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Abstract
New high-throughput “omic” methods can help shed light on molecular pathways
underpinning diseases ranging from cancers to neurodegenerative disorders. However,
effectively integrating information across these diverse data types is challenging.
Network modeling approaches can help bridge this gap. In particular, the Prize-
Collecting Steiner Forest approach (PCSF) is a network modeling method that provides
high-confidence subnetworks of physically interacting molecules by integrating diverse
“omics” data with prior knowledge from protein-protein interaction networks (PPIs).
However, PCSF is sensitive to initial parameterization and generating biological
hypotheses from the resulting subnetworks can often be difficult. This study increases
the interpretability of subnetwork solutions generated PCSF by studying the effect
of varying PCSF free parameters and adding annotations for subcellular localization.
The PCSF approach is then used to elucidate pathways underlying synergy between
cytokines, pro-inflammatory molecules that mediate diverse biological phenomena
ranging from anti-viral immunity to autoimmune disorders like inflammatory bowel
disease (IBD). In addition, PCSF approach is applied in a cross-species context to
integrate information from Drosophila models for neurodegeneration and human
Alzheimer’s Disease (AD) patients to investigate proximal conserved mechanisms of
age-related neurodegeneration.
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Chapter 1

Introduction

The past two decades have seen an explosion of “omics”, techniques that assess a

global set of molecules (Table 1.1). However, while each of these data modalities

can provide some insight into disease etiology, single datasets are inherently limited

to correlative, but not causal analyses. Therefore, it is critically important to develop

approaches to integrate information across a variety of “omics” datasets in order to

develop causal models of disease mechanism.

Networks methods provide a powerful technique for integrating together a variety

of “omics” datasets. In essence, these techniques treat interactions between molecules

in a cell as a graph. In the most general models, the molecular players in a cell (i.e.

proteins, mRNA transcripts, metabolites) can be modeled as nodes in a graph, and

the interactions between these cells (i.e. between protein and metabolite or between

transcription factor and gene regulated) can be modeled as edges. However, with tens of

thousands of nodes and hundreds of thousands of edges the graph of these interactions

can quickly grow into intractable “hairballs” that are exceedingly difficult to interpret.

To solve this problem, network inference approaches apply well-known graph theory

problems like multi-commodity flow and minimum cost flow to biological problems

[1, 2]. These approaches leverage previous knowledge from protein-protein interaction

networks (PPIs) to reveal physical pathways linking “omics” data through known and

novel pathways. Resulting networks can then clustered to discover groups of molecules

that function coherently, including molecules not originally detected in the input data.
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Type of
“omics” data

Molecules
profiled

Associated
technologies Example use cases

Genomics DNA DNA sequencing

Identify genetic variants
associated with disease
through genome wide
association studies

Epigenomics DNA and
histones

ATAC-seq
ChIP-seq
Bisulfite-seq

Identify changes in DNA
methylation and histone
modification that
regulate gene expression

Transcriptomics RNA RNA-seq
Microarrays

Quantify expression of
protein-encoding genes
and identification of
mRNA splice variants

Proteomics Proteins Mass spectrometry
(MS)

Quantify relative protein
expression and covalent
modifications to proteins
relevant to cell signaling
and protein regulation.

Metabolomics Small
molecules

GC-MS
HPLC

Quantify small molecules
that reflect underlying
metabolic function and
disrupted enzymatic pathways

Table 1.1: Description of different “omics” data.
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Thus, these approaches can identify novel pathways not detected in standard pathway

analyses by integrating previous knowledge from high-throughput experiments. This

paradigm can be applied to a wide range of big-data biological questions, ranging from

discovering signaling pathways underlying cancers to elucidating conserved mechanisms

of neurodegeneration [3, 4].

In particular, an approach based on solving the Prize-Collecting Steiner Forest

problem (PCSF) can extract biologically relevant pathways from multi-omics data by

generating high-confidence subnetworks of physically interacting molecules [5, 6, 7].1

This method avoids over-reliance on hub proteins, takes into account the reliability of

interactions in the starting PPI, and determines the robustness of the each node based

on uncertainty in the data and the network. Moreover, it has been implemented for

public use as the OmicsIntegrator package [6]. However, PCSF is highly sensitive to

the initial parameters chosen. Moreover, it can often be tedious to formulate biological

hypotheses based on the outputted subnetworks.

In this study, I aim to investigate and make improvements to the PCSF approach,

then use this technique to approach two different biological problems: discovering

pathways relevant to synergism between pro-inflammatory molecules implicated in

inflammatory bowel disease (IBD) and uncovering hidden genes and pathways related

to the age-related neurodegeneration of Alzheimer’s disease.

Chapter one will introduce the PCSF approach, discuss problems with the PCSF

approach, and introduce biological problems that have been solved by extensions of

the PCSF approach.

Chapter two will focus on the investigation of free parameters in the PCSF problem.

It will also discuss some improvements to the output of a popular package that solves

the PCSF problem for biological networks, OmicsIntegrator [6].

Chapter three will discuss a multi-omics study that uncovered molecular pathways

underlying non-additive effects when treating human adenocarcinoma cells with
1For convenience, in this study, “PCSF” will refer to both the graph theory problem and to the

approach based on solving the Prize-Collecting Steiner Forest problem to extract biologically relevant
pathways.
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two pro-inflammatory molecules, TNF𝛼 and IFN𝛾.2 In particular, it highlights the

flexibility of network inference approaches like PCSF in uncovering hidden pathways

using epigenetic, transcriptomic, proteomic, phosphoproteomic, and genetic screen

data.

Chapter four will discuss an application of the PCSF approach in a cross-species

context to integrate information from Drosophila metabolomics, proteomics, and ge-

netic screens with human RNA-seq data to investigate proximal conserved mechanisms

of neurodegeneration underlying Alzheimer’s Disease (AD).3

1.1 Summary of PCSF approach

The PCSF problem is formally defined on an undirected graph 𝐺 = (𝑉, 𝐸). Nodes

are labeled with prizes, 𝑝 and edges are labeled with non-negative costs, 𝑐 (Figure

1-1a). 𝐺 = (𝑉, 𝐸) is then transformed to the graph 𝐻 = (𝑉 ′, 𝐸 ′) as follows:

1. Copy all nodes and edges in 𝐺 into 𝐻.

2. Add a dummy node, 𝑣𝑑 to 𝐻

3. For all 𝑣 ∈ 𝑉 where 𝑝𝑣 > 0, add an edge with cost 𝜔 between 𝑣 and the dummy

node 𝑣𝑑.

4. For all 𝑒 ∈ 𝐸, rescale the edge cost to 𝑐′
𝑒 = 𝑐𝑒 + 𝛾𝑑(𝑣𝑖) * 𝑑(𝑣𝑗), where 𝑑(𝑣𝑖) and

𝑑(𝑣𝑗) are the degrees of the two nodes connected by edge 𝑒 and 𝛾 is a parameter

penalizing nodes with many neighbors (Figure 1-1b).

The goal is then to identify a connected subgraph of 𝐻, 𝐻 ′ = (𝑉 ′′, 𝐸 ′′), that

maximizes the objective function:

𝛽
∑︁

𝑣∈𝑉 ′′
𝑝𝑣 −

∑︁
𝑒∈𝐸′′

𝑐𝑒 (1.1)

2TNF𝛼 and IFN𝛾 are both members of a more general class of pro-inflammatory molecules known
as cytokines. In this study, “cytokine synergy” and “cytokine synergism” will specifically refer to
synergy between signaling with TNF𝛼 and IFN𝛾.

3In this study, Drosophila will specifically refer to Drosophila melanogaster, the common fruit fly
often used as a model organism.
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Figure 1-1: Overview of PCSF approach. A) Graph, 𝐺 = (𝑉, 𝐸), with the circles
as nodes, 𝑉 , and blue lines as edges, 𝐸. Terminals are nodes with 𝑝 > 0 and are
shown in red. B) Transformed graph, 𝐻 = (𝑉 ′, 𝐸 ′). The yellow dummy node is
connected to terminals with the dotted edges with weight 𝜔. The edges are rescaled
with 𝑐′

𝑒 = 𝑐𝑒 + 𝛾𝑑(𝑣𝑖) * 𝑑(𝑣𝑗) and are now shown in green. C) Tree solution to PCST
that maximizes the objective above. The dummy node is still attached. D) The
final subnetwork consists of two connected components once the dummy node and its
adjacent edges are removed.
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where 𝛽 is a scaling for the prizes. The dummy node, 𝑣𝑑 and all edges adjacent to the

dummy node are then removed to produce a final subnetwork (Figure 1-1c, 1-1d).

In the resulting subgraph 𝐻 ′ = (𝑉 ′′, 𝐸 ′′), the subset of nodes with positive-weight

prizes are “terminals” and the subset of nodes with zero-weight prizes are termed

“Steiner” nodes [6].

This approach can be used to study biological networks by treating a PPI such

as iRefWeb as a graph, 𝐺 [8]. Nodes, 𝑉 , represent proteins and edges, 𝐸, represent

interactions between proteins. Edge costs, 𝑐, representing the inverse confidence of the

interaction. The prizes, 𝑝, can be assigned to the nodes of interest based on proteomic,

phosphoproteomic, transcriptomic, epigenomic, or other biological data. Solving the

PCSF problem is APX-hard, meaning that finding an exact solution is NP-hard, but

approximate solutions can be found in polynomial-time [9]. Multiple algorithms have

been implemented to approximate the PCSF problem; the most recent iteration is a

fast heuristic approximation, OI2, based on the graph-structured sparsity approach

described by Hegde, Indyk, and Schmidt [7, 6, 10]. However, there have been no

comprehensive studies on how the parameters 𝛾, 𝛽, and 𝜔 influences the ability of the

PCSF approach to uncover true biologically relevant pathways.

1.2 Applying PCSF framework to novel biological

problems

The PCSF framework has been applied to a variety of biological problems. One

previous work used the frequency of genetic events (SNPs, indels, and CNVs) in genes

as prizes for different subtypes for glioblastoma, selecting highly mutated genes as

prizes. The PCSF subnetworks were then used to infer molecular pathways that drive

different subtypes of glioblastoma [11]. Another approach used a Bayesian approach to

assign m/z peaks to metabolites. Edges were then inferred between metabolites and a

protein-protein interaction network. The resulting approach integrated proteomic and

metabolomic data to probe how the metabolism of various lipids were dysregulated in

15



a Huntington disease model [5]. Another extension of the PCSF approach has been

used to integrate data from yeast and humans in order to discover genes underlying

Parkinson’s disease [4]. Yet another extension of the PCSF approach has been used

to impute signaling pathways shared across individual patients [7].

However, to date the PCSF framework has been applied a disease/control conditions

to reconstruct single perturbations of cellular pathways. However, the PCSF approach

has not yet been applied to reconstruct molecular pathways underlying non-additive

effects between distinct signaling pathways. Moreover, while the PCSF approach was

successfully extended in integrating yeast and human data, this study was heavily

reliant on the injection of edges from the yeast interactome to the human interactome.

