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Abstract

The task of producing a Voice Activity Detector (VAD) that is robust in the presence
of non-stationary background noise has been an active area of research for several
decades. Historically, many of the proposed VAD models have been highly heuristic
in nature. More recently, however, statistical models, including Deep Neural Networks
(DNNs) have been explored. In this thesis, I explore the use of a lightweight, deep,
recurrent neural architecture for VAD. I also explore a variant that is fully end-to-
end, learning features directly from raw waveform data. In obtaining data for these
models, I introduce a data augmentation methodology that allows for the artificial
generation of large amounts of noisy speech data from a clean speech source. I describe
how these neural models, once trained, can be deployed in a live environment with a
real-time audio stream. I find that while these models perform well in their closed-
domain testing environment, the live deployment scenario presents challenges related
to generalizability.
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Chapter 1

Introduction

A raw audio signal may contain a variety of audible sounds including human speech,

ambient noise (i.e. music, wind, rain), silence, and other non-speech sounds. For

Automatic Speech Recognition (ASR) and other speech-processing applications, the

underlying models are only meant to process audio that contains human speech. To

otherwise process non-speech audio can be costly from a computational or network

bandwidth perspective. In addition, the outputs from these models for non-speech

audio may not be interpretable or accurate. For example, a particular ASR system

may be engineered to make its “best guess” when transcribing raw audio. For noisy

environments like a kitchen, this ASR system may transcribe a string of arbitrary

noises as a valid English sentence.

To mitigate the problem of processing non-speech audio, it’s important to avoid

inputting audio that does not contain speech and vice versa. The problem of de-

tecting human speech in a raw audio signal is known as Voice Activity Detection

(VAD). VAD models are widely used as a precursor to downstream speech-processing

applications. These VAD models may serve as a gating mechanism, effectively filter-

ing out audio segments that do not contain speech. Alternatively, they may provide

segmentation information to the downstream application which may be used to drive

certain processes.

For many of the new speech-driven interfaces like Apple HomePod, Google Home,

or Amazon Echo, upstream filtering of raw audio is crucial. The powerful ASR
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systems that drive these applications may be too large and too complex to run on

one of these computationally-constrained devices. Thus, these ASR systems may

need to be run on an external server(s) with high-performance capabilities. To send

100% of the audio recorded from one of these devices would create massive load on

the external servers and the network. In addition, this would represent a significant

privacy concern. The solution is to run VAD and other audio-filtering techniques on

the device, allowing for the exclusive transmission of audio that is intended to be

processed.

1.1 Background

VAD can be considered a binary classification problem on time-series data. Finite-

length subsegments of audio, or frames, are either classified as containing speech or

non-speech. Typically, VAD models will accept some feature representation of the

raw audio as input. A feature representation, also known as a feature vector, is an

alternative representation of raw data that accentuates discriminatory information.

A mathematical representation of a VAD model is as follows:

f : 𝒳 → 𝒴 where 𝒳 ∈ R𝑚 and 𝒴 ∈ {0, 1}

where 𝑚 is the dimension of the feature vector. The values in the discrete domain

for 𝒴 are 0 for non-speech and 1 for speech.

Choosing the right feature vector can sometimes require a lot of thought and

creativity. The process of discovering useful features is called Feature Engineering.

Many features have been proposed for VAD models over the years, as discussed in

Section 1.2.

There are two major considerations when engineering a VAD model. The first is

accuracy: how well does the model perform at determining segments of audio that

contain speech? The second is computational efficiency: how long does it take for

the model to make a decision? The latency of a VAD model is important to consider

when the model is intended to be deployed alongside real-time speech-processing
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Figure 1-1: Spectrograms for a clean and noisy version of an identical utterance. This
example demonstrates how the spectral information of a speech signal is obfuscated
in the presence of ambient noise.

systems. An example would be a real-time transcription application that transcribes

what you say as you say it. There is a fundamental trade-off between accuracy and

computational efficiency. Larger, more complex models are generally more accurate

but also require more computation.

An alternative perspective on the VAD problem is based on the following decom-

position of raw audio samples into the sum of two components:

𝑥𝑡 = 𝑠𝑡 + 𝑛𝑡 (1.1)

where 𝑥𝑡 represents the raw audio, 𝑠𝑡 represents pure speech, and 𝑛𝑡 represents noise.

Examples of noise may include wind against the microphone, birds chirping, machines

humming, reverberations, loud impulse bursts or bangs, and an infinity of other non-

speech sounds. From this perspective, the fundamental goal of VAD is to determine

segments of audio in which 𝑠𝑡 is non-zero.

One general approach to VAD goes by the following intuition from Equation 1.1:

because we know 𝑥𝑡, if we hypothetically also knew 𝑛𝑡, then calculating 𝑠𝑡 would be

an easy problem. Alternatively, if we knew the energy of the noise, then we could

use the energy of the raw audio to determine when the speech signal was non-zero.

With this intuition, many early approaches to VAD focused on estimating the energy
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of noise (Rabiner and Sambur 1975; Lamel et al. 1981; Srinivasan and Gersho 1993;

Ramirez et al. 2004). In practice, it’s difficult to estimate this value because noise

conditions are often highly non-stationary and unpredictable.

While some VAD models focus on estimating the underlying noise conditions,

another option is to seek out characteristics in the audio that are unique to speech

(Ghaemmaghami et al. 2010; Shen et al. 1998; Chuangsuwanich and Glass 2011; Bach

et al. 2010). An example would be a VAD model that’s trained to look for harmonics

or other spectral characteristics indicative of sound generated from a human vocal

tract. This is difficult when background noise is particularly loud relative to the speech

signal (i.e. when the audio exhibits a low Signal-to-Noise Ratio (SNR)) because the

speech signal is obfuscated by the ambient noise. Figure 1-1 shows an example of

how intense background noise blurs a speech signal, especially in the higher frequency

bands.

A VAD model that is resilient to a variety of different noise conditions is considered

robust. The creation of robust VAD models has been an active area of research for

several decades.

1.2 Prior Work

Over the years there have been a wide variety of different approaches for VAD, all

with varying degrees of complexity. Many of the early methods aimed to differentiate

speech from background noise based on measurable audio characteristics. These char-

acteristics include short-time energy, zero-crossing rate, fluctuations in the long-term

spectral envelope, harmonicity, spectral entropy, modulation frequency, and many

others (Rabiner and Sambur 1975; Tanyer and Ozer 2000; Lamel et al. 1981; Srini-

vasan and Gersho 1993; Ramirez et al. 2004; Ghaemmaghami et al. 2010; Shen et al.

1998; Kristjansson et al. 2005; Chuangsuwanich and Glass 2011; Bach et al. 2010).

Many of the VAD algorithms that exploit these characteristics are not composed of

models trained on labeled data. Instead, they consist of hand-tuned heuristic param-

eters. More recently, statistical models for VAD have begun to take hold (Sohn et al.
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1999; Zhang et al. 2016; Bai et al. 2017; Hughes and Mierle 2013; Zazo et al. 2016).

One of the simplest approaches, dating back to 1975, uses discrepancies in short-

time energy to detect the boundaries of audio segments containing speech (Rabiner

and Sambur 1975). This method assumes that during the first 100ms of recording

there will be no speech, and that this interval will be indicative of future background

noise. This 100ms interval is measured so that energy thresholds can be set accord-

ingly. In addition to assuming stationary noise conditions a-priori, this method also

assumes that any audio segments with short-time energy higher than the energy of

the background noise must contain speech. It was shown to work well when the SNR

was 30dB or higher (Rabiner and Sambur 1975).

The algorithm used in (Rabiner and Sambur 1975) also employed the use of the

audio signal’s zero-crossing rate (ZCR). ZCR, defined as the rate at which an audio

signal fluctuates across the zero point1, is generally higher for unvoiced speech than

for voiced speech (Rabiner and Sambur 1975). This fact was used in (Rabiner and

Sambur 1975) to increase the accuracy of VAD by discovering low-energy fricatives.

(Tanyer and Ozer 2000) explored the use of ZCR under the assumption that ZCR is

higher for background noise than for regions of audio containing voiced speech.

A slightly more robust VAD technique that uses short-time energy is to dynam-

ically estimate the energy of the signal’s background noise. With an accurate es-

timation, the signal’s energy could be normalized by the energy of the background

noise to produce an estimate of SNR. If at anytime this SNR estimate exceeds some

threshold, the algorithm may be confident that the signal contains speech. Many

different algorithms have been developed to produce estimates of the energy of a sig-

nal’s background noise (Lamel et al. 1981; Srinivasan and Gersho 1993; Ramirez et al.

2004).

One method for estimating the energy of background noise, proposed in (Lamel

et al. 1981), is to measure the short-time energies over individual frames, and then

assume the background noise energy to be the peak of a smoothed histogram over the

values that lie in the lowest 10dB range. This method involves making a-posteriori

1Calculating ZCR only makes sense when the audio’s DC offset is removed.
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estimates due to the fact that it looks at the entire utterance before estimating the

background noise. Thus, this method is not meant for real-time VAD, but could

nonetheless be adapted for real-time via rolling window updates.

(Srinivasan and Gersho 1993) proposes two techniques for estimating the energy

of background noise based on non-speech pauses. One of these techniques, designed

to be robust amidst non-stationary “babel-noise,” employed the use of two separate

VADs. The first VAD was responsible for making final decisions based on adaptive

energy thresholds. The second VAD was responsible for recognizing periods of non-

speech so that the adaptive energy thresholds could be updated. The second VAD

determined periods of non-speech based on the assumptions that regions of speech

exhibited higher fluctuations in short-time energy than regions of non-speech.

Similar to the idea updating thresholds during periods of non-speech, Ramirez et

al. proposed a metric called long-term spectral divergence (LTSD) (Ramirez et al.

2004). LTSD represents the average ratio of the long-term spectral envelope (LTSE)

to the noise spectrum across frequency bands:

𝐿𝑇𝑆𝐸𝑁(𝑘, 𝑙) = max
−𝑁≤𝑗≤𝑁

{𝑋(𝑘, 𝑙 + 𝑗)}

𝐿𝑇𝑆𝐷 = 10 log10

(︃
1

𝑁𝐹𝐹𝑇

𝑁𝐹𝐹𝑇−1∑︁
𝑘=0

𝐿𝑇𝑆𝐸2(𝑘, 𝑙)

𝑁2(𝑘)

)︃
where 𝑋(𝑘, 𝑙) represents the amplitude spectrum for frame 𝑙 and frequency band, 𝑘.

The LSTE represents the maximum value for a particular frequency band across a

window of 2𝑁+1 frames centered at frame 𝑙. The noise spectrum, 𝑁(𝑘), is recursively

updated during periods of non-speech. This method is different from other energy

thresholding methods because it explicitly accounts for changes within individual

frequency bands across time.

A unique characteristic of human speech is harmonicity. During segments of voiced

speech, especially vowels, periodic vibrations of the vocal cords produce sounds that

are harmonically rich. The fundamental frequency (𝐹0) for voiced speech of adults

generally falls in the 50-250Hz range (Rendall et al. 2005). One method of detecting
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highly periodic structure in a signal is through the autocorrelation function (ACF).

