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ABSTRACT 
For this MEng Thesis Project, I investigated the personalization of deep convolutional networks 
for facial expression analysis. While prior work focused on population-based (“one-size-fits-all”) 
models for prediction of affective states (valence/arousal), I constructed personalized versions of 
these models to improve upon state-of-the-art general models through solving a domain 
adaptation problem. This was done by starting with pre-trained deep models for face analysis and 
fine-tuning the last layers to specific subjects or subpopulations. For prediction, a “mixture of 
experts” (MoE) solution was employed to select the proper outputs based on the given input. The 
research questions answered in this project are: (1) What are the effects of model personalization 
on the estimation of valence and arousal from faces? (2) What is the amount of (un)supervised 
data needed to reach a target performance? Models produced in this research provide the 
foundation of a novel tool for personalized real-time estimation of target metrics. 
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1. Introduction  
 
In recent years, machine learning has become increasingly popular for performing analysis and 
generating predictions based on data in a variety of different areas, especially in healthcare and 
fields devoted to improving general health and wellness [22]. In the realm of affective computing, 
it has been applied to many problems, including those of engagement and emotional state 
prediction [18] [21]. AI Systems that could accurately perform this analysis have a variety of 
different possible applications, such as human-robot interactions. As robots become increasingly 
complex and increasingly integrated into daily life, it will be important for them to perceive and 
understand not only human biometrics but also human emotional metrics. Enhanced perception 
of human emotions would allow them to avoid taking certain actions that would worsen a human’s 
emotional state at a minimum and perhaps even influence them to take actions that could improve 
a human’s emotional state. However, these systems are capable of impacting human life without 
being hosted in the artificial brain of a robot. Another possible application is the estimation of 
emotion expressions of individuals for the purpose of illustrating how they are being perceived. 
Many individuals with autism have difficulty expressing emotions in ways that can be easily 
understood by those without it [23], so affected individuals can use machine learning systems that 
can report perceived emotion expressions in order to learn how to express themselves so that 
they can be more easily understood by those around them. 
 
These are only two out of many beneficial applications of this technology. Unfortunately, there 
have been difficulties training such systems in practice for several reasons. Most machine 
learning applications are successful because of their ability to generalize to unseen data and 
because they were trained on a plethora of easily obtainable training examples. Proposed 
systems to help solve human emotion perception have neither of these properties. People 
express emotions differently, even when they are part of the same culture or have the same 
mental state. Therefore, learning a general predictor or classifier with data from one set of people 
has issues detecting emotion expressions not only of people from a disjoint set but also of specific 
people within the training set. Moreover, it is difficult to obtain the massive amount of training data 
usually employed when training machine learning systems in this context due to the complexity 
of the labels. Whereas nearly any volunteers from the general public are capable of generating 
labels for digit classification or object recognition, emotion expression labels and measures must 
be given and calculated by trained professionals [18]. This has made obtaining training data very 
expensive, which in-turn has made it additionally difficult to train machine learning systems in this 
area. 
 
In response to both of these issues, personalized machine learning has risen as a potential 
solution [29]. Personalized machine learning involves learning a general classifier or predictor 
based on data from a group of people and then fine-tuning the model to the profiles of specific 
individuals to create better results than the general model [21]. It has seen remarkable success 
in health and medical contexts [21] [22], and it has the potential to alleviate the issues that have 
plagued the problem of creating a machine learning system for emotion expression analysis. 
 
My thesis work focused on a specific type of personalized machine learning through domain 
adaptation in this context. Specifically, I investigated the personalization of deep convolutional 
neural networks for facial expression analysis of face images by fine-tuning these networks for 
specific scenarios. The scenario primarily explored in my work is the estimation of valence and 
arousal from still images of faces. I mainly worked with two databases of images professionally 
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annotated with valence and arousal measures. The first was the AffectNet database, a diverse 
selection of images found on the Internet that have been annotated with the emotion categories 
and valence and arousal measures [18]. The second was the multimodal affect database REmote 
COLlaborative and Affective (RECOLA) database [24], used in the Audio/Visual Emotion 
Challenge and Workshop (AVEC) 2016 [25] (referred to as “AVEC” throughout this thesis). It is 
important to note that this latter database is actually composed of several videos, but 
preprocessing was done to extract the frames and corresponding labels to use for still image 
analysis.  
 
Through this research, the main research questions I have answered are:  
(1) What are the effects of model personalization on the problem of the estimation of valence and 
arousal from still images of faces?  
(2) What is the amount of (un)supervised data needed to reach a target performance?  
Models produced in this research provide the foundation of a novel tool for personalized real-time 
estimation of target metrics. In the sections that follow, I describe the methods I have explored 
and used in order to create the described machine learning models.  

2. Related Work  
 
In this section, I will first focus on formal definitions of domain adaptation and survey current 
implementations, after which I will discuss implementations of personalized machine learning and 
a neural network technique referred to as the “mixture of experts” with which I have experimented 
to produce effective analysis models. Most of the personalization and domain adaptation works 
discussed below try to solve problems in other areas, but they solve these problems in ways from 
which I have drawn inspiration while improving upon the accuracy and performance of existing 
techniques with regard to valence and arousal estimation. 
 

2.1. Domain Adaptation 
 

In most machine learning experiments, it is assumed that the training data and test data come 
from similar-enough domains that training on the training data can reasonably produce good 
performance on the test data. However, in problems like the one explored in this thesis project, 
this assumption cannot be made because the domains from which the training and test data 
originate are too different. “Domain adaptation” is a type of technique that attempts to remedy this 
difference so that models trained in one domain can perform effectively in another [1]. It is also a 
way in which one can perform personalization of a model (which will be covered in more detail in 
the next subsection). 
 
Broadly speaking, there are two types of domain adaptation: unsupervised and semi-supervised. 
In unsupervised domain adaptation, no data from the new domain are available to help perform 
domain adaptation [2]. This usually means that features or probabilistic models learned from 
training in the old domain are used to perform domain adaptation. However, sometimes a limited 
amount of labeled data from the new domain are available to help calibrate the model. This is 
referred to as semi-supervised domain adaptation, since some labeled data are able to help 
perform the operation [2].  
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The changes made to the classification or prediction scheme in order to perform the adaptation 
are also ways to categorize the type of domain adaptation employed. Instance-based (or cost-
based) adaptations include ones that reweight the losses of individual examples to change the 
loss function when training to better adapt to the new data [2]. Feature-based adaptations include 
ones that change or introduce features when training to better adapt to new data. Lastly, model-
based adaptations include ones that change the underlying classification model or algorithm in 
order to adapt.  
 
Jiang and Beijbom provided surveys of recent domain adaptation work as well as more in-depth 
definitions of domain adaptation than those given above [1][2]. The recent work in the rest of the 
papers described in this section fall roughly into three groups based on how the paper authors 
specifically performed domain adaptation. Methods in the first group map source features to a 
new feature space, typically one that is somehow linked to features in the target domain. In one 
paper, Blitzer et. al. described a method of domain adaptation for natural language processing 
(NLP) involving mapping source features to a subspace that is linked to target features and 
utilizing a new classifier that uses this projection to perform classification [3]. Kodirov et. al. 
employed a similar method for a visual recognition task with zero-shot learning that involved 
mapping features to a shared semantic space of lower dimension than the original feature space 
[8]. On the contrary, Yamada described an approach that involves mapping features to a higher 
dimensional space and reweights training examples “based on the ratio of test and train 
marginals in that space” [12]. 
 
