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Abstract

Tripod is a project funded by ARPA-E and partly carried on by the Intelligent Trans-
portation Systems (ITS) Lab at MIT that aims to promote more energy efficient travel
options by offering commuters incentives to make smart travel choices. These incentives
depend on the current network state, and the ability to estimate the state of a given road
network in real time is crucial. It relies on the DynaMIT system to determine what these
incentives ought to be in order to optimize traffic flow on the network. Developed by
the ITS lab, DynaMIT uses simulation to compute the current network state, predict its
state in the future and, by extension, compute the incentives to travelers that optimize
the global energy gain. While DynaMIT is able to do this effectively within smaller areas,
it is unable to simulate traffic for the Greater Boston Area, or GBA, due to the scale of
the network. The goal of this thesis is to scale the DynaMIT system so that it is less
affected by network sizes. First, we outline a custom, lightweight profiling tool that is able
to better track down the problems with scalability; next, we build off of previous work to
address design errors that slow serial execution time; and finally, we implement a novel
way to parallelize traffic simulation that avoids the race conditions and concurrency issues
generally associated with such systems.
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Chapter 1

Introduction

As congestion increases in cities, and focus on the environmental impact of transportation

continues to grow, researchers have increasingly turned to technology as a way to minimize

energy use across a traffic network, and mitigate the effects of an increasing number of

commuters within a given system. Unfortunately, simply throwing technology at a prob-

lem does not always provide a solution. Notably, ride sharing applications, which promised

to decrease congestion by taking private vehicles off the road, have actually been shown

to increase it as users opt to hail a ride over walking, biking, or taking public transit [9].

Instead, researchers turn to the concept of intelligent transportation systems, which aim

to make use of technology to provide travelers with guidance that capitalizes on knowledge

about the traffic system in which they are traveling. The goal of such systems is to make

controled choices on how to direct traffic, minimize congestion or environmental impact,

and increase the overall efficiency and safety of the network for travelers [7].

The Intelligent Transportation Systems (ITS) Lab at MIT, in conjunction with ARPA-

E, has developed the Tripod system for precisely this use, offering travelers incentives in

order to make travel choices that make the overall system more efficient. The accuracy of

these estimations depends on the ability to estimate real-time congestion on the network,

and predict the ways in which individuals’ travel decisions will affect it in the near future.

To this end, Tripod relies on DynaMIT, a system developed by the ITS Lab for use in

traffic simulation.

DynaMIT is a software designed to estimate the current state of a given road and rail
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network, make predictions about how this state will change in the immediate future, and

use these estimations and predictions to provide a control signal to influence travel deci-

sions, e.g., guidance or incentives to travelers. DynaMIT’s goals are for its control signal

to be optimal with respect to its current knowledge of the network, and for its estimation

of the network state to be consistent with actual conditions. The function that optimizes

the control signal can take many forms, e.g., minimizing the congestion, the energy con-

sumption or the pollution, or maximizing the revenues of the road operators. Currently

intended as a backend engine to generate guidance for Tripod, DynaMIT’s main objective

is to minimize energy use on a given network.

Congestion on the network, or supply, is estimated using a combination of historical data

on congestion and travel times, and real-time input from sensors on the network. Current

travel plans, i.e., the origin, destination and departure time of travelers’ trips, generally

referred to as demand, are inferred from the information received from the sensors and esti-

mated by simulating the actual movement of users on the network. Both supply simulation

and demand estimation are necessary in order to appropriately estimate network state and

generate control signals accordingly. DynaMIT generates state estimation, prediction, and

control signals using a rolling horizon window, where an estimate of the network state

over the next estimation interval will be computed using real and historical data. Then,

given this estimated state, prediction and control will be generated over the next prediction

interval. Default values for the estimation and prediction intervals are 5 and 15 minutes,

respectively.

1.1 Main Objectives

The main objective of this thesis is to optimize the execution time of DynaMIT, with the

goal of enabling it to run in real time regardless of the size of the network it seeks to

control. This is crucial for its use in Tripod. In order for the control signals to be effective,

the system must be able to generate them as demand is generated by real-world users.

This means that estimation for the state of the network 5 minutes ahead of time must take

14



at most 5 minutes, so that the output is ready to be used at that time. The same holds for

state prediction over a 15 minute prediction interval. Efficiency of simulation is therefore

crucial to DynaMIT’s efficacy as a guidance system.

At present, DynaMIT is effective in performing estimation and guidance in small traf-

fic networks, such as Boston’s Central Business District (CBD). However, the ITS Lab’s

goal is to be able to run Tripod, and by extension DynaMIT, on the entire Greater Boston

Area (GBA). The Boston commuter belt covers a large geographic area, and contains a

complex road network that poses problems for traffic simulation. In order to offer guidance

to users, DynaMIT must simulate traffic movement across this entire network in real time.

While it is able to run sufficiently fast to enable guidance within Boston CBD, it is unable

to do so for full demand on a network the size of GBA.1

In particular, the requirement that DynaMIT run below a constant speed regardless of

network size suggests that parallelization will be required to achieve the main goals of the

Tripod project. A previous thesis from the ITS Lab, from Yang Wen [18], makes strides

to optimize the core of the DynaMIT code, and also implements a parallel version of the

system that lends itself to greater scalability. Unfortunately, Wen’s improvements to the

serial code, while significant, are still insufficient to enable DynaMIT to run on a large-scale

network. Elsewhere, the integration of the parallel code into the system is very complex,

and therefore has proved difficult to maintain. Moreover, while the execution of Wen’s

parallel implementation closely mimics the serial one, it is unable to produce completely

identical results across runs. Although a near-perfect parallel system is sufficient to gener-

ate guidance, it is insufficient if one wants to perform fine-grained testing of traffic effects

or assess the impact of changes to the code.

Another obstacle to running DynaMIT on larger networks is the memory use. In or-

der to generate guidance for travelers, DynaMIT must have access to a set of most efficient

routes for all origins and destinations that travelers may attempt to travel between. The

size of this set of paths grows quadratically with the size of the network, and DynaMIT’s

1The full GBA network has over 16000 nodes, which roughly correspond to intersections; and over 48000
links, which roughly correspond to a section of street between intersections. Even having the memory to
be able to access paths, in order guide users between nodes, poses a problem on a network of this size.
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current implementation loads all of these paths into memory at the beginning of the execu-

tion. Even though networks the size of GBA can be stored in memory, their corresponding

pathsets quickly becomes too large to load.

With these goals and prior efforts in mind, we divide our work into two main stages:

first, we aim to optimize the serial execution of the DynaMIT system, and develop tools to

closely evaluate its performance; and second, we design and implement a new parallel ver-

sion of DynaMIT that seeks to correct problems with the previous implementation. This

updated parallel implementation seeks to fulfill three main goals: it must provide scalabil-

ity, i.e., the running time ought to decrease with the level of parallelization; the code must

be maintainable, which means that its integration into the existing coding must be simple

enough that developers can change the serial code without affecting the parallel system;

and finally, its execution ought to be deterministic to allow for repeatability between runs.

1.2 Thesis Contributions

The contributions of this thesis fall into three main sections.

First, we designed a custom profiling tool for the DynaMIT system, which can be in-

tegrated into the code with virtually no running time overhead, and without the need to

install external profilers. This avoids the prohibitive increase in running time from tools

such as valgrind [17], allowing it to be run alongside the code by default. This enables

developers to perform profiling in parallel with development. Not only has this addition

aided us in our own work, but it will continue to be beneficial throughout future iterations

of the system.

Second, through addressing bottlenecks in the serial execution we were able to achieve

significant decreases in running time, both in one-time startup functions and in the simu-

lation itself. The former were prohibitively long in the original implementation, hindering

development and testing, while improvements to the latter lend themselves directly to scal-

ability.
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Third, we designed and implemented a novel way to parallelize the execution of the Dy-

naMIT system. Our design avoids the race conditions typically associated with parallel

simulations without the use of mutex locks or other common solutions to concurrency issues.

Elegant in a theoretical sense, this solution also aims to eliminate many of the overheads

typically associated with parallelism. Moreover, our design is sufficiently simple that we

were able to integrate it without significant changes to the existing code, indicating that

its long-term maintenance will be more feasible than that of the previous implementation.

These improvements have been made in parallel to efforts to enable dynamic memory

loading, which will ease the burden of pathset size. Although this work is not directly

related to this thesis, and thus is not discussed here in detail, it is worth noting because it

has an impact on our ability to run the system on larger networks. As these improvements

are still ongoing, most of the results discussed throughout this thesis have been produced

with a dummy demand on the larger GBA, or run on the smaller CBD network.

1.3 Outline

In Ch. 2 we discuss prior work, in the field in general as well as in the ITS Lab. Next,

we give background on the structure and execution of the DynaMIT system in Ch. 3. We

then outline the improvements to the serial code in Ch. 5, before discussing the parallel

design in Ch. 6. Finally, we discuss the results we were able to achieve, and steps moving

forward, in Ch. 7.
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Chapter 2

Related Work

There is a wealth of previous work on scalability of traffic simulations, both in DynaMIT

and in the field in general. Most published work on running time improvements focuses on

parallelization, as it is essential to providing scalability as networks continue to grow.1 All

of these implementations partition the network geographically, but they differ in how they

control parallel processors (either using a master/slave node setup to simplify synchroniza-

tion, or a decentralized approach to eliminate bottlenecks at a single machine), and how

they resolve conflicts at borders (which are largely implementation-dependent).

Domain decomposition refers to the process of segmenting the network geographically,

simulating over a certain interval, and then using some strategy to merge the borders be-

tween partitions. [14] is widely cited as a model for this approach. The authors were able

to achieve near linear speedup for traffic simulation in their system, using master-slave

coordination and PVM for inter-processor communication [15]. However, their serial im-

plementation differs from DynaMIT’s in that they implement a lookahead scheme, where

the execution at each time 𝑡 + 1 depends only on the state of the network at the end of

time 𝑡 for all nodes. This allows the system to synchronize processors after each time step,

effectively reproducing serial execution. DynaMIT, in contrast, has a mixed dependency,

where some nodes at time 𝑡 depend on the neighbors’ state at previous time 𝑡 − 1, while

some depend on neighbors at current time 𝑡, complicating the synchronization process.

The lookahead functionality in [14] circumvents the need for the merge operation in the
1This is not to discount the importance of serial optimizations; however, these are less widely applicable

than parallelization schemes, as they are highly dependent on implementation.
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parallel case, largely because merge conflicts are deterministic, and are already handled

in the sequential execution. A non-parallel system with lookahead 1 essentially performs

updates to all nodes concurrently,2 making the extension to parallel updates trivial. While

implementing lookahead functionality is something to be considered for DynaMIT, it would

require a significant change codebase, and we cannot simply adopt this parallel approach

in the current system. This introduces an important goal in any maintainable codebase,

which is to provide a parallel system that is representation independent. Ideally, a par-

allel approach could be adapted to any system without having to change the underlying

sequential implementation.

Other attempts at domain decomposition reflect the fact that it is not easily integrated

into other systems that do not already implement a lookahead. [10], [11], and [12] all fail

to produce deterministic results through geographic partitions of the network. Instead,

they aim to achieve statistical equivalence between runs, concluding that their results are

accurate if a satisfactory percent of the network closely resembles the serial result, or

if, over a large number of runs, the average output resembles the sequential results. In

contrast, we seek to produce a truly deterministic output from our parallel implementation.

In the field of computer science, determinism is a necessary condition for the correctness of

a parallel implementation; however, some question whether or not traffic simulations ought

to be held to the same standard. Interestingly, [19] see the certain amount of randomness

inherent in parallelization as an advantage. As with other implementations, they aim to

make their parallel simulation statistically equivalent to their sequential one, but believe

that small local discrepancies between runs due to concurrency issues mimic the natural

variations in human decisions and movements. It certainly provides an interesting talking

point on the value of nondeterminism. That being said, while this reasoning certainly has

merit, we believe that these sorts of variations ought to be introduced intentionally rather

than be allowed to persist due to nondeterminism.

2In most systems, this is implemented by maintaining two views of the network, for current time 𝑡 and
previous time 𝑡 − 1. All values calculated at time 𝑡 are based off the previous interval’s values, which
remain unchanged until all calculations have completed for this step. All “previous value” variables can
then be updated with the “current value” variables, and the system is ready to perform calculations for
time 𝑡+ 1.
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2.1 Previous work in DynaMIT

As mentioned above, there already exists a parallel version of DynaMIT using domain

decomposition. A previous PhD thesis from the ITS Lab, [18], focuses both on serial

optimization and on parallelization to achieve a significant speedup in execution. The Dy-

naMIT implementation at the time included a wealth of less efficient data structures and

coding practices. Improving upon these, the author was able to achieve up to a 4-factor

speedup in the serial execution of the code. Most straightforward improvements from

changes to data structures have already been explored in the thesis. DynaMIT’s codebase

still contains a large number of areas in which serial improvements on the same scale can

be made, as outlined in §5.3; however, these improvements do not directly relate to Wen’s

work. With respect to structural changes to the serial code, the thesis serves more as a

guide to those paths for improvement that have already been exhausted.

The most relevant part of Wen’s thesis to our work here involves its multi-threaded exten-

sion of the DynaMIT system. The implementation is able to achieve significant speedup

of the execution via parallelization. Analysis of the results concludes that it is sufficiently

accurate to be able to replace serial execution in offering real-time guidance. However,

the implementation does introduce some problems. First and foremost, it is unable to

deterministically resolve problems created at border zones in the partition. As mentioned

above, one of the goals in parallelizing DynaMIT is to achieve repeatability of simulations,

and determinism is crucial to this effect. Second, its complicated partitioning and merg-

ing processes are very maintain, as updates elsewhere in the code can create unexpected

problems that are difficult to track down. In order for the parallel implementation to be

functional throughout development, additions to the serial code must take it into account.