The ACF measures the correlation between a signal and a time-delayed copy. For

periodic signals, this correlation is maximized when the time delay equals an integer

multiple of the fundamental period. Ghaemmaghami et al. used the following ACF:

𝑅[𝑧] =

∑︀𝑛−𝑧
𝑖=1 𝑥[𝑖]𝑥[𝑖 + 𝑧]∑︀𝑛

𝑖=1 𝑥
2[𝑖]

where 𝑥[𝑖] is the audio sample at index 𝑖, 𝑛 is the number of samples, and 𝑧 is the time

delay. This function was used to measure the autocorrelation of noisy speech signals

for time delays in the range of 2 to 20ms. For scores in this range, Ghaemmaghami et

al. used the zero-crossing rate to estimate 𝐹0, performing yet another cross correlation

on these values to confirm the periodicity of the autocorrelation. This method was

found to be very robust at detecting voiced speech amidst low SNR signals (Ghaem-

maghami et al. 2010). To also capture unvoiced speech, Ghaemmaghami et al. used

heuristic smoothing methods to capture any unvoiced speech that may precede or

succeed segments of voiced speech.

Spectral entropy is a feature that quantifies the distribution of spectral density

across frequency bands (Shen et al. 1998), denoted by:

𝐻(𝑙) = −
𝑁𝐹𝐹𝑇−1∑︁

𝑘=0

Φ̂(𝑘, 𝑙) log Φ̂(𝑘, 𝑙)

where Φ̂(𝑘, 𝑙) represents the normalized power spectrum, in which all values for a par-

ticular frame, 𝑙, sum to 1. The spectral entropy feature is analogous to the entropy of

a probabilistic distribution, in which a particular frequency band has a “probability”

of being activated by a particular sound. It is assumed that the spectral entropy

of speech is lower than the spectral entropy of background noise because “proba-

bility density” is spread across fewer frequency bands in speech relative to noise.

This method is more robust than traditional energy thresholding in the presence of

non-stationary noise, but is susceptible to false alarms from non-speech sounds that

equivalently posses localized “probability density” across the frequency space.
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Another highly discriminatory feature in the presence of background noise is mod-

ulation frequency (Chuangsuwanich and Glass 2011; Bach et al. 2010). Modulation

frequency is represented by the temporal changes in energy across frequency bands.

Human speech has been shown to possess a fundamental modulation frequency of

around 4Hz (Drullman et al. 1994). Chuangsuwanich et al. use a harmonicity mea-

sure to discover candidate segments of audio, which are then fed into individual SVM

classifiers. Each SVM takes as input the modulation spectrum for a sum of ener-

gies across neighboring frequency bands. The outputs from each of the SVMs are

compressed via sigmoid, and then summed to obtain a final value upon which thresh-

olding can be applied to decide speech or non-speech. While this method works well

in low SNR environments, computing modulation frequency requires a large window,

so decision latency is high. Chuangsuwanich et al. found that computing modulation

frequencies on windows of length 500-1000ms gave reasonable results.

With the exception of the use of SVM classifiers in (Chuangsuwanich and Glass

2011), most of the methods described so far have been highly heuristic in nature.

Statistical learning models that depend on labeled data have also been explored for

VAD.

Sohn et al.. proposed a statistical model-based VAD which modeled the DFT

coefficients of speech and noise as two separate multivariate Gaussian distributions

(Sohn et al. 1999). Sohn et al. formulated a likelihood ratio test between the prob-

ability of data under the speech distribution and the probability of data under the

noise distribution. The geometric mean of the likelihood ratio of each frequency band

was used to output a final value upon which thresholding could be applied. Sohn

et al. layered a Hidden Markov Model (HMM) on top of this model to serve as a

hangover scheme, under the assumption that consecutive speech frames are strongly

correlated. This HMM hangover scheme significantly improved speech detection with

a relatively small increase in the false-alarm rate.

With computing power becoming a commodity, and the recent prominence of

Deep Learning, the use of Artificial Neural Networks (ANNs) have become popular

for VAD. Su et al. had recent success in using a 2D convolutional neural network
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(CNN) on spectrogram features to detect candidate speech segments for pitch classi-

fication (Zhang et al. 2016). The CNN was used to exploit the highly shift-invariant

structure of harmonics in the spectrogram. While this was not exactly a VAD task,

it demonstrated that CNNs could be used to accurately find regions of an audio sig-

nal containing harmonics, similar to the way periodicity or harmonicity can be used

to find candidate regions for detecting speech (Ghaemmaghami et al. 2010; Chuang-

suwanich and Glass 2011).

The use of fully connected neural networks (DNNs) have also been explored for

VAD. Bai et al. explored variants of a 3-hidden layer architecture (Bai et al. 2017).

The small variant had 128 nodes per hidden layer, while the big variant had 512 nodes

per hidden layer. Similar to (Sohn et al. 1999), Bai et al. also layered an HMM on top

of the DNN to capture temporal context and smooth fluctuations in decisions. While

the big variant was more expressive due to having more non-linearity and trainable

parameters, its performance increase over the small variant was negligible. The big

variant was over 64 times slower in making decisions, however (Bai et al. 2017).

The underlying models and algorithms discussed so far have made a largely incor-

rect assumption about a noisy speech signal: the existence of speech within a discrete

segment is independent of other segments. The use of HMMs in (Sohn et al. 1999;

Bai et al. 2017) attempt to ameliorate this unrealistic assumption by conditioning

decisions on not only the output from the underlying model, but also on the decision

from the previous frame. This has the effect of penalizing transitions between the

speech and non-speech states, and thus forming much smoother decision sequences. In

(Hughes and Mierle 2013), Hughes et al. point out that while HMMs help to provide

contextual information when making decisions, they still possess a few fundamental

flaws:

1. Audio frame labels are not conditionally independent. HMMs assume that the

label for a particular frame is conditionally independent of all other labels given

the labels of its neighboring frames. This is largely a simplification, and is not

true in practice.
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2. For VAD tasks, the HMM hidden state space is often finite and binary: speech

and non-speech. This presents a fundamental limitation about the information

that can be conveyed by a particular state. Having more states with richer

information could improve decision making when conditioning on these states.

Engineering more states, however, is largely a heuristic method, and it’s not

clear how to reconcile these with an underlying model that simply outputs the

likelihood that a frame contains speech.

3. HMMs and underlying models cannot be jointly trained. First, the underlying

model must be optimized, and then the HMM can be trained.

Hughes et al. employs the use of Recurrent Neural Networks (RNNs) for VAD, which

solve a lot of the problems that are inherent to the HMM-based architectures. RNNs

are advantageous because they can be trained to jointly minimize frame-level errors

while also learning a continuous hidden state space that captures useful temporal

context which goes back an arbitrary amount of time. The architecture in (Hughes

and Mierle 2013) consisted of multiple recurrent cells and feed-forward components,

and also made use of an unconventional quadratic activation scheme. It was shown

to significantly outperform a GMM-State Machine model, while using one tenth the

parameters (Hughes and Mierle 2013).

1.3 Purpose and Overview

The purpose of this thesis to explore the use of deep, recurrent neural models for VAD.

This includes exploring the process of learning features directly from raw waveform

data, and comparing the pros and cons of this process to using a more traditional

feature representation. In addition, this thesis evaluates the efficacy of artificially

generating large amounts of noisy speech data from a clean speech source. The

models explored in this paper are intended to be computationally efficient so that

they may be deployed with real-time responsiveness while taking input from a live

audio stream. The ultimate goal is to produce a live VAD model that is robust to a
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variety of acoustic environments, noises, and voices.

The outline of this work is as follows. In Chapter 2, I discuss the characteristics

of a strong dataset, and then present a methodology for artificially inflating a corpus

of labeled data. I then discuss the strengths and limitations of this methodology. In

Chapter 3, I provide a background on neural networks, and then present the models

that are explored in this paper. Chapter 4 describes the the various experiments

that are performed using these models, and discusses details about how the models

are trained. In Chapter 5, I discuss experimental results and analyze in-depth how

features are learned directly from raw waveform data. Lastly, Chapter 6 describes

how these models can be deployed and run in real-time with a live audio stream.

This chapter also discusses some of the practical concerns of deploying these neural

models.
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Chapter 2

Dataset Preparation for Statistical

VAD Models

A statistical model is a mathematical construction that attempts to approximate

reality based on some finite sample of data. The goal of any statistical model is to

maximize approximation performance on unseen data (i.e. data that was not used to

train the statistical model). A statistical model uses the finite sample of data to make

assumptions about reality. For this reason, the dataset is one of the most important

considerations when engineering a statistical model.

Not all datasets are created equal. When seeking a good dataset, there are many

things to consider. At a high level, it’s important that the dataset contains a wide

variety of samples that are representative of reality. In many scenarios, the data

domain is continuous and infinite, and the distribution of data points may contain

many distinct modes. It’s important to capture samples from as many of these modes

as possible. Unfortunately, this is difficult in practice, and with only a finite dataset,

it’s impossible to capture a set of samples that is 100% representative of reality.

Thus, a “best effort” mindset is needed. One of the most obvious but difficult ways

to ameliorate the problem of capturing a representative dataset is to simply obtain

more data. Again, this is difficult in practice.

In addition to the problem of capturing a representative dataset is the problem of

labeling the dataset. For supervised learning models, labeled data is required so that
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during training, an error function can be minimized. The labels are used to recognize

when the model makes a mistake for a particular sample. This information is then

used to nudge the model’s parameters in the direction such that the degree of error

can be reduced. For most corpora, labeling of raw data is performed by humans,

which can very costly and time consuming, especially when datasets are large and

labels precise.

Due to the costly and difficult process of capturing large amounts of diverse, la-

beled data, it has become common to generate data artificially. Not only is it possible

to generate data artificially, but it’s also possible to perturb already acquired data

in a way that labels are preserved (Taylor and Nitschke 2017; Dean et al. 2010; Kim

et al. 2017). For example, in object recognition tasks, images can be flipped, rotated,

warped, or re-colored while the identity of the object in the image remains the same.

In this scenario, labeled images can be replicated and perturbed to artificially inflate

the amount of data in the original dataset. These perturbations, while artificial, cover

a wider surface area of the entire data manifold, and therefore may help a statistical

model generalize to unseen data. This technique is a great way to save time, effort,

and money, and it can be applied to a variety of other data mediums besides images.

For constructing statistical models that perform VAD, the data domain is repre-

sented by the set of all possible audio segments. These audio segments may contain

speech, background or ambient noise, impulse noises, etc.; there is an infinite number

of possibilities for noise-speech combinations or the lack thereof. It’s important for

the dataset to contain recordings from a variety of different noise conditions in order

for the model to be robust amidst noise. In addition, it’s a requirement that each

data sample contain high-precision labels that indicate the locations in the signal that

bound segments of speech.