A second group of papers can be thought of as an extension of the first. Instead of using a 
mapping function however, the paper’s authors employed kernel functions to avoid computing 
the vectors in the high-dimensional spaces. One of the first versions of this was “frustratingly 
easy” for an NLP task, but it required a fully-supervised form of domain adaptation instead of 
an unsupervised one [5]. Gong et. al. used a “Geodesic Flow Kernel (GFK)” in order to implicitly 
map features to higher dimensional spaces where the two domains are more similar [7]. Tuia 
and Camps-Valls described a similar method called “Kernel Manifold Alignment” that aligns the 
two domains with a limited amount of labeled data [11]. 
 
One final group of papers describes methods that employ deep learning to either perform the 
domain adaptation automatically or learn a mapping function from the source domain to the target 
domain. Ganin et. al. used a “gradient reversal layer” to allow a deep neural network to learn 
domain adaptation through backpropagation, a normal part of the training process [6]. A team at 
IBM in collaboration with the National University of Singapore implemented a domain adaptation 
through a Deep Domain Adaptation Network (DDAN) on top of an AlexNet implementation to 
allow a network trained with high-quality images to describe clothing features in lower-quality 
images [4]. Long and Taigman explored the idea of “transfer networks” to perform domain 
adaptation [10] [11]. Long used residual networks to learn adaptive classifiers and transferable 
features while Taigman used a GAN to learn a mapping function [10] [11]. 
 
Since my research involved deep learning, I primarily looked to papers from the last group for 
inspiration, but papers in the other groups were still useful to keep in mind. 
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2.2. Personalized Machine Learning through Domain Adaptation 

 
In the realm of personalized machine learning, there are a few pieces of related work that utilize 
domain adaptation to perform the personalization. Zen, Sangineto et. al. described methods of 
domain adaptation used to develop person-specific classifiers for facial action unit (AU) detection 
and pain recognition, two areas closely related to my research problem [15] [16]. Their methods 
employed support vector machines (SVMs) instead of deep neural networks, but their approaches 
were useful. Wachinger et. al. used a form of supervised machine learning with multinomial 
regression to personalize Alzheimer’s disease classification [17]. Again, while deep learning was 
not used to classify here, their method of domain adaptation was useful for inspiration. 
 

2.3. Mixture of Experts 
 
“Mixture of experts” refers to a deep learning technique that involves training multiple “expert” 
subnetworks [13]. These networks produce the same type of output for the same type of input, 
but they are trained on different subsets of data so they are fine-tuned to specific contexts. At test 
time, all of them are given the same input, and an output for the overall network is created from 
combining the expert outputs in a certain way or otherwise somehow selecting the “best” output. 
Jacobs et. al. described a method of selecting an output involving a gating network that performs 
softmax activation to assign probabilities of randomly selecting the outputs of each of the expert 
networks for the current training example [13]. A more recent technique for using a mixture of 
experts approach involves a mixture of experts layer in a recurrent neural net (RNN) architecture 
that also has a gating network that performs softmax activation [14]. However, the outputs of this 
gating network are used to scale the outputs of the experts, the products of which are added 
together to yield the final output [14]. I employed a mixture of experts technique most similar to 
this last approach in my finished models. 

3. Motivation: Personalized Machine Learning for Emotion 
Expression Detection through Domain Adaptation  

 
Overall, my goal was to use personalization and domain adaptation to improve upon current deep 
learning techniques that have been pioneered to estimate emotion expressions from face images. 
Specifically, I developed techniques and evaluated their performance on two datasets.  
 
The first set of data with which I worked is a publicly available dataset called the AffectNet dataset 
[18]. The dataset contains 450,000 cropped and centered images of faces and non-faces from 
the Internet that have been manually annotated by professionals with emotion expression labels 
[18]. In the case of a face, the annotators labeled the image with one of eight discrete facial 
expression labels and also calculated continuous valence and arousal values of the cropped and 
centered face in the image (a “non-face” expression label and values of -2 were used for valence 
and arousal in the case the image did not have a face) [18]. With this data, the original creators 
of the AffectNet database trained an AlexNet, a type of convolutional neural network (CNN), to 
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detect valence and arousal based on the input image [18]. They reported root-mean-squared error 
(RMSE) and the concordance correlation coefficient (CCC) for both valence and arousal when 
evaluated on the test set [18].  
 
As part of my preliminary work for this project, I combined the training and validation sets from 
the dataset to produce my own training-validation-test split in a 60-20-20 ratio to train and evaluate 
a ResNet with 50 layers (a “residual network”, another type of CNN as described in [20]) to 
perform the same task with a two-output dense (fully-connected) layer with linear activation for 
each output. I calculated RMSE and the intraclass correlation coefficient (ICC) for both valence 
and arousal (a metric similar to CCC but not identical), and my results are shown alongside theirs 
in the table below. (Note: the original paper authors did not release the test set, so this was the 
most similar experiment I could run.) 
 
Table 1 - Preliminary Results and Baseline Comparisons. AffectNet results taken from cited paper. 

 RMSE Valence RMSE Arousal ICC Valence ICC Arousal 
Train 0.283425 0.261155 0.819049 0.556734 
Val 0.300042 0.270832 0.795662 0.516009 
Test 0.302472 0.270152 0.792487 0.518108 
AffectNet [18] 0.394 0.402 0.541 

(CCC) 
0.450 
(CCC) 

 
These initial results suggested that simply using residual networks, which have deeper and more 
complicated (yet powerful) architecture than traditional CNNs like AlexNet, may already improve 
upon state-of-the-art performance, but I wanted to see whether performing “personalization” with 
respect to the type of emotion involved could further bolster accuracy. 
 
The second set of data was the REmote COLlaborative and Affective (RECOLA) database [24], 
used in the Audio/Visual Emotion Challenge and Workshop (AVEC) 2016 [25] (again, this 
database was referred to as “AVEC” throughout this thesis). This was a multimodal affect dataset 
containing face-centered videos of subjects speaking into a microphone while being recorded by 
a webcam [24]. These videos were professionally annotated with valence and arousal measures 
that reflected changes in the given subject’s perceived emotion expression over time [24].  
 
Since the neural networks I explored during my research were not recurrent, it was not possible 
to make use of a sequence of images and therefore the videos needed to be split into individual 
frames. More importantly, these frames needed to be centered on the face of the given user for 
optimal analysis. To accomplish this, the Faster R-CNN, a publicly available neural network 
empirically found to accurately detect faces in images [26], was utilized to detect the face 
bounding boxes in each frame and crop the frames to those bounding boxes. Labels were 
matched to frames based on the timestamps from the video with which the original labels and 
frames were associated.  
 
I used videos from 18 subjects in my experiments with this dataset. Each video was approximately 
5 minutes long and had a framerate of 25 frames per second, meaning that theoretically, this 
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process would result in 7500 frames per subject. However, while the Faster R-CNN was robust, 
it was not perfect, and occasionally it was not able to detect the face in the given frame. The end 
result was that the frame extraction process dropped frames and each subject only had around 
7000 frames on average.  Nevertheless, this dataset was effective in helping illustrate the domain 
adaptation problem and the failure of a “one-size-fits-all” predictor. The experiments performed 
with this dataset showed that domain adaptation and personalization can help a fine-tuned 
predictor outperform a general one. 