In this project, I extended the PCSF approach to reconstruct non-additive molecular

pathways between two distinct pro-inflammatory molecules relevant to inflammatory

bowel disease and cancer. Next, I extend the PCSF to a cross-species context that is

not reliant on the injection of additional edges. Instead, I directly mapped Drosophila

proteins, genes, and metabolites to their human homologs, then integrated these data

with human RNA-seq data to infer molecular pathways underlying conserved pathways

of neurodegeneration in Alzheimer’s disease.
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Chapter 2

Improving PCSF parameter

selection and subnetwork

interpretability

The PCSF approach outlined in chapter one is a flexible approach for inferring

biologically relevant subnetworks using multi-omic data coupled with high confidence

protein-protein interaction networks. However, the PCSF solution generated using

a popular implementation, OmicsIntegrator2 (OI2), is sensitive to the choice of free

parameters, 𝛽, 𝜔, 𝛾, as well as the distribution of prize weights. Since 𝛽, 𝜔, and 𝛾 are

not linearly separable, it is difficult to tune these parameters sequentially. For example,

Figures 2-1a and 2-1b are both derived from the same set of prizes. While figure 2-1a

does capture a large portion of the input data, it also selects many intermediate nodes

and pathways, making biological interpretation exceedingly difficult.1 By contrast,

figure 2-1b selects only a small portion of the input nodes; however, the selected

intermediate nodes are poorly connected to proteins identified from our biological

evidence. In both these cases, poor choices of PCSF free parameters adversely affect

the formulation of biological hypotheses about pathways that explain the data.
1“Intermediate” nodes and “Steiner” nodes will be used interchangeably in this study.
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Figure 2-1: Two examples of PCSF subnetworks generated from the same prize
set (based on a list of genes associated with Alzheimer’s Disease). Red nodes signify
terminal nodes (𝑝𝑣 > 0) and blue nodes signify Steiner nodes (𝑝𝑣 = 0). (A) is a
“hairball” subnetwork constructed using high values for 𝛽 and 𝜔 and a low value for
𝛾 that captures a large portion of the input data, but that also selects a variety of
intermediate nodes. (B) is a disjoint subnetwork constructed using low values for 𝛽
and 𝜔 and a high value for 𝛾 that does a poor job of capturing interactions between
input data and intermediate nodes.

2.1 Previous approaches to PCSF parameteriza-

tion

Previous approaches to PCSF parameter selection have focused on minimizing the

difference between various aspects of the degree distribution of Steiner nodes and

terminal nodes, and exploring a “representative” distribution of parameter space

(Figure 2-2a,b). The weakness of the former approach is that it assumes that Steiner

nodes will possess similar property to terminal nodes. This can often be misleading

when considering the underlying biology. For example, in many disease conditions,

perturbation of master regulators lead to severe phenotypes that can lead to cell death.

Single datasets such as proteomics or transcriptomics can often miss these master

regulators. However, the PCSF approach should recover these proteins; however,

making the assumption that the degree distribution of Steiner and terminal nodes

should be similar will bias networks chosen against finding these master regulators.
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Figure 2-2: Plots used for PCSF parameter selection. (A) This plot of Steiner and
terminal node degree distribution is used to qualitatively pick parameters. Sets of
parameters are on the x-axis and the number of nodes is on the y-axis. Darker lines
indicate cardinality, and lighter lines indicate average degree. Blue represents terminal
nodes, green represents steiner nodes, and yellow represents all nodes. (B) Heatmap
showing the presence or absence of nodes (rows) in subnetworks across different
parameters (columns). Both parameters and nodes are clustered by hierarchical
clustering. Parameter sets which include a “reasonable” subset of terminals and
“sufficient” numbers of steiner nodes are chosen for further analysis.

Similarly, attempting to find sets of parameters that appear to capture a “reasonable”

number of Steiner nodes while retaining the majority of terminal nodes is a highly

biased endeavor. Moreover, both these approaches have only been applied to datasets

in which the underlying true positives are unknown, making quantitative claims about

the accuracy of these approaches difficult. These approaches could easily be picking

up many false positive terminal nodes and excluding true positive Steiner nodes.

2.2 Using synthetic datasets to assess PCSF pa-

rameterization

To evaluate the effect of changing PCSF, one hundred synthetic datasets were con-

structed to systematically assess the role of PCSF free parameters on PCSF per-

formance (dataset construction is detailed in Appendix B). In brief, previously

annotated genetic confidence scores from the OpenTargets database for ten diseases

were used as prize weights (Figure 2-3 and Figure A-1) [12]. For each disease’s
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Figure 2-3: Overlaid histograms of the distribution of genetic confidence scores from
OpenTargets for each disease used in creating synthetic datasets. Genetic confidence
scores of less than 0.1 were excluded in creating the prizes for synthetic datasets and
are excluded in this graph.

genes, 100 genes were sampled from the prize distribution and 100 interactome degree-

matched and prize weight matched nodes were added as noise. For each synthetic

dataset, the PCSF algorithm was run varying parameters 𝛽, 𝜔, 𝛾 independently. For

each parameter set, 100 prize randomizations were run to assess specificity, and 100

noise-edge randomizations were performed to assess sensitivity. Next precision, recall,

and AUC were calculated between the consensus subnetwork solution against the

reference set of true genetic associations for each disease using a variety of robustness

and specificity thresholds.

These results suggest that precision and recall alone are not good ways of assessing

PCSF performance. High precision networks generally included very few nodes, while

high recall nodes included large amounts of noise (Figure 2-4a,b). Taking the

area under the curve (AUC) of the receiver-operating curve (ROC) similarly selected

for many small networks, suggesting a strong bias for high precision networks that

are generally not permissive enough to allow for the generation of novel biological

hypotheses (Figure 2-4c). The best metric seemed to the Jaccard index, which
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Figure 2-4: Subnetworks constructed with a variety of free parameters for PCSF
using synthetic datasets described in Appendix B. Precision, recall, AUC and Jaccard
scores were calculated for each subnetwork between the genetics hits for each disease
from OpenTargets and the nodes present in the inferred subnetworks. Parameter sets
were then ordered by their average score for each calculated value. For each parameter
set (x-axis), the calculated (color) is plotted for each parameter set (y-axis). The
metrics calculated are (A) precision (B) recall (C) AUC, (D) Jaccard score.
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measures the ratio of the cardinality of the intersection over the union of the two

sets. The Jaccard index generally selected for meaningful biological networks. In

practice, network robustness thresholds of between 0.6 and 0.8 yielded the best results

(Figure A-2). Overall, this analysis suggested that different parameter sets perform

differently for different prize distributions. Therefore, the best way of selecting a good

parameter set for any given prize distribution is to construct a set of degree-matched

synthetic datasets with noise in a similar fashion to the datasets described above.

Next, one should vary the PCSF free parameters over a large range, run a PCSF

solver once, and calculate the average Jaccard index between the nodes in the inferred

subnetwork and known true positives.2 Finally, one should run 100 randomizations

for both sensitivity and specificity for a smaller set of parameters on the synthetic

datasets, then calculate Jaccard scores between inferred subnetworks and known true

positives. The parameter sets with the top average Jaccard scores should then be

used as the PCSF free parameters. This approach provides a more unbiased approach

to parameter selection for PCSF than current heuristics.

2.3 Adding subcellular annotations to improve PCSF

subnetwork interpretability

Even after choosing a reasonable set of parameters, networks can still often be difficult

to interpret. This prevents users of the PCSF approach from rapid forming of biological

hypotheses for further validation. Therefore, in order to help users better understand

networks, I helped automate the annotation of subcellular localization in PCSF

outputs. Starting with the COMPARTMENTS database, a directed graph weighting

scheme was used to bin proteins into their most probable subcellular localization

(Figure 2-5) [13]. These annotations were then included into a web application for

visualization.3 As evidenced in the contrast between the networks shown in Figure
2Recommended parameters to choose for the OmicsIntegrator2 implementation are: 𝜔 between

0.1 to 10, 𝛽 between 0.1 and 10, 𝛾 between 10 to 108.
3This visualization application developed by a member of the Fraenkel lab works also as a stand

alone application. It can be accessed at interactome.info.

22

interactome.info


Figure 2-5: Evidence for subcellular location was collected using the knowledge
and experiments in the COMPARTMENTS database, which aggregates evidence for
subcellular locations based on expert curation of the literature and antibody-tagging
experiments. A directed graph evidence-weighting scheme was then used to bin
proteins in their most probable subcellular localization. A barchart of the number of
proteins predicted to localize to each subcellular compartment is then plotted here.

2-6a and Figure 2-6b, adding subcellular annotations greatly increasing the ease of

generating biological hypotheses using the PCSF approach.
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Figure 2-6: All proteins that were reported to interact with Vesicle Associated
Membrane Protein (VAMP1) in the iRef database were plotted using interactome.info
[8]. Edges between these neighbors of VAMP1 are retained. (Top) The resultant
network is plotted using force-directed graph visualization. (Bottom) The same
network is clustered according to subcellular locations as predicted in Figure 2-5.
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Chapter 3

Using PCSF to elucidate pathways

underlying synergism between

TNF𝛼 and IFN𝛾

Cytokines are extracellular molecular regulators that mediate immune cell recruitment

and complex intracellular signaling control mechanisms underlying inflammation [14].

For example, interferon gamma (IFN𝛾) and tumor necrosis factor alpha (TNF𝛼) are

both cytokines that play diverse functions in inflammation and immunity [14]. IFN𝛾

is produced by both adaptive immune cells like 𝐶𝐷4+ and 𝐶𝐷8+ T-cells and innate

immune cells like natural killer cells. This pathway has both antiviral activity, as well

as immunomodulatory functions, such as promotion of 𝑇𝑟𝑒𝑔 cell differentiation and

macrophage priming [15]. The TNF𝛼 pathway plays a distinct but complementary

role to the IFN𝛾 pathway. TNF𝛼 is also produced by macrophages and has context

dependent anti-viral and anti-tumoral effects. This pathway also possess pleiotropic

functions in homeostasis and immunopathogenicity, opposes cell proliferation, and

signals for cell death [16]. Unsurprisingly, mixtures of cytokines have been shown to

exhibit non-additive, “synergistic” responses that are more nuanced than the simple

summation of single cytokine responses [17].1 In particular, joint signaling with both
1In the rest of this study “synergy” and “joint signaling” or “joint treatment” will specifically

describe synergy between IFN𝛾 and TNF𝛼
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Figure 3-1: Non-additive effects after joint signaling with IFN𝛾 and TNF𝛼. (A) A
summary of the cell types that secrete IFN𝛾 and TNF𝛼 and the pleitropic synergistic
downstream effects. (B) Dose response curve of cytokine treatment in human ade-
nocarcinoma cells. The doses are in mM, and I+T is the joint signaling condition.
Cells were assessed for viability to Cell Titer Glow (Promega) forty-eight hours after
treatment. (C) Western blot of phosphorylation of various proteins in the NF-𝜅𝛽 and
JAK-STAT signaling cascades in response to cytokine treatment (all doses 10 ng/mL).
𝛽-actin is the control. (Data courtesy of Ken Nally)
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Figure 3-2: Overview of datasets, timepoints, and conditions used in the cytokine
synergy study.

IFN𝛾 and TNF𝛼 has been shown to mediate diverse synergistic responses ranging

from decreased epithelial barrier function in IBD to immune-mediated regression of

tumours (Figure 3-1a) [18, 19].

One leading hypothesis for this synergy is IFN𝛾 priming, where signaling via

IFN𝛾 prepares the cell for a more pronounced response to other immune factors.