To capture a diverse dataset of noisy speech data, one option would be to record

speech from many locations: an office, cafe, busy street, amusement park, family

room, construction site, etc.—the possibilities are endless. Each recording would

then have to be hand-labeled. Fortunately, this costly and arduous option can be

bypassed in lieu of an artificial dataset generation technique. It may be appropriate
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to assume the breakdown from Equation 1.1. That is, a noisy speech signal simply

represents the sum of clean speech and noise. With this formula, noisy speech can

be generated by simply taking the sum of two distinct and separate recordings: clean

speech and non-speech noise. This process assumes, however, that speech and noise

are independent sources of sound, which is not true in practice.

2.1 The Augmentation Process

There already exist many clean-speech labeled corpora, as well as corpora that contain

various background noises, non-speech sounds etc. In this work, I use clean-speech

recordings from the TIMIT1 corpus, alongside the noise recordings from the QUT-

NOISE corpus to generate a large dataset of noisy speech recordings (Dean et al.

2010). In addition, I take non-speech sounds from various sources to serve as negative

samples.

The well-known TIMIT corpus is a collection of single-sentence utterances each

roughly 3 seconds in length. The corpus includes 6,300 speech files recorded from

192 female and 438 male participants. Each recording is accompanied by phonetic

and word-boundary segmentations, suitable for a wide variety of speech-related tasks

including ASR, VAD, etc. Each recording was made using a close-talking micro-

phone, and contains a negligible amount of ambient noise. Thus, the recordings are

considered very clean.

The QUT-Noise database is a corpus containing over 10 hours of ambient noise

from various locations (Dean et al. 2010). The corpus also includes room impulse

responses for some of the enclosed locations. Locations include the following: outdoor

cafe, food market, home kitchen, home living room, inner-city street, outer-city street,

car (windows up), car (windows down), indoor pool, a partially-enclosed carpark. The

QUT-Noise corpus was originally assembled to be combined with clean speech corpora

like TIMIT for VAD training and evaluation.

In addition to having noisy speech data, its important to have non-speech sam-

1https://catalog.ldc.upenn.edu/ldc93s1
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ples. During training, negative samples help the model to learn characteristics of

sound that are inherent to speech. Without negative samples, it’s likely that the

model would become “lazy,” learning to classify perturbations in short-time energy

(or other high-level characteristics) as endpoints for speech. A non-speech sound may

have similar high-level characteristics to a segment of speech, so the lack of nega-

tive samples during training could result in a model with a high false-alarm rate. I

take non-speech samples from the ESC-50 dataset, a collection of 2000 recordings

of various environmental sounds, including animals, natural soundscapes, non-speech

human sounds, interior domestic sounds, and exterior urban sounds (Piczak 2015).

In addition, I also take samples from a collection assembled by Guoning Hu2.

The data augmentation process I created is as follows:

1. All samples are converted to 32-bit floats if not already. Each sample is scaled

to lie in the range of [−1.0, 1.0].

2. For each TIMIT utterance, random padding is concatenated to the beginning

and end. This padding consists of complete silence, in the form of zero vectors.

The durations of beginning and end padding are chosen independently and

uniformly at random in the interval of 0.5 to 2.0 seconds. It’s important to add

random padding so that the model doesn’t learn any artificial offsets inherent to

the TIMIT database. For example, each utterance in the out-of-the-box TIMIT

corpus begins after roughly the same duration of silence, which a contextual

model could inadvertently learn.

3. For each utterance, there is a 20% chance that an additional utterance will be

chosen uniformly at random to be concatenated. This additional utterance will

receive the same padding as in step 1 before being concatenated. Concatenations

are important so that the model, if capturing temporal context, can learn to

switch on, off, and then on again. If all utterances consisted of only a single,

contiguous region of speech—with little silence—the model may learn that once

it turns “on,” it should stay on and vice versa. This bias is detrimental.
2http://web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/HuCorpus.html
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Figure 2-1: The spectrograms for the spoken utterance, “They understood and teased
me a bit about it.”, in three different simulated noise conditions. In the 2dB SNR
condition, the spectrogram appears blurred, especially in the higher frequency bands.
In the reverberation condition, the spectrogram appears to be smeared in time.
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4. For each utterance, one of the noise environments provided in the QUT-Noise

database is chosen uniformly at random. Then, a noise file from this environ-

ment is randomly chosen. If available from this noise environment, a room

impulse response (RIR) is also gathered.

5. If available, the RIR is convolved with the current utterance, now consisting of

any padding and concatenations. This process simulates reverberation, a phe-

nomenon that occurs when sound waves bounce off surfaces in the surrounding

environment and reach the listener with a time delay and reduction in energy.

Reverberations are an example of noise that cannot be simulated through the

simple addition of clean speech and noise.

6. Accounting for padding and any concatenations, the length of the current ut-

terance is calculated. This length is then used to choose a contiguous segment

of noise uniformly at random from the randomly chosen noise file.

7. Before the noise is added to the utterance, an SNR is chosen from a uniform

categorical distribution with the following candidate values: -5.0, 0.0, 2.0, 4.0,

6.0, 8.0, 10.0, 15.0, 20.0, and ‘clean.’ The noise file is scaled by a constant factor

so that once added to the utterance, the signal exhibits the desired SNR. After

adding the noise, the signal is scaled so that the maximum absolute value of a

particular sample is not greater than 1.0.

8. A random gain scale factor is chosen uniformly at random from the range of

[0.66, 1.50]. The noisy speech signal is then multiplied by this factor and clipped

to be in the range of [−1.0, 1.0]. The factor is used to simulate different signal

gains so that the model does not overfit to a particular gain.

9. Throughout the augmentation process, the timing offsets introduced by any

paddings or concentrations are maintained, so that new labels can be calculated.

For example, if a 2 second padding is prepended to an utterance, the new speech-

endpoint labels must also be offset by 2 seconds.
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The out-of-the-box TIMIT database comes pre-partitioned with train and test

sets. For the train set, 3 passes of augmentation were performed to produce 3 times

the number of original utterances. For the test set, only 2 passes of augmentation

were performed. Accounting for any padding and concatenations, utterances that

were longer than 14 seconds were discarded. I established 14 seconds as the maximum

length because so few utterances exceeded this limit, and a limit needed to be set. This

limit serves as the length to which all utterances are zero-padded during training, so it

was desirable to have a tight bound. The augmented train set was further partitioned

into train and dev sets, with the dev set having the same number of samples as the

test set. The non-speech sounds were also partitioned with a 4-1-1 ratio of train, dev,

and test sets, respectively. Figure 2-1 demonstrates the effects of data augmentation

on the spectrum of a particular TIMIT utterance.

The full dataset, including all 3 partitions, contains 19, 186 utterances, accounting

for over 34 hours of audio. Figure 2-2 shows the distribution of lengths of utterances.

In addition, Figure 2-3 demonstrates heat maps that represent the average label

densities for utterances. Table 2.1 provides more in-depth statistics and breakdowns

of the dataset.

2.2 Limitations

While this method and similar augmentation methods are great for producing large

quantities of labeled, noisy speech samples, there are some limitations:

∙ All utterances come from the same microphone. In practice, different micro-

phones exhibit subtle differences, so a model that wasn’t trained on audio from

a variety of different microphones may be easily confused.

∙ The underlying speech is clean and spoken in close physical proximity to the

microphone. In reality, the model may need to classify audio that is spoken at

farther distances from the microphone. The energy of a speech signal decays as

it travels further distances, a behavior that is not accounted for in the dataset.
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Figure 2-2: A histogram of utterance lengths for samples outputted by the data
augmentation process discussed in Section 2.1.

Figure 2-3: Heatmaps which represent the average label densities for utterances out-
putted by the data augmentation process discussed in Section 2.1. Darker regions
indicate a higher proportion of speech at that location in time.
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∙ The TIMIT dataset contains many utterances that represent the same spoken

phrase, but spoken by different people (out of the 4,620 utterances in the TIMIT

train partition, the phrase “She had your dark suit in greasy wash water all

year” is repeated 462 times by different speakers. The phrase “Don’t ask me to

carry an oily rag like that” is also repeated 462 times by different speakers). In

addition, the augmentation process creates copies of identical utterances, but

with different noise conditions. While these utterances are varied by speaker and

noise conditions, the inherent similarities may be characteristics of the dataset

that the model falsely attributes to being inherent to speech, thus hindering its

ability to generalize.

Many other methods have been explored for artificially creating labeled data.

One of these methods is to re-record audio by audibly playing the samples from

a speaker in a variety of different rooms, noise conditions, and distances from the

microphone. Another method is to take large corpora of transcribed audio, and to

obtain segmentation labels via a process known as forced alignment. This process

uses an ASR model to align textual transcriptions to their temporal locations in the

audio. Another process is to sample noise configurations from virtual rooms, to be

used when augmenting clean speech (Kim et al. 2017).
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Table 2.1: A breakdown of the dataset generated from the process described in
Section2.1.

Augmented TIMIT Dataset Breakdown
train dev test total

-5 SNR
utterances 1042 332 353 1727
duration (h) 1.92 0.62 0.63 3.18

0 SNR
utterances 1015 321 346 1682
duration (h) 1.88 0.58 0.65 3.11

2 SNR
utterances 1044 354 331 1729
duration (h) 1.93 0.65 0.64 3.21

4 SNR
utterances 1040 321 346 1707
duration (h) 1.91 0.60 0.62 3.13

6 SNR
utterances 1058 352 318 1728
duration (h) 1.99 0.64 0.60 3.23

8 SNR
utterances 1010 327 326 1663
duration (h) 1.83 0.60 0.61 3.04

10 SNR
utterances 1021 342 323 1686
duration (h) 1.89 0.63 0.61 3.13

15 SNR
utterances 1068 327 317 1712
duration (h) 1.98 0.60 0.56 3.14

20 SNR
utterances 1051 335 327 1713
duration (h) 1.98 0.61 0.62 3.21

clean
utterances 1068 326 345 1739
duration (h) 2.04 0.63 0.63 3.30

sounds
utterances 1386 357 357 2100
duration (h) 1.88 0.49 0.49 2.86

Totals
utterances 11803 3694 3689 19186
duration (h) 21.23 6.64 6.66 34.54
% speech 43.33 44.07 44.24 43.65
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Chapter 3

Neural Models for VAD

Inspired by the recent use of deep, recurrent neural models for VAD (Hughes and

Mierle 2013; Zazo et al. 2016), I explore my own variant of a relatively lightweight

deep recurrent architecture. In this context, lightweight means that the computation

required by this architecture is relatively small. One of the overarching goals of this

model is to make it fast enough to be deployed for real time operation on a live

audio stream. Despite being relatively lightweight, it’s still important that the model

performs well.

3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a class of biologically-inspired computation

models. ANNs consist of a connected network of units, also called neurons. Tra-

ditionally, neural networks are arranged in layers, consisting of neurons which each

compute a non-linear activation of a linear combination of outputs from neurons in

the previous layer. The multiplicative weights for these linear combinations corre-

spond to the weights of the connections between neurons. Each neuron also has its

own scalar bias term which contributes to this linear combination. These weights

and bias terms can be learned such that the neural network computes a useful vector

mapping 𝒳 → 𝒴 of its inputs, 𝒳 . Figure 3-1 shows a traditional single hidden-layer

neural network.
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Figure 3-1: An artificial neural network (ANN), in one of its simplest forms.