4. Goals and Methods 
 
For my thesis, I have worked on building personalized models through domain adaptation for the 
purpose of accurately detecting valence and arousal measures based on facial expressions. The 
goals of my research were to determine the following features and aspects of my final model: 

(1) the effects of model personalization on performance in terms of valence and arousal prediction  
(2) the amount of (un)supervised data needed to reach target performance  

My starting models of choice were existing pre-trained convolutional networks, trained on millions 
of images from different contexts. A ResNet with 50 layers was my base network used in all 
experiments, as described in [20]. My starting implementation was loaded with optimal weights 
from the ImageNet classification task [30], but I retrained and fine-tuned this network with data 
from the two aforementioned datasets as needed.  
 
At the same time, I researched different personalization strategies leading to the models that can 
automatically adapt to the user’s face using a limited amount of labeled data or no labels at all, 
via unsupervised and semi-supervised domain adaptation methods. The method I primarily 
explored is a “mixture of experts” method. The baseline neural networks only had general output 
layers for valence and arousal given inputs from analysis done in higher layers of the network. 
However, I experimented with strategies to train multiple output layers that are fine-tuned to 
different types of input as well as a “selector layer” that can distinguish between these different 
types of input and select the corresponding output layer to use for a given input. The selector 
used in my experiments was implemented as a dense layer that received input from the ResNet 
(just as the experts did) with n outputs that used softmax activation (n being the number of 
experts). These outputs produced a categorical probability distribution used to weight the outputs 
of each corresponding expert (i.e. output k from the selector layer weighted both the valence and 
arousal outputs from expert k) and added them to the corresponding scaled valence and arousal 
outputs from the other experts to produce the overall output of the network. 
 
Depending on how the network is trained, resulting models can outperform state-of-the-art 
general models. Furthermore, if the selector and experts are tuned properly, then for an input 
from the target domain, the selector can weight expert outputs based on the likelihood that the 
domain in which the expert has been trained is similar to the domain from which this new input 
has originated. This can be considered a form of unsupervised domain adaptation, since it is not 
necessary to use labels from the target domain for retraining. In the case of the AffectNet data, I 
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“personalized” experts by training one expert for each type of emotion, and for the AVEC dataset, 
I personalized experts by training one expert for each of 9 different subjects. 
 
While this approach was primarily used on image data, its personalized learning strategy should 
be applicable to other modalities, such as voice, physiology and body expressions. It should also 
be a novel personalization strategy for model adaptation to a new subject as more data of that 
subject become available. 

5. Benchmarks and Evaluation 
  
Network architectures were evaluated using root-mean-squared error (RMSE), the intraclass 
correlation coefficient (ICC), and the concordance correlation coefficient (CCC) of sets of 
predictions on various datasets relative to ground truth. These three metrics together allow for 
comparisons with results in papers from other researchers in this field. For instance, the authors 
of the AffectNet database paper used RMSE and CCC for their results [18].  
 
Additionally, for both the AffectNet and AVEC datasets, I used a ResNet with a general output 
layer as a baseline predictor. In both cases, this predictor was fine-tuned such that the ResNet 
weights and output layer weights were trained together on the dataset, followed by a fine-tuning 
of the output layer. RMSE, ICC, and CCC values of any future networks from any datasets were 
directly compared to the same values of this baseline model from those same datasets. This 
baseline model was important for both the AffectNet and AVEC datasets. For the AffectNet 
dataset, it was noted previously that just by using a ResNet instead of an AlexNet, one can 
achieve better performance than the values specified in the original paper. Using this model as a 
baseline controls for using a ResNet instead of an AlexNet and allows one to determine whether 
personalization through domain adaptation makes a measurable positive impact. There were few 
other baselines that were directly comparable for the AVEC dataset, so it was near impossible to 
examine the results of personalization otherwise. 

6. Results 
 

6.1. Experiments on the AffectNet Dataset 
 
AffectNet was the first dataset with which I worked. It contained a very large number of images 
with faces expressing different emotions. This made it an ideal candidate for helping determine a 
training strategy for fitting networks not only for this dataset but also for all future datasets. When 
working with all datasets, the models I trained involved layers appended to the end of the ResNet 
to perform regression from features extracted by the ResNet to valence and arousal output. 
Regardless of whether there was only one such “regression layer” performing this regression 
(referred to as a “shared network” or “one-size-fits-all” solution in other parts of this thesis) or a 
mixture of experts architecture, the presence of these additional layers raised questions regarding 
how the two parts of these models (the ResNet and regression layer(s)) should be trained. 
Questions such as “does training the ResNet improve performance, and if so, by how much?” and 
“what is the proper training order of the components (ResNet+regression training followed by 



13 
 

more regression training versus the reverse order)?” needed to be answered before any 
experimentation exploring personalization and domain adaptation solutions could take place. 
 
To answer these questions, I followed-up on my preliminary findings detailed in a previous section 
and tested the models resulting from different training strategies using the 60-20-20 split of the 
AffectNet dataset. Each model was composed of a ResNet and a shared network in the form of 
a two-output dense layer with linear activation for valence and arousal outputs, and the resulting 
model was trained via gradient descent to minimize mean-squared error for both outputs on the 
AffectNet data. The training strategies employed tested how the combinations and ordering of 
two training configurations improved or hindered final network performance. One of these 
configurations allowed for training of the final dense layer alone by “freezing” the ResNet weights 
during training (i.e. setting the gradients to zero during backpropagation and gradient descent), 
and the other configurations allowed all layer weights to be tuned together. Combining these 
configurations in different ways yielded four different training strategies, all of which were used to 
perform training of the combined network, and the results have been reproduced in the table 
below. 
 
Table 2 - Training Strategy Evaluation 

 ICC RMSE 
Strategy Valence Arousal Valence Arousal 
 Train Val Test Train Val Test Train Val Test Train Val Test 
A 0.509 0.504 0.505 0.222 0.212 0.213 0.443 0.444 0.446 0.315 0.316 0.316 
B 0.806 0.782 0.780 0.542 0.503 0.506 0.287 0.303 0.305 0.263 0.273 0.272 
C 0.813 0.791 0.788 0.537 0.499 0.501 0.294 0.309 0.312 0.266 0.275 0.274 
D 0.819 0.796 0.792 0.557 0.516 0.518 0.283 0.300 0.302 0.261 0.271 0.270 

 
From this experiment, it was clear that fine-tuning the ResNet offered clear advantages over 
tuning the shared network alone. Moreover, this experiment also demonstrated that tuning the 
ResNet and shared network together followed by fine-tuning of the shared network offered slightly 
better performance than performing those training operations in the reverse order. Therefore, the 
training algorithms utilized in future experiments were derived in light of these findings and 
typically involved optimizing the ResNet first whenever possible. 
 
