	He	also	had	more	overall	

ball-handling	responsibilities,	which	is	reflected	in	his	assist	numbers	across	these	seasons	(Table	

5.14).	

Clusters	13	and	14	–	movements	along	the	sidelines	to	the	3-point	corners	–	decreased	

from	7.1%	of	Green’s	trajectory-images	in	2013-2014	to	3%	in	subsequent	seasons.	Green	is	not	

known	for	his	spot-up	or	catch-and-shoot	abilities.	
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5.3	Case	studies	into	changes	in	player	movement	during	playoff	comebacks	

This	section	examines	how	player	movement	changes	between	playoff	wins	and	playoff	

losses.	The	two	playoff	series	we	look	at	are	the	2016	Western	Conference	Finals	(Section	5.3.1)	

and	the	2016	NBA	Finals	(Section	5.3.2).	Both	series	featured	a	comeback	by	the	winning	team	

after	being	down	3	games	to	1.	The	Warriors	won	three	straight	games	(two	home	and	one	away)	

against	the	Thunder	to	advance	to	the	finals,	and	the	Cavaliers	also	won	three	straight	games	

(one	home	and	two	away)	against	the	Warriors	to	win	the	championship.	

For	each	series,	we	present	two	cluster-profiles,	 for	wins	and	 losses,	 for	the	top	three	

performers	 from	 each	 team.	 Figures	 5.11	 and	 5.12	 show	 these	 cluster-profiles	 for	 the	 2016	

Western	Conference	Finals.	Figures	5.13	and	5.14	show	these	cluster-profiles	for	the	2016	NBA	

Finals.	

We	notice	that	in	both	of	these	series,	Klay	Thompson	has	a	much	higher	fraction	of	his	

trajectories	in	clusters	13	and	14	(movements	along	the	sidelines	to	the	corners)	in	wins	than	in	

losses.	In	the	Western	Conference	Finals,	nearly	20%	of	his	trajectories	fell	into	these	clusters	in	

the	Warriors’	4	wins,	as	compared	to	only	4%	in	losses.	In	the	NBA	Finals,	18%	of	his	trajectories	

fell	into	these	clusters	in	the	Warriors’	3	wins,	as	compared	to	only	3.5%	in	losses.	

We	leave	any	further	observations	and	analysis	up	to	the	reader	and	refer	them	to	Figure	

3.7,	 which	 contains	 has	 each	 cluster-mediod’s	 trajectory-image	 and	 Table	 3.2,	 which	 has	

descriptions	for	each	cluster-mediod.	
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5.3.1	2016	Western	Conference	Finals:	Warriors	def.	Thunder	
Figure	5.11	
Cluster-profiles	for	Curry,	Thompson,	and	Green	for	the	2016	WCF;	separated	by	wins	and	losses	
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Figure	5.12	
Cluster-profiles	for	Westbrook,	Durant,	and	Ibaka	for	the	2016	WCF;	separated	by	wins	and	losses	
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5.3.2	2016	NBA	Finals:	Cavaliers	def.	Warriors	
Figure	5.13	
Cluster-profiles	for	Curry,	Thompson,	and	Green	for	the	2016	Finals;	separated	by	wins	and	losses	
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Figure	5.14	
Cluster-profiles	for	Irving,	Love,	and	James	for	the	2016	Finals;	separated	by	wins	and	losses	
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5.4	Comparing	Kobe	Bryant’s	movements	between	his	last	season	and	final	game	

Figure	5.15	
Kobe	Bryant’s	cluster-profile	for	his	final	game	(blue)	and	the	rest	of	the	2015-2016	season	(red)	

	
	
Table	5.15	
Number	of	trajectory-images	used	to	generate	each	cluster-profile	in	Figure	5.15	
Time	Period	 #	Trajectory-images	
Final	game	(April	13,	2016)	 63	
Rest	of	2015-2016	season	 2751	
	

Kobe	Bryant	is	considered	one	of	the	greatest	players	in	NBA	history.	He	played	his	entire	