During training, a neural network’s weights and biases are iteratively nudged in

a direction that minimizes some loss function. A loss function gives a quantitative

description of how well the network is performing. For supervised learning tasks,

typically a loss function will accept as input pairs of training samples and labels,

as well as the current values of the weights and biases. Assuming the loss function

is differentiable, gradients can be computed for each weight and bias vector in the

network. If you imagine the loss function as a multi-dimensional surface, the gradients

represent a vector that points in the direction of greatest increase for any point on

this surface. Thus, if the learnable parameters are nudged in the opposite direction

of the gradient, the loss function is being effectively minimized. In many cases, the

multi-dimensional loss function is non-convex. There often exist many local minima,

some with lower loss values than others. Gradient Descent optimization methods do

not guarantee that the best local minimum is found. Nonetheless, if there do exist

local minima, gradient descent methods are capable of finding one. Despite this flaw

in deep neural networks, they are still extremely powerful learning models, especially

for high-dimensional input spaces.

3.1.1 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a type of ANN that is useful for computing

transformations on sequential data. Sequential data often exhibit the property that

individual samples are not independent of each other. An RNN is able to make use
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of these dependencies by storing intermediate state between successive computations.

Effectively, an RNN is able to “remember” useful information. Non-recurrent networks

make the assumption that each sample is independent, and thus are not designed to

remember any information.

RNN’s are generally implemented like traditional feed-forward neural networks

with one main exception: some intermediate computation vector (i.e. the values

outputted by the hidden layer in Figure 3-1) is fed as input to the next computation.

Thus, an RNN accepts not only the data sample as input, but also a vector that

represents some intermediate state from the previous computation. During the very

first computation of a sequence, such an intermediate state does not exist. In this

case, a zero-vector or Gaussian noise is often used.

RNNs are extremely powerful because in addition to being optimized to learn a

desired vector-mapping, they can be optimized to learn a hidden state space that

stores useful information. In fact, it has been proven that finitely-sized RNNs are

capable of mimicking a universal Turing Machine (Siegelmann and Sontag 1991).

While very powerful in theory, RNNs are difficult to train in practice. Many have

hypothesized reasons for the difficulties in training RNNs, and a common argument

is that RNNs have trouble modeling long-term dependencies due to the vanishing

gradient problem1. Specialized recurrent cell architectures, like LSTM and GRU,

help to ameliorate some of the problems associated with vanishing gradients, and

therefore make training easier (Hochreiter and Schmidhuber 1997; Cho et al. 2014).

3.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are another type of neural network which

have been applied extremely successively to the field of Computer Vision, but are also

useful in speech and natural language processing. CNNs are similar to traditional feed-

forward neural networks like the one depicted in Figure 3-1, but are unique because

of their ability to learn shift-invariant structure. Shift-invariant structure may be

defined as the existence of a localized pattern at any location in a larger input space.
1Similarly, RNNs may suffer from an exploding gradient problem, which makes learning unstable.
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For example, in an image, a cat may appear in the middle, bottom, top, left, right,

etc.—the pattern still represents a cat regardless of where it may be located in the

image. CNNs work by convolving a window, or kernel, across the input space, such

that upon each discrete shift, a nonlinear activation of a linear combination of inputs

encompassed by the window is computed (Nielsen 2015). A unique feature of CNNs is

that the multiplicative weights associated with this window are shared for all discrete

shifts. This process can be repeated with more windows, such that each window gets

its own set of multiplicative weights. After convolving all windows across the input

space, the output is a set of transformations called feature maps, equal in number to

the number of windows that were convolved across the input space (Nielsen 2015).

When trained, each feature map learns to seek out a shift-invariant pattern(s) from

the input space.

3.2 Feature Computation: Mel Filter Banks

As briefly mentioned in Section 1.1, a feature vector is an alternative representation of

raw data that accentuates discriminatory information. For one of my model variants,

I use log Mel filter banks as input features.

Log Mel filter bank features are computed by mapping the energy spectrum for a

particular frame of audio to the Mel scale, and then taking the log of result. The Mel

scale is a biologically-inspired, non-linear scale of frequencies based empirically on

pitches that humans perceive to be equidistant from each other (Stevens et al. 1937).

This scale places greater resolution in the lower frequencies than the higher ones.

The steps to compute log Mel filter bank features are as follows:

1. Apply a pre-emphasis filter to the raw audio. A pre-emphasis filter has the

effect of boosting the presence of higher frequencies, which is useful because

higher frequency signals tend to decay faster than lower frequency ones. Higher

frequency bands can provide useful discriminatory information when deciding on

speech or no-speech. I use a pre-emphasis coefficient of 0.97, which is commonly

used.

40



2. Frame the audio. This process involves splitting raw audio into a series of

overlapping frames. A common convention is to have a frame length of 25ms

and frame hop of 10ms. This means that any given frame shares 15ms with

its neighboring frames. For audio sampled at 16kHz, the frame length is 400

samples while the frame hop is 160 samples.

3. Window each frame. This step is an important preprocessing step before step 4,

which involves taking the discrete Fourier transform (DFT). When taking the

DFT over a finite segment of audio, the resulting spectrum is susceptible to a

phenomenon called spectral leakage. Spectral leakage occurs when the density

of one frequency band “leaks” into neighboring frequency bands. This leakage

may have have the effect of obfuscating the presence of weaker frequency com-

ponents. Different window functions, when element-wise multiplied with the

audio signal, result in different leakage patterns, as characterized by observing

the DFT of the window function itself. Because multiplication in the time do-

main corresponds to convolution in the frequency domain, window functions

with relatively dominant main lobes are preferred because leakage from neigh-

boring frequencies is less prevalent, relatively speaking. The Hamming Window

is a commonly used window that helps to emphasize a sharper frequency re-

sponse.

4. Compute the Energy Spectral Density of the audio frame. This step involves

taking an N-point DFT of the windowed audio frame. After performing the

DFT, only the first half of the coefficients are relevant due to symmetry about

the Nyquist frequency. The magnitude of the DFT coefficients are then squared

to get the Energy Spectral Density of the audio frame. When the Energy Spec-

tral Density of each frame is lined up side-by-side, the result is a spectrogram

(Figure 3-2).

5. Map the Energy Spectral Density to the Mel scale. This is done by applying a

series of triangular filters who’s peaks equally spaced on the Mel scale. These

filters may be collectively represented as a matrix, in which each row represents
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Figure 3-2: A side-by-side comparison of the raw waveform, spectrogram, and log Mel
filter bank features for the utterance “Ducks have webbed feet and colorful feathers.”
at 15dB SNR.

a filter. This matrix is multiplied by the Energy Spectral Density to produce

Mel filter bank coefficients. The number of Mel filter bank coefficients can be

chosen depending on the desired resolution. 40 is a commonly used number.

6. The Mel filter bank coefficients are then scaled by their maximum value and

converted to dB units by taking the base-10 logarithm and then multiplying by

10.

Log Mel filter bank features are particularly useful for speech tasks due to their

biological grounding and relatively concise representation. A one second audio record-

ing sampled at 16kHz may be represented by 16,000 floating point values, while the

corresponding log Mel filter bank representation consists of just 4,000 floating point

values. Figure 3-2 demonstrates a comparison of a raw waveform, spectrogram, and

log Mel filter banks side-by-side.
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3.3 Architecture

The model variant that I explore for VAD is a deep, recurrent neural architecture.

Dubbed CNN-GRU, the network consists of a 1D convolutional layer, followed by

3 GRU cells, and then a fully-connected layer for computing logits. The logits are

used in a 2-class softmax, which outputs the probability of speech. CNN-GRU takes

as input 40-dimensional log Mel filter bank features. The 1D convolutional layer

convolves across the entire frequency dimension. In its traditional form, it only takes

in one frame at a time2. A depiction of the CNN-GRU architecture is in Figure 3-3.

3.3.1 GRU

Due to the practical difficulties in training traditional RNNs—a problem briefly dis-

cussed in Section 3.1.1—it was necessary that the network use a recurrent cell that

was more resilient to vanishing and exploding gradients. Two of the most widely

used recurrent cells are LSTM and GRU (Hochreiter and Schmidhuber 1997; Cho

et al. 2014). Both LSTM and GRU use learned gating functions to control the flow

of stored information between forward passes in the network. The primary difference

between LSTM and GRU is that LSTM has a dedicated memory unit that is separate

from the hidden state. This memory unit is updated via learned gating functions and

is used when computing the hidden state for a particular forward pass. GRU cells

are different in that they update the hidden state directly, having no concept of a

dedicated memory unit. GRU cells have 2 learned gating functions while LSTMs have

3. GRU cells, therefore, have fewer parameters than LSTM when controlling for the

number of units. GRU has been compared to LSTM, and it was inconclusive which

performed better for modeling sequential data (Chung et al. 2014). The experiments

in (Chung et al. 2014) controlled for the number of learnable parameters, not the

number of units. While inconclusive which cell is better, I chose GRU cells due to

2A slight variation of CNN-GRU will accept a contiguous slice of frames, such that consecutive
slices poses overlap with each other. If any of these frames contain speech, the whole slice is labeled
as containing speech. A large slice may allow a network to learn speech characteristics that span
multiple frames of time. While this functionality is supported, I do not explore it in this work.
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Figure 3-3: The CNN-GRU architecture. The network accepts as input a single
frame of 40-dimensional log Mel filter bank features. The network consists of a 1D
convolutional layer, followed by several GRU cells and then a fully-connected layer
for computing logits.
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their relative simplicity over LSTM. This decision was motivated by a having a com-

putationally efficient neural architecture, but a careful comparison of the performance

differences between LSTM and GRU is needed to confirm or deny that GRU is more

computationally efficient, controlling for performance.

3.3.2 Raw Waveform Feature Learning

When praising the inherent power of deep neural networks, researchers often point to

their ability to jointly learn features while optimizing some objective function. A deep

neural network can be considered a hierarchy of feature computation. Each layer in

the network can be considered responsible for computing a useful representation of the

input data. Each layer computes new features based on the representation outputted

by the layer before it, and after many such layers, an abstract representation is

achieved upon which a classifier can be employed.

Due to the ability of deep neural networks to learn features, fully end-to-end

neural models have gained popularity (Zazo et al. 2016; Sainath et al. 2015; Bojarski

et al. 2016; Graves and Jaitly 2014). A fully end-to-end neural model takes raw data

as input, and is not composed of sub-components that are independently trained.

Instead, the entire network is simultaneously trained under the same loss function.

The CNN-GRU model presented in Section 3.3 is not fully end-to-end because it

accepts log Mel filter bank features as input. Computing log Mel filter banks may

be considered a heuristic method because the process is not learned from data. In

addition, computing log Mel filter bank features is a lossy process in which useful

information may be destroyed. One may wonder if log Mel filter banks are the best

representation. What if a neural network could learn its own transformation directly

from a raw waveform? What if this representation is superior to log Mel filter bank

features? These questions provide motivation for the exploration of fully end-to-end

networks. With inspiration from (Zazo et al. 2016), I explore a variant of CNN-

GRU dubbed CNN-GRU-RAW. CNN-GRU-RAW is identical to CNN-GRU with the

exception of an extension prepended to the beginning of the network that extracts

features directly from a raw waveform. The extension is designed to extract features
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with the same dimensions as 40-dimensional log Mel filter banks. A depiction of

CNN-GRU-RAW is in Figure 3-4.