TNF𝛼 [20]. While this hypothesis does explain some cellular responses to synergistic

signaling, such as apoptosis, it fails to explain the diverse events happening at the

molecular level (Figure 3-1b) [14]. Previous work has shown that the JAK-STAT

and NF-𝜅𝛽 pathways are involved in cytokine synergism (Figure 3-1c). In turn, this

likely triggers downstream transcriptional and epigenetic changes that mediate diverse

cellular phenomena [21]. However, the precise genes and proteins in involved in these

additional regulatory mechanisms are poorly understood [22]. In order to bridge this

gap, our collaborators in the laboratory of Prof. Ken Nally from University of Cork

in Ireland have collected a rich dataset, including phosphoproteomic, transcriptomic,

epigenomic, and genetic screen data for synergistic signaling between IFN𝛾 and TNF𝛼

in human adenocarcinoma cells (Figure 3-2).

In this study, the diverse datasets described in figure 3-2 were integrated to elucidate
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Genetic Screen Type Top genes

Cell death (48 hours)
JAK2, JAK1, APC, IFNGR2, STAT1, TNFRSF1A,
LAP3, ARPC1A, IFNGR1, SYNGR2, IRF1,
PINX1, WDR61, GALE, SUPT3H1

CXCL10 production (8 hours)

POMP, PSMD1, PSMC2, SNRPD3, PSMB5, PSMD14,
SF3B5, SNRPB, POLR2A, PSMC3, SKIIP, CDCA5,
PSMD6, SF3A3, SNRPF, POLR2I, UBC, SF3B3,
SF3B2, MADD, PLK1, RPL6

PD-L1 expression (8 hours)

SF3B5, SF3B2, RPS2, PLK1, SNRPD3, PSMB7,
SF3B1, NLGN4X, DDX48, KIAA1604, PSMB5, NUP205,
BAT1, AQR, CDCA5, POLR2A, RPL37A, RPS3A,
PSMD14, PSMD8, RPL1, SUPT6H

Table 3.1: Top significant genes from RNAi rescue screen for 1) cell death 48
hours after stimulation with IFN𝛾 and TNF𝛼 2) CXCL10 production 8 hours after
stimulation with IFN𝛾 and TNF𝛼 3) PD-L1 cell-surface expression 8 hours after
stimulation with IFN𝛾 and TNF𝛼.

the specific molecular pathways underlying non-additive effects from joint TNF𝛼 and

IFN𝛾 signaling. These analyses not only discovered novel pathways, but also highlight

the efficacy of the PCSF approach discussed in chapter one and incorporates some of

the improvements to PCSF discussed in chapter two.

3.1 Genetic screens reveal upstream master regu-

lators for cytokine synergy

Genome wide RNAi screens were performed in order to discover genes central to the

disease relevant phenotypes characteristic of synergistic cytokine signaling. Previous

data showed that synergistic signaling with IFN𝛾 and TNF𝛼 lead to a much more

pronounced cell death phenotype relevant in a variety of autoimmune disorders (Figure

3-1b) [23]. Another central process regulated by co-stimulation of cytokines was the

production of CXCL10 and PD-L1 [24, 25]. CXCL10 controls the recruitment of

regulatory T cells to a cell’s local environment, while PD-L1 suppresses immune

function and the activity of cytotoxic T cells [24, 25]. Numerous previous studies
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have shown that the inhibition of PD-L1 can enhance immune function, serving as

the basis of many immunotherapies [26]. By contrast, inhibition of CXCL10 can

suppress inflammation in a tissue, which could potentially be important for treating

inflammatory bowel disease. In other words, CXCL10 and PD-L1 can be thought of

as tuning the immune response in a tissue: over-expression of CXCL10 and decreased

expression of PD-L1 leads to aberrant inflammation, while decreased expression of

CXCL10 and over-expression of PD-L1 can lead to cancers. Previous data also showed

that CXCL10 and PD-L1 are expressed at high levels when stimulating with both

IFN𝛾 and TNF𝛼, but not with either cytokine alone (Figure 3-6b). Therefore, in

order to profile these disease relevant phenomena, we performed genetic screens for cell

death at 48 hours, and the production of CXCL10 and PD-L1 as proxies for immune

system activation at 8 hours.

The top hits for the screen for cell death rescue include the Janus kinases, the IFN𝛾

receptor, and the TNF𝛼 receptor, which are all involved in cytokine signaling (Table

3.1) [27]. As expected, the knockout of any of these genes prevented the activation

of both pathways simultaneously, blocking synergistic effects. More surprisingly,

another top hit was ARPC1A, a member of the Arp2/3 complex involved in actin

polymerization. Some previous studies have indicated connections between actin

dynamics and cytokine signaling [28]. GO enrichment analysis similarly implicated

both components of the IFN𝛾 and TNF𝛼 pathways, however, these provided little

insight into the exact genes underlying this phenomenon.

The CXCL10 and PD-L1 screen recovered many components of the TNF𝛼 but

few in the IFN𝛾 signaling pathway. In particular, many components of the NF-𝜅B

and Wnt signaling pathways were uncovered in both these screens (Table 3.1). More

specifically, the enrichments for the NF-𝜅B and Wnt signaling pathways were driven by

strong signal from the proteosome, a complex that degrades proteins that is activated

by TNF𝛼 signaling [29]. The only components of the IFN𝛾 signaling pathway that

were recovered were JAK2 and STAT1, suggesting the synergistic phenotype was

mediated through STAT1’s role as a transcription factor. Finally, both the screens

were heavily enriched for a variety of transcriptional processes (FDR < 10−27 for
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both), further reinforcing that a lot of these synergistic phenomena were regulated by

epigenetic changes, which is consistent with findings from previous literature [21, 30].

One disadvantage of these screens was that they recovered many genes that were

likely specific to one pathway or the other, but did not necessarily recover genes that

were common to both pathways. Unfortunately, since signaling with neither cytokine

alone was sufficient to induce cell death, CXCL10 expression, or PD-L1 expression, it

was impossible to tease apart proteins that were core to the interaction between the

two pathways. To this end, we decided to profile the signaling dynamics, epigenetic

changes, and transcriptional changes that occurred after individual and joint TNF𝛼

and IFN𝛾 treatment.

3.2 Co-stimulation with IFN𝛾 and TNF𝛼 activates

distinct phosphorylation signaling cascades

The genetic screen indicated that profiling signaling cascades activated by IFN𝛾 and

TNF𝛼 was necessary to identify proteins important to the interaction between cytokine

signaling. To this end, serine/threonine phosphorylation, tyrosine phosphorylation,

ubiquitination, and general phosphorylation (IMAC) data were collected from human

adenocarcinoma cells fifteen minutes after individual and joint stimulation with IFN𝛾

and TNF𝛼. Each of these four assays provided complementary information about

signaling dynamics shortly after signaling. Additionally, there was strikingly little

overlap between the genetic screen and the phosphoproteomics, indiciating that this

assay was picking up complementary information (Figure A-3).

Treatment with each cytokine stimulated known components of their respective

pathways, but did not lead to activation of further downstream receptors. For example,

stimulation of TNF𝛼 lead to activation of components of the NF-𝜅 B signaling pathway

(IKBKG, NFKB1), MAPK pathway (MAPK14, MAPKB, MAP2K7), and necroptosis

(RIPK1), all of which have been previously described to be part of the TNF𝛼 signaling

pathway (Figure A-4) [31]. As expected, TNF𝛼 did not lead to the activation of any
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Figure 3-3: Protein modifications in the KEGG pathways for TNF𝛼 and IFN𝛾 after
joint cytokine treatment. The maximum fold change across the four assay types was
then taken, and is indicated by the border color (yellow = Ser/Thr, dark purple
= IMAC, red = Tyr, light purple = ubiquitination). The proteins in red showed
a fold change greater than two after joint TNF𝛼 and IFN𝛾 treatment. (Top) The
KEGG pathway for TNF𝛼 signaling. (Bottom) A modified KEGG pathway for IFN𝛾
signaling.
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Figure 3-4: GO enrichments for protein modifications after TNF𝛼 and IFN𝛾 treat-
ment. (Left) Overlapping set visualization between protein modifications in each
condition. The small barchart shows the number of proteins which had a modification
that had more than a two-fold change after fifteen minutes of joint cytokine signaling
in any of the four assays. The main barchart shows the overlap between each set.
(Top right) Gene ontology enrichments performed on the synergy protein against a
background of all proteins had more than a two-fold change after fifteen minutes in
any of the four assays for any treatment condition. (Bottom Right) Gene ontology
enrichment performed on proteins modified only in the synergistic condition against
the same background as above.

part of the IFN𝛾 signaling pathway except for a weak activation of JAK1. Similarly,

treatment with IFN𝛾 lead to the stimulation of the JAK-STAT pathway, which is

the primary pathway known to be activated by IFN𝛾. In addition, some components

of NF-𝜅B pathway were also activated, indicating that downstream targets of the

NF𝜅B pathway could potentially be the mediators of the interaction between the two

pathways Figure A-5 [32].

Treatment with both IFN𝛾 and TNF𝛼 jointly lead to the the activation of known

components both pathways. In the IFN𝛾 pathway, joint cytokine treatment lead to

large upregulation of tyrosine phosphorylation in the JAK-STAT pathway (JAK is

a tyrosine kinase). Similarly, the TNF𝛼 pathway was upregulated in essentially the

same fashion in the individual treatment condition, including upregulation of the the

NF𝜅B, MAPK, and necroptosis pathways (Figure 3-3)

Next, novel proteins involved in the synergistic response were identified by per-

forming gene ontology enrichment on proteins identified as differentially modified in
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Figure 3-5: Multiple linear regression was used to predict the fold change of protein
modifications after synergistic cytokine treatment using the fold change individual
protein modification responses after TNF𝛼 and IFN𝛾 treatment. The analysis was
performed separately for (A) ubiquitination (B) ser/thr phosphorylation (C) tyrosine
phosphorylation (D) general phosphorylation (IMAC).

the synergistic condition across any of the orthogonal signaling assays. This analysis

returned enrichments associated with both the TNF𝛼 and IFN𝛾 signaling pathways

such as activation of the MAPK cascade and NF𝜅B pathway (Figure 3-4). However,

subsetting only genes that were activated in the synergistic response, there was little

enrichment for anything other than general biological processes like transcription and

mRNA splicing (Figure 3-4).

This previous analysis indicated that at the fifteen minute timepoint, there were

Experiment Type IFNg regression coefficient TNFa regression coefficient
Ubiquitination -0.41 0.64
Ser/Thr Phosphorylation -0.1 0.95
Tyr Phosphorylation 0.67 1.04
IMAC (Phosphorylation) 0.75 0.82

Table 3.2: Regression coefficients for the multiple linear regression described in figure
3-5.
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no annotated pathways that were activated in any of our orthogonal assays that were

due to crosstalk between IFN𝛾 and TNF𝛼 signaling. However, this analysis failed to

account for how the fold changes in these proteins modifications were influenced by

either TNF𝛼 or IFN𝛾 signaling. Therefore, we performed a multiple linear regression

for fold changes of each type of modification, using the individual treatment conditions

to predict the joint signaling condition. The regression are plotted in Figure 3-

5 and the regression coefficients are reported in Table 3.2. The ubiquitination

and serine/threonine phosphorylation were largely driven by TNF𝛼 signaling with

regression coefficients for TNF𝛼 being 0.64 and 0.95 respectively. Some of the largest

outliers in the ubiquitination regression analysis were components of the NF-𝜅B

pathway (RIPK1, IKB, NFKB1) suggesting that, that this pathway’s activity was

enhanced in a non-additive fashion in the synergistic condition (Figure 3-5 a). The

largest outlier in the serine/threonine phosphorylation regression analysis was the

protein TNKS1BP1, an ankyrin binding protein that plays a role in cytoskeletal

signaling (Figure 3-5b). Combined with the identification of Arp2/3 in the genetic

screen assay, this highlights the critical role of the cytoskeleton scaffolding in cytokine

synergy [33]. On the other hand the tyrosine and general phosphorylation (IMAC)

assays saw contributions from both IFN𝛾 and TNF𝛼. The top hits in these pathways

were components of the MAPK (MAPK8, MAPK14, ATF2), NF𝜅B (TANK) and

JAK-STAT pathways (STAT1). Taken together, the regression analysis suggested that

while the pathways being activated in synergistic signaling were the same as in both

individual cytokine signaling conditions, there were non-additive effects, especially in

the activation of the MAPK and NF-𝜅B pathways.