This often forces developers to choose between adding enhancements to the serial version

of DynaMIT and maintaining the parallel version. The ITS Lab has overwhelmingly sided

with the former option, and as a result the parallel implementation cannot be run on the

current DynaMIT system.
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To justify producing an entirely new design as opposed to bringing the previous one up to

date, any new implementation ought to substantively improve upon the previous one. As

such, we aim to directly address these problems of determinism and maintainability when

introducing our parallel scheme.
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Chapter 3

The DynaMIT System

Before discussing any changes to the code, we present the architecture of the DynaMIT

system prior to our work, as documented in the DynaMIT Programmer’s Guide, produced

by the ITS Lab. DynaMIT has a very large codebase, written in C++ over the past two

decades. The code is divided into three main sections: processes, which are the tasks the

system must perform; modules, which are the building blocks with which to carry out

these tasks; and components, which store requisite information about the traffic system

and its travelers to be passed to the modules. There are two processes, state estimation

and prediction-based guidance, which estimate the state of the network for a given interval

in the future, and generate guidance for travelers based off of this estimation, respectively

[2]. There are several modules and components which carry out various tasks, but we dis-

cuss in detail only two of these, the Network Topology component and the Supply module,

as they are the most relevant to the work presented here.

DynaMIT’s execution is largely dictated by the two processes, which serve as the entry

point into the program and an interface into the modules and components. Both simulate

traffic on the network; however, they carry out slightly different tasks, and the length of

time (in the real-world) for which they perform these simulations depends on parameter

settings that are provided for each DynaMIT run. We discuss their use and parameters in

§3.1.

We next provide an overview of the Network Topology component. The network topology

refers to the physical structure of the network (streets, intersections, lanes, etc.), which we
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define more formally in §3.2. Its corresponding component is responsible for loading the

topology, verifying that it is valid, and passing the requisite data to the modules and other

components. The network topology is used in close conjunction with the path topology,

which refers to possible routes that travelers can take within the given network to get

from one location to another. The path topology has a large impact on the memory use

of the system. Storing paths for each possible (origin, destination) pair in the network is

quadratic in network size. The actual representation of the paths is not central to the work

done in this thesis, and we therefore do not discuss it or its respective Path Topology com-

ponent in detail; however, it does have an effect on our ability to parallelize the system,

and its terminology is relevant when discussing the simulation. We therefore provide a

cursory explanation of the path representation in §3.3 to give background in both of these

areas.

Most of the time spent in these components is in one time start-up costs associated with

loading the topologies, as opposed to during the simulation itself. As such, increasing

their efficiency will not dramatically help with the scalability of longer-running simula-

tions; however, making these components more efficient is invaluable to development and

testing, where developers will have to restart the code regularly as they make small changes

(see §5.2 for our contributions with respect to this problem). Their structure also dictates,

to a certain extent, the structure and functionality of the Supply module.

The vast majority of the work presented in this thesis focuses on the Supply module.

This module is responsible for the main traffic simulation in DynaMIT, and its execution

constitutes the vast majority of the time spent in long-running simulations. Its name de-

rives from the concept of supply and demand on a network, where demand refers to the

traffic that must move (or perhaps more accurately, will attempt to move) on the network

given travelers’ plans, and supply refers to the capacity of the network to allow for this

traffic to flow [4], [5]. As one may surmise, all simulations experience increases in execu-

tion time due to larger networks and demand; in DynaMIT’s implementation, these are

almost entirely due to increased time spent in Supply (see §4.1 for precise running times).

Lessening the impact of network size on the running time of Supply is a major component

of this thesis. We therefore discuss in detail the control flow within this module, found
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in §3.4. The Supply module also contains its own representation of the network, which is

constructed at the beginning of execution based on information from the Network Topol-

ogy component, and whose memory allocation we detail in §3.2.2. Addressing problems

both in the control flow and the representation is crucial to improving the running time of

the system.

3.1 State Estimation and Prediction/Guidance

DynaMIT’s execution consists of two processes, State Estimation and Prediction/Guidance.

The system implements a rolling horizon model for its simulation [13], whose use in Dyna-

MIT is introduced in [1], [3]. The model alternates between estimating a future network

state and offering guidance based on this estimation.

Given a real-world view of the network from sensors and other data, the actual state

of the network is computed for the current time, and this state is used to estimate the

state that the network will be in at the end of the next estimation interval, which is by

default set to five minutes. For example, at 8:00 AM, the State Estimation process will

simulate 5 minutes worth of traffic, and use its end state as an estimation of what the

network will look like at 8:05 AM. This process is called state estimation. DynaMIT uses

the estimated network state until the next estimation interval, when it has access to the

actual state at this time, and begins to estimate the state for the next interval.

The system then generates guidance for travelers over the prediction horizon following

this interval, according to this estimated network state, in order to predict how to best

direct travelers to minimize a given cost function.1 This process is called prediction and

guidance. The prediction horizon is at least as long as the estimation interval, usually

longer.2.

A step-through of the current state over several time steps is shown in Table 3.1, for

an estimation interval of 5 minutes and a prediction horizon of 15 minutes. For ex-

1In DynaMIT’s use case as a component of Tripod, this cost function will be the total energy use in
the network over this interval.

2Ideally the prediction interval will be at least as long as the longest trip expected to occur on the
network.
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real
time

have real
network
state for

using
guidance
generated
at time

directing
travelers

for
interval

estimating
state for

generating
guidance

for

7:55 <7:55 7:50 7:55-8:00 8:00 8:00-8:15
8:00 <8:00 8:00 8:00 -8:05 8:05 8:05- 8:20
8:05 <8:05 8:05 8:05-8:10 8:10 8:10-8:25

Table 3.1: Sample states for rolling horizon.

ample, at 7:55AM, DynaMIT has access to the real-time state of the network up to this

time, and uses this information to estimate what the state will be at 8:00AM. It then

generates guidance for travelers, assuming this state is correct, for the prediction interval

of 8:00AM-8:15AM. It must able to perform both the estimation and the guidance in at

most 5 minutes, so that when the real-world time is 8:00AM, it will have the guidance

for this time interval ready for travelers based on the predicted state. From 8:00-8:05,

it directs travelers using the guidance it generated based on the estimated state during

this interval; meanwhile, it now has access to the real-time state at 8:00AM, which it uses

to estimate the next state, and have guidance ready based on this updated state at 8:05AM.

In the long term, the goal is to have DynaMIT run multiple prediction instances per

simulation interval, each with a slightly different guidance strategy, to be able to choose

the optimal one to minimize energy use on the network.

Both State Estimation and Prediction/Guidance3 rely on the traffic simulation which is

carried out in the Supply module. The network state is estimated by simulating the move-

ment of vehicles and other modes of transportation through the network using a discrete

time step model, and running aggregate functions to interpret the movement of the traffic

at regular intervals. There are four main time intervals that dictate the Supply module’s

simulation and the interaction between the State Estimation and Prediction/Guidance

components:

advance interval (default=5s) the step size in the simulation (smallest interval value

given in the system)

update interval (default=60s) the frequency with with aggregate functions are run on
3We use estimation and guidance as general terms moving forward, but these are capitalized when

referring specifically to the DynaMIT implementation of these processes.
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the simulation, which calculate congestion values across the network, report incidents,

etc, all of which may have an effect on the path choice for a given traveler

estimation interval (default=5m) the length of time into the future for which we

estimate the state of the network

prediction horizon (default=15m) the length of the prediction horizon used to gen-

erate guidance strategy

3.2 Network Representation

The representation of DynaMIT’s network topology is outlined in DynaMIT Programmer’s

Guide, Ch 9.1 and Ch 11.2.5. Both the Network Topology component and the Supply mod-

ule contain their own representation of the network. These representations differ slightly

in terms of how relations between different network elements are stored; however, their

overall structure and the data they hold is the same.

The network topology consists of the following network elements:

(packet) DynaMIT uses a disaggregate model to simulate demand [5]; in other words,

demand on the network is not represented as a smooth function, but rather as indi-

vidual packets moving between origin-destination (OD) pairs on the network. More

specifically, a packet refers to an individual vehicle on the network, i.e., a car, bicycle,

pedestrian, train, or bus.4 While not part of the topology per se, packets are an essen-

tial part of the Supply module, and are referred to as network elements below as well

as in the code itself. Thus for simplicity they are defined here.

Packets on the network are represented as either moving along a segment, or queueing,

i.e., waiting to move into a particular lane from the previous one. Note that (somewhat

counterintuitively) queueing packets are stored at the lane level, while moving packets

are stored at the segment level. In other words, packets must queue to get into a lane,

but once they have gotten out of the queue they are merely represented as moving along

the lane’s parent segment. Packets may also be forced to wait while moving between
4There is some nuance here, as there may be 2 travelers attempting to travel between a given OD pair

at a specific interval, i.e., there is a demand of 2, but this may only translated into a single packet if these
two travelers decide to carpool, for example.
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links, at which point these packets are not technically represented in any real section

of the network (i.e., there is no physical manifestation of this state in reality). The

queue of such packets at a particular link is referred to as a link’s “virtual queue”, and

packets in this queue are also referred to as “virtual”. Links, segments and lanes are

defined below.

(node) Nodes correspond roughly to intersections on a road network. Each node

contains a list of uplinks and downlinks, i.e., links that flow into and out of the node,

respectively

(link) A link is a directed connection between two nodes. In other words, links cor-

respond roughly to streets running between one intersection and another (this distin-

guishes a link from a “street” as a human might think of it, which runs for multiple

blocks, and will be represented as multiple links in the network). Links are comprised

of one or more segments.

(segment) A segment is a lengthwise portion of a link. Notably, a segment contains

all lanes in its parent link along its length. Often, different segments on a link will

have different levels of congestion or different traffic rules, which we want to be able

to represent. This more fine-grained representation allows the system to make these

distinctions while still considering shortest paths through the network at the link level.

A segment contains one or more lane groups.

(lane group) Lane groups are collections of lanes that share common characteristics

(e.g., in a 3-lane highway, one lane might be a carpool/high occupancy vehicle lane,

or the two rightmost lanes on a large street could be turning lanes, etc.; it is useful in

directing traffic to group these sorts of lanes together). Each lane in a segment should

be contained in exactly one of the segment’s lane groups. Lane groups should each

contain at least one lane.

(lane) Lanes are the most fine-grained network element. They correspond to physical

lanes on a street that run the length of a single segment. When we simulate traffic on

the network, the position of packets is specified at the lane level.

(sensor) Sensors refer to real-time sensors present on the network that can be used to

inform the simulation (sensors are real world elements; their output is not simulated).
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Each sensor is associated with a node.

(loader) A loader is an element that loads packets onto the network at the start of

each estimation interval. Each loader is associated with a node.

Because there is a clear structural relationship between nodes, links, segments, lane groups,

and lanes, we refer to the group of these five element types as the network hierarchy. An

example of the way in which the elements in this hierarchy are arranged is shown in Fig

3-1, which illustrates how each of the levels of specificity play different roles. Recall that

packets technically move at the lane level, although represented at the segment level. The

link, segment, and lane group structures dictate how the packets transfer between links.

When generating the path topology, which will find the most efficient routes for travelers

between requested OD pairs, paths are constructed at the link level. Because a packet

cannot change links halfway through, and there are fewer links than segments, it is most

efficient to represent paths as a series of links as opposed to segments.

In Fig 3-1, for example, Link 0 is divided into two segments. In this case, all of the

lanes in Segment 0 have the same functionality, and Segment 0 contains only a single lane

group. However, the leftmost lane (note that traffic is flowing down the page in this link,

so the leftmost lane is actually shown on the right) is a left-turn lane, while the right

two lanes go straight. Thus in Segment 1, DynaMIT needs some way to model the fact

that packets attempting to turn onto Link 3 must be in this leftmost lane, as opposed to

continuing straight onto Link 2.5 It accomplishes this by dividing Segment 1 into lane

groups. Lane Group 1 knows that its lanes connect to lanes in Link 2, while Lane Group

2 knows that its lanes connect to lanes in Link 3. Thus if a packet is attempting to follow

a route that travels along Link 3, it will be aware of the fact that it must be in one of the

lanes in LaneGroup 2. In this case, this lane group only contains a single lane; however, if

it contained more than one, packets select the best lane based on availability.

5If packets were unaware of this, it would mean that packets could be seen to jump across lanes suddenly
while making turns. At best, this results in unrealistic behavior that goes unnoticed. At worst, this could
actually have an effect on the viability of the simulation. If the turning lane is particularly congested, but
packets are allowed to spread out across all three lanes and then hop onto the next link, we lose valuable
information about congestion at this turn.
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node 0

uplinks

downlinks

link 1

link 2

link 3

link 0

(a) Example of a single node and 4-link network. Node 0 has uplinks 0, 1 and
downlinks 2, 3. Direction of traffic is shown.

nl l

l

segment 0

segment 1

lg 0

lg 1 lg 2

link 0

(b) View of Link 0, with three lanes, denoted by dashed lines. Lane groups
(denoted by “lg”) ringed in blue, segments in purple. Direction of traffic/turning
lanes shown.

Figure 3-1: Example of hierarchy of network topology structure.
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3.2.1 Initializing Network Topology

The network topology is read in from a text file, which specifies the characteristics of the

network elements and their relations, with the exception of packets, which are generated

separately at the start of each estimation interval based on travel demand. It maps database

indices in the input to DynaMIT-internal IDs, which are contiguous starting from 0 to

increase efficiency.6 Nodes’ uplinks and downlinks are not given explicitly in the input

file. Instead, the link definitions include start and end nodes, and the corresponding

node is looked up and its values are updated when the link is initialized. Segments, lane

groups, and lanes are all given in the input file as part of the link object. The Network

Topology component also verifies that the network file is consistent, i.e., that each network

component provided is unique and that all of the links’ start and end nodes exist.

3.2.2 Initializing Supply

The network topology is loaded into the Supply module from the Network Topology com-

ponent. The original implementation of the module included only top-down dependencies.

In other words, nodes contained pointers to their up and down links, but links did not

know their start and end nodes; links contained a list of pointers to their corresponding

segments, segments to lane groups, and lane groups to lanes; but the lane groups only

had access to the ID of their parent segment, and lanes only had access to the ID of their

parent lane group. While this implementation is simpler in terms of class dependencies

(i.e., alleviates the need for mutual imports, an ever-frustrating albeit mild inconvenience

when developing in C++) and the initialization of the Supply module, its asymmetry elim-

inates type safety and forces interactions between network elements and their parents to

be passed through an instance of the Supply module, which contains mappings between

the IDs of network elements and their actual objects.