The extension, based on the architecture from (Zazo et al. 2016), consists of a

1D convolutional layer, max pooling, and stabilized log. The 1D convolutional layer

convolves 40 separate filters across the waveform, with no non-linear activation. These

convolution vectors are then max-pooled across the entire time dimension, to produce

a 1D vector with 40 values. Then, this vector is passed through a ReLU activation

and stabilized logarithm. The intuition is that these filters may be considered impulse

responses which, when convolved across a window of raw audio, produce spectral

coefficients. The maximum values within the vectors resulting from these convolutions

are large when there is a high overlap between the spectrum of the raw audio and

that of the impulse response. Effectively, the CNN-GRU-RAW has the theoretical

ability to learn a combination of filters that seek out the optimal spectral information

from the raw waveform.
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Figure 3-4: The CNN-GRU-RAW architecture. This network is identical to CNN-
GRU (Figure 3-3), with the exception of an extension prepended to the beginning of
the network that extracts 40-dimensional features directly from the raw waveform.
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Chapter 4

Experimental Framework

In this chapter I describe a set of experiments using the dataset described in Sec-

tion 2.1 and models outlined in Section 3.3 to achieve the following goals:

1. Explore the effect that model size has on VAD performance. Exploring small,

medium, and large variants of the CNN-GRU architecture will provide insights

into the performance-speed trade-off.

2. Analyze the effect of training the CNN-GRU model on clean-speech and non-

speech sounds only. How would a model trained in these conditions generalize

to much higher SNRs?

3. Analyze and compare the performance of the CNN-GRU and CNN-GRU-RAW

models. Does raw-waveform feature learning improve performance? Is the raw

waveform feature extraction too slow?

4. Analyze what the CNN-GRU-RAW model is learning. This involves an analysis

of the learned features, and exploring how individual layers are activated when

the model is inputted with various types of audio.

To compare the performance of models, both frame-level accuracy and receiver

operating characteristic curves (ROCs) will be used. The frame-level accuracy repre-

sents the percentage of frames that are correctly classified as speech or non-speech. An

ROC curve is a graphical representation of the trade-off between false-alarm rate and
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true-positive rate. A false alarm is when the model incorrectly classifies a non-speech

frame as containing speech. A true-positive is when the model correctly classifies a

speech frame as containing speech. Because statistical binary classifiers, including the

VAD models presented here, output the probability of a particular class, a confidence

threshold is needed to make a decision. For example, we may only classify a frame

as containing speech if the model is over 70% confident. If this threshold is high, the

false-alarm rate will likely be low, and equivalently the true-positive rate will be low;

one benefit is traded off for the other.

To compare computational speed, the average per frame computation time will be

benchmarked on a designated machine in a single-threaded computation environment.

Benchmarks will not make use of a GPU, instead performing all computations on a

3.9 GHz CPU. While not a perfect means for comparing computational efficiency, it

will be useful for rough, relative comparisons of speed.

4.1 Model Size

To explore the performance-speed trade-off of the CNN-GRU architecture, I train and

evaluate 3 separate variants of the CNN-GRU model. The small model consists of

only 2 GRU layers, while the medium and large variants have 3 and 4, respectively.

In addition to varying the number of GRU layers, the number of units in each layer

is also varied accordingly. Table 4.1 provides a breakdown of the number of layers,

units, and trainable parameters for each size variant. These models are explored both

in terms of performance and computational speed.

4.2 Single-Condition Training

For these experiments, I explore the ability of the CNN-GRU model to generalize to

noisy conditions by training it only on the non-speech sounds and clean speech data.

I analyze only the medium model variant described in Section 4.1. By comparing

results to the multi-condition experiments, the helpfulness of the noisy data in training
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Table 4.1: A breakdown of the number of units and parameters for each of the small,
medium, and large variants of CNN-GRU.

CNN-GRU Size Variants
small medium large

1D Conv
filters 32 48 64
parameters 1,312 1,968 2,624

BatchNorm
dimensions 32 48 64
parameters 64 96 128

GRU
layers 2 3 4
units per layer 24 32 40
total parameters 11,160 20,256 32,040

Logits
in_dim 24 32 40
parameters 50 66 82

total parameters 12,586 22,386 34,874

a robust VAD model can be gauged. This will provide insight into whether or not

clean speech and non-speech sounds are sufficient for the CNN-GRU model to learn

characteristics that are unique to speech. Both in terms of frame-level accuracy and

ROC curve, the model will be evaluated on data from each simulated SNR condition:

-5dB, 0dB, 2dB, 4dB, 6dB, 8dB, 10dB, 15dB, 20dB, and ‘clean.’

4.3 Raw Waveform Experiments

The CNN-GRU-RAW model explored in these experiments is equivalent to the medium

variant of CNN-GRU described in Section 4.1, with the addition of the extension that

extracts features directly from the raw waveform, as described in Section 3.3.2. The

focus of these experiments is not only to compare the CNN-GRU and CNN-GRU-

RAW models in terms of performance and computational speed, but also to analyze

what the CNN-GRU-RAW network is learning. Deep neural networks are sometimes

considered to be black-boxed, obscure, and monolithic due to the fact that their abil-
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ity to learn is still not completely understood. Despite the highly obscure nature

of neural networks, I explore how individual layers in the CNN-GRU-RAW network

respond to different inputs, and look for clues that indicate what the network is

learning.

4.4 Training

In this section I discuss specific details about how these models are trained. When

training any RNN model, one of the most important considerations is the unrolling

length. The unrolling length indicates the number of times the network is unrolled

during training. When an RNN is unrolled, it can be thought of as a non-recurrent,

deep neural network in which weights are shared across layers. The unrolling length

specifies the limit on the number of time steps upon which a particular data sample

may influence parameter gradients during training. In theory, every data sample going

infinitely far back in time will influence how a network’s trainable weights should be

updated. In practice, however, accounting for inputs that go infinitely far back in time

is not feasible. Thus, RNNs are trained with an algorithm called Truncated Back-

propagation Through Time (TBPTT). TBPTT is analogous to unrolling an RNN for

some finite number of time steps and then performing the standard Back-Propagation

algorithm to efficiently compute parameter gradients. A benefit to TBPTT is that it

makes the training of RNNs feasible and fast depending on the unrolling length, 𝑛.

A drawback is that the network won’t be able to model temporal dependencies that

are greater in length than the unrolling length1. For these experiments, I constrain

the unrolling length to 20 frames2. 20 frames with a 10ms frame hop will capture

temporal dependencies going up to 200ms. 200ms is a lower bound for the length

of most spoken syllables. In addition to being large enough to almost capture full

1This does not suggest that only the last 𝑛 samples are considered when an RNN makes a decision.
In fact, the model is trained to make decisions based on the current hidden state, which assimilates
information from timestamps going further back. In essence, the presence of a particular feature
as indicated by the hidden state may aid the model in making decisions, but there is no explicit
dependence between samples that are farther away than the unrolling length being learned.

2This decision was partially inspired by (Zazo et al. 2016).
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syllables, an unrolling length of 20 allows the network to train in a reasonable amount

of time.

Another important consideration to training any neural model is regularization.

Regularization is the process of introducing bias into a model such that it does not

overfit to idiosyncrasies in the training data. Its desirable to have a statistical model

learn the “big picture” rather than to assume every detail of the training set is in-

dicative of reality. One regularization method, known as dropout, is the process of

randomly null-ing out connections in the network during training (Hinton et al. 2012).

Dropout has the effect of mitigating co-dependencies which may be highly idiosyn-

cratic and unique only to the training data. I employ dropout layers leading into

each GRU cell. I found a dropout rate of 0.5 to be sufficient for each architecture. I

also explored weight decay, but was unable to find a non-zero coefficient that didn’t

deteriorate performance on unseen data.

When deciding upon these various architecture parameters, the performance on

the dev partition was used to benchmark what worked and what did not.

All data getting inputted to the network is normalized to have zero mean and unit

variance. This normalization is done on the batch level. In addition, all labels are

offset so that the network can “see into the future” before making a decision. While

not literally seeing into the future, the offset has the effect of letting the network

gather more evidence before making a decision. Models trained with a label offset

exhibited improved performance over ones that did not. For both CNN-GRU and

CNN-GRU-RAW, I use a label offset of 80ms.

The Adam optimization algorithm was used for making gradient-based parameter

updates during training (Kingma and Ba 2014). For all experiments, 𝛼 = 0.0001

was used and otherwise the default parameters suggested in (Kingma and Ba 2014).

Cross-entropy loss was used for the objective function.

A batch size of 64 was chosen for all experiments. With this value, training was

relatively stable, but not too slow.
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4.4.1 DataManager

In this section, I describe the DataManager that I use for batch allocation during

training and evaluation. The VADBatchManager is a class I implemented in Python

designed to manage batch allocation of sequential data, including any meta informa-

tion that’s pertinent to training. Meta-information may include the id of an utterance

or its frame-length. The VADBatchManager may be configured with any data path,

unrolling length, label offset, group size, group hop3. It’s used during the training of

all CNN-GRU and CNN-GRU-RAW variants.

When initialized, the VADBatchManager accepts a data_train path and data_test

path as input. Each of these arguments represent a path to a .txt file containing

lines of utterance information. In these files, there is a line for each utterance, with

the following format:

<utt_id> <num_frames> <data_path>

Here, <data_path> represents the path to a numpy4 pickle containing both data and

frame-level labels. In the case of CNN-GRU, the data is 40-dimensional log Mel fil-

ter bank features. In the case of CNN-GRU-RAW, the data is 16kHz raw waveform

samples5. All utterances are zero-padded to the same length so that they can be

appropriately stacked into a batch matrix. The <num_frames> parameter provides

length information which is important to provide to the network so that it knows not

to to train upon zero-padded frames.

One of the challenges of batch allocation to RNNs is elegantly handling the case

when the utterance lengths are significantly larger than the unrolling length. During

each training iteration, the network sees only a “slice” of the batch equal in length to

the unrolling length. The network’s recurrent state must be stored and re-introduced

between each training iteration. Only after the entire batch of utterances (i.e. all

3Group size and group hop are related to the fact that the models are designed to accept as input
slices containing multiple frames at a time, such that successive slices exhibit overlap.

4http://www.numpy.org/
5The raw waveform data does not have a one-to-one frame-level mapping to the labels like the

log Mel filter banks do. However, the CNN-GRU-RAW model is designed to extract features with
the same dimensions as log Mel filter banks.
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slices) is trained may the hidden state be reset to the zero-vector6. There is an

additional technicality which is that each utterance within the batch is of different

length. Because of this, shorter utterances will “run out” of data faster than longer

ones. For the batch rows dedicated to these shorter utterances, the slice will consist

of zero-padding after the utterance data is surpassed. It’s important that the network

does not train on this zero-padding.