Some weaknesses of this assay were that proteomics were not collected from the

same timepoints, meaning that some of the fold changes in phosphorylation could occur

due to changes in protein copy number. However, considering that even four hours after

signaling with TNF𝛼 and IFN𝛾, there were very few significantly differential proteins,

most of the phosphoproteomic signal most likely was due to actual changes in the

phosphorylation state of proteins present before cytokine treatment. Another weakness

of this assay was that it only provided a single snapshot of global phosphorylation
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state, so it is possible that this analysis missed transient early signaling events or

integrative signaling events at later timepoints. Nonetheless, this assay demonstrated

that at early timepoints, synergy between the two pathways was largely mediated by

the strength of the response of the activation of the respective pathways. However,

the low overlap between different data types also demonstrate the need for integrated

network analysis to use information not directly captured in any individual dataset.

Moreover, the observation that many of the proteins and pathways identified act

through transcriptional means suggested the need to profile the transcriptional and

epigenetic states of the cell after joint cytokine treatment.

3.3 Epigenetic changes mediate synergy between

IFN𝛾 and TNF𝛼

IFN𝛾 and TNF𝛼 both lead to epigenetic changes that affect the response of treated

cells to further signals. For example, in mice, IFN𝛾 has been shown to induce histone

acetylation in the TNF𝛼 and Nos2 loci in macrophages, eventually leading to the

development of colitogenic macrophages [34]. IFN𝛾 has also been shown to increase

the occupancy of transient transcription factors like STAT1 and IRF1 in macrophages,

priming the chromatin environment and augmenting gene transcription in response to

subsequent stimulation of toll-like receptors. [21] More generally, IFN𝛾 has been shown

to alter the expression of a variety of histone-modifying enzymes, while inhibiting a

subset of these enzymes decreases macrophage response to IFN𝛾 [35].

Similarly, TNF𝛼 has been shown to modulate levels of a member of the polycomb

repression complex, EZH2, which in turn as an epigenetic brake to modulate TNF𝛼

functions in colitis [36]. Previous work has also showed that TNF𝛼 is regulated

epigenetically, and that IFN𝛾 leads to transcription factors binding to TNF𝛼 promoters

and enhancers, preparing cells for a greater response to subsequent TNF𝛼 signaling

[21, 30]. In the assay for changes in phosphorylation in response to TNF𝛼 and IFN𝛾

described above, many of the top enrichments were also for transcription-related
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Figure 3-6: mRNA levels of the chemokines CXCL9, CXCL10, and CXCL11 after
TNF𝛼 and IFN𝛾 stimulation at 10 ng/mL. The mRNA levels after stimulation were
determined relative to an untreated control. Data courtesy of Jerzy Woznicki.

processes. However, little previous work has focused on the epigenetic effects of IFN𝛾

on non-immune cells, nor the interaction between epigenetic changes caused by both

signaling simultaneously with TNF𝛼 and IFN𝛾.

Since previous literature has described sites becoming more accessible and occupied

by transcription factors in response to individual signaling by IFN𝛾, we decided to probe

for differentially open chromatin using an Assay for Transposase-Accessible Chromatin

using sequencing (ATAC-seq). In short, ATAC-seq uses the Tn5 transposase to

identify accessible regions of DNA that are more likely to be transcribed [37]. However,

ATAC-seq requires almost one thousand times less starting material than comparable

methods like DNAse hypersensitivity [37]. Using the protocol previously described

by Buenrostro et al., we performed ATAC-seq on human adenocarcinoma cells four

hours after individual and joint stimulation with TNF𝛼 and IFN𝛾 at 1- ng/mL in

two biological replicates [37]. We chose the cell lines and cytokine concentrations to

be consistent with our other orthogonal assays. We performed the assays at the four

hour timepoint, because we determined that the transcription of a variety of C-X-C

motif chemokines whose expression are known to be induced by interferons increased

at the four hour timepoint Figure 3-6 [24]. We then aligned the reads from the assay,

performed peak calling and quality control, then found differential peaks (full protocol

details in Appendix B).
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Figure 3-7: Hierarchical clustering and PCA of ATAC-seq peaks. (Left) ATAC-
seq peaks were hierarchically clustered. IFN𝛾 and synergistic cytokine signaling
conditions cluster together, while TNF𝛼 and untreated control conditions cluster
together. (Right) Principal components analysis on the frequency of reads in ATAC-
seq consensus peaks.

Overall, the data was quite high quality. We show representative outputs for

per-base quality scores from FastQC in Figure A-6a. Similarly, the fraction of

reads mapping to peaks stayed consistently around twenty percent, which is quite

high (Figure A-6b). There were some issues with PCR-overamplification and

overrepresentation of certain sequences on the ends of reads, but these were resolved

computationally (Figure A-7). The reads were also distributed evenly across all the

chromosomes, with a representative examples shown in Figure A-8. There were also

significant overlaps in the majority of peaks (Figure A-9). Hierarchical clustering

revealed that biological replicates clustered together. Unsupervised approaches further

confirmed the quality of the data. Performing a principal components analysis similarly

demonstrated that biological replicates clustered closely together (Figure 3-7).

Next, differential peaks were calculated using DiffBind. Looking at the distribution

of differential peaks, we see that in both TNF𝛼 and IFN𝛾 samples, most differential

peaks are upregulated in the cytokine stimulated condition (Figure 3-8). This is

consistent with previous observations that stimulation with these cytokines leads

to increased binding of transcription factors and transcription, which requires more

regions of DNA to be open [21, 30]. However, there are many more sites in the synergy

vs. untreated conditions (2490) than in either IFN𝛾 (1425) or TNF𝛼 (192) alone,

indicating some non-additive effects of joint cytokine treatment. However, most of the
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Figure 3-8: Log of the mean average read count of each peak plotted against the
log ratio of the peaks of each condition. Differential peaks with a FDR < 0.05 are
plotted in red. (Top Left) IFN𝛾 vs. untreated. (Top Right) TNF𝛼 vs. untreated.
(Bottom Left) IFN𝛾 + TNF𝛼 against untreated. Bottom Right IFN𝛾 + TNF𝛼
treated against IFN𝛾 only.

signal seems to be driven by IFN𝛾 alone, with only 302 differential peaks between the

synergistically treated vs. IFN𝛾 only conditions (Figure 3-8).

Differential peaks were then assigned to previously annotated genomic features

from UCSC hg19 (Figure 3-9). These revealed that more than half of the peaks for

all the conditions fell in distal intergenic features, which was consistent with previous

ChIP-seq experiments performed using similar cytokine stimulated conditions (data

not shown). Next, peaks within 3 KB of a transcription start site (TSS) were assigned

to their nearest gene. Enrichment analysis was then performed on this gene set. As

expected, this analysis revealed IFN𝛾 signaling related processes like interferon and

anti-viral responses were enriched in the IFN𝛾 signaled condition, and TNF𝛼 signaling

related processes like NF𝜅𝛽 signaling were enriched in the TNF𝛼 signaled condition

(Figure A-10a,b). For the synergistically signaled vs. untreated differential peaks,
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Figure 3-9: Percentage of the most probable epigenetic feature for each differential
ATAC-seq peaks. Each barchart represents a different set of differential peaks (ex:
untreated vs. IFN𝛾 + TNF𝛼 stimulated).
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Figure 3-10: (Left) Distance from promoters within 3 kilobases of a transcription
start site for each set of differential peaks. (Right) GO enrichment of genes with dif-
ferential peaks within 3 kilobases of their transcription start site for the synergistically
signalled vs. untreated condition.

the genes near a TSS were enriched for both TNF𝛼 and IFN𝛾 processes (Figure 3-10).

The signal for the synergistically signaled condition seemed to be driven more by

IFN𝛾 signaling, with comparisons between IFN𝛾 and synergistic conditions revealing

only weak enrichments for general biological processes, while comparisons between

TNF𝛼 and synergistic conditions revealed some enrichments for TNF𝛼 only processes

(Figure A-10c,d). Similarly, looking at genes near differential peaks only in the

synergy vs. untreated condition revealed very few significant enrichments (all FDR >

0.3) (Figure A-11). Both these pieces of evidence suggested that instead of directly

looking for peaks that were only differential in the IFN𝛾 condition, it was important

to find genes that were activated in both the IFN𝛾 and synergistic conditions that

could be moderated by TNF𝛼 signaling.

One such differential peak was a peak in the promoter region of ZBP1, a protein that

binds the Z-isoform of DNA that also plays an important role in anti-viral responses

[38]. There were many reads in the IFN𝛾 and synergistically treated conditions but

not in the untreated or TNF𝛼 treated conditions, suggesting this gene was selectively

induced by IFN𝛾 signaling (Figure 3-11). Previous studies have shown that ZBP1

can induce necroptosis in a RIPK3 dependent fashion [39]. In the phosphoproteomic

data, RIPK1, an inhibitor of RIPK3, was highly ubiquitinated in the TNF𝛼 (106.1 fold

change) and synergistic (126.8 fold change) conditions, but not the IFN𝛾 condition

(1.5 fold change). Previous studies have shown that RIPK1 is inhibited by high

ubiquitination [40]. This suggests a potential ZBP1 mediated synergistic response
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Figure 3-11: (Left) ATAC-seq peaks around the transcription start site of ZBP1.
The first and fifth rows are untreated controls, the second and sixth rows are treated
with IFN𝛾 only, the third and seventh rows are treated with TNF𝛼 only, and the
fourth and eighth rows are treated with both IFN𝛾 and TNF𝛼. (Right) Pathway for
ZBP1 highlighting the protein RIPK1 in yellow. (reproduced from Kurikose et al.)[38]

between IFN𝛾 and TNF𝛼. After stimulation by both cytokines, TNF𝛼 signaling leads

to ubiquitination and downregulation of the activity of RIPK1, which releases the

RIPK1 inhibition on the binding of ZBP1 and RIPK3. This in turn could lead to

the synergistic cell death that was observed in figure 3-1b. In order to validate this

hypothesis, we are currently working with our collaborators to validate the synergistic

interaction between ZBP1 and RIPK3.

3.4 TNF𝛼 and IFN𝛾 synergistically induce changes

in protein expression

Previous data has showed that there is poor correlation between mRNA expression

and protein levels [41]. Moreover, the early protein modification dataset showed strong

activation of the NF-𝜅B pathway which has been shown to lead to activation of the
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Figure 3-12: (Top) Volcano plot of differential proteins 4, 8, 12 hours after IFN𝛾 +
TNF𝛼 treatment (Bottom) Detail of volcano plot at 12 hour timepoint showing only
proteins with a fold change greater than 2.

proteasome [31]. Therefore, we next sought to find out which proteins are actually

differentially translated as well as degraded. Although previous literature has shown

that many IFN𝛾 proteins are only translated between 12-24 hours after treatment,

we noted from the genetic screen that there were already pronounced differences in

immune marker proteins by the 8 hour timepoint [42]. Therefore, we decided to profile

the relatively early timepoints of 4 hours, 8 hours, and 12 hours after treatment with

both TNF𝛼 and IFN𝛾.