Having discovered the best way to perform ResNet and regression fitting, the next step was to 
perform “personalization” to emotion type as described in a previous section. Two methods of 
personalization were explored: one in which the mixture of experts was trained in a supervised 
fashion (involving training the selector layer to recognize emotion expressions given the emotion 
label for each image and training each expert on the subset of data characterized by the emotion 

Strategy A: Training shared network only 
Strategy B: Training shared network only followed by training shared network and ResNet together 
Strategy C: Training shared network and ResNet together  
Strategy D: Training shared network and ResNet together followed by training shared network only 
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for which they were responsible) and one in which the mixture of experts was trained in an 
unsupervised fashion (involving randomly initializing the selector and experts together and 
optimizing parameters such that the weighted sum of expert outputs is optimized relative to 
ground-truth). Both of these networks were trained and evaluated using the split in the AffectNet 
data utilized previously. The selector in each case was implemented as a dense layer that 
received input from the ResNet with softmax activation on the outputs as described in a previous 
section. Additionally, to evaluate whether training experts in a supervised fashion by training on 
subsets of the data was a sensible thing to do, results were also obtained by simulating a “perfect” 
selector and choosing the expert corresponding to the ground-truth emotion represented in the 
given frame and measuring its output against the ground-truth valence and arousal values 
(instead of using a selector to weight and sum all of the expert outputs together). The results of 
these configurations are included alongside the results with the best “one-size-fits-all” network in 
the table that follows. 
 
Table 3 - Results of Emotion Personalization using AffectNet Data 

 ICC RMSE 
Strategy Valence Arousal Valence Arousal 
 Train Val Test Train Val Test Train Val Test Train Val Test 
A 0.819 0.796 0.792 0.557 0.516 0.518 0.283 0.300 0.302 0.261 0.271 0.270 
B 0.928 0.925 0.924 0.831 0.821 0.821 0.197 0.201 0.202 0.181 0.185 0.185 
C 0.823 0.801 0.798 0.563 0.522 0.523 0.3 0.32 0.32 0.264 0.274 0.273 
D 0.823 0.818 0.821 0.570 0.562 0.568 0.29 0.29 0.288 0.236 0.238 0.237 

 
Based on these results, it appears that a perfect selector would allow a personalized mixture of 
experts model to greatly outperform a general model. However, none of the models with a selector 
obtained via standard learning algorithms had any appreciable benefit over the general model 
(and rounding to one fewer significant digit yields virtually no difference). Evidently, based on the 
dramatic improvement that results from simulating a perfect selector, there appears to be an issue 
with how the current selector is learned. Exploring other methods of learning a selector and other 
ways to model a selector that can perform the required weighted sum is an area of future work 
and research. 
 

6.2. Experiments on the AVEC Dataset 
 
After determining the best performing training strategy from working with the AffectNet dataset, I 
turned towards working with the AVEC dataset, where actual personalization could be performed 
given that data came from individual subjects. The experiments performed with this dataset 
indeed proved that there are clear benefits of personalization when trying to adapt to data of 
unseen individuals because a personalized model has greater flexibility. The results of working 

Strategy A: Best general model obtained from previous experimentation 
Strategy B: Training experts in isolation with simulated ideal selector 
Strategy C: Training experts in isolation with learned weighted sum selector 
Strategy D: Training experts and weighted sum selector together 
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on the AVEC dataset are covered in greater detail in the paper that follows [31]. In helping produce 
this paper, I was responsible for running the experiments described and gathering results to use 
for analysis. Analysis of results was done by both Dr. Rudovic and myself. Limitations of our work 
and ideas for future work were contributed by Dr. Rudovic and Prof. Picard. All three of us had 
input into the model approach.
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Abstract. We investigate the personalization of deep convolutional neu-
ral networks for facial expression analysis from still images. While prior
work has focused on population-based (“one-size-fits-all”) approaches,
we formulate and construct personalized models via a mixture of experts
and supervised domain adaptation approach, showing that it improves
greatly upon non-personalized models. Our experiments demonstrate the
ability of the model personalization to quickly and effectively adapt to
limited amounts of target data. We also provide a novel training method-
ology and architecture for creating personalized machine learning models
for more effective analysis of emotion state.

Keywords: mixture of experts, domain adaptation, personalized ma-
chine learning, residual networks

1 Introduction

In recent years, machine learning has become increasingly popular for performing
analysis and generating predictions based on data in a variety of different areas,
especially in healthcare and fields devoted to improving health and wellness [1,
2]. In the realm of affective computing, it has been applied to tasks such as auto-
mated analysis of persons’ engagement, personality, and affective states during
human-computer [3] and human-robot interaction [4]. For instance, as robots
become increasingly complex and integrated into daily life, it will be important
for them to perceive and understand not only human biometrics but also human
emotional metrics. Enhanced perception of human emotions could enable robots
to avoid actions that would worsen a human’s emotional state and perhaps even
influence them to act in a way that could improve a human’s well-being. More-
over, in the advent of powerful machine learning capabilities for mobile devices,
it is possible nowadays to perform emotion analysis through smartphone cam-
eras. Therefore, a smartphone application could be programmed to detect a
user’s emotions and recommend strategies for dealing with negative emotions or
actively attempt to improve the user’s mood. Lastly, emotion analysis could be
used for emotion and engagement detection and coaching for individuals with
autism, who have inherent difficulties in reading others’ emotions and expressing
their own in a way that can be easily understood by neurotypicals.
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Most machine learning approaches are successful because the models pro-
duced can generalize to unseen data and were trained on a plethora of existing
data. However, most of the existing approaches ignore the fact that people ex-
press affect differently, even when they are part of the same culture. Therefore,
learning a general predictor or classifier (the traditional “one-size-fits-all” ap-
proach) with data from one set of people typically underperforms when tested
on people from a disjoint set but also on specific people within the training set.
Moreover, it is difficult to obtain a large amount of training data for each target
subject because providing labels for these data is costly in terms of time and
resources [5]. Thus, improving machine learning approaches so that they can
efficiently leverage small amounts of training data to adapt to each target sub-
ject is of large importance for increasing the model’s effectiveness. To address
these challenges, a number of works attempted model personalization [4]. The
goal of model personalization is to leverage the individual-specific data in order
to adapt a general classifier (the “one-size-fits-all” approach) learned from data
of previously seen people (source subjects) to the profiles of specific individuals
(target subjects). This has shown great improvements in a number of machine
learning tasks related to human-data analysis (e.g., [6, 2, 1]).

In this paper, we have focused on a specific type of model personalization for
estimation of facial affect (valence and arousal) using the notion of an ensemble
of models and domain adaptation [7]. Specifically, we use the Mixture-of-Experts
(MoEs) approach [8] to model the facial expression data (face images) of source
subjects, for whom it is assumed that a large amount of image labels for the facial
affect is readily available. We adopt MoEs where each expert represents one of the
source subjects, which has greater modeling flexibility and improved ability to
capture the large variation in facial expressions of different subjects compared
to a single expert, which typically captures the average variation. While this
approach performs better fitting of the source subjects, it is not guaranteed that
this performance translates to previously unseen subjects (target), as confirmed
in our experiments. To this end, we perform a supervised adaptation of the
learned MoEs model using a varying portion of labeled data of all of the target
subjects. We show: (i) that this approach achieves improved performance on
the target subjects compared to a single expert model, and (ii) that it also
outperforms the same model trained solely on the data of target subjects used
to adapt the model. The latter is due to the ability of our approach to efficiently
leverage the data of the source subjects. We demonstrate this in the context of
deep neural networks that we tuned for “end-to-end” estimation of valence and
arousal from still images of faces from the multimodal affect database REmote
COLlaborative and Affective (RECOLA) database [9], used in the Audio/Visual
Emotion Challenge and Workshop (AVEC) 2016 [10]. Note, however, that the
focus of this work is not to outperform existing models in affect estimation but
instead to examine how personalization and supervised domain adaptation can
bolster current affect estimation models, an intersection of research areas that
has yet to be explored.
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In the sections that follow, we describe our approach to personalizing deep
convolutional neural networks and a MoEs model. We first discuss related work
both regarding the domain adaptation and MoEs. Then, we describe our mixture
of personalized experts approach, followed by its experimental validation and
derived conclusions.