At the beginning of each epoch, the VADBatchManager shuffles the pool of avail-

able training utterances and arranges them into a stack. For each batch, the ap-

propriate number of utterances (i.e. the batch size) is popped off the stack and the

corresponding data is loaded into memory. The VADBatchManager then iteratively

pops off slices of this batch in chronological order. The VADBatchManager is careful

to maintain the time signature of each slice, so that the appropriate lengths may be

computed. For example, if a slice corresponds to frames 580-599 and the utterance

at index 7 has a frame-length of 591, then the length for that index of this slice is

11. These lengths would be computed for each utterance in the slice, and passed

to the network along with the data and labels. The network would then know not

to train the zero padding that exists beyond frame 11 for that index in the slice.

After all slices for a batch are trained, the network’s hidden state gets reset, a new

batch popped off the stack, and the process repeats. After an entire epoch, the entire

training pool gets reshuffled, and then training continues.

6I experimented with both zero-vector initialization and initialization with random Gaussian
noise. I did not notice a difference in performance between the two.
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Chapter 5

Experimental Results and Analysis

After training each model for 15 epochs, I cherry-picked training checkpoints that

exhibited the lowest loss on the dev partition. For the small, medium, and large

variants of the CNN-GRU, I chose checkpoints from epoch 14, 13, and 14, respectively.

For the single-condition CNN-GRU, convergence occurred much earlier, so I chose

a checkpoint after just 2 epochs of training. For the CNN-GRU-RAW, I chose a

checkpoint at epoch 14.

As can be seen in Table 5.1, the CNN-GRU exhibited diminished performance

returns as model size increased. While larger models yielded better performance,

all three variants performed quite similarly. While the large variant performed the

best, the medium variant had a slight edge in the 0dB SNR category. In addition,

the CNN-GRU-RAW model was best at classifying non-speech sounds, with a near

perfect 99.23% frame-level accuracy in that category. Figure 5-1 shows the plots for

probability of speech across time, for both the medium CNN-GRU and CNN-GRU-

RAW.

The single-condition model, despite being trained only on clean speech and non-

speech sounds, performed well for noisy speech with 15dB SNR and higher. Below

10dB SNR, performance deteriorated at a rate of roughly 5% for every 2dB reduction

in SNR. The CNN-GRU-RAW model performed very similarly to the medium variant

of the CNN-GRU trained on all noise conditions.

A full breakdown of the results of all 5 experiments is in Table 5.1. ROC curves
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Figure 5-1: Graphs of the probability of speech over time outputted by the medium
CNN-GRU and CNN-GRU-RAW models. Above these graphs are the waveform and
truth labels.
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Table 5.1: VAD frame-level accuracy results for various experiments, reported as
percentages. The accuracies listed here are on the test partition, while the thresholds
were chosen to optimize accuracy on the dev partition. For any given category, the
highest accuracy is shown in bold.

VAD Frame-level Accuracy
small medium large raw single-cond

threshold 37.00 53.00 50.00 61.00 1.00
-5dB SNR 89.43 90.86 91.44 89.34 56.89
0dB SNR 93.45 94.73 94.62 93.99 64.71
2dB SNR 94.63 95.23 95.83 95.16 70.78
4dB SNR 95.72 96.02 96.51 96.08 75.37
6dB SNR 96.37 96.64 96.93 96.50 80.74
8dB SNR 96.80 96.94 97.28 97.00 85.25
10dB SNR 97.18 97.25 97.72 97.02 89.49
15dB SNR 97.13 97.28 97.93 97.21 94.33
20dB SNR 97.71 97.61 98.13 97.18 96.10
clean 97.46 97.50 98.04 97.56 96.66
sounds 98.36 98.15 98.11 99.23 98.54
total 95.74 96.12 96.52 95.92 82.06

for each experiment can be seen in Figures 5-2, 5-3, 5-4, 5-5, and 5-6. In addition

to comparing performance across SNRs, these figures also include ROC curves that

compare the performance on audio exhibiting reverberation to audio without rever-

beration. Figure 5-7 shows ROC curves that directly compare the performance of the

small, medium, large, and raw model variants.

Table 5.2 lists the per-frame computation times for each of the small, medium, and

large variants of CNN-GRU, as well as the CNN-GRU-RAW. The per-frame computa-

tion time for log Mel filter bank features is also included. These metrics were recorded

on a 3.9GHz CPU machine in a completely single-threaded environment. The large

CNN-GRU variant is about as fast as the CNN-GRU-RAW when accounting for log

Mel filter bank feature computation. Accounting for the fact that the medium CNN-

GRU and CNN-GRU-RAW represent the same network above the feature boundary

(depicted in Figure 3-4), the per-frame computation time for raw waveform feature

extraction can be inferred by subtracting the CNN-GRU-RAW computation time
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Figure 5-2: ROC curves on test data for the small CNN-GRU variant. On the left is
a breakdown of performance by each SNR category, and on the right is a comparison
of performance on utterances that contain reverberation and ones that do not.

Figure 5-3: ROC curves on test data for the medium CNN-GRU variant. On the left
is a breakdown of performance by each SNR category, and on the right is a comparison
of performance on utterances that contain reverberation and ones that do not.
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Figure 5-4: ROC curves on test data for the large CNN-GRU variant. On the left is
a breakdown of performance by each SNR category, and on the right is a comparison
of performance on utterances that contain reverberation and ones that do not.

Figure 5-5: ROC curves on test data for the single-condition CNN-GRU variant. On
the left is a breakdown of performance by each SNR category, and on the right is a
comparison of performance on utterances that contain reverberation and ones that
do not.
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Figure 5-6: ROC Curves on test data for the CNN-GRU-RAW. On the left is a
breakdown of performance by each SNR category, and on the right is a comparison
of performance on utterances that contain reverberation and ones that do not.

Figure 5-7: ROC curves on test data that compare the relative performance of the
small, medium, large variants of the CNN-GRU, as well as the CNN-GRU-RAW.

62



Table 5.2: Per-frame computation times for each of the different size variants of CNN-
GRU, as well as the CNN-GRU-RAW. For reference, the per-frame computation time
of log Mel filter bank features is also included. These times were recorded on a 3.9GHz
CPU machine in a completely single-threaded environment.

Per-frame Computation Time
small medium large raw log Mels

time 0.396ms 0.545ms 0.700ms 0.905ms 0.186ms
real-time factor 25.2 18.3 14.3 11.0 53.7

from the medium CNN-GRU computation time. In doing so, it’s determined that

the per-frame raw waveform feature extraction computation time is 0.360ms, roughly

double the time it takes to compute a frame of log Mel filter bank features.

5.1 CNN-GRU-RAW Analysis

The extension that differentiates the CNN-GRU from the CNN-GRU-RAW is de-

signed to extract spectral features directly from raw waveform data. These extracted

features are designed to have the same dimensions as 40-dimensional log Mel filter

bank features. We can observe what these learned features look like by passing audio

through a trained CNN-GRU-RAW, and logging the activations that are outputted

at the feature boundary depicted in Figure 3-4. It’s important to note that while

these features are learned and optimized for maximum discriminatory performance

on the VAD task, to us humans, their ability to facilitate the discerning of speech

versus non-speech may not be immediately obvious. The lack of structure is probably

due to the fact that the convolutional layer immediately beyond the feature boundary

convolves across the entire frequency dimension1. Because of this, it’s unlikely that

shift-invariant structure is learned due to the fact that the network has no incentive

to enforce such structure. Figures 5-8, 5-9, and 5-10 show the learned features for a

1A variant of CNN-GRU-RAW not explored in this paper convolves shorter windows across the
frequency dimension, such that shift-invariant structure may be learned. This variant required many
more parameters to work well, and was not explored more thoroughly due to the emphasis being
placed on computational efficiency.
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couple of noisy utterances and also a non-speech sound, alongside their corresponding

Mel filter bank features.

5.1.1 Spectral Analysis

Despite the lack of structure in these learned features, we can gain a better under-

standing of what the network is learning by observing the filters (i.e. the impulse re-

sponses) that get convolved across the raw waveform. As mentioned in Section 3.3.2,

the maximum values of the vectors resulting from the convolution of these filters are

high with the spectrum of the filter has high overlap with the spectrum of the raw

audio.

Figure 5-11 shows a few learned filters, along with their spectra. We see that these

filters have been engineered by the CNN-GRU-WAV to discover specific frequencies

in the audio. These filters are in fact capable of discovering multiple frequencies,

sometimes in non-neighboring regions, as we see in the top-most filter in Figure 5-11

around the 200Hz and 2500Hz regions.

Despite the filters learning multiple frequencies in disjoint regions, if we took the

most prominent frequency in each filter and then sorted them, we could get an idea

of distribution of frequencies that the CNN-GRU-RAW is focusing on the most—

this was similarly done in (Zazo et al. 2016). This analysis revealed a tendency for

filters to respond to high frequency audio near 8kHz, as can be seen on the left in

Figure 5-12. A potential explanation for the bias towards high-frequency audio is

the fact that TIMIT was artificially and intentionally aliased when originally being

down-sampled from 20kHz to 16kHz, resulting in unusually high energy density in

the frequency bands at and near 8kHz (Fisher et al. 1986). The CNN-GRU-RAW

may have overfit to this idiosyncrasy during training. In sorting the most prominent

frequencies, if we only select from the 0-7920Hz range, we get the plot on the right

in Figure 5-12. Remarkably, this graph lines up very similarly with the Mel scale!

Perhaps this is not surprising given that the Mel scale is based empirically on the

human perception of frequencies, and VAD is the task of discerning human speech.

Despite these coinciding factors, it’s amazing that the CNN-GRU-RAW effectively
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Figure 5-8: Learned features alongside log Mel filter bank features for the the utter-
ance, “Allow leeway here but rationalize all errors,” at 4dB SNR.

Figure 5-9: Learned features alongside log Mel filter bank features for the the utter-
ance, “She had your dark suit in greasy wash water all year,” at 20dB SNR.

Figure 5-10: Learned features alongside log Mel filter bank features for an alarm clock
sound.
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reverse-engineered this nonlinear scale of pitches. Even in selectively ignoring the

upper 80Hz, the curve does not perfectly mimic the Mel scale. Subtle differences may

indicate that its favorable for the model to have more discriminatory power in certain

frequency bands when compared to the Mel scale. This fact, while confirming the

inherent power of the Mel scale, also supports the efficacy of raw waveform feature

learning.

5.1.2 Chirp Analysis

Another method to gain insight into the CNN-GRU-RAW is to evaluate the model

on a segment of audio called a chirp. A chirp is a short sound characterized by

a steadily rising pitch. Chirps can be synthesized artificially, for example by the

following formula:

𝑥𝑖 = sin

(︂
𝜋𝑖2

2ℓ

)︂
(5.1)

where ℓ is the length of the chirp, in samples. Figure 5-13 show the log Mel filter

bank features of a 3-second chirp generated from this formula. Because the frequency

is increasing linearly, the depiction in Figure 5-13 is indicative of the Mel scale.