There were few differential proteins at the 4 and 8 hour timepoints (5 and 3

proteins with FDR < 0.1) (Figure 3-12a, b). Some of these proteins were known

early response genes to TNF𝛼 and IFN𝛾 (JUNB/ TNFAIP2 and ICAM1 respectively).

There were many more differential proteins at the 12 hour timepoint (137) (Figure

3-12c). Some of the top hits are protein products known to be strongly upregulated
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Figure 3-13: (Left) Overlapping set visualization between DEPs and genetic hits.
The proteins in the boxed overlaps are listed in the table. (Right) Enrichments for
the overlap between DEPs and genetic screen hits.

following type 2 interferon signaling including CXCL10 and ICAM1. More generally,

the differentially expressed proteins at 12 hours were enriched for IFN𝛾 related

processes (FDR < 10−21) (Figure A-12).

In order to see how the proteins identified in this assay overlapped with master

regulators, differentially expressed proteins were overlapped with genetic hits for cell

death, CXCL10 production, and PD-L1 expression. The resulting set of 12 genes

were heavily enriched for IFN𝛾 related processes (FDR < 10−9) (Figure 3-13).

Interestingly, these genes were poorly enriched for the TNF𝛼 pathway, suggesting that

many of the crucial late events involved in cytokine synergy are mediated through

the IFN𝛾 pathway. This further suggests that TNF𝛼 plays a role in enhancing the

strength of IFN𝛾 signaling.

In order to discover novel processes involved in the interaction between the two

pathways in the unbiased way, the PCSF algorithm was applied to differentially ex-

pressed proteins. This network analysis identified the apoptotic pathway of the TNF𝛼

pathways as a crucial component of cytokine synergy. Therefore, even though both

the enrichment analysis and overlap with genetic screen failed to identify components

of the TNF𝛼 pathway, our unbiased approach uncovered proteins like FADD and

TRADD that are associated with TNF𝛼 signaling. Moreover, this approach suggests
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Figure 3-14: (Left) PCSF subnetwork generated using OmicsIntegrator2. Prizes
were the log fold changes of differential proteins, parameters were (w = 1, b = 1, g =
3000), and the starting interactome used was iRef14 [8]. (Right) Detail of subnetwork
highlighting the upstream parts of the network.

that the transcription factor STAT1 interacted with downstream components of the

TNF𝛼 pathway to generate the synergistic phenotypes. In order to leverage the

network approach further, we used the PCSF approach to integrate phosphoproteomic

and genetic screen data.

3.5 Integrating phosphoproteomic and genetic screen

data reveals known and novel genes and path-

ways underlying cytokine synergism

All of the previous single dataset analysis has indicated the need to integrate data

across a variety of orthogonal assays in order to reconstruct the pathways underlying

cytokine synergy. In order to do so, OmicsIntegrator2 was used to solve the PCSF

problem to generate subnetworks for further analysis.

Integrating different datasets demonstrates the capacity of network modeling to

more fully capture the biology of cytokine synergism. The top hits from each data type

were assigned prizes based on the degree of confidence in each hit. For example, for

the phosphoproteomic data, the top synergy score across the different phosphorylation
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Figure 3-15: Integrated network analysis with PCSF using prizes from the phospho-
proteomic (magnitude of fold change in any protein modification dataset > 2) and
genetic screen (magnitude of robust Z > 2) The resulting subnetwork was Louvain
clustered and labelled GO enrichments were performed with BiNGO [43]. Yellow
nodes represent CXCL10 only prizes, dark green represents PD-L1 only prizes, red
nodes represent cell death only prizes, dark blue represents phosphorylation only
prizes, purple represents cell death and phosphorylation prizes, lime green represents
CXCL10 and PD-L1 prizes, and light blue represents Steiner nodes.
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datasets was used as the prize input. For the genetic screens, all proteins with a

robust Z-score of greater than two were treated as hits and were assigned prize weights

proportional to the Z-score. The list of hits were then appended together taking

the maximum across datasets with the sum of prize weights of each data set being

normalized to be equal. These hits were used as the prizes for PCSF, which was

solved with OI2. The parameters of 𝛽, 𝜔, and 𝛾 were determined using the qualitative

heuristics described in chapter two. Specificity and robustness of resulting networks

was calculated by 100 randomization trials. The union of all nodes and edges with

specificity of less than 0.2 and robustness of greater than 0.8 were used to create the

final subnetwork. Community detection on the ensuing network was performed using

Louvain clustering, and gene ontology enrichments were calculated for each cluster

using BiNGO (Figure 3-15) [43].

These analyses revealed known clusters such as JAK-STAT signaling and mRNA

processing, as well as novel clusters like the RNA Pol II/transcription cluster. This

data corroborates well with previous literature suggesting the involvement of epigenetic

changes in cytokine synergism, but also reveals previously unknown proteins involved

in this process like SMAD and BMP4 [21]. Thus, this analysis demonstrates the power

of integrated network analysis in generating new biological hypotheses. However, the

inability to resolve the exact changes in the RNA Pol II/transcription cluster point to

the need to integrate additional transcription factor data derived from RNA-seq and

ATAC-seq to pinpoint how epigenetic and transcriptional changes influence cytokine

synergism.

3.6 Future work

Collecting and analyzing RNA-seq data will allow for the prediction of transcription

factors. In turn, this will allow for more meaningful network analyses to link changes

in protein signaling to changes in transcription. In addition, there are planned

experiments for ChIP-seq, which will also help predict transcription factors that are

imperative for further network analyses.
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Other potential avenues for further work are using different network modeling

algorithms. In particular, using multi-commodity flows could help outline synergistic

pathways in a directed graph, while using the multi-PCSF approach could help

prioritize shared pathways between IFN𝛾 and TNF𝛼 signaling.

Once integrated networks have been generated using the datasets outlined above,

synergistic proteins will be prioritized for further biological validation. Specifically one

hundred genetic targets will be assayed using a CRISPR-Cas9 knockout study assaying

changes in chemokine production, resistant to viral infection, and transcription factor

localization.
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Chapter 4

Discovering conserved pathways of

age-related neurodegeneration

across Drosophila and human AD

patients using the PCSF approach

Alzheimer’s disease (AD) is a chronic disease with an estimate prevalence of ten

to thirty percent in people over 65 [46]. On the cellular level, Alzheimer’s disease

is associated with buildup of insoluble forms of extracellular amyloid-beta (A𝛽) in

plaques and aggregation of tau in neurofibrillary tangles [46]. The importance of

A𝛽 and tau is corroborated by evidence that mutations in the amyloid precursor

protein (APP) and in the gene encoding tau protein (TAU ) can cause progressive

neurodegeneration [47, 48]. Although the precise nature of the interaction between A𝛽

and tau is not understood, the amyloid hypothesis suggests that A𝛽 works upstream

of tau to promote neurodegeneration (Figure 4-1) [49]. Despite these insights,

Alzheimer’s disease is not a highly penetrant Mendelian disease [50]. Indeed, a variety

of risk factors including age, hypertension, depression, smoking, diabetes mellitus,

and obesity have been shown to linked with AD [51]. The most prominent of these

risk factors is age, with AD morbidity increasing 100-fold between 45 and 80 years
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Figure 4-1: (A) Outline of the amyloid-beta hypothesis of Alzheimer’s disease
progression. This posits that mutations in presinilin 1 (PSEN1 ), presinilin 2 (PSEN2 ),
amyloid precursor protein (APP) and other mutations involved in familial Alzheimer’s
disease (FAD) lead to aberrant processing of amyloid beta protein. In turns this leads
to aggregation of soluble A𝛽 in extracellular spaces into amyloid-𝛽 plaques. These
A𝛽 plaques indirectly leads to the formation of neurofibrillary tangles consisting of
aggregates of hyperphosphorylated tau protein through processes that are poorly
understood. In turn, neurofibrillary tangles ultimately lead to neuronal dysfunction/
death that contribute to the dementia characteristic of Alzheimer’s disease [44]. (B)
(Top) H&E stains for A𝛽 plaques and tau tangles, that eventually lead to (bottom)
neuronal death, brain vacuole formation, and dementia [45].
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Figure 4-2: Outline of our integrative approach to discover conserved pathways
of neurodegeneration underlying AD. A screen for genes that rescued brain mass
in Drosophila models for AD and metabolomics on whole fly heads were performed
in Drosophila. RNA-seq was collected from pyramidal neurons from layer III/IV of
the temporal cortex, which have previously been shown to be preferentially affected
in Alzheimer’s disease. Both of these datasets were integrated together using the
OmicsIntegrator approach and were used to select candidates for further functional
validation in Drosophila.

of age [52]. However, the cellular mechanisms connecting aging with AD is not well

understood, and in-depth genetic studies of the mechanisms controlling age-related

neurodegeneration using model organisms like Drosophila have not yet been reported.

In order to address this gap, the labs of Prof. Mel Feany, Dr. Clemens Scherzer, and

Prof. Fraenkel are collaborating to link proximal conserved mechanisms of age-related

neurodegeneration from Drosophila studies to cell type specific expression quantitative

trait loci (eQTLs) in human Alzheimer’s patients using a systems approach. In this

study, I used the data generated from the labs of Prof. Feany and Dr. Scherzer

as input to the PCSF algorithm to discover hidden genes and pathways linked to

AD (see Appendix B for specific details on the data). To do so I investigated

changes in metabolites and proteomics in a Drosophila model for AD. Separately,

I analyzed how gene expression was perturbed in a neuronal subpopulation that is

affected preferentially by AD. Next, I mapped information from both of these datasets

onto a protein-protein interaction network to discern pathways dysregulated in AD.

This approach will not only reveal mechanisms of age-related neurodegeneration that

promote AD, but also highlights the power of the PCSF approach to integrate data from

both human and Drosophila to discover hidden pathways underlying neurodegenerative
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Figure 4-3: Reanalysis of proteomic data from the Emory Drosophila study and RNA
expression data from Scherzer et al. 2003.[53] (A) Principal components analysis
of proteomics from the Emory Drosophila study. The first and second principal
components, explaining 41% of the variation, are plotted here. (B) Intersections
between differentially expressed proteins in WT and TauRo6W tau mutant flies at 1
day, 10 day, and 20 day old. The blue barchart shows the cardinality of each set, and
the black barchart shows the number of proteins for each subset as indicated by the
black dots below each bar. (C) Principal components analysis of RNA expression data
from Scherzer et al. 2003. The first and second principal components, explaining 68%
of the variation, are plotted here. (D) Intersections between differentially expressed
genes in WT and TauRo6W tau mutant flies at 1 day, 10 day, and 30 day old. The
blue barchart shows the cardinality of each set, and the black barchart shows the
number of genes for each subset as indicated by the black dots below each bar.

diseases (Figure 4-2).

4.1 Previous data from Drosophila tauopathy mod-

els show increased differential signal at later

timepoints

In order to connect findings from Drosophila genetic screens to Alzheimer’s patho-

genesis, more detailed profiling of phosphoproteomics, proteomics, and RNA-seq is
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necessary. Previous data for proteomics and RNA expression are available; however,

further profiling of phosphoproteomics is still necessary [53]. In particular, due to

financial and practical experimental constraints, it is important to profile phosphopro-

teomics in Drosophila models for neurodegeneration at only timepoints with sufficient

signal. To identify the best timepoint for more in depth profiling, I examined proteomic

and RNA expression data from two previous studies to determine that later timepoints

were best for further data collection [53].