20-season	career	for	the	Los	Angeles	Lakers,	winning	5	championships,	2	Finals	MVP	awards,	and	

one	regular	season	MVP	award.	After	rupturing	his	Achilles	tendon	in	a	game	against	the	Warriors	

on	April	13,	2013,	Bryant	struggled	through	the	next	two	seasons,	playing	only	41	out	of	a	possible	

164	games.	He	managed	to	play	66	games	during	2015-2016	after	announcing	in	November	2015	

that	he	would	retire	at	the	end	of	the	season.	
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In	this	section,	we	compare	Bryant’s	cluster-profile	for	his	final	game,	during	which	he	

scored	60	points	on	a	career-high	50	field	goal	attempts,	to	his	cluster-profile	for	the	rest	of	the	

2015-2016	 season.	 These	 cluster-profiles	 can	 be	 seen	 in	 Figure	 5.15.	 Table	 5.15	 shows	 the	

number	of	trajectory-images	used	to	generate	cluster-profiles	 for	these	games.	These	are	the	

number	of	possessions	involving	Bryant	that	were	longer	than	4	seconds	long.	

Clusters	5	and	6	–	movements	on	either	side	of	the	paint	–	accounted	for	nearly	20%	of	

Bryant’s	movements	during	the	2015-2016	season	but	only	6%	of	his	movements	for	his	 final	

game.	Cluster	19	 -	movements	of	a	high	screen	at	 the	top	of	 the	key	–	 increased	from	3%	of	

Bryant’s	movements	during	the	season	to	8%	of	his	movements	during	his	final	game.	Due	to	

nagging	injuries	and	tired	legs,	Bryant	was	forced	to	be	more	of	a	post-up	threat	in	his	last	season.	

These	clusters	suggest	that	he	abandoned	this	approach	during	his	final	game	to	be	a	primary	

ball-handler	and	perimeter	threat	one	last	time.	

Clusters	9	and	11	–	movements	above	the	left	wing	–	decreased	from	14.2%	of	Bryant’s	

movements	during	the	season	to	only	1.5%	of	his	movements	in	his	final	game.	Clusters	10	and	

12	–	movements	above	the	right	wing	–	went	up	from	6.3%	for	the	season	to	15.9%	for	Bryant’s	

final	game.	These	clusters	suggest	that	Bryant	played	above	the	left	wing	for	most	of	the	season	

but	played	above	the	right	wing	–	his	preferred	spot	–	during	his	final	game.	
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6.	Summary	and	Conclusion	

We	review	our	major	concepts	and	frameworks	section	6.1,	and	discuss	future	work	and	

conclude	in	section	6.2.	

6.1	Summary	

We	learn	a	low-dimensional	representation	of	a	single	player’s	movement	over	the	course	

of	one	possession	on	offense.	For	each	possession,	we	use	each	of	the	five	offensive	players’	raw	

time	series	(X,Y)	coordinates	to	build	a	trajectory-image	depicting	how	that	player	moved.	These	

images	 represent	 let	 us	 represent	 all	movements	 on	 offense	 in	 a	 common,	 fixed-sized	 input	

space.	We	construct	3	million	images	from	three	seasons	of	NBA	player	tracking	data.	

Comparing	these	images	to	find	similar	patterns	of	movement	still	remains	a	difficult	task,	

which	 motivates	 a	 deep	 learning	 solution.	 We	 put	 all	 3	 million	 trajectory-images	 through	 a	

convolutional	 neural	 network	 to	 learn	 a	 low-dimensional	 encoding	 for	 each	 image.	 Each	

trajectory-embedding	captures	the	spatial	patterns	in	a	trajectory-image,	such	as	the	start	and	

end	point,	screen	actions,	and	court	coverage.	Training	a	single	model	for	all	images	lets	us	learn	

a	low-dimensional	encoding	for	each	movement,	in	the	context	of	all	movements.	

We	then	run	K-Means	over	all	trajectory-embeddings	to	find	clusters	of	visually	similar	

movements.	 Our	 framework	 can	 be	 used	 to	 compare	movements	 across	 players	 and	 teams,	

analyze	changes	in	player	movement	over	time,	efficiently	search	a	database	of	possessions	for	

a	certain	type	of	movement,	and	so	forth.	
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6.2	Future	Work	

Understanding	Patterns	of	Movement	on	Defense	

This	 research	 has	 demonstrated	 that	 deep	 learning	 can	 be	 used	 to	 learn	 patterns	 of	

basketball	movement	on	offense.	We	are	very	interested	in	applying	the	same	methodology	to	

defensive	movements.	