When we pass the chirp into a trained CNN-GRU-RAW, it produces the learned

feature representation in Figure 5-14. As we might expect, these features do not

exhibit much structure. If we sort the frequency rows by order of increasing promi-

nent frequency as explored Section 5.1.1, some structure is observable. In fact, you

can faintly pick out the non-linear, increasing curved line, especially in the lower

frequencies, as displayed in Figure 5-15.

While each filter is seeking out a prominent frequency, they are also—to some

degree—responding to all other frequencies. It’s likely that these filters are assuming

many different responsibilities with respect to the frequencies that activate them,

creating a dynamic interplay that only the CNN-GRU-RAW is capable of deciphering

fully.

We can further understand which roles these filters are assuming by observing the
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Figure 5-11: Learned impulse responses from the CNN-GRU-RAW feature extraction
process. These impulse responses represent the convolutional filters that get convolved
across the raw waveform. Next to each impulse response is its spectrum.
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Figure 5-12: Plots of most prominent frequencies for each raw waveform filter
of the trained CNN-GRU-RAW, sorted. These plots are super-imposed with the
O’Shaugnessy Mel scale for comparison (O’Shaughnessy 1987). On the right, the
most prominent frequencies were taken from between 0-7920Hz, selectively ignoring
the CNN-GRU-RAW’s tendency to respond to high frequency audio.

convolution vectors produced when they are convolved across the raw waveform of

the chirp, before max pooling. Figures 5-16 and 5-17 show the filter convolution for

the middle and bottom filters depicted in Figure 5-11, alongside a graph that tracks

the maximum value for each frame. We see that for Figure 5-17, there are multiple

peaks at disjoint locations in the chirp. This analysis relates to the discovery of

multiple disjoint peaks in the spectrum of the learned impulse responses, displayed

in Figure 5-11. The filter convolution in Figure 5-16, however, shows that this filter

is highly specialized for high frequency audio.

5.2 Summary

In this chapter, I analyzed the relative performances of variants of the CNN-GRU.

This included 3 size variants: small medium and large, as well as a variant trained

only on clean-speech and non-speech sounds. I found that as model size increased,

there were diminished performance returns. I also trained a CNN-GRU-RAW model,

designed to learn and extract features directly from raw waveform data. While the

CNN-GRU models performed better and were more computationally efficient, the

success of the CNN-GRU-RAW provided some interesting insights into raw waveform
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Figure 5-13: Log Mel filter bank features for a 3 second chirp produced by Equa-
tion 5.1.

Figure 5-14: Learned features from the CNN-GRU-RAW for a 3 second chirp pro-
duced by Equation 5.1.

Figure 5-15: Learned features from the CNN-GRU-RAW for a 3 second chirp pro-
duced by Equation 5.1, where the rows are sorted according to their filter’s most
prominent frequency, as displayed in Figure 5-12. In the lower frequencies, you can
make out a faint curve indicative of the log Mel filter banks in Figure 5-13.
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Figure 5-16: The convolution vectors produced by convolving the filter depicted in
the middle row of Figure 5-11 across a 3 second chirp produced from Equation 5.1.
The graph tracks the max value of each frame across time, to simulate max-pooling
across the vertical dimension.

Figure 5-17: The convolution vectors produced by convolving the filter depicted in
the bottom row of Figure 5-11 across a 3 second chirp produced from Equation 5.1.
The graph tracks the max value of each frame across time, to simulate max-pooling
across the vertical dimension.
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feature learning, including the inherent power of the Mel scale for discerning human

speech.
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Chapter 6

Real-Time VAD Deployment

Until now, the models presented in this paper haven’t been discussed from the per-

spective of real-time deployment. Real-time deployment is a fundamentally different

use case than evaluating on predesignated audio recordings. In the real-time de-

ployment scenario, there is no prior knowledge of the acoustic environment, and no

constraints on how it may change. In addition, the specifications of the hardware

upon which the model is deployed may be unknown. Details including microphone

idiosyncrasies, network bandwidth, and computational power come into play. Most

importantly, the underlying hardware needs to be capable of continuously running

the model at a real-time rate.

On the bright side, the real-time deployment scenario may present some relaxed

constraints on accuracy. Depending on the use case, it may be desirable and affordable

to be liberal in classifying audio segments as containing speech. For example, a

particular application that depends on VAD might require an extremely high true

positive rate, but also may be tolerant of false alarms.

The performance of a deployed model cannot as easily be quantified as it can

when evaluating on predesignated recordings. While computational metrics like de-

cision latency may serve as an empirical indicator of performance, other metrics like

frame-level accuracy, are less informative. As mentioned previously, accuracy may

not reflect how well an application functions. Instead, performance metrics may be

highly application-specific. In addition, accuracy metrics do not carry as much weight
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for a model that is deployed in a completely unseen and non-stationary acoustic en-

vironment. Unless model accuracy is evaluated on a set of recordings that perfectly

model the acoustic environment, accuracy only provides a rough guess of how a model

may perform. This is a point that I discuss in Section 6.4.

In this chapter, I present an architecture for an FST that can be layered on

top of the CNN-GRU or CNN-GRU-RAW models, effectively serving as an audio

gating mechanism for a downstream speech processing application. Then, I provide

background on the SLS Streamer framework, and describe how it may be used to

implement a real-time VAD. I then introduce a computationally-constrained Android

Iot Smart Speaker, and how VAD can be applied to it. Then I provide a brief analysis,

highlighting some of the difficulties associated with the deployment of neural models.

6.1 VAD FST

While the CNN-GRU and CNN-GRU-RAW models perform well at classifying indi-

vidual frames as containing speech or non-speech, these decisions possess relatively

high granularity. This granularity may not always be favorable. During natural

speech, many pauses may occur when speakers are attempting to add clarity, empha-

sis, or merely trying to think of the right word. These pauses, while not containing

speech, may provide contextual information to speech processing applications that

aid in understanding. An ASR system, for example, may use natural speech pauses

to hypothesize the beginning of a new sentence.

If a VAD model is serving as an audio gating function for a downstream ASR

application, it may be detrimental to transmit highly granular segments of audio

containing speech. While the VAD could potentially chunk an audio segment into

individual words, this would render the language model component of the ASR system

useless. Instead, it may be desirable to send contiguous segments of audio which

include intermittent pauses, so long as entire utterances are captured.

For CNN-GRU and CNN-GRU-RAW, an additional layer of decision making is

needed to achieve this behavior.
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To facilitate the capturing of whole utterances, including brief pauses, I designed

a finite state transducer (FST), which can be layered on top of the CNN-GRU or

CNN-GRU-RAW. This FST, dubbed VADFST, takes as input the mean probability

of speech across 200ms segments of audio, as outputted by CNN-GRU or CNN-GRU-

RAW. VADFST consists of the following states and transition behavior:

∙ Steady State (𝑆0): This is the initial state of VADFST, representing a lack

of speech activity. If the mean probability for a 200ms segment of audio ex-

ceeds some threshold, the VADFST immediately enters the Active State, 𝑆1.

Upon transitioning to this state, the last 1s of audio is immediately sent to the

downstream application. The last 1s of audio is sent so that we can be sure

the boundary encapsulates the beginning of the spoken utterance. While this

is prone to capturing non-speech, it’s assumed that these false alarms can be

tolerated by the downstream application.

∙ Active State (𝑆1): This state is represented by the immediate presence of speech

activity. So long as the mean probability for 200ms audio segments exceeds the

threshold, VADFST remains in this state. While in 𝑆1, every incoming 200ms

segment of audio gets transmitted to the downstream application. If the mean

probability drops below the threshold, the VADFST transitions to the Cool

Down State, 𝑆2.

∙ Cool Down State (𝑆2): Upon entering this state, the VADFST will continue to

transmit the next 1s of audio to the downstream application. If during this 1s

interval the mean probability exceeds the threshold, the VADFST immediately

transitions back to the Active State, 𝑆1. Otherwise, after the 1s cool down, the

VADFST transitions to the Steady State, 𝑆0. Upon moving back to the Steady

State, an end-of-sentence (EOS) message is transmitted to the downstream

application, indicating the end of an utterance. The purpose of the 1s cool

down is to tolerate intermittent speech pauses, as well as to conservatively

capture the endpoint of an utterance.
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Figure 6-1: Outputs from the VADFST, superimposed with mean probability scores
outputted by the CNN-GRU across 200ms segments. The VADFST captures entire
segments of speech, including short pauses. The green dotted line represents the mean
probability threshold.

A schematic of VADFST is in Figure 6-2. A visualization of the interplay between

CNN-GRU and VADFST can be seen in Figure 6-1, which demonstrates the ability

of VADFST to capture entire utterances while tolerating intermittent pauses.

6.2 SLS Streamer

The SLSStreamer framework1, designed by fellow MEng candidate Kenneth Leidal,

is a Python framework that allows for the free-form creation of component graphs for

handling asynchronous binary data streams. Connections between components indi-

cate a path upon which data may flow. Each component computes transformations

of incoming payloads, and may store intermediate data. The SLSStreamer allows for

recursive substructure, such that an individual component may in fact be a wrapper

for many interconnected subcomponents. SLSStreamer provides many pre-built com-

ponents, including ones that allow for the inflow and outflow of data via Websockets,

as well as a component that wraps a kaldi-gstreamer ASR server2.

The SLSStreamer framework can be used to implement a real-time VAD-ASR

application. Because the framework is written in Python, it’s relatively simple to write

components that wrap powerful neural models built using frameworks like PyTorch

or Tensorflow. Using the SLSStreamer framework, I implemented the following linear

component graph to perform real-time VAD on an audio stream. The architecture

1http://groups.csail.mit.edu/sls/slstreamer/
2https://github.com/alumae/kaldi-gstreamer-server
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Figure 6-2: A schematic of the VADFST. Each transition is labeled with the trigger
and output separated by a colon, :.
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consists of the following components:

∙ Downsample: Downsamples incoming 44.1kHz 16-bit PCM audio to 16kHz.

This component may be configured to accept any incoming sampling rate. It’s

not needed if the incoming audio is already 16kHz.

∙ Chunkify: This component serves as a queue for incoming audio buffers. As

this component appends incoming buffers to a master queue, it outputs buffers

with a specified width by popping samples off of this master queue in LIFO3 or-

der. This component also supports backtracking so that consecutive outputted

buffers possess overlap. Backtracking is used so that any downstream feature

computation that involves the framing of audio with overlap (i.e. log Mel filter

bank features), can be done correctly in a streamlined fashion.

∙ VAD Gate: This component serves as a gating mechanism for incoming audio,

and consists of the following subcomponents

– Pre-emphasis: This component applies pre-emphasis to incoming audio

buffers in a streamlined fashion.

– Log Mels (optional): This component computes log Mel filter bank fea-

tures on incoming audio buffers. This component is optional because the

downstream VAD may accept raw audio as input (i.e. CNN-GRU) instead

of log Mel filter bank features.

– VAD: This component encapsulates a trained CNN-GRU or CNN-GRU-

RAW model, implemented in Tensorflow. This component accepts 200ms

buffers of either raw audio or log Mel filter banks, and outputs the mean

frame-level probability of speech over this segment.