First, I analyzed proteomics data from two Drosophila models of tau neurotoxicity

relevant to Alzheimer’s disease and related tauopathies: Abeta, a line that overexpressed

A𝛽 protein, and tau, a line that overexpressed humanized mutant tau protein (Figure

4-3a,b) [54]. A principal components analysis showed clear segregation of samples

by age, reinforcing the need to carefully choose timepoints for follow up analysis. In

general, samples overexpressing Tau also segregated from control samples as expected.

However, there was significant technical variation, even in pooled samples (Figure

4-3a). The data in Figure 4-3b indicated that later timepoints had more differential

proteins.

Similarly, principal components analysis of the RNA expression data from a

previous study showed segregation both by genotype and age (Figure 4-3c) [53].

However, there was also significant technical variation. In the RNA-seq data, there

were more differential proteins at an earlier timepoint; however, this effect was far less

pronounced (Figure 4-3d). Taking both these types of data into account, further

profiling of Drosophila phosphoproteomics was done at a later timepoint (10 days)

and with more technical replicates to account for the large technical variation seen in

previous studies.
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4.2 Drosophila genetic screen for induction of age-

dependent neurodegeneration is enriched for

Alzheimer’s related phenotypes

Drosophila models have increasingly been used to study human neurodegenerative

diseases. An unbiased approach to understanding the mechanisms underlying neu-

rodegeneration is to perform genetic screens for the maintenance of neuronal viability

without regard to previous annotations of gene function. This unbiased approach

can then allow the identification of novel genes. Many previous Drosophila screens

have focused on phototaxis defects and abnormalities in retinal function; however,

these approaches do not directly assess neurodegeneration. Therefore, in this study,

our collaborators performed a forward genetic screen of 2,304 RNAi lines to directly

examine RNAi knockout animals for neurodegeneration after a period of growth from

histological samples (Figure 4-4). In particular, our collaborators examined defects

that lead to vacuole formation in brains, since the formation of vacuoles have been

previously linked to neurodegeneration in Drosophila.

Examples of some genes identified from this unbiased approach are shown in

(Figure 4-4b). In these cases, the knockout of heat-shock protein (Hsf ), a nuclear

matrix protein (Chmp1 ), and MAPK pathway protein (Tao1 ) all lead to vacuole

formation, aggregates of ubiquitinated proteins, and neurofibrillary tangles (Figure

4-4). Other genes with human homologs relevant to AD included the amyloid pre-

cursor protein APP and a component of the 𝛾-secretase complex, PSEN1, both of

which have been previously shown to be critical to Alzheimer’s disease. Of the 202

Drosophila genes identified to cause neurodegeneration, 61 were also genes previously

implicated in Alzheimer’s disease (p-value < 10−30) [12]. Next, we were interested in

examining the proteins identified from a pathway level in order to see which Drosophila

neurodegeneration pathways were also relevant to AD. Some of the top enriched gene

ontology terms included I𝜅 phosphorylation (p-value < 10−7), negative regulation

of Wnt signaling (p-value < 10−6), and positive regulation of RNA polymerase II
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Figure 4-4: (A) Outline of genetic screen in for rescue in AD Drosophila models.
RNAi lines were created using the GAL4/UAS system. Flies were then grown for 30
days and assessed for retinal dysfunction, vacuole formation, and amyloid-𝛽 and tau
aggregates using HE staining and antibody staining for ubiquitination. (B) Example
of vacuole formation and tau aggregates in H&E staining, and amyloid-𝛽 plaques
assessed using antibody staining for ubiquitination in control and three knockout lines.
(C) Overlap between human AD genes determined from genetic hits compiled in the
OpenTargets database, and the human homolog of Drosophila genes identified in the
genetic screen. (D) Heatmap of GO enrichments for pathways identified in both
Drosophila and human data, with darker red colors representing higher enrichments.

(p-value < 10−7). These enrichments overlapped with many of Alzheimer’s relevant

gene ontologies, again demonstrating the strength of this approach in revealing genes

relevant to AD (Figure 4-4 d). Performing a further GO enrichment for genes

found in the genetic screen but not in previous annotations for AD was then used to

determine genes and pathways that are potentially novel. Some of the top enrichments

included JUN phosphorylation (p-value < 10−6), I𝜅 phosphorylation (p-value < 10−6),

and phosphorylation of RNA polymerase II (p-value < 10−6), which have all been

previously implicated in Alzheimer’s disease [55, 56].

4.3 Drosophila metabolomics show dysregulation

of lipid metabolism

In order to provide a complementary view of AD disease-related neurodegeneration

pathways, we investigated changes in the abundance of lipids, polar metabolites,

and non-polar metabolites in tau and A𝛽 transgenic flies. These analyses revealed
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Figure 4-5: Two previously published models of Alzheimer’s disease, a humanized
Tau model and an A𝛽 overexpression model, as well as a control fly line were grown
for ten days. Approximately 40 whole fly heads were then collected in triple biological
replicates for each genotype, and untargeted positively and negatively charged polar
and non-polar metabolites were assessed using mass spectrometry. (A) First two
principal components of lipid positive metabolites were plotted. K-means analysis
(k=3) was also performed to cluster the samples in an unbiased manner. (B) First two
principal components of polar negative metabolites were plotted. K-means analysis
was also performed to cluster the samples in an unbiased fashion. (C) Log fold
changes vs. -log(p-values) were plotted for metabolites in lipid positive A𝛽 flies
compared to control. Metabolites with fold changes with magnitude greater than two
are shown in orange, metabolites with FDR < 0.1 are shown in red, and metabolites
with fold changes with magnitude greater than two and FDR < 0.1 are shown in
green, with annotated metabolites labelled. (D) (C) for Tau flies (E) (C) for polar
positive metabolites. (F) Outline of lipid metabolites relevant to AD. Cholesterol
and cholesterol esters upregulate APP, 𝛾-secretase, and BACE1 recruitment to lipid
rafts, leading to APP cleavage and increased soluble A𝛽 protein. Phospholipase C
also cleaves PIP2 into DAG and IP3 [57].
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fundamental dysregulation of lipid metabolism in AD, with many changes being

consistent with previous findings. Both the lipid and polar metabolites were generally

able to cluster the flies by genotype quite well (Figure 4-5a,b) both in principal

components space and through an unsupervised k-means approach. This indicates not

only that Alzheimer’s disease leads to a very different metabolic profile from controls,

but that A𝛽 and tau lead to distinct changes in metabolism. More specifically, the

lipid negative and polar negative metabolites did not have annotated metabolites with

both significant fold changes and p-values (Figure A-13).

In A𝛽 flies, diacylglycerides (DAGs) are generally upregulated, which is consistent

with the hypothesis that beta-amyloid plaques upregulated phospholipase C, which

in turn breaks down PIP to IP and DAG. By contrast, DAGs were not significantly

changed in Tau transgenic flies. Decanoate was also down in Abeta flies only, with

decanoate acting as a non-competitive AMPA receptor antagonist [58].

Interestingly, sphingolipids were not significantly different between disease models

and controls. Ceramide and sphingosine lipid levels were similar between Abeta and

control flies (FDR = 0.976, 0.217, as well as between tau and control flies (FDR =

0.873, 0.689). However, ceramide and sphingosine have been shown to be involved in

lipid rafts [59, 60], with lipid rafts being associated with pathogenic APP processing

and BACE1 localization [61, 62]. In particular, ceramide levels have previously been

found in elevated levels in AD, and also regulates BACE1-mediated processing of

APP [63, 64]. In our genetic screen, the Drosophila homolog of PSEN1 was isolated,

PSEN1 being a component of the gamma secretase complex that is associated with

lipid rafts. This suggests the possibility that Alzheimer’s disease may not lead to

the production of more components of lipid rafts, but may lead to the recruitment of

AD-related proteins to existing lipid rafts. However, without more detailed targeted

metabolomics data and experiments testing lipid localization, we cannot prove this

hypothesis.

One of the biggest surprises were that revealed that C18:1 CE and C18:0 CE were

down only in Tau flies compared to control (FDR = 0.0280, 0.0286 and log2(fold

change) = -2.84 and -1.92). In addition, the NH4 adducts for these esters, with (FDR
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= 0.0254, 0.0152 and log2(fold change) of -2.02 and -1.74), suggesting that these

reflected a true effect. This is surprising given that cholesterol depletion decreases the

association of BACE1 with lipid rafts, which correlates with decreased amyloidogenic

processing of APP [62]. Indeed pharmacological inhibition of ACAT1, an enzyme that

forms cholesterol esters from cholesterol, has been shown to lead to the reduction of

both amyloid-beta and cholesteryl esters [65, 66, 67]. The overall known components

of this pathway that were identified in either the genetic screen or through this assay

are summarized in (Figure 4-5f).

One of the polar metabolites that were identified in this assay was kynurenic acid,

a neuroactivate derivative of tryptophan was has previously been implicated in other

neurodegenerative disorders like Huntington’s disease [68]. It has also been previously

implicated in preventing the aggregation of A𝛽 and has been shown to protect against

A𝛽 toxicity in C. elegans [68]. Therefore, it might be interesting to follow up upon for

further analyses.

However, the weakness of this approach was that it did not fully leverage the

untargeted metabolites identified in this assay. Moreover, it did not exploit the

connections between metabolites through enzymatic reactions. In order to fully

leverage these data, we will assay proteomics and phosphoproteomics in order to

perform integrative network analyses. Finally, it is important to note that these

experiments were conducted in Drosophila models of AD, and that these fly models

may not fully capture AD biology. Therefore, comparing these results to data from

human patients is also extremely important for validation.

4.4 RNA-seq from temporal cortex neurons in hu-

man AD patients highlight the role of cellular

energetics in Alzheimer’s disease

The genetic screen and metabolomics collected in the previous sections provided a

perspective on conserved mechanisms of neurodegeneration. However, in order to
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Figure 4-6: RNA-seq was collected from pyramidal neurons of the temporal cortex
of 86 Alzheimer’s patients and healthy controls. The data was then FPKM normalized
for principal components and clustering analysis, while the raw counts were used to
determined differential gene expression. (A) PC1 vs PC2 of RNA-seq data. Patient
Braak scores which represent the formation of tau tangles are used to color nodes,
with -1 indicating no staging information available. The shape of the nodes represent
the batches in which the data were collected. (B) Overlap between differential
expressed genes from this analysis and previously annotated AD genes derived from
the OpenTargets database. (C) Dotplot of gene expression of the top differential
genes, ERBB2IP. (D) Gene ontology enrichments for differentially expressed genes.
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assess the functional implications of these conserved mechanisms of neurodegeneration

in humans, we need to determine which of these pathways are linked to AD. The

most compelling line of evidence would be genetic evidence linking genetic alterations

to certain pathways. However, current GWAS studies both have revealed broad

association peaks that span dozens of genes and that contain many variants in

non-coding regions [69]. Therefore, it is important to link these genetic changes to

functional changes in RNA expression through eQTL analysis. Unfortunately, current

studies collect eQTL data from brain homogenates, which are extremely noisy. Not

only are there a variety of non-neural cells present in these analyses, but also the

presence of a variety of different neurons, only a subset of which contain disease

relevant signal [70]. Moreover, changes due to disease can lead to changes in the

number of glial cells, further washing out true signal [71].

AD shows a preference for certain brain regions and neuron types [72]. For example,

previous data has shown that pyramidal neurons of the middle temporal gyrus are

preferentially affected in AD [72]. In order to assess the functional changes only

in vulnerable neurons, our collaborators performed RNA-sequencing on pyramidal

neurons of layer V/VI of the temporal gyrus from 86 AD patients and age-matched

controls.