Current Memory Allocation

Another important consequence of the previous implementation is the order in which vari-

ous element are arranged. Particularly in a lower-level language such as C++, this ordering,

and its relation to the order in which the program iterates over the corresponding memory,

6This enables DynaMIT’s data structures to use arrays or C++ vectors as opposed to hash maps to
locate network elements based on ID.
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can have a large impact on performance [6]. The previous iteration of the Supply module,

given the way that it establishes parent/child pointers, builds the network hierarchy from

the bottom up, first creating all of the lanes, then the lane groups, then segments, then

lanes, and finally nodes. Loaders and sensors, which exist outside of this hierarchy, are

added afterwards. A view of how these elements are physically laid out on the heap is

shown in Figure 3-2. Each element is stored in the heap, and a pointer to an array of

pointers to these elements is stored in the Supply instance. There are no conditions on the

ordering of the links with respect to the order of their parent nodes.

3.3 Path Representation

The pathset generation and representation are discussed in Chapter 10.7 in the DynaMIT

Programmer’s Guide. The pathset is generated using Dijkstra’s shortest path algorithm;

random perturbations in weight (and sometimes deletions) are made to various links in

each shortest path to generate multiple “best” paths in the network. These various path

choices are meant to give flexibility to travelers should the absolute shortest path in theory

prove slower in practice due to traffic conditions. During simulation, the weight of links

along these paths is adjusted dynamically to reflect current conditions on the network, and

as a result travelers may be redirected along a more efficient route dynamically.

The pathset is stored in a decentralized manner, which follows directly from the out-

put of Dijkstra’s algorithm. Instead of representing paths as global elements, each link is

aware, given a destination nodes, of an array of paths to this node. Each of of these paths

is simply represented as a (link, path) pair, where the link is the next link in the path,

and the path is the index that corresponds to this path at that link. Thus to reconstruct

a global “path” object containing each of the links in a given path, one must traverse the

entire path from beginning to end to find all of the links.

While this representation may seem unintuitive, it has several advantages: first, that

its representation is a direct result of Dijkstra’s algorithm, and is thus easy to generate;

second, it reflects how actual travelers are given guidance on the network–a packet does

not need to know its full path to advance, only the link it should move to next and what
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Figure 3-2: Memory ordering in current DynaMIT implementation
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it should do when it gets there7; and third, it lends itself easily to parallelization, as there

is no need to worry about breaking the pathset across various processors or machines. We

can simply partition the pathset representation in the same way we partition the network

representation.

3.4 Simulation Control Flow

DynaMIT uses a discrete time step model in its simulation. At each advance interval, it

iterates over all the nodes in the network. For each node, it sorts all of its upstream packets

in increasing order based on their distance to the node, and advances each packet on the

network for the distance it would expect to travel given congestion, speed limit, and the

size of the time step. After it has advanced all of the packets present on the segments, it

advances those in the virtual queue. Note that advancing packets is recursive, i.e., once

a packet has been moved out of a virtual queue onto a lane, it may be advanced further

within the same advance interval.

Pseudocode for the advance traffic functionality is given in Fig 3-3. Importantly, the

advanceAllPackets, advanceAllVirtual, and loadNewPackets functions, which are the

main functions which exhibit an increase in running with largest network sizes and demand,

all consist only of a simple loop over the nodes (or loaders, which are each associated with

a node). This suggests that these functions are all good candidates for parallelization given

a geographic partitioning of the network.

7This of course does not fully reflect a users experience, as a human traveler would likely want to know
their full route at all times; however, within the simulation this is not necessary. The full route can easily
be reconstructed to pass to a traveler when they are assigned a path.

34



1: function advanceTraffic
2: advanceAllPackets()
3: advanceAllVirtual()
4: loadNewPackets()
5: function advanceAllPackets()
6: for node n in network do
7: packets = getSortedUpstreamPackets(n)
8: for packet p in packets do
9: advancePacket(p)

10: function getSortedUpstreamPackets(node n)
11: pkts = list of packets
12: for link l in n.uplinks do
13: for segment s in l do
14: pkts.add(s.movingPackets)
15: for laneGroup lg in s do
16: for lane ln in lg do
17: pkts.add(ln.queuingPackets())
18: pkts.sort(key=dist_from(n))
19: function advancePacket(packet p)
20: (some recursive moving in the network...)
21: function advanceAllVirtual
22: for node n in network do
23: for link l in n.uplinks do
24: for packet p in l.virtualQueue do
25: p.moveInQueue
26: if ! p.queuing then ◁ p has been moved out of virtual queue
27: advancePacket(p)
28: function loadNewPackets
29: for loader ld in network do
30: for packet p at ld do
31: add p at ld.node

Figure 3-3: Pseudocode for the advanceTraffic function.
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Chapter 4

Necessary Properties for DynaMIT

Efficiency of a program can be calculated along two axes: running time and memory use.

As these are often inversely proportional, an good implementation generally involves a

tradeoff between the two. Both time and memory use are prohibitively large in the current

implementation of DynaMIT. Generating the pathsets is time-intensive, and must be done

in advance of the simulation; the size of this pathset for the Greater Boston network far

exceeds memory limits for DynaMIT’s execution. Due to its intended use as a guidance

system, it is absolutely necessary for DynaMIT to run on larger networks in less than real

time. While this has already been achieved on smaller networks, it currently is not the case

for GBA, even with a very limited demand. This problem will only grow as we attempt

to simulate a larger number of packets on the network. Our main focus in this thesis is

to achieve scalability in DynaMIT’s running time, with consideration for parallel efforts to

address the problem of memory use.

Under the umbrella of efficiency lie three subgoals, which we discuss here in detail: first,

that the serial optimizations of the code be exhausted before entertaining the idea of a

parallel implementation; second, that any parallel implementation be a significant im-

provement upon the previous one, with the main objective of achieving deterministic (i.e.,

repeatable) execution; and third, that these parallel improvements are sufficiently transpar-

ent such that their maintenance will not hinder improvements to the serial code, allowing

for continued use of the parallel implementation in the future.

The former two requirements follow directly from our main goal of real time execution.
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The latter is important in guiding our design, as parallel implementations and their ef-

fects are often obscure. Our improvements will likely fall by the wayside if an inordinate

amount of effort is required to ensure they are consistent with the serial code. A lack of

maintainability was one of the larger difficulties that arose in the previous parallelization

scheme, and we specifically aim to forestall this problem in our implementation.

Efficient running time is important given DynaMIT’s intended use case; however, without

dynamic memory loading to handle larger pathset sizes, DynaMIT cannot be run on larger

networks at all, let alone in real time. Thus our efforts here have been made in parallel to

those to improve memory management, which is a continuing project within the ITS Lab

at this time.

4.1 Running Time Efficiency

DynaMIT’s intended use as a real-world control system makes it imperative that its sim-

ulation is able to run in real time. Because of the rolling horizon model, discussed in

§3.1, “real time” does not merely mean that five minutes on the network must run in five

minutes. Within this time we must be able to simulate traffic for a full estimation interval

during state estimation; simulate traffic traffic for a full prediction horizon for predic-

tion/guidance, which is at least as long as the estimation interval but often significantly

longer; and allow time for any additional overheads associated with interactions between

the two processes and the various components and modules.1

DynaMIT spends most of its execution time in the State Estimation and Prediction/Guidance

processes, although the latter takes a greater amount of time because it simulates traffic

over a longer interval. The bulk of the running time in both processes comes from advanc-

ing the traffic in the system. Recall from Fig. 3-3 that the program must iterate over the

entire network hierarchy in order to determine an ordering for the packets, and each of the

packets is advanced, if possible. This means that the running time for advancing traffic is

linear in both the size of the network and the number of packets.
1In the future, the goal is actually to run multiple instances of prediction/guidance per interval, each

with its own parameters settings. Because these simulations will only share initial values, but can otherwise
be completely independent of each other, we can naively launch them in parallel without worrying about
race conditions. However, it is worth noting that setting up these parallel threads and merging their results
will require additional overhead, and thus should not be considered entirely “free”.
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It is worth noting that network size informs the number of packets.2 On a network with

any amount of congestion, one would expect the number packets to dominate the number

of number of links and nodes; moreover, changes to the representation discussed below

make network size less relevant than packet count. Thus when we discuss the problem of

scalability on larger networks, we largely refer to the fact that the number of packets on

the network will be higher if the network encompasses a larger area; the number of nodes

and links, therefore, may increase running time indirectly rather than directly.

Sample running times for the full simulation, the two processes, and their respective ad-

vances of traffic are shown in Table 4.1. These running times are taken from the execution

Function Total
Calls

Total
Time

Time Per
Simulation

Interval

Time per
Call Variance

State
Estimation 6 59.9887s 9.99812s 9.99812s 0.654413

Prediction
Guidance 6 485.654s 80.9424s 80.9424s 363.863

SE: Advance
Traffic 720 43.683s 7.37488s 0.0606709s 0.00471351

PG: Advance
Traffic 2160 396.532s 66.3029s 0.183580s 0.005037

Main
Sim Loop 6 546.054s 90.7094s 90.7094s 290.322

Table 4.1: Sample running times for main DynaMIT functions over 6 simulation intervals in Boston
CBD.

of DynaMIT in Boston CBD, with an estimation interval of 5 minutes and a prediction

horizon of 15 minutes. This means that the main simulation loop must run in at most

300s per simulation interval to be within real time. While the current running time of

approximately 90s per loop is sufficient for a network of this size, we would expect this

running time to scale roughly linearly with network size. Boston CBD has 834 nodes and

1802 links.3 The GBA network has 18016 nodes and 46763 links, making the complete

2When expanding a network representation from a downtown area such as Boston CBD to the area and
its commuted belt, such as GBA, we do not remove packets from the original area because we are now
able to represent outlying areas. However, packets do not scale entirely linearly in the number of links,
because we would except outlying areas to have less congestion. We therefore carry out most testing on
the smaller Boston CBD for consistency.

3These number may vary slightly in newer versions of the network, but the approximate measurement
remains the same.
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network 24.575 times the size. Even if we assume that congestion is significantly less in

farther flung areas, we would not expect DynaMIT to be anywhere near real time when

run on a network the size of GBA.

Testing on a limited pathset4 for GBA confirms these expectations. A plot of the running

time in GBA for various demands is shown in 4-1. While running with a small demand

Figure 4-1: Demand, scaled logarithmically, vs. running time in GBA.

between a single origin and destination runs within real time, we see a sharp spike in the

running time for higher demands. A mere 200 or so packets causes the simulation to jump

above real time; the Greater Boston Area can see as many as 3 million trips taken in a day.

It is encouraging to note, however, that the running time of the advanceTraffic function

closely tracks that of the overall running time. In other words, a parallel implementation

that achieves scalability for this function will go a long way towards achieving scalability

for the overall simulation.

4.2 Repeatability of Parallel Traffic Simulations

Intuitively, one can parallelize the execution of a traffic simulation easily by dividing the

network geographically, a process known as domain decomposition [14]. This is advanta-

geous in that the partitioning step is transparent to later developers (although merging
4As previously mentioned, loading the GBA pathset into memory requires additional changes to the

code that are being developed in parallel to this work in the ITS Lab. These adaptations are outside the
scope of this thesis. We instead provide data for full demand in Boston CBD and a dummy demand in
GBA, and extrapolate, with the expectation of testing on GBA with full demand when these improvements
are made.
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the output of the partitions is certainly not) and can be relatively inexpensive, computa-

tionally.5 Because paths in DynaMIT are stored implicitly at each node, allocating links

to various processors will, by extension, divide the pathset amongst these processors. This

sort of parallelization therefore has the potential to decrease both execution time and per-

processor memory usage by a factor linear in the number of processors. Partitioning the

network such that all sections are small enough to run in real time thus effectively solves

the scalability issue in DynaMIT.

Unfortunately, traffic systems are quite complex, and enforcing repeatability for these

simulations can be very difficult, as discussed in §2. While a single section of a parallelized

network will internally be identical to the serial version of DynaMIT on that subset of the

network, race conditions abound6 at the borders between sections. At these boundaries,

each processor must be aware not only of the traffic state in the links of its own domain,

but also of the state of the links directly across its borders, which belong to the neighboring

domain under some other processor. Failure to correctly synchronize this information will

at best lead to incorrect output, and at worst could crash the program due to concurrency

issues.

In most applications, a parallel implementation is considered correct only if its output

is indistinguishable from the serial one. In traffic simulators, these conditions are re-

laxed somewhat. Instead, researchers ([18], [12]) accept a parallel implementation as “good

enough” if its results are within a certain threshold of the serial execution. While these

parallel implementations may be sufficiently accurate to reliably generate control signals,

they are not guaranteed to be repeatable. Unrepeatability hinders researchers who want

to able to see the effects of tweaking parameters or to repeat a certain phenomenon, per-

haps with more detailed output.7 While overall traffic flow will likely average out to be

consistent with the serial execution, smaller effects on the network may be easily confused

with the side effects of parallelization.

5This only holds if the network partitioning is static, e.g., evenly distributing the number of nodes over
the partitions. Some systems, DynaMIT included, will instead dynamically adjust partitions based on the
demand on the network. This can improve simulation time, but computing the partitions themselves can
be computationally expensive depending on the algorithm.

6Pun unintended, but apt.
7Print statements notoriously affect race conditions, as they take significantly longer than other oper-

ations, and can actually eliminate the data race that caused the original problem.
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4.3 Maintainability

The third requirement for our parallel design is that any changes made to enable paral-

lelization must be maintainable. We require two conditions to hold to consider this to be

the case: first, that any parallel design and implementation be sufficiently simple that new

developers are able to understand and update the corresponding code; and second, that

the parallel implementation be sufficiently independent of the underlying representation

and control flow of DynaMIT that changes to the serial code do not render the parallel

code unusable.

Neither of these goals is realized in the previous implementation of DynaMIT. While it is

effective in achieving scalability, the way in which the parallel implementation interacts

with and depends on the serial code is very complex. Because of this, it has proved difficult

to maintain, and at present cannot be used with the latest version of DynaMIT. It is cer-

tainly possible to simply update the old parallelization to work with the current codebase;

however, it is sufficiently complicated that it would take a significant amount of time, and

it is likely that this problem would reoccur as DynaMIT continues to evolve. It is simply

not maintainable as a solution to the scalability problem if updates to the system render

the parallel code unusable for long periods of time between patches.
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Chapter 5

Serial-execution Optimizations

Before embarking on a parallel implementation, we aimed to exhaust the optimizations for

the serial code. First, in order to assess any improvements we were able to achieve, we

implemented a custom inline profiling tool that can track key functions and bottlenecks,

as laid out in §5.1. We then restructured or changed various data structures to improve

performance when loading values into memory, which we discuss in §5.2; and finally, we

rearranged how network elements are stored in memory in the Supply module, which is

outlined in §5.3.