Database	of	Basketball	Movements	

We	plan	on	using	trajectory-embeddings	to	build	a	database	of	basketball	movements	

that	 is	 easily	 scalable	 and	 efficient	 to	 search.	 The	 trajectory-embeddings	 can	 be	 used	 in	

conjunction	with	SportVU	event	data	and	Basketball	Reference	data	to	answer	many	types	of	

questions.	Some	examples	of	queries	we	envision	this	database	supporting	are:	

• Find	all	games	in	which	movements	to	the	basket	accounted	for	over	25%	of	LeBron	

James’s	trajectory-images	

• Find	all	possessions	 in	which	James	Harden	drove	to	the	basket	and	passed	 it	to	the	

right	corner	for	an	assist	

• Find	all	possessions	in	which	movements	are	most	similar	to	<set	of	1	to	5	trajectory-

images>	
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Appendix	
Appendix	A:	Trajectory-images	nearest	to	each	cluster-mean	
Ten	trajectory-images	nearest	to	each	cluster-mean.	
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Appendix	B:	Cluster-mediod	distance	matrix		
Cluster-mediod	distance	matrix.	Column	K	lists	the	Euclidean	distances	between	cluster	K’s	
mediod	and	the	remaining	clusters’	mediods.	The	nearest	cluster	is	highlighted	in	green	and	the	
furthest	cluster	in	red.	

 Cluster	1	 Cluster	2	 Cluster	3	 Cluster	4	 Cluster	5	
Cluster	1	 0.000	 0.662	 0.639	 0.712	 0.843	
Cluster	2	 0.662	 0.000	 0.697	 0.607	 0.899	
Cluster	3	 0.639	 0.697	 0.000	 0.696	 0.636	
Cluster	4	 0.712	 0.607	 0.696	 0.000	 0.644	
Cluster	5	 0.843	 0.899	 0.636	 0.644	 0.000	
Cluster	6	 0.781	 0.746	 0.574	 0.666	 0.545	
Cluster	7	 0.627	 0.757	 0.549	 0.690	 0.753	
Cluster	8	 0.815	 0.768	 0.741	 0.671	 0.677	
Cluster	9	 0.625	 0.707	 0.696	 0.673	 0.681	
Cluster	10	 0.804	 0.767	 0.782	 0.794	 0.881	
Cluster	11	 0.736	 0.645	 0.806	 0.672	 0.820	
Cluster	12	 0.905	 0.814	 0.798	 0.598	 0.655	
Cluster	13	 0.427	 0.621	 0.532	 0.777	 0.760	
Cluster	14	 0.493	 0.834	 0.578	 0.807	 0.799	
Cluster	15	 0.571	 0.663	 0.674	 0.727	 0.767	
Cluster	16	 0.650	 0.434	 0.744	 0.778	 0.936	
Cluster	17	 0.790	 0.715	 0.823	 0.459	 0.731	
Cluster	18	 0.790	 0.666	 0.650	 0.522	 0.690	
Cluster	19	 0.441	 0.575	 0.642	 0.734	 0.972	
Cluster	20	 0.739	 0.625	 0.889	 0.589	 0.896	

	      