– VADFST: This component encapsulates the FST architecture described in

Section 6.1. It takes the mean probability scores as input and outputs raw

audio and EOS messages.
3Last in, first out.
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∙ ASR: This component takes raw audio and EOS tags as input and outputs

hypothesized textual transcriptions. These hypotheses are generated in real-

time and may change dynamically as the component receives more audio.

This VAD-ASR architecture can be wrapped in a websocket component which

allows raw audio to be input from an external source over the Internet. This websocket

component can send the textual transcriptions outputted by the ASR back to the

client in real time. The final system is a VAD-ASR server that can accommodate a

variety of interfaces, including web browsers and smart speakers.

This VAD-ASR architecture has been shown to work quite well on certain audio

sources. One way to qualitatively visualize the performance of the VAD is to remove

the VADFST and ASR components, and simply output the probability scores. The

result is a server that accepts raw audio from the client, and sends back probability

scores, which can be plotted in real time. Assuming the network is sufficiently fast,

the probability plot will have a latency of approximately 250ms. A depiction of a web

browser interface that plots the probability of speech is in Figure 6-3.

6.3 Smart Speaker Deployment

I also explore the use of VAD on an experimental smart speaker that runs Android

operating system. The speaker is capable of running Android applications, and is

equipped with a dual-channel microphone array and Internet connectivity over WiFi.

Its programmable operation and Internet connectivity make it a perfect candidate for

the practical application of VAD.

For computationally constrained smart speakers, it may be a requirement that

ASR models be run on external servers. In this scenario, the speaker must stream

incoming audio over the network for processing. While ASR systems in and of them-

selves benefit from VAD, there is an additional benefit of limiting network traffic by

running VAD locally so that outgoing audio can be filtered.

Despite being both computationally constrained and running Android OS, it’s still

possible to run the CNN-GRU or CNN-GRU-RAW implemented in Tensorflow on the

79



Figure 6-3: A simple browser interface for plotting the probability of speech in real
time. This browser interface takes in raw audio from the host machine’s microphone,
and sends it to a server running the VAD architecture implemented with SLS Streamer
described in Section 6.2.

device. The CNN-GRU and CNN-GRU-RAW models are implemented in Python,

but trained version can be exported and run via the open source TensorFlowInferen-

ceInterface library4. The TensorFlowInferenceInterface library facilities the execution

of exported Tensorflow models within an Android application.

The TensorFlowInferenceInterface library is part of a binary that is compiled

directly from Tensorflow source code on Tensorflow’s master repo on Github5. Ten-

sorflow also provides nightly builds on their Jenkins Continuous Integration server,

accessible to the public. Unfortunately, to keep binaries small in size, the out-of-the-

box nightly build for the TensorFlowInferenceInterface library does not support all

Tensorflow ops. In fact, it only supports a small subset of the most common ops.

I found it to be the case that the out-of-the-box nightly build did not support

all the ops used by CNN-GRU and CNN-GRU-RAW. After browsing many blog

4https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/android
5https://github.com/tensorflow/tensorflow
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posts, StackOverflow6 posts, and Github issues, I learned that I could get around this

by compiling the TensorFlowInferenceInterface binary myself while specifying the

exact ops that I needed. This process involves using a script7 to audit the exported

Tensorflow graph and generate an ops_to_register.h file. This header file, when

copied into the tensorflow/core/framework directory, directs the compiler to compile

only the specified ops. Working inside of a Docker Container that replicated the

exact environment of the official Tensorflow nightly builds, I was able to compile—

from scratch— a TensorFlowInferenceInterface binary that supported all of the ops

needed by the CNN-GRU and CNN-GRU-RAW models8.

With the proper TensorFlowInferenceInterface binary, I implemented a component

graph architecture almost identical to the one described in Section 6.2 in Java. This

architecture supported real-time VAD running directly on the smart speaker. I did

not attempt to run the CNN-GRU, but instead opted for the CNN-GRU-RAW model.

The reason for this decision was to avoid implementing a feature computation layer

for converting raw audio to log Mel filter bank features in Java. Due to the potential

for subtle differences when implementing a relatively complex feature computation

pipeline across different programming languages and environments, I did not want

to risk the effort only for the CNN-GRU to perform poorly amidst such differences9.

Despite choosing to run the CNN-GRU-RAW model, it was still capable of running

in 1.5 times real-time on the smart speaker.

6.4 Towards Generalizability

With both the smart speaker VAD implementation, and the browser-based applica-

tion shown in Figure 6-3, I did a lot of qualitative evaluation. Almost immediately,

it was apparent that the CNN-GRU-RAW performed much better on audio from a

Macbook microphone than from the smart speaker. To rule out factors that may

6https://stackoverflow.com/
7https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/-

print_selective_registration_header.py
8There were many snags along this journey.
9Because the model was trained on features computed in the Python environment.
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have been related to the Java implementation, I configured the smart speaker to send

all of its audio straight to the SLSStreamer VAD architecture. I then configured the

SLSStreamer VAD architecture to support broadcasting. That is, one client connec-

tion inputs audio, while the VAD results are broadcasted to all client connections.

This allowed for the real-time plotting of VAD results in the browser, despite the au-

dio stream coming from the smart speaker. With these factors controlled, I confirmed

that the worse performance on the smart speaker was attributed directly to differences

in the audio sources. The VAD with smart speaker audio was much more “trigger-

happy.” While the CNN-GRU qualitatively performed better than CNN-GRU-RAW

on both sources of audio, the prevalence of false alarms on smart speaker audio was

still present.

The lack of generalizability to the smart speaker audio was disappointing, and it

may have turned out to be a coincidence that the VAD performed so well on audio

from a Macbook. This lack of generalizability may have been related to some of the

limitations of the dataset mentioned in Section 2.2, including the fact the TIMIT

corpus represents a very specific acoustic environment. While the additive noise and

artificial reverberations helped to expand the acoustic environment, it may not have

been sufficient. These thoughts motivated me to gather more diverse data.

In gathering more data, I combined the dataset with two additional sources. The

first source was a collection of non-speech sounds assembled for the DCASE 2018

acoustic event detection competition10. I added roughly 9000 non-speech segments,

and spread them across the train, dev, and test partitions with a 4-1-1 ratio.

The second source, motivated by the poor performance on smart speaker audio,

was a collection of TIMIT re-recordings. These re-recordings were recorded with the

Android smart speaker in a single room with an absorbent ceiling. Various settings

were simulated including having the smart speaker placed at different distances and

positions with respect to the audio source. 200 TIMIT utterances were recorded

at each of 0.2, 1m, 2m, and 3m distances. Another setting, designed to simulate

reverberation, had the smart speaker placed slightly behind the audio source, with

10http://dcase.community/challenge2018/index
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both devices facing the opposite side of the room. In total, there were 1000 re-recorded

TIMIT utterances spanning roughly 106 minutes. These re-recordings were spread

across the train, dev, and test partitions with a 2-1-1 ratio.

In addition to having more data, I needed a better way to empirically gauge how

well the model generalized to other environments. Instead of selecting a model that

performed well on the dev partition—a collection of data with very similar character-

istics to the train partition—it seemed better to evaluate on data from a completely

separate distribution. For closed-domain tasks with well-defined test partitions, eval-

uating on the dev partition would have been sufficient. For real-time deployment, a

more robust methodology was needed to select a generalizable model. With this moti-

vation I collected 36 minutes of labeled data from the Librispeech corpus, a collection

of audio books with transcriptions (Panayotov et al. 2015). I used English forced

alignments from (Kocabiyikoglu et al. 2018) to generate labels. This small collection

of data was then used to evaluate the CNN-GRU periodically during training, so a

high-performing checkpoint could be selected . This process assumed that if CNN-

GRU generalized well to LibriSpeech, then it may have a propensity to generalize to

other environments as well11.

Figure 6-4 show the probability outputs for the medium CNN-GRU trained on

the original dataset described in section 2.1. Figure 6-5 show the probability outputs

for the medium CNN-GRU trained with the original dataset plus the additionally

gathered data. While gathering more data, including a wider variety of non-speech

sounds, had the effect of making the CNN-GRU slightly less trigger-happy on smart

speaker audio, it also appeared to have lowered the true positive rate on Macbook

audio. It’s not immediately clear which dataset yielded better results. This experience

highlights some of the difficulties related to the tendency of neural models to overfit

to their training data. Training a robust CNN-GRU that generalizes to a wide variety

of acoustic environments is an area for further exploration.

11More-so than if model selection was based on dev partition performance.
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Figure 6-4: A comparison of the CNN-GRU model trained on the original dataset
presented in Section 2.1. Audio was recorded from both a Macbook and smart speaker
simultaneously, with words spoken at the same distance from each microphone. The
CNN-GRU had a greater tendency to give probability density to non-speech frames
for the smart speaker audio.

Figure 6-5: A comparison of the CNN-GRU model trained on the original dataset
plus additional data, as discussed in Section 6.4. While the CNN-GRU is less likely
to give probability density to non-speech frames in the smart speaker audio than in
Figure 6-4, performance is degraded in other respects, especially on Macbook audio.
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Chapter 7

Conclusion

In this thesis, I’ve introduced the problem of Voice Activity Detection (VAD), includ-

ing some of the challenges related to producing a VAD model that is robust amidst

a variety of acoustic environments. This task of producing a robust VAD has been

explored for several decades. Historically, many of the proposed VAD models have

been highly heuristic in nature—it was not until recent that statistic models have

gained popularity, including the use of Deep Neural Networks (DNNs).

In exploring a lightweight, deep, recurrent neural architecture called CNN-GRU,

I first introduced a methodology for artificially generating large amounts of noisy

speech data from a clean speech source. While this methodology was able to produce

realistic samples, it still possesses a few fundamental limitations.

In analyzing the performance of the CNN-GRU architecture, I explored 3 size vari-

ants, testing for both accuracy and computational efficiency. I found that while larger

variants were more accurate, they were also less computationally efficient. While com-

putational cost was roughly linear in the size of the network, there were diminished

returns in accuracy. I also explored the performance of a CNN-GRU variant trained

only on clean speech and non-speech sounds. This model performed well on noisy

speech at 15dB SNR and above.

I explored a fully end-to-end variant of the CNN-GRU, called CNN-GRU-RAW,

which learned features directly from raw waveform data as opposed to accepting a

feature representation like log Mel filter banks as input. This model, while compu-
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tationally less efficient than CNN-GRU, learned to extract spectral information from

the raw waveform with a distribution similar to the Mel scale. The propensity of

CNN-GRU to respond particularly strongly to high frequencies may have shed light

on idiosyncrasies of the TIMIT recordings used during training.

Lastly, I demonstrated how both the CNN-GRU and CNN-GRU-RAW models

could be deployed live with a real-time audio stream. In deploying, I described how

a finite state transducer (FST) could be layered on top of these models to effectively

capture whole spoken utterances instead of highly granular segments of speech. In

deploying amidst unseen environments, including an Android IoT smart speaker, I

found that the models had trouble generalizing to the subtle differences. I briefly

explored how to combat this problem with the introduction of more diverse training

data. The problem of making the CNN-GRU more robust to unseen environments is

an area for further research.
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