5.1 Profiling

Before starting on any improvements to the code, parallelized or otherwise, we wanted to

be able to closely track its execution time in order to assess the benefits of any changes. In

order to see improvements not only to individual functions, but to the hierarchy of different

function calls, it is important that we are able to capture the call graph for the code, as

opposed to merely performing flat profiling.

Unfortunately, pre-packaged profilers such as valgrind [17], while certainly useful in pro-

ducing these sorts of results, can significantly increase execution time, sometimes by a

factor of 50 or more. In long-running simulations such as DynaMIT, this hinders develop-

ment that closely relies on profiling for the smallest of changes. Other tools such as perf

[16] could not be run on the ITS Lab servers as currently configured. In an attempt to

make profiling both easy and portable, we instead chose to implement an inline profiler,
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enabled via compiler flags, that can track the running time for specific functions within

DynaMIT. This allows profiling to be run by default alongside development, but still be

switched off during production.

Wen’s thesis [18] also discusses the addition of an inline profiler. However, this profiler

currently only performs flat profiling. This means that it can track the running time of a

single function from start to finish, but cannot identify the fact that one function is called

from within another, i.e., makes up part of its parent’s running time, and cannot perform

flat profiling in a parent and child function call simultaneously. While this profiler is still

useful for large-scale evaluations of different guidance strategies, it is insufficient for the

level of granularity that we wish to achieve here.

5.1.1 Updated profiler design

The updated profiler is able to handle both flat and hierarchical profiling. The main

functionality is within the Profiler class, all of which is placed within compiler guards to

easily disable profiling in production. The Profiler class maintains a stack of profilerFunc

elements, which represent the current call graph. The profilerFunc struct contains meta-

data about the function (the location of the function call, its name, etc.), the system time

when it was last called, and its most recent startTimer time, which is a simple timer main-

tained for each function in the stack, used for flat profiling. When a function is called, its

corresponding profilerFunc is pushed to the function stack; when it is exited, the time

spent in the function is calculated and pushed to vector of call times corresponding to this

function, and it is then popped from the function stack. This allows us to calculate the

total time, average time, and variance of each function.

The Profiler class also keeps track of the parent function of each call (i.e., the func-

tion currently at the top of the stack when a new function is pushed), allowing us to

differentiate between calls to the same function made at different locations. This is impor-

tant in maintaining the hierarchy for the call graph. Sample call graph output is shown in

Fig 5-1. Note that some function names are equivalent to the function call made within

the C++ code, while some are user-specified. We specify macros within the profiler that

enable both options, giving the user more flexibility when adding profiling to the code.
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[1] idlAssignmentMatrixList::the()->load()
=====================================================
DynaMIT/DynaMIT.cc:348 TIME TO LOAD: 58.0784s
=====================================================

[2] main_sim_loop_0
[3] idlLinkToll::the()->load(

idlParameters::the()->getLinkTollFile())
[4] idlEstimation::the()->execute(timeInterval)
[5] executeODEstimation(timeInterval_)
=====================================================
processes/Estimation/dtaEstimation.cc 1.59551s
=====================================================

[6] idlSupply::the()->simulateTraffic(timeInterval_.start
simInt, upInt, advInt, eps, flag_report)

[8] main_update_loop
[9] advanceTraffic()
[10] reset_processed
[11] advanceAllPackets()
[12] startingForLoop
[14] sorting_upstream_packets
[16] iterating over packets
[17] iterating over links
[18] advanceAllVirtual()
[19] loadNewPackets()
[20] reportTraffic(flag_report)

Figure 5-1: Sample call graph for inline profiling.
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Outputs framed by = lines correspond to flat profiling. The flat profiling includes the lo-

cation in the code where the timer was started, and an optional user-specified message; it

does not affect any profiling maintained by the call graph.

The function stack also conveniently allows us run to flat profiling on multiple different

functions in the hierarchy at once. In the previous implementation, there is only a single

timer, which meant that if the flat profiling was initiated in a child function, it invalidates

the profiling started in its parent function. Since each function in the stack maintains its

own startTimer variable, each time the flat profiler is called, we simply start the timer

for the function at the top of the call stack, without affected the flat profiling of any of its

parent functions.

Running times for the call graph shown in Fig 5-1 are given in Fig 5-2.

5.2 Optimizing Network Initialization

Previous efforts to improve DynaMIT’s running time did little to address the time the

system spends reading in the initializing the network topology. This is likely due to the

fact that this only occurs once at the beginning of the execution, and thus does not affect

the running time of the actual traffic simulation.1 This functionality therefore becomes

unimportant in long-running tests. During development, however, it is often necessary to

see the effects on running time from changes in the code as opposed to the output from

a guidance strategy. This means that DynaMIT must be run for only a single round of

state estimation and prediction/guidance, making long startup times cumbersome. Aver-

age loading times for various DynaMIT networks are given in Table 5.1.

Network Nodes Links Loading Time
Boston CBD 843 1877 49.609s

Greater Boston 18016 46763 1278.64s

Table 5.1: Initialization times for DynaMIT networks.

Waiting for nearly half an hour to initialize the network topology each time small changes

1Some of functions we improved are called during the main simulation, but not frequently enough that
we saw these changes have a sizable impact on simulation running time.
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TOTAL SIMULATION TIME: 26.3021
TOTAL EXECUTION TIME: 76.6198

Func Call loc Num Calls Total Time Avg Time Variance
-----------------------------------------------------------------------
[1] DynaMIT/DynaMIT.cc:225 1 2e-06
[2] DynaMIT/DynaMIT.cc:367 1 23.7821
[3] DynaMIT/DynaMIT.cc:390 1 4.5e-05
[4] DynaMIT/DynaMIT.cc:449 1 4.88701
[5] processes/Estimation/dtaEstimation.cc:193 1 4.88699
[6] processes/Estimation/dtaEstimation.cc:1449 2 0.120867
[7] modules/Supply/dtaSupply.cc:472 4588 0.002251
[8] modules/Supply/dtaSupply.cc:613 10 0.099964
[9] modules/Supply/dtaSupply.cc:655 120 0.045669
[10] modules/Supply/dtaSupply.cc:2056 120 0.017015
[11] modules/Supply/dtaSupply.cc:2083 120 9.4e-05
[12] modules/Supply/dtaSupply.cc:2089 120 8.2e-05
[13] modules/Supply/dtaSupply.cc:2095 120 0.000162
[14] modules/Supply/dtaSupply.cc:682 10 0.02923
[15] DynaMIT/DynaMIT.cc:503 1 18.7538
[16] processes/PredictionGuidance/dtaPredictionGuidance.cc:140 1

6.12141
[17] processes/PredictionGuidance/dtaPredictionGuidance.cc:244 1

0.118276
[18] modules/Supply/dtaSupply.cc:472 9071 0.004189
[19] modules/Supply/dtaSupply.cc:613 15 0.093001
[20] modules/Supply/dtaSupply.cc:655 180 0.042297

Figure 5-2: Sample running times for inline profiler.

are made to the code is simply infeasible for development. Most of the running time comes

from the fact that each of the references between the various network elements must be

resolved in order to verify that the network file is valid, and to build the internal network

dependencies required for simulation. While network elements in the input file all have

unique IDs that can be used as references, these IDs are not contiguous, and can be very

large. DynaMIT instead assign each element its own internal IDs, which contiguous and

0-indexed, and can thus be used as indices into the vectors in which each of the network

elements are stored. This is more efficient during simulation, where iterating over elements

in a vector is faster than find values in a hash map2. Therefore, when passed to DynaMIT,

each network element has the index of its parent element specified via input ID, or userID,

2Asymptotically, the running time of these two operations is the same. However, in optimizing the
simulation, we want to get every advantage we can; accessing vectors in order is marginally more efficient.
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while internally they must be accessed via the DynaMIT ID, or id.

In the current implementation, the code iterates over all elements to resolve these ref-

erences and verify that the network file is valid. Instead, we add lookup tables to resolve

these references in constant time. This has previously been attempted in DynaMIT, but

not to the same extent. This previous implementation was not deemed effective enough to

maintain in the code; however, we believe our results were able to significantly contribute

to development.

5.3 Memory Locality Management

As shown in Fig. 3-2, the previous DynaMIT system allocated a contiguous chunk of mem-

ory for each type of network element. While this makes it easy to instantiate each group of

network elements, it does not reflect the order in which these elements are accessed during

the simulation, resulting in bad cache locality. This does not have an effect on asymptotic

running time, but can have a significant impact on the real-time performance [6].

In our updated implementation, we allocate memory for the network elements in the order

in which they are accessed when traversing the network hierarchy. This updated structure

is shown in Fig. 5-3. As we can see in the figure, a list of lanes is stored beneath their

parent lane group, a list of lane groups (including their child lanes) stored beneath their

parent segment, etc.. Recall that, during the advance traffic step, a list of packets upstream

of each node is compiled. In order to do this, DynaMIT must check up the node’s uplinks,

and their corresponding child elements. The nodes are iterated over in the order in which

they are specified in the input. Thus to advance traffic on the full network, DynaMIT

merely has to traverse elements in order on the heap. This is significantly more efficient in

terms of cache use. Particularly on larger networks, where the storage of the higher level

cache is likely to be insufficient, this can have a significant impact on running time.
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Figure 5-3: Updated order of network elements in memory.
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Chapter 6

Parallelization

While serial optimizations to the code are important, to truly enable DynaMIT to run

at a near-constant speed regardless of network size, one would expect that some level of

parallelism would be necessary. The previous work in DynaMIT succeeds in producing this

sort of scalability, but it fails to achieve determinism or transparency. We instead propose

an alternate parallel implementation, based off of geographic partitioning, that eliminates

the race conditions generally associated with this method, and greatly simplifies the pro-

cess of partitioning and merging between processors. The main premise behind this idea is

that staggering execution of neighboring partitions will avoid the problems that arise from

their interaction. We argue from a theoretical perspective (and later demonstrate from an

empirical one) that this parallelization method fully avoids race conditions, and is therefore

repeatable without the use of mutex locks; and that maintain that its implementation is

more transparent than previous attempts at geographic partitioning within DynaMIT.

The largest problems in parallel traffic simulation stem from the fact that dependencies

within a network, and by extension between processors in a geographic partition, can be

quite complex. This is true in DynaMIT in particular, as some nodes depend on the exe-

cution of their neighbors at the previous time step, while some depend on their neighbors’

state at the current one. These dependencies are created by the order in which traffic is

advanced across the system. Recall from §3.4 that packets are advanced based on their

down node at the beginning of each interval. DynaMIT advances nodes in a constant order

based on their ID; at each node, packets at the node’s uplinks are advanced in ascending

order based on their distance to the node. Thus if nodes 𝑛𝑖 and 𝑛𝑗 are adjacent, and
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packets at 𝑛𝑖 are advanced before those at 𝑛𝑗 , then the behavior of packets at 𝑛𝑗 at time

𝑡 will depend on the congestion at 𝑛𝑖 at time 𝑡; however, when advancing packets at 𝑛𝑖 at

time 𝑡, those at 𝑛𝑗 will not have been advanced yet. This means that the behavior at 𝑛𝑖 at

time 𝑡 is actually dependent on congestion at 𝑛𝑗 at the previous timestep 𝑡− 1. We refer

to the fact that the behavior at 𝑛𝑖 informs the behavior at 𝑛𝑗 during the same time step

as a forward dependency, denoted at 𝑛𝑖 < 𝑛𝑗 . If the execution is repeatable, either 𝑛𝑗 will

always advance its packets after 𝑛𝑖 does, or the construction of the network is such that its

end state is identical regardless of which node advances first. Any correct parallelization

scheme must be able to ensure that one of these properties holds across processors, to

ensure that the state at the end of a particular interval is identical for each run.

Say we begin with a simple 1D partition, where nodes are assigned to partitions, or bands,

based on their 𝑥 position. We can then impose an ordering of the nodes that is consistent

with our geographic partition, i.e., given two processors, 𝑝𝑚 and 𝑝𝑛, without loss of gen-

erality we order the nodes such that all nodes in 𝑝𝑚 will update before any nodes in 𝑝𝑛,

while maintaining their original ordering within each band. We can thus say that 𝑝𝑚 is

advanced before 𝑝𝑛, or 𝑝𝑚 < 𝑝𝑛. While moving dependencies to the band level in this way

simplifies the problem posed, it does not actually eliminate race conditions at boundaries

when executing all processors in parallel.

To address this, we take advantage of the idea that traffic effects do not propagate in-

stantaneously. In other words, the movement of a car driving in Harvard Square will not

affect the movement of a driver in Kendall Square within the same second.1 In the real

world, these effects are constrained by speed limit and other physical restrictions on the

network. In a simulation, they are similarly dictated by the maximum distance the system

attempts to move a packet within a time step. This separation implies that it ought to

be possible to eliminate some dependencies in the network such that certain bands can be

executed in parallel without race conditions.

1In today’s world, a serious accident may, in fact, change drivers’ decisions this quickly thanks to systems
such as Google Maps, Waze, etc., which distribute information about network state almost instantaneously
to remote locations. However, when we talk about parallelizing traffic movements, we are discussing
simulating all traffic within a given time step. Thus, in a parallel simulation, if this sort of information
is included, it should not be pushed to nodes until the end of a time step, both in the serial and parallel
execution.
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Depending on the ordering of the nodes within the network, we can derive two types of in-

dependence properties from this finite velocity assumption. The first we refer to as update

independence. We say a band 𝑏𝑖 is update independent from another band 𝑏𝑗 if no packets

that originate in 𝑏𝑖 will reach 𝑏𝑗 within the same time step. The second property we refer

to a full independence, or just independence. Two bands are independent if, for any pair of

packets 𝑝𝑖, 𝑝𝑗 , where 𝑝𝑖 originates in 𝑏𝑖 and 𝑝𝑗 originates in 𝑏𝑗 , the state of the network at

the end of the advance interval will be the same regardless of which packet is advanced first.

While it may seem that full independence is a strictly stronger property than update

independence, their relative strength and implications are highly dependent on node or-

dering, and thus may be deemed as more or less effective depending on the requirements

for the ordering of the nodes. As such, we discuss both properties and provide the parallel

algorithms that they enable, although we only use the latter property in our final imple-

mentation.