Average	
distance	to	
other	clusters	

0.687	 0.695	 0.692	 0.675	 0.768	

Max	distance	to	
another	clusters	

0.905	 0.899	 0.889	 0.807	 0.972	

Min	distance	to	
another	cluster	

0.427	 0.434	 0.532	 0.459	 0.545	
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 Cluster	6	 Cluster	7	 Cluster	8	 Cluster	9	 Cluster	10	
Cluster	1	 0.781	 0.627	 0.815	 0.625	 0.804	
Cluster	2	 0.746	 0.757	 0.768	 0.707	 0.767	
Cluster	3	 0.574	 0.549	 0.741	 0.696	 0.782	
Cluster	4	 0.666	 0.690	 0.671	 0.673	 0.794	
Cluster	5	 0.545	 0.753	 0.677	 0.681	 0.881	
Cluster	6	 0.000	 0.577	 0.649	 0.456	 0.806	
Cluster	7	 0.577	 0.000	 0.814	 0.727	 0.735	
Cluster	8	 0.649	 0.814	 0.000	 0.636	 0.594	
Cluster	9	 0.456	 0.727	 0.636	 0.000	 0.883	
Cluster	10	 0.806	 0.735	 0.594	 0.883	 0.000	
Cluster	11	 0.821	 0.689	 0.918	 0.924	 0.798	
Cluster	12	 0.631	 0.750	 0.474	 0.770	 0.653	
Cluster	13	 0.711	 0.723	 0.804	 0.588	 0.898	
Cluster	14	 0.627	 0.537	 0.810	 0.543	 0.798	
Cluster	15	 0.753	 0.793	 0.841	 0.672	 1.000	
Cluster	16	 0.873	 0.880	 0.911	 0.837	 0.922	
Cluster	17	 0.801	 0.819	 0.463	 0.779	 0.663	
Cluster	18	 0.497	 0.461	 0.734	 0.748	 0.734	
Cluster	19	 0.867	 0.632	 0.855	 0.807	 0.658	
Cluster	20	 0.767	 0.596	 0.878	 0.823	 0.767	

	      

Average	
distance	to	
other	clusters	

0.692	 0.690	 0.740	 0.714	 0.786	

Max	distance	to	
another	clusters	

0.873	 0.880	 0.918	 0.924	 1.000	

Min	distance	to	
another	cluster	

0.456	 0.461	 0.463	 0.456	 0.594	
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 Cluster	11	 Cluster	12	 Cluster	13	 Cluster	14	 Cluster	15	
Cluster	1	 0.736	 0.905	 0.427	 0.493	 0.571	
Cluster	2	 0.645	 0.814	 0.621	 0.834	 0.663	
Cluster	3	 0.806	 0.798	 0.532	 0.578	 0.674	
Cluster	4	 0.672	 0.598	 0.777	 0.807	 0.727	
Cluster	5	 0.820	 0.655	 0.760	 0.799	 0.767	
Cluster	6	 0.821	 0.631	 0.711	 0.627	 0.753	
Cluster	7	 0.689	 0.750	 0.723	 0.537	 0.793	
Cluster	8	 0.918	 0.474	 0.804	 0.810	 0.841	
Cluster	9	 0.924	 0.770	 0.588	 0.543	 0.672	
Cluster	10	 0.798	 0.653	 0.898	 0.798	 1.000	
Cluster	11	 0.000	 0.794	 0.766	 0.893	 0.806	
Cluster	12	 0.794	 0.000	 0.921	 0.936	 0.903	
Cluster	13	 0.766	 0.921	 0.000	 0.565	 0.528	
Cluster	14	 0.893	 0.936	 0.565	 0.000	 0.783	
Cluster	15	 0.806	 0.903	 0.528	 0.783	 0.000	
Cluster	16	 0.683	 0.947	 0.555	 0.920	 0.493	
Cluster	17	 0.808	 0.477	 0.859	 0.903	 0.841	
Cluster	18	 0.621	 0.547	 0.849	 0.796	 0.809	
Cluster	19	 0.684	 0.935	 0.585	 0.610	 0.773	
Cluster	20	 0.479	 0.737	 0.862	 0.850	 0.895	

	      