2 Related Work

MoEs refers to a learning approach that involves training multiple “expert”
subnetworks. These networks produce the same type of output for the same
type of input, but they are trained on different subsets of data so that they
are fine-tuned to specific contexts. At test time, all of them are given the same
input, and an output for the overall network is created by combining the expert
outputs in a certain way or somehow selecting the “best” output. Among the first
proponents of this technique, [8] introduce a method of selecting an output by
using a gating network that performs softmax activation to assign probabilities
of randomly selecting the outputs of each of the expert networks for the current
training example, after which an output is randomly chosen via a probability
draw based on that distribution. Since then, it has been studied extensively for
over twenty years, and in that time, expert models with other classifiers such
as SVMs [11] and Gaussian Processes [12, 13], have also been researched. With
regard to deep neural networks, a myriad of different network architectures have
been explored, ranging from hierarchical and ensemble experts [14] to networks
with infinite numbers of experts [15] and nested mixtures of experts that allow
for deep learning [16]. Although our work is built upon the same framework of
MoEs, it differs from existing approaches as we personalize the experts to each
subject. Furthermore, we combine the learning of MoEs with supervised domain
adaptation (DA) [7] in order to efficiently adapt the model to previously unseen
subjects. While there is a large body of work on DA, we do not intend here to
improve upon existing DA methods. We rather use its notion when adapting
the target MoE model that we propose for the model personalization to target
subjects. For a detailed review of existing DA approaches, see [7]. Also, even
though model personalization has been researched in several previous contexts
(e.g., self-reported pain analysis [6] and robot therapy for autism [4]), none of
these methods have been explored using a mixture of experts architecture in the
context of model personalization. To this end, we have adopted this approach
in our personalized framework. We have taken particular inspiration from [16]
to utilize a mixture of experts approach that outputs a weighted combination of
expert outputs based on a gating network learned form source subjects, as will
be elaborated in the following sections.

3 Methodology

3.1 Notation

We consider the following setting: we are given a number of training subjects

(source), denoted as P (s) = {p(s)1 , . . . , p
(s)
ns }, where id(s) = 1, . . . , ns represents
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Fig. 1: The architecture of the proposed approach. The input is a subject’s video
and the outputs are his/her estimated valence and arousal levels. We first ap-
plied Faster R-CNN [17] to extract the face region from each raw image frame.
The extracted faces were passed through a ResNet-50 [18], fine-tuned on source
subjects’ data. The obtained deep features were used as input to our person-
alized expert network (PEN) for automatic estimation of valence and arousal.
This also contains a “gating network” (CN) that assigns different weights to each
expert in the PEN during inference of new test images.

the subject id, and ns is the number of the subjects. Data of these source subjects
are used to learn a shared model optimized on these subjects. We are also given
a number of test subjects (target) which were previously unseen by the shared

model. These are denoted as: P (t) = {p(t)1 , . . . , p
(t)
nt }, and id(t) = 1, . . . , nt. Then,

starting from the shared model, the goal is to achieve the best possible perfor-
mance on P (t). Furthermore, the data of each subject is stored as pi = {Xi, Yi}1,
where input features of the subject i are given by:Xi = [xi1; . . . ;xiNi ] ∈ RNi×Dx ,
where Ni is the number of available examples of the subject, and Dx is the in-
put feature size. Note that these examples may be temporally correlated (in
the case of video data) or be randomly sampled from independent observations
of the subject. Likewise, the output labels (in our case, the levels of valence
and arousal of the subject), are given as: Yi = [yvi1 y

a
i1; . . . ; yviNi

yaiNi
] ∈ RNi×Dy ,

where Dy = 2. In what follows, we first describe how the shared model is learned
from P (s), and used to estimate target affective states on P (t). Then, we propose
an expert model, where each expert corresponds to one of the source subjects.
The key to our approach is the model personalization step, where we propose a
learning strategy designed to adapt the expert model to target subjects, using a
varying portion of their (previously seen) data. Lastly, we provide details of the
learning and inference in the personalized expert model.

3.2 Shared Model

We start by learning a shared model that is trained on data of all source subjects,
without taking into account their id. This model is based on a deep architec-
ture composed of the layers of a residual network (ResNet) [18], a pre-trained

1 For notational simplicity, we drop here the dependence on the source/target subjects
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deep network commonly used to extract the most informative features for ob-
ject classification [18]. We used the ResNet-50 architecture composed of multiple
three-layer “bottleneck” building blocks (containing 50 layers in total) described
in the original ResNet paper [18]. When beginning training, we initialized the
layer weights corresponding to weights that yield published optimal performance
on the ImageNet dataset [19]. However, we use all of the layers of the network
but the last (i.e. the softmax layer) as it was optimized for classification of vari-
ous object categories such as “laptop” and “orange”. We instead replace the last
layer with an data-uninformed fully-connected dense layer with linear activation,
which we use to fine-tune the ResNet weights for the target task: the estimation
of valence and arousal from face images (see Fig. 1). This architecture receives
as input the face images of source subjects (x) and passes the most discrimi-
native (deep) facial features (z) to the regression layer in the output through
the following mapping: x → z → ỹ, where ỹ are the estimated levels of valence
and arousal. The training of the shared model is divided into two stages. First,
the whole network (ResNet included) is optimized for estimation of y. Then,
we freeze all of the (fine-tuned) layers of the ResNet (W r−net ∈ RDx×Dz ) and
additionally fine-tune the last (regression) layer (W s ∈ RDz×Dy ). We experi-
mented with different learning strategies and found that this one performed the
best. This is because of the large number of parameters that need to be tuned
simultaneously. Due to this, the network underfits the last layer, so we overcome
this by additional tuning of the last layer. The resulting network, referred to as
the shared network (SN), is used to initialize the expert network (EN), which is
then adapted to the population of target subjects as described below.