A principal components analysis revealed that RNA-seq data does not separate

AD patients from controls (Figure 4-6a). Similarly, the variance stabilized FPKM

values do not cluster well by diagnosis, batch, or sex (Figure A-14 and A-15). This

demonstrates that RNA-seq does not provide evidence for radical changes in cell state

in AD, but instead capturing more subtle dysregulation of specific pathways. This is

largely consistent with the findings of previous studies; for example, bulk RNA-seq

collected from the temporal cortex of AD patients in the Mayo study similarly showed

poor segregation by genotype (Figure A-16).

Next, differentially expressed genes (DEGs) were identified using DESeq2. Of the

400 genes with the highest genetic association scores with AD from the OpenTargets

database, 68 of these were DEGs (p-value < 10−12) (Figure 4-6b). By contrast,

DEGs in a whole brain AD study only contained 23 of the 400 genes with the highest
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Figure 4-7: Ordinal logistic regression was performed using gene expression data
against Braak scores of patients and controls. Braak scores, which measure tau tangle
formation, were grouped into low (Braak stages 0, I, II), medium (Braak stages III,
IV) and high (Braak stages V, VI) groups. Genes with regression coefficients with
robust Z magnitude > 2 were labelled as phenotypically associated genes (PEGs). (A)
Boxplot of expression of a lincRNA which varies by Braak stage. (B) Venn diagram
of PEGs and DEGs from RNA-seq. (C) Gene ontology enrichemtns of PEGs, with
top enrichments indicating regulation of energy homeostasis and tau-protein kinase
activity.

genetic association scores with AD from the OpenTargets database, highlighting the

efficacy of the laser capture approach [73]. An example of a gene with differential

expression between AD patients and control, ERBB2IP, is shown in (Figure 4-6c).

ERBB2IP is a protein that interacts with ERBB2, a tyrosine kinase mutated in a

variety of cancers, and with the Ras/Raf pathways, potentially indicating changes in

cell proliferation and cell state [74]. This is confirmed by enrichments for dysregulation

of tyrosine phosphorylation and protein autophoshorylation, suggesting a dysregulation

in cellular signaling in AD. However, this differential expression analysis relies solely

on case/control, and fails to leverage the detailed clinicopathological information

available for these samples.

In order to leverage the physician graded clinical markers for tau phosphorylation,

we identified genes whose expression correlated with Braak staging, which measures the

formation of tau protein [75]. For example, a gene with expression that varied across

stages is shown in Figure 4-7a. To this end, we performed ordinal linear regression

between Braak stages and gene expression to identify phenotype associated genes
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(PEGs). This approach has previously been shown to be efficacious at identifying

PEGs in Huntington’s disease [76]. There was significant overlap between differentially

expressed genes (p-value <10−7) (Figure 4-7b). Performing gene ontolgoy enrichment

analysis on this data identified relevant pathways affected in PEGs. Ordinal regression

was able to better recapitulate pathways previously implicated in Alzheimer’s disease,

especially the up-regulation of tau-protein kinase activity. However, one of strongest

signals in the PEGs was for the dysregulation of energy homeostasis. There have been

very few previous studies on the relationship between cellular energetics and AD, so

this could represent a promising area for further work [77].

4.5 Network analysis of a Drosophila genetic screen

of neurodegeneration reveals known and novel

AD genes and pathways

Next, integrated network analyses were performed to connect mechanisms of neu-

rodegeneration in Drosophila to AD pathogenesis in humans. In order to explore the

efficacy of such an network approach, I used PCSF to assess pathways involved in

neurodegeneration using the forward Drosophila screen described previously.

In order to do so, I tried mapping all genes identified in the forward Drosophila

genetic screen to their human homologs using the Homologene tool from NCBI [78].

I then assigned a prize of one to all Drosophila genes that had a human homolog.

Then, I ran the PCSF algorithm using the iRefWeb interactome, using the heuristics

described in chapter two to identify parameters, ran 100 randomization each for

robustness and specificity, and took the union across all networks for robust (> 0.8)

and specific nodes(< 0.2). I then performed Louvain clustering and GO enrichment

with BiNGO [43].

This analysis revealed some processes previously identified in neurodegenerative

diseases, including protein trafficking and degradation, DNA damage and repair, and

synaptic neurotransmission (Figure 4-8). Moreover, this analysis identified some
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Figure 4-8: (A) Integrated network analysis of Drosophila genetic screen using PCSF.
Prizes were derived from the forward screen and the iRefWeb interactome was used as
the starting PPI. This representation shows the top enrichments in selected Louvain
clusters. Terminals are shown in red and Steiner nodes shown in blue. (B) The
network from (A) was mapped onto a previously annotated network for Alzheimer’s
disease relevant proteins. Nodes in light green were identified in (A), while nodes in
yellow were not. Metabolites are shown in pink, general cellular processes dysregulated
in AD are shown in purple, and complexes are shown in dark green. Edges between
nodes represent literature curated molecular interactions, with blue edges representing
upregulation, red edges representing downregulation, black edges reprsenting changes
in localization, and dotted edges representing indirect edges.
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novel subnetworks such as cytoskeletal rearrangement, highlighting the potential of

this approach.

Next, I mapped these data onto known existing protein networks for AD from the

Signor database (Figure 4-8b) [79]. Although only three of the proteins identified

in our screen were present in this network (APP, PSEN1, and TRADD), the PCSF

approach was able to identify 16/26 of the compounds in the Alzheimer’s specific

network. In particular, this approach suggests that dysregulation of apoptotic path-

ways and processing of APP were important components of the neurodegeneration

phenotype.

4.6 Conclusions and future work

4.6.1 Conclusions

This study has recapitulated many known genes and pathways implicated in Alzheimer’s

disease, as well as revealed novel genes and metabolites. It also highlighted the power

of the integrated network analysis in the discover of hidden pathways relevant to

neurodegenerative disease.

In particular, this study identified two promising metabolite targets relevant to

AD. Kynurenic acid is an amino acid derivative that has been shown to be therapeuti-

cally relevant in other neurodegenerative diseases and relevant to AD in C. Elegans

[68]. Another interesting target are cholesterol esters, which were downregulated

in transgenic flies expressing high levels of humanized tau, suggesting some kind of

immunoprotective feedback loop at early timepoints. The human RNA-seq data also

supports the role of cellular energetics in AD, suggesting another promising avenue for

future validation work. Finally, the power of the PCSF approach in highlighted in its

ability to discover many known components of Alzheimer’s disease pathway despite

our genetic screen only identifying three homologs of known AD related proteins.
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4.6.2 Future work

The incorporation of human genetic information, as well as proteomic and phospho-

proteomic data from Drosophila models for Alzheimer’s will allow us to confirm the

findings from our current analysis. and to better integrate information across species.

Whole genome data from the AD patients and controls whose RNA-seq data were

profiled will allow for the identification of expression quantitative trait loci (eQTL).

This in turn will allow for the prioritization of genetic variants that have functional

implications in vulnerable neurons. Moreover, genotyping will allow for the segregation

of patients by APOE status, which has previously been shown to affect the progression

of AD.

Collecting proteomic and phosphoproteomic data in Drosophila will allow for the

reconstruction of signaling pathways persistently disrupted in neurodegeneration. This

will provide complementary information by highlighting affected pathways, non of

whose individual components are the master regulators identified in genetic screen.

Moreover, these findings can be compared to the public proteomics datasets in humans,

such as the Banner Brain and Body study, to discover conserved pathways of proteomic

dysregulation in neurodegeneration (Figure A-17) [80].

Finally, collecting phosphoproteomic and proteomic data will allow the creation of

higher quality integrated network analyses. One can first use the PIUMet approach

to map m/z peaks from the untargeted metabolomics, then integrate this data with

Drosophila proteomic data using the PCSF approach. This can provide insight into

hidden conserved mechanisms of neurodegeneration that emerge from orthogonal

assays. These data can then be compared to evidence from the genetic hits in both

the Drosophila unbiased genetic screen and the eQTL data in humans to prioritize

targets relevant to the progression of neurodegeneration in human AD patients.
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Appendix A

Supplemental Figures
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Figure A-1: Histograms of the distribution of genetic confidence scores for each
disease from OpenTargets used in creating synthetic datasets. Genetic confidence
scores of less than 0.1 were excluded in creating the prizes for synthetic datasets and
are excluded in this graph. This separated view clearly highlights the variety of prize
distributions encountered in real data.
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Figure A-2: Subnetworks constructed with a variety of free parameters for PCSF
using synthetic datasets described in B. The Jaccard score was then calculated between
a reference of true positive for genetic hits for the disease and with the nodes present
in these inferred subnetworks. Parameter sets were ordered by their average Jaccard
score. For each parameter and robustness threshold (x-axis), the Jaccard score (color)
is plotted for each parameter set (y-axis).
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Figure A-3: Overlapping set visualization between different treatment conditions.
The smaller barchart in blue shows the number of top hits for each assay (the top
100 hits were used for protein modification assay [mapped to their respective genes]),
while genes with a Z-score higher than 2 for the genetic screen were retained. The
main barchart shows the overlap between these different assays.
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Figure A-4: Protein modifications in the KEGG pathways for TNF𝛼 and IFN𝛾 after
TNF𝛼 treatment. The proteins in red showed a fold change greater than two after
TNF𝛼 treatment. The top is the KEGG pathway for TNF𝛼 signaling and the bottom
is a modified KEGG pathway for IFN𝛾 signaling.
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Figure A-5: Protein modifications in the KEGG pathways for TNF𝛼 and IFN𝛾 after
IFN𝛾 treatment. The proteins in red showed a fold change greater than two after
TNF𝛼 treatment. The top is the KEGG pathway for TNF𝛼 signaling and the bottom
is a modified KEGG pathway for IFN𝛾 signaling.

Figure A-6: ATAC-seq overall quality control metrics. A) Average sequence quality
score by position in read. Sequences with quality scores in the green are considered
high quality. B) Fraction of reads mapping to peaks (FRiP) for each sample. In
general, samples with FRiP scores above 0.1 are considered high quality samples.
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Figure A-7: ATAC-seq read quality control metrics. A) Percentage of each nu-
cleobase by position in reads. Note for the first twelve bases, and for the last two
bases, the distribution of nucleobases is not uniform, indicating the presence of over-
represented sequences. B) Percentage of reads by number of repeated reads. The blue
is before and the red is after de-duplication. Note that after de-duplication of reads,
the vast majority of reads map uniquely, which is what we expect.

Figure A-8: ATAC-seq read distribution across chromosomes. Reads are represented
as peaks in each chromosome, and the chromosomes are arranged in order of length.
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Figure A-9: Venn diagram of overlap between ATAC-seq peaks for each sample
found in the consensus peakset. 1 is untreated, 2 is IFN𝛾 treated, 3 is TNF𝛼 treated,
and 4 is IFN𝛾 + TNF𝛼 treated.

Figure A-10: GO enrichments for differential ATAC-seq peaks near transcriptional
start sites.
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Figure A-11: (Left) Overlapping set visualization between different treatment
conditions. The smaller barchart shows the number of genes with peaks near their
TSS for each differential peakset, while the main barchart shows the various overlaps
between genes near TSS for each differential peakset. The boxed condition represents
genes with peaks near their TSS only in the synergistically signalled condition. (Right)
GO enrichments genes for the genes boxed in the (left) plot.