Average	
distance	to	
other	clusters	

0.756	 0.750	 0.702	 0.741	 0.752	

Max	distance	to	
another	clusters	

0.924	 0.947	 0.921	 0.936	 1.000	

Min	distance	to	
another	cluster	

0.479	 0.474	 0.427	 0.493	 0.493	
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 Cluster	16	 Cluster	17	 Cluster	18	 Cluster	19	 Cluster	20	
Cluster	1	 0.650	 0.790	 0.790	 0.441	 0.739	
Cluster	2	 0.434	 0.715	 0.666	 0.575	 0.625	
Cluster	3	 0.744	 0.823	 0.650	 0.642	 0.889	
Cluster	4	 0.778	 0.459	 0.522	 0.734	 0.589	
Cluster	5	 0.936	 0.731	 0.690	 0.972	 0.896	
Cluster	6	 0.873	 0.801	 0.497	 0.867	 0.767	
Cluster	7	 0.880	 0.819	 0.461	 0.632	 0.596	
Cluster	8	 0.911	 0.463	 0.734	 0.855	 0.878	
Cluster	9	 0.837	 0.779	 0.748	 0.807	 0.823	
Cluster	10	 0.922	 0.663	 0.734	 0.658	 0.767	
Cluster	11	 0.683	 0.808	 0.621	 0.684	 0.479	
Cluster	12	 0.947	 0.477	 0.547	 0.935	 0.737	
Cluster	13	 0.555	 0.859	 0.849	 0.585	 0.862	
Cluster	14	 0.920	 0.903	 0.796	 0.610	 0.850	
Cluster	15	 0.493	 0.841	 0.809	 0.773	 0.895	
Cluster	16	 0.000	 0.871	 0.836	 0.678	 0.810	
Cluster	17	 0.871	 0.000	 0.697	 0.800	 0.724	
Cluster	18	 0.836	 0.697	 0.000	 0.792	 0.525	
Cluster	19	 0.678	 0.800	 0.792	 0.000	 0.669	
Cluster	20	 0.810	 0.724	 0.525	 0.669	 0.000	

	      

Average	
distance	to	
other	clusters	

0.777	 0.738	 0.682	 0.722	 0.743	

Max	distance	to	
another	clusters	

0.947	 0.903	 0.849	 0.972	 0.896	

Min	distance	to	
another	cluster	

0.434	 0.459	 0.461	 0.441	 0.479	
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Appendix	C:	Top	100	players	by	number	of	examples	
- Top	100	players	by	number	of	examples	in	our	dataset.	These	are	the	100	players	who	
appeared	in	the	most	possessions	>	4	seconds	long	between	2013	and	2016.	

- Players	separated	by	listed	position	and	sorted	by	self-similarity	and	position-similarity-index	
(Section	4.2.3)	