We first reiterate our goals for parallelization in §6.1 before discussing our design in more

detail in §6.2. In §6.3 we formally define the propagation of traffic, and go on to formally

define update independence (§6.3.1) and full independence (§6.3.2) and what they imply

about concurrency. We then discuss two versions of the parallel algorithm in §6.4, valid

under update and full independence, respectively. Finally, we provide our implementa-

tion in DynaMIT, which relies on full independence, including a preliminary partitioning

algorithm and updated network representation, in §6.5.

6.1 Goals

As stated above, we have three main goals with respect to parallelization:

1. scalability is clearly the first goal in any parallel implementation. In order to run

DynaMIT on larger networks, its running time ought to be inversely proportional to

the number of processors

2. simplicity is important in ensuring the longevity of any parallel implementation.

While a more complex solution will potentially produce the required results, if it is

sufficiently difficult to maintain such that it falls out of sync with the rest of the

53



code, in the end it still fails to produce a long term scalable solution

3. determinism is generally considered a necessary property of a correctly implemented

parallel system. As discussed in §2, this constraint is often relaxed in traffic simu-

lations, which are notoriously complicated and rife with race conditions and inter-

dependencies. However, we still aim to produce a deterministic output, which will

allow for both small scale and large scale analysis of the results of the system. While

a nondeterministic, statistically equivalent system will suffice to provide guidance to

travelers, it will not enable researchers to closely examine traffic patterns, and will

hinder developers who want to be sure of whether changes in the output are due to

changes in the input or code as opposed to nondeterminism.

6.2 Design

We first outline our design before proving its validity and discussing the specifics of the

implementation. As mentioned above, we propose two similar parallelization schemes: the

first, enabled via update independence, we refer to as node pipelining ; and the second,

which relies on full independence, we model as a vertex coloring problem.

6.2.1 Node Pipelining

The first iteration of our parallel design draws on the idea of pipelining. In a system with

a non-cyclical dependence structure, as shown in Fig. 6-1, we can start the execution of

Figure 6-1: Example of a good candidate for pipelining.

any given module for a time step 𝑡 as soon as the previous module has completed for that

time step, and the following module has completed for time step 𝑡− 1. An example of the

pipelined execution for such a system is shown in Fig. 6-2.
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Figure 6-2: Example pipelined execution for basic system.

The system defines a CLK, which is equal to the execution time of the longest run-

ning module, and each module moves to the next time step together. The time it takes

for values at a single time step 𝑡 to move through the system (or the latency) is equal

to 𝐶𝐿𝐾 · (# 𝑚𝑜𝑑𝑢𝑙𝑒𝑠), while the frequency with which new outputs are produced (the

throughput) is equal to CLK. Notice that, since CLK is equal to the longest running time

of all the modules, the latency is at least as bad as in the original system; however, assum-

ing that the modules are evenly balanced (i.e., CLK is around the running time of all the

modules), the throughput can be, in the best case scenario, equal to the original running

time divided by the number of modules.

Pipelining is most often used in physical systems, both on a small scale in components

such as hard drives, and on a large scale in production lines, which are ubiquitous in man-

ufacturing. More relevant to our application, it can also be applied in a similar manner to

modular software systems. Generally, however, traffic simulations do fit the mold for such

systems. We found only one previous paper, [11], that mentions pipelining. This lack of

discussion is likely due to the fact that pipelining the system by modules2 will only pro-

duce a constant-factor speedup, which, while an improvement, does not provide scalability.
2Note that “module” here refers to a standalone part of some execution, not the specific DynaMIT

modules. Misleadingly, pipelined “modules” in the context of DynaMIT would actually correspond to the
processes, State Estimation and Prediction/Guidance.

55



Running DynaMIT’s Prediction/Guidance and State Estimation in parallel, for exam-

ple, will give us a speedup in most cases of only 10%, because Prediction/Guidance takes

considerably longer to run. To add insult to injury, this running time is not only insuffi-

cient, but it also doubles memory use, because each module requires a complete copy of

the system.3

Instead, we aim to pipeline the traffic simulation by partitioning across nodes as opposed

to the processes. We refer to this idea as node pipelining . Node pipelining relies on the

idea that traffic effects do not propagate instantaneously. Assuming that nodes are or-

dered left to right, this assumption allows us to divide nodes into bands of sufficient width

such that, within a given time step, a node in band 𝑖 will only be affected by updates to

nodes in bands 𝑖± 1, assuming bands are indexed contiguously, allowing us to pipeline the

system by band. Not only will the number of nodes per band scale linearly in the number

of processors, but the pipelining can also be implemented such that it is unnecessary to

store multiple states of the network, and we can start the execution of bands left to right

as one would execute a pipelined system.

6.2.2 Parallelization via Vertex Coloring

Suppose, instead, that we first impose an ordering on bands, and then order nodes to con-

form to this ordering. Then, given bands of sufficient width such that non-adjacent bands

are independent, we need merely to determine groups of pairwise independent bands, and

can then launch all bands in such a group in separate threads. This effectively reduces the

parallel execution problem to one of vertex coloring,4 where the vertices are the domains

into which the nodes of the network are partitioned, and the edges, between all adjacent

vertices, represent the dependencies in execution, i.e., the fact that two domains’ execu-

tions may affect each other within a single time step.

Given a valid coloring of the graph, all vertices of a single color can be executed in parallel

without race conditions. In practice, given a 𝑘-coloring of our partition, we then assign to

each processor a cluster of 𝑘 neighboring partitions, each of a different color, and all pro-
3This is similar to how a lookahead functionality may be implemented.
4http://mathworld.wolfram.com/VertexColoring.html
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cessors will execute each color in parallel, and update their neighbors’ values accordingly.

In order for the dependencies between nodes to be satisfied, the execution must be such

that all nodes of the first color executed are updated before all nodes in the second color in

the serial execution, all nodes in the second color executed before those in the third, etc..

6.3 Update and Independence Properties

Before presenting our parallel implementation, we define two types of independence of

execution: update independence (also referred to below as “update properties”), and full

independence (referred to below simply as “independence”). The former refers to the inde-

pendence of various network elements within the advance step for a single packet, while

the latter refers to the independence of network elements given the advance of two or more

packets.

To introduce both of these concepts, we make the following assumption: 5

Assumption 6.3.1. The local effects of traffic propagate at some finite 𝑐 m/s or less,

where “effects” refer to movements of travelers based only on what they are currently expe-

riencing on the road, without any outside guidance.

This assumption implies that, in an implementation that uses discrete time steps, updates

to any given packet will only depend on the current state of the network (i.e., the con-

gestion on a given segment) within a certain physical distance. In the real world, this

property is upheld by physical limitations of the network. It is simply not possible for

traffic to travel from Harvard Square to Central Square within a 5 second update interval6,

and by extension, the effects of this traffic will not travel that quickly. In DynaMIT, these

restrictions are enforced by the discrete time step model: packets are only moved over

at most a few links in any given time step. We can take the maximum distance of such

advances over the network as 𝑐. This enforces the following property:
5Note that pipelining always occurs within a single simulation interval. We cannot pipeline over interval

boundaries, because the results of prediction guidance are not necessarily contained within the area local
to a given traffic effect. For example, if the network state develops congestion in a certain area, this will
have an effect on the recommended routes given over the next simulation interval.

6A distance of roughly 1 mile, for non-locals.
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Lemma 6.3.1 (Separation Property). During the advance of a packet 𝑝 originating at

node 𝑛, DynaMIT will not update the state of any node 𝑚 if ||𝑚− 𝑛|| > ℎ · 𝑐.

Remark 6.3.1. We use set notation 𝑝 ∈ 𝑛 to denote the fact that packet 𝑝 is at node 𝑛

(i.e., 𝑝 is on a link with down node 𝑛) at the beginning of time interval. The magnitude of

the difference between two nodes ||𝑛−𝑚|| is equivalent to the euclidean distance in meters

between the two. The comparison of two packets 𝑝 < 𝑝′ or two nodes 𝑛 < 𝑛′ denotes that

the lesser element is updated before the greater one within a single time step.

Proof. This follows from the fact the fact that, within a simulation interval, DynaMIT

updates values only to network elements which the packet is currently traversing (link,

segment, down node, etc.). Under Assumption 6.3.1, no packet 𝑝 ∈ 𝑛 will reach any such

network element contained in 𝑚.

In attempting to introduce parallelism without the accompanying race conditions, we want

to formally define which network elements can safely be updated in parallel given Assump-

tion 6.3.1 and its accompanying Lemma 6.3.1. To accomplish this we define two types of

properties. The first of these encompasses the update properties of packets, nodes, and

bands, more formally defined in §6.3.1. These dictate the network elements whose state

will be affected by the advance of a single packet in a given timestep. Crucially, the fact

that a network element is not affected by a packet’s update does not mean that the or-

dering of these updates does not matter. To enforce this, we need to define the stronger

independence properties, which we discuss in §6.3.2. Interestingly, while full independence

is stronger than update independence, these properties allow for similar, but distinct, ver-

sions of our proposed parallel implementation.

6.3.1 Update Properties

The discrete time step model, in which each packet is advanced for the full time step before

the next packet is advanced, gives us the following property:
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Lemma 6.3.2 (Update Property). For any node 𝑘, updates to packets at node 𝑘 at time

𝑡 will depend solely on the state of all packets at nodes 𝑝, 𝑝 < 𝑘 at time 𝑡, and all packets

at nodes 𝑞, 𝑞 ≥ 𝑘, at time 𝑡− 1.

Proof. This follows directly from the DynaMIT advanceTraffic step. Packets at each

node are advanced one by one through the network. This means that, when advancing a

given packet through the network, the state of all other packets is static. Thus any packet

that originated at a node that has already been executed will be already have completed

execution for time 𝑡, while any packet that originated at a node that has not yet been

executed will not yet have begun execution for time 𝑡, and thus will be at time 𝑡− 1.

Combined, these lemmas provide the basis for the relationship between updates of bands

as opposed to individual nodes. First, we formally define a network band:

Definition 6.3.1 (Network Topology Band). A band in a network refers to a contiguous

set of nodes; i.e, for any two nodes 𝑛, 𝑛′ ∈ 𝑏, there must be a path between the two

nodes that traverses only nodes that are also contained in 𝑏. A band is thus equivalent

to a geographic area, although it is defined by its member nodes as opposed to its boundary.

It is worth noting that this definition says nothing about the ordering of the nodes in the

bands, nor does it explicitly rule out the possibility of non-grid based band constructions

such as a bullseye shape. For now, we assume the ordering of the nodes is such that they

are processed left to right, i.e., all nodes in the first band 𝑏1 are processed before those in 𝑏2,

etc.,7 and that bands are laid out in a one or two-dimensional grid.8 Corollary 6.3.1 below

follows directly from this ordering. We partition the nodes into 𝑛 bands of (geographic)

width at least ℎ * 𝑐, where once again ℎ is the step size and 𝑐 is the propagation rate. Let

the function 𝐴𝑑𝑣𝑎𝑛𝑐𝑒(𝑖, 𝑡) denote the update function, and 𝑆(𝑖, 𝑡) denote the state of band

𝑏𝑖 at time 𝑡9 for a given time step 𝑡.

7This changes in our reduction to vertex coloring in §6.4.1; however, because the ordering of the bands
is flexible, this will not have a significant impact on the efficacy of the algorithm

8Different band layouts will also not affect the algorithm, but make for more difficult explanations.
9The update step for a band will be identical to a portion of the serial update step (i.e., if 𝑛 = 1, then

𝐴𝑑𝑣𝑎𝑛𝑐𝑒(1, 𝑡) will be equivalent to running the serial execution for a single time step).
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Corollary 6.3.1. (Band Update Property) Given a partition with bands of width at least

ℎ * 𝑐 and DynaMIT update function 𝑓 , the following holds for all bands 𝑏𝑖 and times 𝑡:

𝑆(𝑖, 𝑡) = 𝑓(𝑆(𝑖− 1, 𝑡), 𝑆(𝑖, 𝑡− 1), 𝑆(𝑖+ 1, 𝑡− 1))

Less formally, the state 𝑆(𝑖, 𝑡) depends solely on the state of the previous band at the

current time step 𝑡, and the states of the current and subsequent bands at the previous

time step 𝑡− 1. This follows directly from Lemmas 6.3.1 and 6.3.3.

6.3.2 Independence Properties

We next define the independence properties of various network elements. As mentioned

above, independence is a stronger property than update independence. We first define

independence for packets as follows:

Definition 6.3.2 (Packet Independence). Two packets 𝑖, 𝑗 are said to be independent at

time 𝑡 if the state of the network at the end of execution for 𝑡 is identical regardless of

whether 𝑖 or 𝑗 is advanced first.

As discussed in §3.4, the order in which packets are advanced depends on their down node

(the node at the end of their current link) at the beginning of the simulation interval. We

can thus derive the notion of node independence from our definition of packet independence:

Definition 6.3.3 (Node Independence). Two nodes 𝑛, 𝑚 are said to be independent at

time 𝑡 if, for any pair of packets 𝑝 ∈ 𝑛, 𝑘 ∈ 𝑚, 𝑝 and 𝑘 are independent at time 𝑡.

This provides the basis for the following lemma10:

10To handle fencepost errors, we actually want 𝑑 > 2ℎ · 𝑐+ 𝜖, where 𝜖 is equal to the maximum distance
of each of the 𝑚 and 𝑛’s incoming links.
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Lemma 6.3.3 (Node Independence Property). Given two nodes 𝑚 and 𝑛, and step size ℎ

(in seconds), 𝑚 and 𝑛 are independent if ||𝑚−𝑛|| > 2ℎ · 𝑐 and there exists no node 𝑞 such

that ||𝑚− 𝑞|| < 2ℎ · 𝑐, ||𝑛− 𝑞|| < 2ℎ · 𝑐, and either 𝑚 < 𝑞 < 𝑛 or 𝑛 < 𝑞 < 𝑚, regardless of

ordering.