3.3 Personalized Expert Network (PEN)

The learning of the expert network is accomplished using the Mixture-of-Experts
(MoEs) approach, where an expert network (EN) is comprised of a set of lay-
ers called “experts” that are denoted as e1, . . . , en. Furthermore, an EN is also
comprised of a “gating network” denoted as CN (which in our case is a per-
son selector network). Its output is used to weight the contribution (relevance)
of each expert during the inference stage. In our personalized model setting,
during the model training on source subjects, each expert corresponds to one
training subject (thus, ns experts). This personalization yields a personalized ex-
pert network (PEN). Each expert is modeled using a feed-forward network with
fully connected linear activations, as used for the SN, but each with their own
parameters. Thus, the following mapping is learned: x→ z → ỹe = [ỹe1 . . . ỹ

e
n(s) ],

where ỹei are the valence/arousal estimates by the i-th expert. Likewise, the CN
aims to learn the mapping: x→ z → h→ c̃ = [c̃1 . . . c̃n(s) ], where c̃i is the (nor-
malized) weight for the i-th expert during the model learning. More specifically,
the CN is designed as a two-layer network. The first layer is a fully-connected
feed-forward linear activation network. The linear activations are then passed
through a softmax layer, providing the probability that the input sample comes
from one of ns source subjects and thus assuring that the outputs of the CN
sum to one. More formally, given an input x to the ResNet, the output of the
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PEN is defined as:

ỹ =

ns∑
i=1

c̃i · ỹei = c̃⊗ ỹe, (1)

where ỹ is the weighted combination of the individual experts. The output of
the CN, given the activations (z) of the ResNet is obtained as:

c̃ = softmax(h) and h = fcl(z;W s), (2)

where z is passed through the fully connected layer (fcl), the output of which
is fed into the softmax function to yield a categorical probability distribution
over the source subjects. Note that during training of the PEN, the targets for
the CN output are the subjects’ ids encoded via the 1-hot encoding (e.g., c =
[0, 1, 0, . . . , 0] for subject i = 2). Similarly, each expert i = 1, . . . , n(s) produces
estimates for target affective dimensions as:

ỹei = fcl(z;W e
i ), (3)

where z is multiplied by a trainable weight matrix W e
i for expert i.

The network personalization is attained by using the prior knowledge about
the source subjects: each expert is supposed to represent one of the subjects,
and CN performs the selection of that expert during the model learning. There-
fore, given the training data of n(s) source subjects, the overall loss is the sum
of losses due to differences between y and ỹ (the weighted combination of ex-
pert outputs) as well as losses from the CN. However, in practice this loss does
not enforce the sparsity on the selector’s weights (c̃), which may result in the
learned PEN expending too much modeling power of each expert on trying to
fit the data of all source subjects. In turn, we may end up with an expert that
is unable to specialize in individual characteristics of the subject, resulting in
an average model that is suboptimal. To overcome this, we introduce the L-1
sparsity constraint on the output of the CN, but this cannot be done directly
because the outputs of that layer always sum to one. Instead, we enforce the
sparsity on the activations of the fcl of the SN. This leads to the following joint
loss being optimized during the parameter learning:

α = αy + λ0α
s
c + λ1α

s
r, (4)

where αy is the mean-squared error (MSE) loss between the PEN estimates and
the ground-truth labels for valence and arousal (y). (λ0, λ1) are regularization
parameters that are optimized on the validation data. They control the trade-off
between the model performance and the penalty terms: αs

c, which ensures that
each expert focuses on its corresponding subject, and αs

r further ensures this
through the sparsity constraint. These individual losses are defined as:

αy =
1

N (s)

n(s)∑
i=1

N
(s)
i∑

j=1

(y i
j − ỹ i

j )(y i
j − ỹ i

j )T , (5)
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and N
(s)
i and N (s) are the number of training data per source subject and overall,

respectively. The selector loss is given by:

αs
c =

1

N (s)

n(s)∑
i=1

N
(s)
i∑

j=1

H(c ij , c̃
i
j ), (6)

where H(·, ·) is the cross-entropy loss that is commonly used for discrete vari-
ables, as is the case here. Finally, the standard L-1 sparsity is enforced via:

αs
r =

1

N (s)

n(s)∑
i=1

N
(s)
i∑

j=1

|h i
j |L1

. (7)

Note that this loss treats each activation/image frame independently, and there-
fore, no structure (prior information) about the source subjects is directly mod-
eled. Nevertheless, this should still result in the learned activations being sparse,
on average, for different face images of the subjects.

3.4 PEN: Supervised Adaptation to Target Population

Once the PEN parameters are optimized for the source subjects, our goal is
to achieve the best performance on target subjects that the PEN has not seen
before. In the traditional supervised machine learning approach, this would be
evaluated using the network learned solely from the data of the source subjects.
However, this typically leads to the learned model attaining a lower performance
on target subjects than on the source subjects, as expected. Also, since the PEN
is “tuned” to the latter, it may even more easily overfit those subjects, leading
to the comparable to or worse performance than that of the SN trained on the
target subjects. This is despite the modeling flexibility introduced by the local
(person) experts, which allows the PEN to better fit the source subjects. Con-
versely, in the proposed personalized learning approach, we adopt the supervised
domain adaptation approach [20], where the target subjects are treated as an-
other domain assumed to be different from the one used to train the PEN. To
investigate this, we pool the data of target subjects and use a varying portion
of this data (with approximately equal amounts of data from each subject) to
“tune” the PEN to those subjects. This is driven by two assumptions. First, we
should be able to adapt the PEN to target subjects using a (significantly) smaller
number of target data than originally used from the source. This is mainly be-
cause the network has been pre-trained on the latter and should be able to adapt
to new subjects more easily. Second, while the same assumption may hold for
the SN, the proposed PEN is more flexible in its modeling power (due to the
multiple experts). This in turn should allow it to better adapt to the previously
unseen subjects by focusing on their individual characteristics, thus, avoiding
the limitations of the “one-size-fits-all” approach. Formally, this is attempted
by fine-tuning the PEN to the population of target subjects via the following
adaptation loss:

αad = αyt

+ λ1α
s,t
r , (8)
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This supervised adaptation loss uses a small number of labeled data of target
subjects (xt, yt) to adjust the PEN parameters. It is important to note that
we do not use the ids of target subjects during the model adaptation, thus,
the parameters of the CN are optimized in an unsupervised fashion by setting
αs
c = 0. However, we still impose the sparsity constraint on the CN parameters.

We also do not further optimize the ResNet parameters - these are rather used as
the feature extractor during the adaptation stage. The benefits of this are two-
fold. First, we preserve the privacy of the target subjects2. This is important in
the context of many applications where the user does not want to reveal his/her
identity, while still being able to receive estimates of target affective states.
Second, instead of completely “overwriting” the previously learned PEN, the
adapted model performs the actual adaptation of the model rather than learning
it from scratch. This is motivated by the assumption that the PEN model has
seen a large amount of labeled data from source subjects, thus encapsulating
valuable knowledge about the affect expressions of different subjects. In this
way, more robust adaptation of the PEN to new subjects is expected. Ideally,
when n(s) > n(t), PEN should be able to specialize one expert to each target
subject, while compensating the lack of target subject data with the knowledge
extracted from the source subjects.

3.5 Learning, Inference and Implementation Details

We first summarize the learning and inference in the proposed models, followed
by the implementation details of our deep architecture. We start with the learn-
ing of the SN. The learning of the model parameters {W r−net,W s} is performed
in two steps: (i) The joint fine-tuning of the ResNet with the parameter opti-
mization in the appended fcl, used for estimation of valence and arousal. (ii)
The additional fine-tuning of the fcl parameters {W s}, while freezing the ResNet
parameters i.e., ∂W r−net = 0. For (i) W r−net was initialized to weights corre-
sponding to optimal training on the ImageNet dataset, and W s was initialized
randomly. Our implementation appended the SN to the last flattening layer of
the ResNet and trained all of these layers together. For (ii) we took our best
model from (i) (based on validation set performance) and froze every layer in
the architecture besides the SN. After more training, we saved this fully-adapted
architecture and used it as the starting point for expert layers going forward.