	
Point	Guards	
Player	 self-similarity	 position-similarity-index	
Tony	Parker	 0.944	 0.767	
Jeff	Teague	 0.923	 0.825	
John	Wall	 0.922	 0.837	
Damian	Lillard	 0.922	 0.839	
Mike	Conley	 0.918	 0.847	
Kyle	Lowry	 0.910	 0.840	
Kyrie	Irving	 0.904	 0.848	
Chris	Paul	 0.904	 0.819	
Deron	Williams	 0.897	 0.857	
Russell	Westbrook	 0.895	 0.811	
Michael	Carter-Williams	 0.892	 0.833	
George	Hill	 0.891	 0.840	
Stephen	Curry	 0.888	 0.834	
Kemba	Walker	 0.886	 0.834	
Isaiah	Thomas	 0.869	 0.824	
Mario	Chalmers	 0.868	 0.831	
Ty	Lawson	 0.868	 0.842	
Goran	Dragic	 0.865	 0.828	
Trey	Burke	 0.864	 0.840	
Brandon	Knight	 0.864	 0.847	
Jeremy	Lin	 0.848	 0.806	
Reggie	Jackson	 0.827	 0.809	
Jose	Calderon	 0.801	 0.804	
Average	 0.886	 0.829	
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Shooting	Guards	
Player	 self-similarity	 position-similarity-index	
Danny	Green	 0.935	 0.820	
Kyle	Korver	 0.919	 0.806	
Courtney	Lee	 0.919	 0.815	
James	Harden	 0.916	 0.665	
Joe	Johnson	 0.916	 0.824	
Bradley	Beal	 0.915	 0.822	
Ben	McLemore	 0.912	 0.795	
Avery	Bradley	 0.898	 0.790	
Dwyane	Wade	 0.893	 0.804	
Klay	Thompson	 0.885	 0.818	
Jimmy	Butler	 0.878	 0.789	
Dion	Waiters	 0.877	 0.819	
DeMar	DeRozan	 0.867	 0.808	
J.R.	Smith	 0.867	 0.817	
Monta	Ellis	 0.862	 0.763	
Evan	Turner	 0.852	 0.797	
Kentavious	Caldwell-Pope	 0.852	 0.777	
Arron	Afflalo	 0.834	 0.810	
Gerald	Henderson	 0.834	 0.782	
Victor	Oladipo	 0.822	 0.756	
Lance	Stephenson	 0.726	 0.747	
Average	 0.875	 0.792	
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Small	Forwards	
Player	 self-similarity	 position-similarity-index	
Terrence	Ross	 0.930	 0.749	
Kawhi	Leonard	 0.922	 0.803	
Chandler	Parsons	 0.918	 0.801	
LeBron	James	 0.916	 0.756	
Trevor	Ariza	 0.913	 0.805	
Rudy	Gay	 0.907	 0.802	
P.J.	Tucker	 0.904	 0.767	
Jeff	Green	 0.900	 0.825	
Wesley	Matthews	 0.891	 0.799	
Wesley	Johnson	 0.889	 0.802	
Khris	Middleton	 0.881	 0.816	
Gordon	Hayward	 0.878	 0.792	
Nicolas	Batum	 0.876	 0.793	
Corey	Brewer	 0.871	 0.767	
Carmelo	Anthony	 0.869	 0.718	
Harrison	Barnes	 0.866	 0.797	
Draymond	Green	 0.866	 0.616	
Luol	Deng	 0.855	 0.802	
Kevin	Durant	 0.850	 0.723	
Giannis	Antetokounmpo	 0.822	 0.803	
Matt	Barnes	 0.821	 0.796	
Marcus	Morris	 0.810	 0.782	
Paul	George	 0.768	 0.747	
Average	 0.875	 0.777	
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Power	Forwards	
Player	 self-similarity	 position-similarity-index	
Paul	Millsap	 0.936	 0.770	
Dirk	Nowitzki	 0.916	 0.738	
Greg	Monroe	 0.913	 0.743	
Zach	Randolph	 0.912	 0.662	
Amir	Johnson	 0.900	 0.776	
Derrick	Favors	 0.888	 0.736	
Kenneth	Faried	 0.879	 0.723	
Markieff	Morris	 0.878	 0.770	
Taj	Gibson	 0.874	 0.746	
Blake	Griffin	 0.871	 0.760	
David	West	 0.865	 0.734	
Thaddeus	Young	 0.863	 0.784	
Tristan	Thompson	 0.858	 0.735	
Tobias	Harris	 0.835	 0.608	
Patrick	Patterson	 0.829	 0.680	
Serge	Ibaka	 0.817	 0.749	
Anthony	Davis	 0.815	 0.754	
Kevin	Love	 0.808	 0.723	
Marvin	Williams	 0.806	 0.698	
LaMarcus	Aldridge	 0.786	 0.714	
Average	 0.863	 0.730	
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Centers	
Player	 self-similarity	 position-similarity-index	
Marc	Gasol	 0.939	 0.727	
Jonas	Valanciunas	 0.930	 0.817	
Marcin	Gortat	 0.928	 0.822	
Tim	Duncan	 0.923	 0.810	
Al	Horford	 0.902	 0.805	
DeAndre	Jordan	 0.899	 0.811	
DeMarcus	Cousins	 0.890	 0.719	
Nikola	Vucevic	 0.890	 0.815	
Pau	Gasol	 0.852	 0.779	
Roy	Hibbert	 0.847	 0.769	
Andre	Drummond	 0.842	 0.768	
Enes	Kanter	 0.810	 0.780	
Robin	Lopez	 0.782	 0.732	
Average	 0.880	 0.781	
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Appendix	D:	Example	cluster-profiles,	split	by	quarter	
Cluster-profiles	of	players	with	lowest	and	highest	cross-quarter-homogeneity	(Section	5.2.3)	
	
cross-quarter-homogeneity:	0.9509	(2nd	highest)	

	
	
cross-quarter-homogeneity:	0.9471	(8th	highest)	
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cross-quarter-homogeneity:	0.9018	(5th	lowest)	

	
	
cross-quarter-homogeneity:	0.9006	(7th	lowest)	
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