Proof. This draws on the Assumption 6.3.1, as well as DynaMIT’s update step. Assume

this were not the case. This means that there must exist some pair 𝑝, 𝑘, 𝑝 ∈ 𝑚, 𝑘 ∈ 𝑛 such

that the state of the end configuration of the network after time 𝑡, 𝑆(𝑡), differs based on

the ordering of the packets. In other words, we have 𝑆(𝑡; 𝑝 < 𝑘) ̸= 𝑆(𝑡; 𝑝 < 𝑘) If 𝑝 and

𝑘 are advanced back to back, this is clearly false, due to the Separation Property. None

of the network elements 𝑝 sees will be directly updated by the advance of 𝑘, or vice-versa,

and thus each packet’s view of the network (and by extension, behavior) will be identical

regardless of which one is advanced first. However, one could envision a scenario where the

advance of 𝑝 affects the advance of some packet 𝑝′, which is less than 2ℎ · 𝑐 away from 𝑘;

this means that 𝑘 could potentially change its behavior due to the fact that 𝑝′’s behavior

was influenced by 𝑝. This is why we enforce the additional property that no nodes closer

than 2ℎ · 𝑐 to both 𝑝 and 𝑘 can advance in between them; this ensures that there can be

no such packet 𝑝′, because no node is within the update distance of both 𝑝 and 𝑘 whose

packets could propagate these traffic effects. Thus 𝑝 and 𝑘 have an identical view of the

network during their updates regardless of ordering.

A less formal way of thinking of node independence is to say that no nodes are updated

between 𝑝 and 𝑘 that are within both of their update ranges. A visual representation

of this is shown in Figure 6-3. As we can see, no packets advancing starting at 𝑝 could

possibly reach any location that would affect 𝑘; the same is true for the closest node 𝑝′,

which updates in between 𝑝 and 𝑘. Our notion of band independence follows:

Corollary 6.3.2 (Band Independence). Two bands are independent if all of their nodes

are independent. This follows directly from Node Independence.

An important consequence of band independence is that any two independent bands can

safely be executed in parallel without producing race conditions or introducing nondeter-

minism. Because the final view of the network is the same no matter the ordering of the
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Figure 6-3: Nodes 𝑝, 𝑝′ and 𝑘 with their corresponding update ranges.

advance of any pair of nodes from each band, we do not need to worry about the fact that

processors could potentially interleave their execution.

6.4 Node-Pipelined Algorithm

We first outline node pipelining in 1D11, and then present an alternate ordering of the

algorithm which is easily reduced to a vertex coloring problem, and much better suited to

expanding to 2D. The former will make use of update independence, while the latter will

make use of full independence.

Let 𝑁 denote the number of processors allotted to a given traffic simulation. Let 𝑇 denote

the total time for the serial execution of a single time step, and 𝐶𝐿𝐾 denote the clock rate

for our pipelining, which will be equal to the time it takes to execute the update for a single

11It is actually possible to only pipeline in 1D, but this will increase running time as the network size
increases, because band width must be at least ℎ * 𝑐, and the height will grow with the size of the network
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band12, giving us 𝐶𝐿𝐾 = 𝑇/𝑛, where 𝑛 is the number of bands. We let 𝑠 ∈ N denote the

current clock cycle. Define 𝑝𝑘(𝑖, 𝑖 + 1, ...) as processor 𝑝𝑘, which has been assigned bands

[𝑏𝑖, 𝑏𝑖+1, ...] (i.e., if we assigned bands 𝑏4, 𝑏5, and 𝑏6 to the first processor, we could refer to

this processor as 𝑝1; if we also want to specify the bands it handles, we use the additional

notation 𝑝1(4, 5, 6); this will be useful when stepping through the execution). We then

implement node pipelining as follows:

1. Segment the nodes into 𝑛 bands, where 𝑛 = 2 *𝑁 , where 𝑛 is sufficiently small such

all bands have width at least ℎ · 𝑐, and assign bands to processors in sequential pairs

(i.e., 𝑏1 and 𝑏2 go to processor 𝑝1, 𝑏3 and 𝑏4 go to processor 𝑝2, etc.).

2. For each processor 𝑝𝑘, start execution once processor 𝑝𝑘−1 has run for two clock

periods

3. While simulation is not finished:

(a) for each unfinished 𝑝𝑘(𝑖, 𝑖 + 1), advance band 𝑏𝑖 on even 𝑠, and 𝑏𝑖+1 on odd 𝑠

(assuming 𝑠 starts at 0)

(b) after even 𝑠, pass updates from band 𝑏𝑖 to band 𝑏𝑖−1 on processor 𝑝− 1

(c) after odd 𝑠, pass updates from band 𝑏𝑖+1 to band 𝑏𝑖+2 on processor 𝑝+ 1

We want to take the time to make the distinction between 𝑁 and 𝑛. 𝑁 is the total number

of processors, and therefore the amount of parallelization we would hope to achieve, while

𝑛 is the number of bands. Therefore we would expect a single band to update in time

𝑇/𝑛, and phase of the execution update two bands in sequence. Thus the expected time

to execute the advance for all bands in a single time step is 𝑇/𝑁 . However, it is important

that we maintain 𝐶𝐿𝐾 = 𝑇/𝑛 to allow for correct synchronization between processors.

Remark 6.4.1. Note that, even if with different network elements at different time steps, we

do not store multiple states per node. By Corollary 6.3.1 (Band Update Property), all we

need to ensure valid execution is that, for each band 𝑏𝑖 at time step 𝑡, both 𝐴𝑑𝑣𝑎𝑛𝑐𝑒(𝑖−1, 𝑡)

and 𝐴𝑑𝑣𝑎𝑛𝑐𝑒(𝑖+ 1, 𝑡− 1) have completed before executing 𝐴𝑑𝑣𝑎𝑛𝑐𝑒(𝑖, 𝑡). The alternation

between executing even and odd intervals, moving from beginning to end, guarantees this

ordering.
12In practice this will vary between iterations and bands, but for the sake of argument we take this to

be constant
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Say we have neighboring processors (assume, for now, that all updates on other processors

are performed as needed) 𝑝𝑘(𝑖, 𝑖+ 1), 𝑝𝑘+1(𝑖+ 2, 𝑖+ 3), and are starting 𝐴𝑑𝑣𝑎𝑛𝑐𝑒(𝑖, 0) at

clock period 𝑠. Following our execution steps, 𝐴𝑑𝑣𝑎𝑛𝑐𝑒(𝑖+1, 0) will run at 𝑠+1; then, at

period 𝑠+2, we will execute 𝐴𝑑𝑣𝑎𝑛𝑐𝑒(𝑖, 1) and 𝐴𝑑𝑣𝑎𝑛𝑐𝑒(𝑖+2, 0). It is possible to perform

the latter two advance functions, since they only depend on 𝐴𝑑𝑣𝑎𝑛𝑐𝑒(𝑖+1, 0) having com-

pleted. At 𝑠+2, we run 𝐴𝑑𝑣𝑎𝑛𝑐𝑒(𝑖+1, 1) and 𝐴𝑑𝑣𝑎𝑛𝑐𝑒(𝑖+3, 0). 𝐴𝑑𝑣𝑎𝑛𝑐𝑒(𝑖+1, 1) depends

on 𝑆(𝑖, 1) and 𝑆(𝑖+2, 0) both of which were updated in the previous clock period, and its

current state 𝑆(𝑖+ 1, 0); 𝐴𝑑𝑣𝑎𝑛𝑐𝑒(𝑖+ 3, 0) only depends on 𝑆(𝑖+ 2, 0) in this case. Then,

at 𝑠+3, we execute 𝐴𝑑𝑣𝑎𝑛𝑐𝑒(𝑖, 2) and 𝐴𝑑𝑣𝑎𝑛𝑐𝑒(𝑖+2, 1), which depend on 𝑆(𝑖+1, 1) and

𝑆(𝑖 + 1, 1), 𝑆(𝑖 + 3, 0), respectively, which, again, are the current values stored in bands

𝑏𝑖+1 and 𝑏𝑖+3. Thus, as we move along in our execution, for any band 𝑏𝑖, the values in

neighboring bands will be exactly those needed to update 𝑏𝑖 at any given time. A step

through of the execution for 10 bands is shown in Table 6.1 below.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5
1 𝐴(1, 0)

2 𝐴(2, 0)

3 𝐴(1, 1) 𝐴(3, 0)

4 𝐴(2, 1) 𝐴(4, 0)

5 𝐴(1, 2) 𝐴(3, 1) 𝐴(5, 0)

6 𝐴(2, 2) 𝐴(4, 1) 𝐴(6, 0)

7 𝐴(1, 3) 𝐴(3, 2) 𝐴(5, 1) 𝐴(7, 0)

8 𝐴(2, 3) 𝐴(4, 2) 𝐴(6, 1) 𝐴(8, 0)

9 𝐴(1, 4) 𝐴(3, 3) 𝐴(5, 2) 𝐴(7, 1) 𝐴(9, 0)

10 𝐴(2, 4) 𝐴(4, 3) 𝐴(6, 2) 𝐴(8, 1) 𝐴(10, 0)

11 𝐴(1, 5) 𝐴(3, 4) 𝐴(5, 3) 𝐴(7, 3) 𝐴(9, 1)

12 𝐴(2, 5) 𝐴(4, 4) 𝐴(6, 3) 𝐴(8, 3) 𝐴(10, 1)

Table 6.1: Execution with 10 bands (5 processors), with the current 𝐴𝑑𝑣𝑎𝑛𝑐𝑒 process (abbreviated
as 𝐴) for 𝑠 = [0, ..., 12]. Note that, for every execution of some 𝐴(𝑖, 𝑡), 𝑆(𝑖−1, 𝑡) and 𝑆(𝑖+1, 𝑡−1)
will have been set on the previous clock period, and are constant during the current clock period.
Completion of the final node in a time step is marked in blue.

6.4.1 Reduction to Vertex Coloring

While the algorithm described in §6.4 above clearly resembles other pipelined systems, its

execution and dependencies differ from most traffic simulation systems. We present an

extension of this implementation, using an alternate ordering of the nodes in the networks,
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which allows for a reduction from the ordering of bands in a pipeline to a vertex coloring

problem, which we describe below.13 This new framing more closely resembles domain

decomposition, offering familiarity to developers; simplifies the allocation of jobs to pro-

cessors, cutting back on overheads associated with parallelization; and allows for all bands

to be within a single time step of each other at all points of their execution, a desirable

property if we want to be able to simulate real-time updates.

We construct bands as in the previous approach, but in this case with the requirements

that bands must be at least 2ℎ · 𝑐 wide. We reorder the nodes such that all nodes 𝑘′ ∈ 𝑏𝑖,

2| 𝑖 are updated before all nodes 𝑘 ∈ 𝑏𝑗 , 2 ̸ | 𝑗. This will allow us to avoid the startup

time seen in Table 6.1, where each processor must wait for the previous ones to have begun

running before starting its own execution.

Remark 6.4.2. Node ordering is not entirely arbitrary in DynaMIT. For now, we take this

to be an acceptable disruption to the original ordering. We discuss the validity of this

assumption in more detail in §6.4.2.

While the previous construction only guaranteed update independence between non-adjacent

bands due to the node order, the updated ordering and wider band requirement achieves

full independence for non-adjacent bands in the network. This means that it is now possi-

ble to advance all even bands in parallel at time 𝑡, and then all odd ones for time 𝑡, then

even at 𝑡 + 1, and so on. Sample execution for this banding approach is shown in Table

6.2.

The pros of this banding approach include:

1. Has both throughput (frequency at which outputs are produced) and latency (time to

execute updates for a single timestep 𝑡) equal to 𝑇
𝑁 (as opposed to original banding,

which has the same throughput 𝑇
𝑁 , but latency equal to 𝑇 )

2. At any given clock time, any two bands will be at a state at most one time step away
13Note that while vertex coloring in the general case is NP-hard, the graphs for which we will be

computing colorings have well-defined minimum colorings.
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𝑝0 𝑝1 𝑝2 𝑝3 𝑝4
1 𝐴(0, 0) 𝐴(2, 0) 𝐴(4, 0) 𝐴(6, 0) 𝐴(8, 0)

2 𝐴(1, 0) 𝐴(3, 0) 𝐴(5, 0) 𝐴(7, 0) 𝐴(9, 0)

3 𝐴(0, 1) 𝐴(2, 1) 𝐴(4, 1) 𝐴(6, 1) 𝐴(8, 1)

4 𝐴(1, 1) 𝐴(3, 1) 𝐴(5, 1) 𝐴(7, 1) 𝐴(9, 1)

5 𝐴(2, 2) 𝐴(2, 2) 𝐴(4, 2) 𝐴(6, 2) 𝐴(8, 2)

6 𝐴(0, 2) 𝐴(3, 2) 𝐴(5, 2) 𝐴(7, 2) 𝐴(9, 2)

7 𝐴(1, 3) 𝐴(2, 3) 𝐴(4, 3) 𝐴(6, 3) 𝐴(8, 3)

8 𝐴(0, 3) 𝐴(3, 3) 𝐴(5, 3) 𝐴(7, 3) 𝐴(9, 3)

9 𝐴(1, 4) 𝐴(2, 4) 𝐴(4, 4) 𝐴(6, 4) 𝐴(8, 4)

10 𝐴(0, 4) 𝐴(3, 4) 𝐴(5, 4) 𝐴(7, 4) 𝐴(9, 4)

11 𝐴(1, 5) 𝐴(2, 5) 𝐴(4, 5) 𝐴(6, 5) 𝐴(8, 5)

12 𝐴(0, 5) 𝐴(3, 5) 𝐴(5, 5) 𝐴(7, 5) 𝐴(9, 5)

Table 6.2: Sample execution for 5 processors using alternating banding.

from each other; this is desirable when pushing real time updates to the nodes

3. Simplifies starting of processors, allowing for more generalized implementations and

a easier extension to 2D banding

This banding not only has a greater resemblance to the domain decomposition paralleliza-

tion, but it also provides a simple reduction to a vertex coloring problem. First we define

a band dependence graph:

Definition 6.4.1 (Band dependence graph). Let a band dependence graph 𝐺 be a graph

corresponding to a banding of a network, where the vertices of 𝐺 are valid bands (i.e.,

bands of width at least 2ℎ · 𝑐), and edges represent a dependency between two bands (i.e.,

if there is an edge between ands 𝑏, 𝑏′, then they are not independent).

We extrapolate on this definition to relate a coloring of a band dependence graph to a valid

execution of the bands:

Corollary 6.4.1 (Band-coloring lemma). Given a valid coloring of a band dependence graph

𝐺, any two bands of the same color can safely be executed in parallel.

Proof. Follows directly from Corollary 6.3.2.