To learn the PEN parameters, we first initialized each expert using the
weights of the SN as W ei ← W s, i = 1, . . . , ns. This ensures that individual
experts do not overfit the corresponding source subjects, which could adversely
affect their generalization to target subjects (we describe this below). The initial
learning of the CN was done in isolation from the rest of the network. Only the
outputs of the fine-tuned ResNet were used as input (z), and the W c,0 was op-
timized by minimizing the loss αs

c +λ1α
s
r using the 1-hot encoding of the source

2 For instance, only the ResNet features of target subjects need be provided as input
to the adapted model, as original face images cannot be reconstructed from those
features.
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Algorithm 1 Personalized Experts Network (PEN)

Source Learning Input: Source persons data P (s) = {p(s)1 , . . . , p
(s)
ns }

step 1: Fine-tune ResNet weights (W r−net) and optimize SN (W s)
step 2: Freeze ResNet weights and fine-tune SN (W s)
step 3: Initialize the experts (W e

i ←W s) and optimize PEN (W s,W c)

Target Adaptation Input: Target persons data P
(t)
ad ← n% of P (t) = {p(t)1 , . . . , p

(t)
nt }

step 1: Fine-tune PEN weights (W s,W c) using adaptation data P
(t)
ad

Inference Input: Unseen target persons data P
(t)
un = P (t) ∩ P

(t)
ad

Output: (ỹv, ỹa)← PEN(P
(t)
un )

subjects’ ids as ground-truth labels (c). Then, the joint learning of the PEN was
performed by minimizing the loss in Eq.(1). We noticed that the model with the
individually tuned experts to data of each subject (thus, in isolation from the
selector) generalized worse to target subjects than when only the joint learning
of the selector and the experts was attempted. For this reason, we report our
results only for the latter setting. Also, we noticed that doing the joint learning
for a large number of epochs even led to overfitting of source subjects (on their
left-out portion of the data). For this reason, we used the early stopping strategy,
which prevented the model from overfitting after only five epochs. This model
was subsequently used for further adaptation to target subjects by minimizing
the PEN loss (Eq.(8)) on the adaptation data of target subjects – see Sec. 4.
These learning and inference steps are summarized in Alg. 1.

We implemented the PEN architecture using the Keras API [21] with the
Tensorflow [22] back-end. For the soft-max and fcls, we used the existing im-
plementations. The layer sizes were 2048 x 9 (for a total of 18441 parameters
including the 9 offsets) for the CN and 2048 x 2 (for a total of 4098 parameters
including the 2 offsets) for a given expert. The reweighting part of the weighted
sum was performed via a custom Lambda layer that took the tensors output
by the CN and the experts as input and scaled the outputs of each expert by
the corresponding CN output. Afterwards, the scaled components were summed
via an Addition layer and output as the overall network output. During training
with source data, mean-squared error was used to train with this overall out-
put, and categorical cross-entropy loss was used to train with the output of the
CN. However, to implement the PEN loss, we created a custom loss function
that performed L-1 regularization on the pre-softmax- activation CN output by
taking the mean of the absolute value of the pre-activation tensor and sum-
ming it with the categorical cross-entropy loss. The parameter optimization was
then performed using the standard back-propagation algorithm and Adadelta
optimizer with the default parameters. The details of the employed validation
settings are provided in the description of the experiments.
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(a) (b)

Fig. 2: The joint distribution of the labels of affective dimensions: valence and
arousal, in source and target subjects. By personalizing the PEN using adapta-
tion data of target subjects, we reduce the difference between two distributions.

4 Experiments

To demonstrate the effects of the model personalization using the proposed PEN
approach, we used image sequences from the multimodal affect database REmote
COLlaborative and Affective (RECOLA) database [9] , used in the Audio/Visual
Emotion Challenge and Workshop (AVEC) 2016 [10] This database contains four
modalities or sensor-signals: audio, video, electro-dermal activity (EDA), and
electro-cardiogram (ECG). The data are synchronized with the video modality
and coded by five human experts. Specifically, the gold standard labels (i.e., the
aligned codings) for two affective dimensions - valence and arousal - are provided
by the database creators. The time-continuous codings for each dimension are
provided on a scale from -1 to +1. For our experiments, we used the publicly
available data partitions from AVEC 2016, namely, training (9 subjects) and
development (9 subjects) sets. We refer to these as source and target persons.
The video of each person is 5 mins long (25fps), resulting in ∼7k image frames
per person after the face detection using Faster R-CNN [17]. We used the pro-
cessed face images as input to the models, and the output was the estimated
levels of valence and arousal per frame. The models’ performance was evaluated
in terms of Root-mean-square-error (RMSE) and concordance correlation coef-
ficient (CCC), both of which were used as competition measures in AVEC and
were computed on the pairs of model estimates and the gold-standard labels.

We performed the following experiments: (i) the SN and PEN models trained
and tested on the source subjects (P (s)), in order to evaluate the modeling power
of the latter when fitting the data. We denote these models as s-SN and s-PEN.

(ii) These models were then adapted using the adaptation data (P
(t)
ad ), a varying

portion of the data from target subjects, and evaluated on the non-overlapping
data of the target subjects. The data of target subjects were split into the adap-
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tation and test data at random. Specifically, we formed P
(t)
ad by incrementally

sampling the following amount of data: n = 5%, 10%, 20%, 30% and 50% from
each target subject and then combining the data across the subjects. For exam-

ple, from 7k frames per target subject, n = 5% led to P
(t)
ad of size 350*9=3150

images, and for n = 50% the P
(t)
ad size was ten times larger.

For testing, we always used the same (nonoverlapping) 50% of target subject
data. The goal of these comparisons was to assess the models’ behavior when
using a different amount of target subject data to adapt the deep networks. The
main premise here is that due to the modeling flexibility of the PEN, it would
be able to better adapt to the target subjects than would SN. To show the
benefits of using the data of source subjects to learn the (non-adapted) models,
we also tested the SN and PEN model architectures trained from scratch on the
5 different adaptation sets P

(t)
ad formed from the n% of target data as described

above and evaluated on the test set, i.e. the left-out 50% of target subject’s data.
(iii). We refer to these settings as target SN (t-SN) and target PEN (t-PEN),
respectively.

To form the base models, we first trained the s-SN together with the ResNet
(see Alg.1). This was accomplished using 80% of the source data (evenly sampled
from each subject) while the remaining 20% were left out for the model valida-
tion. We found that 10 epochs were sufficient to fine-tune the ResNet without
overfitting it due to its large number of parameters and the limited number of
data used to tune the network. Further optimization of the SN and PEN con-
figurations was performed using 30 epochs for training the models, which was
enough for the models’ loss to converge. To select the regularization parame-
ters when training s-PEN, we cross-validated (λ0, λ1) using the following val-
ues {10−4, 10−3, .., 0, 1, 10, 100}, with 10−3 performing the best for both. During
model adaptation and training of the target models, we used the same regu-
larization parameters. Note that for these models, no subject id was provided
during the adaptation/training, as we assumed that these are available only for
the source subjects.