Figure A-12: Gene ontology enrichments for differential proteins (FC > 2 and FDR
< 0.2) at 12 hours after treatment with IFN𝛾 and TNF𝛼.
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Figure A-13: Volcano plots for negatively charged metabolites in transgenic
Drosophila models of Alzheimer’s Disease. Two transgenic Drosophila fly lines and
a control line were sacrificed at ten days in three biological replicates, each with
approximately forty fly heads. The log 2 fold change between each transgenic line and
control is plotted on the x-axis and negative log p-values are plotted on the y-axis.
Black dots are m/z peaks with FDR > 0.1 and fold change < 2, yellow dots are m/z
peaks with FDR > 0.1 and fold change > 2, red dots are m/z peaks with FDR < 0.1
and fold change < 2, and green dots are m/z peaks with FDR < 0.1 and fold change
< 1 (Top left) A𝛽 transgenic flies in lipid negative mode (Top Right) Tau transgenic
flies in lipid negative mode, (Bottom left) A𝛽 transgenic flies in polar negative mode
(Bottom right) Tau transgenic flies in polar negative mode.

Figure A-14: Mean of normalized reads plotted against log fold change (A) before
normalization (B) after variance stabilizing transform normalization.
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Figure A-15: Heatmap of FPKM of genes with high expression in temporal cortex
pyramidal neurons from Alzheimer’s patients and controls. Data collection is described
in B. Samples are hierarchically clustered. XIST has been excluded due to causing a
batch effect separating male from female patients.

Figure A-16: PC1 vs. PC2 of RNA-seq FPKM values from temporal cortex neurons
of Mayo study [73]. Genes have been scaled to mean 0. AD patients are shown in red,
and control patients are shown in blue.
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Figure A-17: PC1 vs. PC2 of proteomic expression values from post-mortem tissue
of Alzheimer’s disease patients and healthy controls of the Banner Brain and Body
study [80]. The points have been colored by diagnosis, post mortem interval (PMI),
sex, a score for cognitive progression of AD (CERAD), and a score for neurofibrillary
tangle formation in AD (Braak score) [75].
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Appendix B

Methods

B.1 Constructing and evaluating synthetic datasets

B.1.1 Constructing synthetic datasets

Genetic association scores for Alzheimer’s disease, autosomal dominant cerebellar

ataxia type 1, Huntington’s disease, Parkinson’s disease, ALS, glioblastoma multiforme,

inflammatory bowel disorder, medulloblastoma, triple negative breast cancer, and type

1 diabetes mellitus were downloaded from OpenTargets [12]. All genes with genetic

association scores above 0.1 were considered true positive, and all other genes present

in the iRef14 protein-protein interactome were considered negatives [8]. One hundred

true positives genes were sampled ten times from each disease. To inject noise, another

one hundred non-associated genes were added to each dataset in a degree-matched

fashion and were assigned scores to match those of the selected genes. Thus, the final

synthetic datasets consisted of ten datasets for each of the ten diseases mentioned

above, each with two hundred prizes (100 true positives and 100 noise).

B.1.2 Evaluating synthetic datasets

Subnetwork solutions were calculated for each of the 100 synthetic dataset using

OmicsIntegrator [6]. Each synthetic dataset was tested against 250 parameters sets

(𝜔 =0.25, 0.5, 1, 2, 5, 𝛾 =1000, 2500, 5000, 10000, 25000, 50000, 100000, 250000,
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500000, 1000000, 𝛽 =0.5, 1, 2, 5, 10. One hundred noisy edge randomizations were

conducted for each parameter set to evaluate robustness, and one hundred degree-

matched randomizations were conducted for each parameter set to evaluate specificity.

The nodes in the averaged subnetwork across the solution for each parameter set

were used as positives, genes with a genetic association score higher than 0.1 for each

disease were used as a true positive, and the rest of the genes in the iRef14 interactome

were used as true negatives [8]. The average precision, recall, AUC, and Jaccard score

(intersection/union) were then calculated for each parameter set for each dataset for

the robustness thresholds 0, 0.2, 0.4, 0.6, 0.8.

B.2 Adding subcellular annotations to PCSF out-

put

The databases for knowledge and experiments “channels” were downloaded from the

COMPARTMENTS databases [13]. Terms were then mapped to broad subcellular

locations such as ’mitochondria’, ’cytoskeleton’, ’plasma membrane’, and ’nucleus’.

Next, for each gene, a score was determined for each cellular compartment by taking:

∑︁
𝑡∈𝑇

2𝑠𝑡 * 𝛿(𝑡) (B.1)

where T is the list of terms for each gene, ranging between 1 and 5, 𝑠𝑡 is the score

associated with each term, and 𝛿(𝑡) is an indicator variable for if the term is the

subcellular compartment being scored. The most probable subcellular location was

then determined for each gene. These annotations were assessed for quality by

checking the concordance with physical evidence from antibody staining in the Human

Protein Atlas [81]. The full code is available as part of the OmicsIntegrator2 GitHub

repository located here: https://github.com/fraenkel-lab/OmicsIntegrator2/

blob/master/subcellular/.
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B.3 Datasets and methods for cytokine synergism

study

B.3.1 Datasets

The cytokine synergism data for this project were generously provided by Prof. Nally’s

group from the University of Cork in Ireland. The datasets included phosphoproteomic,

ATAC-seq, proteomic, Affymetrix, and genome wide RNA interference screen data.

All data were collected from HT29 cells, a human colon adenocarcinoma model cell

line.

Phosphoproteomic data

Cells were divided into three biological replicates, then further divided into four groups:

IFN𝛾 stimulated (10 ng/mL), TNF𝛼 stimulated (10 ng/mL), and IFN𝛾 + TNF𝛼

co-stimulated (10ng/ mL each). Each of these groups were then purified and protease

digested 15 minutes post treatment. Modified peptide enrichment were then performed

with Fe-IMAC enrichment, ubiquitin remnant K-GG motify antibody (#3925), serine-

threonine antibody mix (#25801), and phosphotyrosine pY-1000 motify antibody

(#8954). LC-MS/MS analysis was performed using Q-Exactive and SEQUEST was

used to identify the peptides. A five percent false positive rate was then used to filter

the results. The final dataset contained all peptide modifications that passed this

threshold, along with their intensity.

ATAC-seq data

Cells were divided into two biological replicates further divided into four treatment

groups: IFN𝛾 stimulated (10 ng/mL), TNF𝛼 stimulated (10 ng/mL), and IFN𝛾 +

TNF𝛼 co-stimulated (10 ng/mL each). Four hours after treatment, ATAC-seq data

were collected as described in Buenrostro et al. [37]. Paired-end reads were then

sequenced using Illumina sequencing at a depth of 40 million reads. Qualtiy control

was performed using FastQC, sequences were trimmed using Trimmomatic using

79



a base quality score of 15, and aligned to the hg19 genome using BowTie2 [82, ?].

BAMs were then deduplicated, then normalized to reads per kilobase per million using

bamCoverage [83]. MACS2 was then used to call peaks [84].

Genetic screens for cell-death, CXCL10, and PD-L1:

Cells were assessed for transfectability with RNAimax (Life Tech.) The Genome-

wide ON TARGET-Plus pooled siRNA library (Dharmacon) was used to target

18301 genes. Cells were reverse-transfected with the library at 10nM final siRNA

concentration. Forty-eight hours after transfection, all cells except positive and

negative controls were treated with IFN𝛾+TNF𝛼 at 10 ng/mL each. Eight hours after

cytokine addition, CXCL10 and PD-L1 expression were assayed using antibodies and

quantitative fluorescent microscopy. Forty-eight hours after cytokine addition, cell

death was assessed using Cell Titer Glow (Promega). The data were normalized using

GeneData software, and robust Z-scores were calculated for each gene.

Proteomics

Cells were three biological replicates of each of the following groups: IFN𝛾 stimulated

(10 ng/mL), TNF𝛼 stimulated (10 ng/mL), and IFN𝛾 + TNF𝛼 co-stimulated (10ng/

mL each). At four, eight, and twelve hours after stimulation, total protein were

collected and quantified using mass spectrometry. The experiments and sequencing

were conducted by DC Biosciences and the samples were processed according to their

standard protocol.

B.3.2 Methods

For phosphoproteomics, fold-change was calculated between control and treated

samples, and t-tests were used to calculate p-values. Multiple linear regression was

performed by using the protein fold change of TNF𝛼 treated cells and IFN𝛾 treated

cells to predict protein fold change in co-stimulated cells. DiffBind was used to

calculate differential ATAC-seq peaks, and ChIPseeker was used to assign annotations
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to peaks [85, 86]. The Integrative Genomics Viewer was used to visualize peaks [87].

Enrichr was used to calculate gene ontology enrichments [88].

Network analyses were performed using OmicsIntegrator [6]. Parameters were

selected using the heuristics discussed in chapter two of this study. One hundred noisy

edge randomizations and one hundred degree matched randomizations were performed

to assess robustness and specificity respectively. A consensus network consisting of

nodes and edges with robust > 0.8 and specificity < 0.2 were used to construct the

final subnetwork. Cytoscape was used to visualize networks. Resulting subnetworks

were also clustered by subcellular location and community cluster (Louvain clustering).

BinGO was also used to calculate the enrichment of Louvain clusters [43].

B.4 Datasets and methods for Alzheimer’s Disease

study

B.4.1 Datasets

The Alzheimer’s datasets were generated by the lab of Mel Feany from the Department

of Pathology at Harvard Medical School (Drosophila data) and Clemens Scherzer from

the Department of Neurology at Harvard Medical School (RNA-seq data).

Drosophila forward genetic screen

2304 transgenic RNAi lines were constructed as part of the Transgenic RNAi Resource

Project (TRIP) [89]. These lines were crossed to an elav-GAL4;UAS-Dcr line and aged

to 30 days. The brains were then fixed in formalin, sections taken at 4𝜇m thickness,

and assessed for neurodegeneration by looking for vacuoles, a common presentation of

neurodegeneration in Drosophila [90, 91].

Drosophila metabolomics

Two previously published models of Alzheimer’s disease, a humanized Tau model and

an A𝛽 over-expression model, as well as a control fly line were grown for ten days
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[90, 60]. Approximately 40 whole fly heads were then collected in triple biological

replicates for each genotype, and untargeted positively and negatively charged polar

and non-polar metabolites were assessed using mass spectrometry. Samples were

collected at the Broad Institute in collaboration with Dr. Clary Clish.

Human data

Several cell types, including pyramidal neurons from layer V/VI in the middle temporal

gyrus, giant Betz pyramidal neurons from the motor cortex, and dopamine neurons

from the substantia nigra were laser captured and profiled with RNA-seq. These

cells were derived from 83 AD patients and healthy controls. Data from human AD

patients were also analyzed from the Mayo clinic study and the Banner Brain and

Body project [73, 80].

B.4.2 Methods

Gene ontology enrichments were performed using Enrichr [88]. T-tests for control

against disease genotype were used to calculate p-values and comparison of control

against each disease genotype were used to calculate fod changes for the Drosophila

metabolomics. K-means and PCA were performed on the Drosophila metabolomics

samples to assess clustering. DESeq2 was used to perform differential expression

analysis for the human RNA-seq data [92]. Ordinal linear regression was performed

by first grouping samples into low (Braak stages 0, I, II), medium (Braak stages III,

IV) and high (V, VI) groups [75]. Gene expression was then regressed against these

modified Braak stages using ordinal regression using the procedure outlined in Pirhaji

et al. [76].
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