While in theory, proving that independence holds is sufficient to guarantee determinism,

modeling the dependencies as a vertex coloring problem creates an elegant way to assign

bands to processors in practice. Examples of band dependence graphs, with given colorings,

are shown in Figure 6-4. Edges exist only between vertices that are physically adjacent.
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This reflects the fact that dependencies between bands are dictated by geographic proximity

in the network.

(a) Coloring of band dependence graph with 1D
banding. Internal node dependencies are shown
for 𝑏0.

(b) Coloring of band dependence graph with 2D
banding.

Figure 6-4: Examples of band dependence graphs in 1D and 2D. For non-color readers, color is
denoted for band 𝑏𝑖 by (𝑖 mod 2𝐷).

Given a 𝑘-coloring of the graph, processors are each allocated 𝑘 bands. CLK is still equal

to the execution time of a single band, and processors execute each color in parallel, syn-

chronizing between each color. Note that, given a grid layout in the 2D case, we cannot

do better than a 4-coloring, because the dependency graph contains cliques of size 4 (the

chromatic number of a graph,14 i.e., the size of its minimum coloring, must be greater than

or equal to its clique number,15 the size of its maximum clique16).

If nodes are ordered according to color, such that all nodes of color 0 come before those of

color 1, and so on, this execution maintains the same invariants that the previous pipelining

algorithm did; namely, that a preceding band is always updated before a succeeding band

within the same time step, and does not begin the following time step until the succeeding

band has finished the current one.

6.4.2 Notes on Node Ordering

In an ideal simulation, when advancing packets at a node, all of the packets on the down-

stream links will already have been advance, so the system will know the number of spaces

available on these links. If packets on these downstream links have not yet been advanced,

14http://mathworld.wolfram.com/ChromaticNumber.html
15http://mathworld.wolfram.com/CliqueNumber.html
16The proof of this is fairly straightforward via contradiction and the pigeon hole principle.
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then it is necessary to estimate the number of spaces that will be available after they have

been advance. This is referred to as a processing dependency. As discussed in the Dyna-

MIT Programmer Guide (Ch. 11.2.2), the nodes in DynaMIT are intended to be ordered

such that the number of such dependencies is minimized. In other words, the ordering of

the nodes ought to reflect the flow of traffic.

Both parallel implementations discussed above make assumptions about the ordering of

nodes. These assumptions may not be consistent with the optimal ordering to minimize

processing dependencies, particularly as this ordering will change over the course of the

day (rush hour traffic tends to flow in opposite directions in the mornings and evenings,

for example). Because this ordering is not currently enforced in DynaMIT, and scalability

is essential to its efficacy as a guidance system, we believe that enforcing an ordering of

nodes that enables parallelization is more important at this juncture. However, moving

forward, band partitioning ought to take these other dependencies into account, should

they be enforced in the future.

At present, it is worth noting that the vast majority of links are band-internal, and the

relative ordering of nodes within a band has no impact on the parallelization. Thus the

disruption to the final simulation will likely be small regardless of how nodes are allocated

to bands. However, this disruption can be minimized completely by finding a min-cut par-

tition of the network, as discussed in [8]. By weighting the edges in our graph according to

expected traffic flow, we can generate a partition that does less to disrupt processing de-

pendencies. Generating such a partition can be prohibitively expensive, computationally,

but can be done ahead of time based on historical traffic data.

At present, we content ourselves with a naive partition to demonstrate the validity of

the parallelization. While the node ordering may differ from the original serial execution,

it will not differ between runs of the parallel implementation, and therefore will not af-

fect determinism, which is our main concern here. When node ordering is enforced in

DynaMIT, a longer discussion as to the importance of a min-cut partition can be taken

up.
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6.5 Implementation on a Multi-Core Machine

We outline the implementation of node pipelining using a reduction to vertex coloring on a

multi-core machine. In line with our goals, this implementation is a lightweight addition to

the existing system. By design, we do not have introduce additional threadsafety or merge

handling into the existing code. The vast majority of the changes will lie in expanding the

codebase to include colors and bands, whose representation we discuss in §6.5.1, and in

actually generating the partition, as described in §6.5.2. Finally, we must update the way

we call our advance and update steps in order to call the parallel version, as highlighted

in §6.5.1.17

6.5.1 Updated Network Representation

We make two main changes to the network representation in order to enable paralleliza-

tion: first, we introduce the additional band and color representations; and second, we

update the representation of packets to include their down node ID and their current dis-

tance to this node, and store packets at the band level as opposed to at segments and links.

We update the Supply module to contain a vector of colors, which in turn contain a

vector of pointers to their child bands. Each band contains a vector of moving packets and

virtual packets. Once a packet has arrived at its location, we store it in a vector of arrived

packets stored in the supply module, so that it can be offloaded and its travel time can be

reported at the next update interval. Bands do not store their member nodes explicitly;

rather, a band is represented implicitly via a lookup table that maps node IDs to band

pointers.18 While this representation may seem less intuitive, it is more efficient in terms

of both memory use and execution time, as there is no reason for bands to have direct

access to their member nodes in our implementation.

Updates to Advance Traffic

The advanceAllPackets step now iterates over all colors in the network, which then launch

threads to advance all their bands in parallel. To advance packets within a band, it is no
17Note that, should we want to execute this across multiple machine as opposed to multiple processors,

we will have to design a more complex protocol to synchronize across servers; however, this is outside the
scope of this thesis.

18Because DynaMIT ensures that nodes’ IDs are contiguous starting at 0, we can implement this lookup
table as an array as opposed to a hash map.
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longer necessary to iterate over all of the network topology; we merely sort the packets

in each band based first on their node ID, and then their distance to their down node.

Pseudocode for this updated function can be found in Fig. 6-6.

This does mean that we potentially sort larger number of packets at a time, which could

be problematic because sorting takes worst-case 𝑂(𝑛 log 𝑛) time19; however, in practice,

the packet vector will be mostly sorted each time this function is called, because packets

will be advanced in roughly the same order at each interval. There may be some small

perturbations due to packets moving between bands and nodes, but generally we can ex-

pect the packets to the mostly sorted, which can give performance approaching linear time

depending on the sorting implementation.

The previous implementation resorted all of a node’s up link packets each time; while

packets were stored in order at the segment and lane level, it was still necessary to merge

the packets between each lane on a segment, and then again between each link every time.

This required additional asymptotic running time, in addition to the overhead of creating

and destroying data structures to hold the sorted list of packets each time.

Advancing virtual packets now operates the same way. Each color’s bands are called

in parallel. Packets are already sorted based on the order in which they were added to the

virtual queue. It suffices to perform a stable sort (i.e., a sort that preserves the original

ordering of elements 𝑎, 𝑏 if 𝑎 ̸< 𝑏∧𝑎 ̸> 𝑏), again ordered based on down node, and advance

as in the original implementation.

Moving Packets between Bands

The above implementation assumes that packets are stored at the correct band. We must

update the packet list after each advance interval to ensure that this is the case. After

a packet is advanced, its down node is updated based on its current position.20 Once all

packets’ have completed the current interval, we iterate over all the packets in each band.

19With superlinear worst-case complexity, in the scenario where all packets are completely shuffled,
sorting 𝑑

𝑛
packets at 𝑛 nodes will be more efficient than sorting 𝑑 packets all at once

20We do not do this during the advance step because some of the logic within advancePacket relies on
knowing whether a link that a packet has already been advanced this interval; we can easily determine
this by checking if that link’s down node is less than the packet’s current node.
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For each packet, we use the band lookup to see which band they should be in based on

their down node, and send the packet to this new band, if necessary.

As with the sorting of packets, while the running time of this function could be high

in the worst-case scenario, in practice the number of packets moving between bands at a

given time step will be small relative to the total demand; in tests in the CBD network, we

found that this reshuffling step took around 2.64% of the time it took to advance packets

within the same time step. As band size grows, the area of a band will grow quadratically

with its perimeter; thus the demand in a band to grow quadratically with the number of

packets moving in or out of this band each time step. This means that this ratio will likely

be even better on larger networks.

6.5.2 Generating Network Bands

As discussed in §6.4.2, we constrain our current partition to one that conforms to either a

1D or 2D grid. To partition the bands, we sort the nodes topologically along each axis in

our partition, and define boundaries such that bands are balanced along each individual

axis based on a given weighting of the nodes. If demand at the current time is available,

we assign the weight of each node to be equal to the number of packets that have that

node as their down node; if no demand is available, each node is assigned weight 1.

We balance the weight along each axis independently to prevent the need to verify that

each pair of bands in a given color is sufficiently far apart. If we first balance the load

along one axis, and then balance the load along the second axis based on the existing par-

tition, load will be more evenly balanced, but borders between bands will not necessarily

be aligned along the entire axis, potentially producing undersized bands. Fig. 6-5 provides

an example of such a partition, balanced first along the 𝑥 axis, then along the 𝑦 axis. This

partition is perfectly balanced, with each band receiving two nodes (which we take to all

be of weight 1); however, due to the distribution of the nodes, there are two nodes assigned

to different bands of the same color that are within update distance of each other.

Performing checks to prevent this can be computationally expensive. Each of the 𝑤 · ℎ

bands needs to be checked against its neighbors, and its neighbors’ neighbors, to ensure
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Figure 6-5: Perfectly balanced partition with node weight 1 and insufficient band spacing.

that bands of the same color are sufficiently far away from each other. Furthermore, be-

cause these neighbors are not aligned, it would potentially be necessary to perform a binary

search over the band’s color to determine which neighbors to check; because there are a

constant number of colors (therefore the number of bands in each color is linear in the

total number of bands) this will take 𝑂(log(𝑤 · ℎ) time per band, for a total running time

of 𝑂(𝑤 · ℎ · log(𝑤 · ℎ)) to perform the validation.

In contrast, if we partition along each axis individually, we can keep track of the width

of each band as we go along, and add additional nodes if the width is insufficient. While

this partition may not be perfectly balanced, it will closely approximate a balanced load

while vastly improving the running time. This partitioning algorithm takes linear time in

both directions independently, resulting in a running time of 𝑂(𝑤 + ℎ). The efficiency of

the partitioning algorithm is important because, to ensure optimal performance, the bands

must be adjusted dynamically in order to balance load.
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1: function advanceTraffic()
2: advanceAllPackets()
3: advanceAllVirtual()
4: loadNewPackets()
5: cleanupPackets()
6: function advanceAllPackets()
7: for color c in network do
8: for band b in c do
9: launchThread(advanceBand(b))

10: sync
11: function advanceBand(b)
12: b.sortPackets()
13: for packet p in b.packets do
14: advancePacket(p)
15: function advancePacket(packet p)
16: (some recursive moving in the network...)
17: function advanceVirtualPacket(packet p)
18: (some recursive moving in the network...)
19: function cleanupPackets()
20: for color c in network do
21: for band b in c do
22: for packet p in b.packets do
23: newBand=lookupBand(p.node)
24: if newBand ̸= b then
25: newBand.addPacket(p)
26: b.removePacket(p)

Figure 6-6: Pseudocode for the updated advanceTraffic function.

Online Partitioning

While in the original DynaMIT implementation we must iterate over the entire network

topology, the bulk of the advanceTraffic function is spent advancing packets. Because

each color runs only as fast as its slowest band, a poorly balanced network can result in

little to no parallelization.

We index bands as one would assign indices in a grid, i.e., a node is assigned to some

𝑏𝑎𝑛𝑑[𝑖] in 1D, or 𝑏𝑎𝑛𝑑[𝑖][𝑗] in 2D. We assign the first coordinate by iterating over all mov-

ing packets21 to calculate the demand 𝑑𝑛 at each node, and the total demand 𝑑 on the

network. Thus our target demand for each axis 𝑎 is equal 𝑑
𝑎 . We then iterate over the

nodes in order along the axis, and begin assigning them to 𝑏𝑎𝑛𝑑[0], keeping track of the

sum of their demands and the distance between the first node and last node that we have
21Generally, there are far fewer virtual packets than there are moving packets, which means that achieving

balance for moving packets will have a greater affect on running time.
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seen. Once we have hit our target demand 𝑑
𝑎 for this band, and the band has sufficient

width, we begin filling 𝑏𝑎𝑛𝑑[1], and so on.

Note that, as a consequence of our implicit representation of bands’ nodes, we can as-

sign a node to some 𝑏𝑎𝑛𝑑[𝑖] even if our partition is two dimensional (i.e., there is no literal

data structure 𝑏𝑎𝑛𝑑[𝑖], but instead a collection of bands along this parallel). If we are

running in 2D, we simply hold the index of a node’s band for the first axis, run the same

protocol again along the second axis, and use these values together to index into the band

array. To avoid unnecessary checks at runtime, we place the differences between 1D and

2D functionality within compiler guards.

We have to iterate over all packets, which are stored at the band level, in order to sum

demand, which will take 𝑂(𝑑 + 𝑏) time, where 𝑏 is the number of bands.22 We then have

to iterate over the nodes once per axis, which will take 𝑂(𝑛), where 𝑛 is the number of

nodes. This gives a total running time of the partitioning algorithm of 𝑂(𝑑+ 𝑛+ 𝑏).

A sample output from this process is shown in Fig. 6-7, run on the same network as

in Fig 6-5. This has also been generated using an 𝑥-then-𝑦 partition. Note that the node

in red, if we were partitioning equally, would originally have been in the band above, as in-

dicated by the dotted line; however, this would have left an insufficient gap between bands,

and therefore it was moved down to avoid conflicts. The partition is still fairly balanced:

the maximum band demand is equal to 3 as opposed to 2, which does increase running time

by 1.5 times; however, this still provides scalability with respect to the network overall.

In a larger network, with more nodes and larger band sizes, this error will decrease. Note

that a 1D 𝑥-partition would be perfectly balanced, while a 1D 𝑦-partition would increase

the maximum band size from 6 to 7, or by a factor of 1.167.

22On network with a reasonable amount of demand, the number of packets will, of course, be larger than
the number of bands, as it would be silly set up a parallel architecture to advance one packet for every
other band. In practice, therefore, this will actually be 𝑂(𝑑).
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Figure 6-7: 2D partition with axes balanced independently in 𝑥-then-𝑦 order.
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Chapter 7

Results

7.1 Serial-implementation Results

7.1.1 Datatype Improvements

Improvements made to datatypes and control flow in parsing and processing the input

files were able to give us incredibly large improvements, taking the startup time for the

DynaMIT system on GBA from over 20 minutes, to around 7 seconds. We obtained a

more moderate improvement in the smaller Boston CBD network. Original and improved

running times are shown in Table 7.1 The times given are only for loading the network, not

Network Original Time to Load New Time to Load Speedup Factor
Boston CBD 5.235s 3.321s 1.576x

GBA 1278.64s 7.15346s 178.744x

Table 7.1: Running times for original and improvement system loading times on CBD and GBA.

the demand and pathset, averaged over 10 runs. While this does not produce scalability

in terms of the simulation, it has proved hugely important to development and testing, as

it allowed us to rapidly test changes to the system without having to wait for half an hour

only to run into small errors.

The effects of network size are clear here. While we achieve only a moderate speedup

in the relatively small CBD network, the time to load the network on the larger GBA

network is decreased significantly. This is to be expected: the previous implementation

ran in quadratic time with respect to the network size, while the updated implementation

runs in linear time, giving us a more dramatic improvement in a larger network.
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7.1.2 Memory Allocation

We assess the impact of improving memory allocation in CBD and GBA with a dummy

demand. Using a dummy demand allows us to isolate the running time that comes from

the iteration over the network elements. We also test with full demand in CBD.

This change has a greater impact on the time it takes to locate packets on the network

than it does the time to update packets; thus these improvements will scale with network

size, but not with demand.

We were able to achieve a four-factor speedup in CBD using a dummy demand. Run-

ning with a dummy demand on GBA achieves a speedup of 2.5 times. Running times for

the original and upated system are shown in Table 7.2. Note that the changes in running

Network Original Updated Factor
CBD (dummy demand) 45.406s 10.9885s 4.132

CBD (full demand) 278.032s 227.436s 1.222
GBA (dummy demand) 1145.982s 539.548s 2.124

Table 7.2: Running times for 6 simulation intervals before and after changes to memory allocation.

time when run with full demand on CBD are minimal. This is due to the fact that, with

larger demand, much less time is spent iterating over the hierarchy than spent performing

calculations to compute packet movement. However, these changes are necessary in order

to update the network representation for the parallel implementation, which we see in

§7.1.3 more than makes up for this problem.

Thus we take the updates to memory allocation to be an advantage on uncongested net-

works, and a necessary change to enable development, although less relevant when run

with congestion.

7.1.3 Updates to Network Representation

Before discussing the results of parallelization, we include the impact on running time

achieved by changes to the representation that enable the parallelization, namely intro-

ducing colors and bands to the hierarchy and storing packets at the band level. Note that

these changes necessarily include changes in the memory allocation described above, as
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they enable us to initialize the network in the way that we do. We show times for CBD

Network Original Memory Updated Original/representation
CBD (full demand) 227.436s 132.399s 1.718

GBA (dummy demand) 539.548s 406.074s 1.329

Table 7.3: Running times for 6 simulation intervals before and after updates to the network
representation.

will full demand and GBA with dummy demand (it would be preferable to run with full

demand on GBA, but memory problems prevent this at present). We see that changes

to the representation, in conjunction with updates to memory allocation, create a nearly

two-factor speedup in the CBD network with full demand over only changes to the mem-

ory, and a more modest improvement in GBA. However, we note that the improvement

to memory in GBA was likely larger because it was run with a dummy demand, so the

improvements in GBA may actually be larger in reality.

7.2 Parallelization

7.2.1 Running time evaluation

We evaluate the running time on the CBD network using a 4x1 and an 8x1 partition.

We provide numbers for the complete running time for an hour (with an estimation in-

terval of 5 minutes and an prediction horizon of 15 minutes), and the running time of

the advanceTraffic function for a single interval, averaged over this hour. The results of

these runs are shown in Table 7.4.1

Partition Num Processors Complete Time Advance Traffic
1x1 1 (serial) 380.105s 1.607s
4x1 2 436.027s 1.269s
8x1 4 387.116s 0.957s

Table 7.4: Full and partial running times for 1x1, 4x1, and 8x1 partitions on CBD.

Recall that the number of processors (i.e., the possible amount of parallelism) is equal to

𝑏
2𝐷

, where 𝑏 is the number of bands and 𝐷 is the dimension of the partition.

The increased running time between the 1x1 and 4x1 partitions is due to the overhead

associated with partitioning in contrast to parallelization achieved in the advance traffic
1Note that there is some variability in times between these values and memory optimization due to

server load at the time of the tests.
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step. In a network the size of CBD, there is not enough demand on the network (i.e.,

the running time of advanceTraffic is not long enough) that this parallelization is worth

it. However, because DynaMIT runs comfortably within real time on networks the size

of Boston CBD, we do not take this to necessarily mean that the parallelization is not

successful.

The advance traffic step itself, while not achieving perfect linear speedup in the num-

ber of processors (i.e, doubling the number of processors does not cut the running time

by 50%), does achieve consistent speedup based on the number of processors. We achieve

as 21.03% speedup between the 1x1 and 4x1 partitions in advanceTraffic, and a 40.44%

speedup with 4 processors on a 8x1 partition. While this is not the purely linear speedup

we were aiming for, it does provide scalability based on the number of processors. For

larger networks, where the overhead can be much lower with respect to network size, we

expect to be able to take greater advantage of this.

The next step here is to test this scalability on the full GBA network. While we do not cur-

rently have the ability to test this due to memory problems in GBA, we believe that there

will be a more marked improvement in this case, as the system spends a comparatively

long time in the advanceTraffic function on this network.

7.2.2 Determinism

Our implementation was able to achieve perfect determinism without the use of any mutex

locks, which was one of the major goals in of our parallel implementation, and one that, as

opposed to running time or precise network representation, is widely applicable to other

simulation systems.

To evaluate determinism, we implemented a Checker class, which logs the demand and

virtual demand at each band, and the exact location of each packet on the network at

the beginning of each advance interval. A sample log output for Band 0 with a current

demand of 6 is shown in Fig. 7-1. To check whether two runs are consistent, it is simple to

compare the output of these log files to ensure that they are identical. We verified this for

twenty runs with full demand on CBD using 4x1, 4x4, and 8x1 partitions. Our implemen-
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BND--------BND
id: 0
demand: 6
virtual: 0
BND--------BND
PKT--------PKT
id: 30
node: 153
link: 1302
loc: 2345
pos: 265.837
qing: 0
virt: 0
PKT--------PKT
PKT--------PKT
id: 33
node: 53
link: 294
loc: 518
pos: 2.39551
qing: 0
virt: 0
PKT--------PKT
PKT--------PKT
id: 12
node: 33
link: 95
loc: 164
pos: 30.7276
qing: 0
virt: 0
PKT--------PKT

PKT--------PKT
id: 25
node: 86
link: 106
loc: 189
pos: 258.828
qing: 0
virt: 0
PKT--------PKT
PKT--------PKT
id: 26
node: 33
link: 95
loc: 164
pos: 44.1388
qing: 0
virt: 0
PKT--------PKT
PKT--------PKT
id: 48
node: 33
link: 95
loc: 164
pos: 70.9612
qing: 0
virt: 0
PKT--------PKT

Figure 7-1: Sample log output for determinism validation.

tation was able to achieve perfect consistency between runs for all of these partitions. We

take this to be the larger result from our current implementation, which clearly provides a

proof-of-concept for the efficacy of our parallelization scheme in providing determinism.

7.3 Moving Forward

7.3.1 General Changes to the Code

While we attempted to optimize the serial code as best we could, DynaMIT is a very

large, and very old, codebase. We took the time to address those aspects of the code that

we felt had the largest impact, and were the most applicable to the work on the parallel

system presented here; however, we also leave behind a laundry list of potential changes
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that could offer important improvements. Many of these are simply stylistic choices that

could improve readability (and, by extension, maintainability) of the codebase; however,

many of also have the potential to offer real running time improvement. These are less

relevant to our present work, and less urgent in terms of the current requirements for the

DynaMIT system, but it would be naive to assume that the work presented here could not

be built upon to improve the serial execution of the code. These have been discussed in

documentation of the system maintained by the ITS Lab.

7.3.2 Memory Use

As there is often a tradeoff between running time and space efficiency, we did little to take

memory use into account when making changes to the code. We have made contributions to

the improvements in memory use as part of an effort, being made in parallel to this thesis, to

dynamically load pathsets into memory; however, these changes were made independently

from any running time optimizations. We did take into account the importance of keeping

memory use low, i.e., did not introduce additional data structures to the code that could

improve running time but would be appreciably large with respect to the current memory

use. However, we also did not attempt to make our code compatible with dynamic memory

loading. Moving forward, we want to more closely integrate these two processes, to create

a better tradeoff between time and memory use.

7.3.3 Parallelization

As mentioned multiple times throughout this thesis, it is impossible to truly assess the ef-

ficacy of our parallelization without the ability to test on GBA. That being said, it is also

worthwhile to look forward. Additional changes to the code structure will no doubt offer

improved performance with respect to parallelization. However, we believe larger improve-

ments will be found in better partitioning algorithms. We discuss a naive partition above,

and initial steps to balance load between processors. However, this partition disregards

node order, and does little to minimize the movement of packets across boundaries. While

DynaMIT disregards node ordering at this juncture, parallelization or no, in the future

the parallel implementation ought to address this issue. Disruption to node ordering can

be minimized by reducing the number of cut edges in our partition. Generating min-cut

partitions is a well-researched area of graph theory, and moving forward we believe a good
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first step would be to attempt to implement such as algorithm, as discussed in [8].

83



84



Bibliography

[1] Moshe Ben-Akiva, Michel Bierlaire, Jon Bottom, Haris Koutsopoulos, and Rabi
Mishalani. Development of a route guidance generation system for real-time applica-
tion. IFAC Proceedings Volumes, 30(8):405–410, 1997.

[2] Moshe Ben-Akiva, Michel Bierlaire, Didier Burton, Haris N Koutsopoulos, and Rabi
Mishalani. Network state estimation and prediction for real-time traffic management.
Networks and spatial economics, 1(3-4):293–318, 2001.

[3] Moshe Ben-Akiva, Michel Bierlaire, Haris Koutsopoulos, and Rabi Mishalani. Dy-
namit: a simulation-based system for traffic prediction. In DACCORD Short Term
Forecasting Workshop, pages 1–12, 1998.

[4] Moshe Ben-Akiva, Michel Bierlaire, Haris N Koutsopoulos, and Rabi Mishalani. Real
time simulation of traffic demand-supply interactions within dynamit. In Transporta-
tion and network analysis: current trends, pages 19–36. Springer, 2002.

[5] Moshe Ben-Akiva, Jon Bottom, Song Gao, Haris N Koutsopoulos, and Yang Wen.
Towards disaggregate dynamic travel forecasting models. Tsinghua Science & Tech-
nology, 12(2):115–130, 2007.

[6] CK Chow. On optimization of storage hierarchies. IBM Journal of Research and
Development, 18(3):194–203, 1974.

[7] George Dimitrakopoulos and Panagiotis Demestichas. Intelligent transportation sys-
tems. IEEE Vehicular Technology Magazine, 5(1):77–84, 2010.

[8] Chris HQ Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and Horst D Simon. A min-
max cut algorithm for graph partitioning and data clustering. In Data Mining, 2001.
ICDM 2001, Proceedings IEEE International Conference on, pages 107–114. IEEE,
2001.

[9] Ziru Li, Yili Hong, and Zhongju Zhang. An empirical analysis of on-demand ride
sharing and traffic congestion. 2016.

[10] Henry X Liu, Wenteng Ma, R Jayakrishnan, and Will Recker. Large-scale traffic sim-
ulation through distributed computing of paramics. California Partners for Advanced
Transit and Highways (PATH), 2004.

[11] Bibi Yasmina Yashanaz Mohedeen et al. Domain Partitioning and software modifi-
cations towards the parallelisation of the buildingEXODUS evacuation software. PhD
thesis, University of Greenwich, 2011.

[12] Eoin A O’Cearbhaill and Margaret O’Mahony. Parallel implementation of a trans-
portation network model. Journal of parallel and distributed computing, 65(1):1–14,
2005.

85



[13] Srinivas Peeta and Hani S Mahmassani. Multiple user classes real-time traffic as-
signment for online operations: a rolling horizon solution framework. Transportation
Research Part C: Emerging Technologies, 3(2):83–98, 1995.

[14] Marcus Rickert and Kai Nagel. Dynamic traffic assignment on parallel computers in
transims. Future generation computer systems, 17(5):637–648, 2001.

[15] Vaidy S. Sunderam. Pvm: A framework for parallel distributed computing. Concur-
rency and Computation: Practice and Experience, 2(4):315–339, 1990.

[16] Vincent M Weaver. Linux perf_event features and overhead. In The 2nd Interna-
tional Workshop on Performance Analysis of Workload Optimized Systems, FastPath,
volume 13, 2013.

[17] Josef Weidendorfer, Markus Kowarschik, and Carsten Trinitis. A tool suite for sim-
ulation based analysis of memory access behavior. In International Conference on
Computational Science, pages 440–447. Springer, 2004.

[18] Yang Wen. Scalability of dynamic traffic assignment. PhD thesis, 2009.

[19] Yadong Xu, Wentong Cai, Heiko Aydt, Michael Lees, and Daniel Zehe. Relaxing
synchronization in parallel agent-based road traffic simulation. ACM Trans. Model.
Comput. Simul., 27(2):14:1–14:24, May 2017.

86


	Introduction
	Main Objectives
	Thesis Contributions
	Outline

	Related Work
	Previous work in DynaMIT

	The DynaMIT System
	State Estimation and Prediction/Guidance
	Network Representation
	Initializing Network Topology
	Initializing Supply

	Path Representation
	Simulation Control Flow

	Necessary Properties for DynaMIT
	Running Time Efficiency
	Repeatability of Parallel Traffic Simulations
	Maintainability

	Serial-execution Optimizations
	Profiling
	Updated profiler design

	Optimizing Network Initialization
	Memory Locality Management

	Parallelization
	Goals
	Design
	Node Pipelining
	Parallelization via Vertex Coloring

	Update and Independence Properties
	Update Properties
	Independence Properties

	Node-Pipelined Algorithm
	Reduction to Vertex Coloring
	Notes on Node Ordering

	Implementation on a Multi-Core Machine
	Updated Network Representation
	Generating Network Bands


	Results
	Serial-implementation Results
	Datatype Improvements
	Memory Allocation
	Updates to Network Representation

	Parallelization
	Running time evaluation
	Determinism

	Moving Forward
	General Changes to the Code
	Memory Use
	Parallelization