Table 4 compares our networks initially trained with source data, s-SN and
s-PEN, with the t-SN and t-PEN, trained from scratch using only n% of target
data, as mentioned above3. The results show that the initial training of the SN
and PEN on the source data improved performance on target test data, com-
pared to the t-SN and t-PEN. This evidences that the proposed models were
able to efficiently leverage the data of the source subjects during the estimation.
Moreover, the s-PEN approach eventually outperforms the SN architecture after
as little as 10% of target (adaptation) data, due to its more flexible architec-
ture that allowed it to easier adapt to target population data. Furthermore, we
observe that with even as few as 5% of target subjects’ data, both models’ per-
formance improves largely, with the s-PEN improving more advantage as more
adaptation data become available. We assume that these (supervised) adapta-
tion data are sufficient to constrain the feature/label space of the source models,

3 Note, however, that the Resnet used to extract the features for these models was
fine-tuned using the labeled source data.
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n[%] 0 5 10 20 30 50

V
a
le

n
ce

s-SN 0.72 0.80 0.80 0.82 0.82 0.82
s-PEN 0.71 0.80 0.82 0.84 0.85 0.86
t-SN N/A 0.71 0.77 0.8 0.81 0.82
t-PEN N/A 0.75 0.79 0.81 0.82 0.83

A
ro

u
sa

l s-SN 0.66 0.79 0.80 0.81 0.82 0.82
s-PEN 0.65 0.79 0.81 0.83 0.84 0.85
t-SN N/A 0.73 0.77 0.79 0.81 0.81
t-PEN N/A 0.76 0.79 0.8 0.81 0.82

Table 4: Performance on target test data in terms of CCC after adapting the
networks with n% of (non-overlapping) target data.

Fig. 3: Per-subject valence and arousal estimation performance on target test
data of source-trained models adapted with limited target data. The s-PEN
model has more consistent performance than the s-SN model over all of the
target subjects.

rendering more efficient models for the target population. We also note the high
performance of the t-SN and t-PEN, even with only 5% of the target data. We
attribute this to the fact that they use the same ResNet feature extractor that
was fine-tuned (via the s-SN) with the source labeled data. At the same time,
we also note that s-SN and s-PEN have been trained on significantly more data.
This, in turn, allowed the s-PEN to outperform the t-PEN by larger margin than
is the case with their SN versions.

To analyze the effects of the model personalization to the target population,
in Fig. 3 we show the CCC values of the s-SN and s-PEN models per target
subject. We averaged the per-subject CCC values for both valence and arousal
across all of the adaptation data sizes, and sorted the subjects based on the
absolute difference in the models’ performance for each subject. We observe
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Fig. 4: Sparse Combinations of Experts via CN. Left: the selector learns the
weighting of the outputs for the source subjects during source training. Center:
the selector weights are effectively random yet sparse for the target subjects from
source training. Right: after some fine-tuning on target, the selector begins to
lose its sparse weighting despite regularization.

that on 4/9 subjects, s-PEN largely outperforms s-SN in estimation of both
valence and arousal levels. On the remaining subjects, s-SN outperforms t-PEN
- however, these differences are less pronounced. For instance, the s-PEN model
consistently produces average CCC values for each subject that are around 0.8.
This experiment shows limitations of the “one-size-fits-all” machine learning
architecture on certain subjects. By contrast, the modeling flexibility of the s-
PEN allows it to better fit the data distribution of the target population.

We depict the effects of our custom loss function based on the the L-1 (spar-
sity) regularization as well as how the CN was learning a combination of the
source subjects in Fig. 4. These three plots show the progression of the average
outputs of the CN weights per subject as our algorithm advances. As seen in
the first image, the source weights are nearly an identity matrix after training
only on the source subjects. This allowed the s-PEN to specialize each expert to
one source subject, while also sharing the knowledge. However, when evaluated
on target subjects, the selector produces different weights after unsupervised
fine-tuning to those subjects (i.e. it is ignorant of the subject ids). Compared
to the third image, these “subject” weights are still more sparse than when
the training is done using data of target subjects. This is because the former
uses the pre-trained selector network, resulting in the more sparse weights. By
contrast, without leveraging this information, the s-PEN finds it more challeng-
ing to specialize in target subjects (as measured by the distribution of its CN
weights (c1 . . . c9)) after the fine-tuning, despite the regularization of its weights
(perhaps, due to the lack of subject ids). On the other hand, we found that by
increasing the level of regularization adversely affects the model’s performance,
diminishing the role of the valence-arousal estimation loss.

Finally, in Table 5, we have included the s-PEN model’s performance along-
side the performance reported recently by [23], where a ResNet-50 with Gated
Recurrent Unit (GRU) networks for sequence estimation is used for estimation
of valence and arousal from videos of the same target subjects. We show that
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Model Valence Arousal Avg.

s-PEN (0% of fine-tuning data) 0.71 0.65 0.68
s-PEN (5% of fine-tuning data) 0.80 0.79 0.80
End2You 0.58 0.41 0.50
AVEC 2016 Baseline 0.61 0.38 0.50

Table 5: Comparison to End2You and AVEC 2016 Baseline [23].

the proposed s-PEN exceeds their reported performance by large margin. How-
ever, these results may not directly be comparable because of possibly different
evaluation settings.

5 Conclusions

In summary, we propose a novel strategy for the personalization of deep convo-
lutional neural networks for the purpose of valence and arousal estimation from
face images. The key to our approach is the personalization of the mixture of
experts architecture using a limited amount of data of target subjects. These per-
sonalized models have clear advantages over the compared single-expert (“one-
size-fits-all”) models in terms of how well are able to adapt to the target popu-
lation when using limited amounts of labeled data from target subjects. Given
the limitations involved in obtaining annotated valence and arousal data due to
cost of expert labor and large variations in levels of expressiveness between peo-
ple, model personalization can be key in working with limited data with many
different domains. The audio-visual data we used come from sessions limited to
5 minutes, yielding ∼7k image frames per subject, and we randomly sampled
and split this data into non-overalapping training, adaptation, and test sets.
However, ideally the system would have access to multiple sessions, allowing the
proposed model to actively personalize as the interactions progress, and give us
enough sessions so that we could draw samples that are further apart in time and
less likely to be correlated. While minimizing correlation is not as critical in this
work as in non-personalized situations, future work should explore how different
methods of pseudo-random sampling of frames for constructing the adaptation
and the hold-out test sets affect the results.
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7. Contributions 
 
In this thesis, I made two contributions to the field of personalized machine learning. They are as 
follows: 
 

1. I created a training algorithm that involves training the ResNet and regression layer(s) together 
followed by freezing the ResNet weights and fine-tuning the weights of layers that appear 
deeper in the network. This training strategy was created upon noticing that fitting the ResNet 
and regression layer(s) together boosts performance relative to fitting the regression layer(s) 
alone. 
 

2. I demonstrated that personalization improves upon state-of-the-art performance given by one-
size-fits-all models (provided that the selector for weighting the experts is optimized properly). 

8. Limitations 
 
Some of the limitations of the research performed in producing this thesis have been mentioned 
in the previous sections. Nevertheless, I will briefly summarize all of the limitations of my work 
below (including those limitations previously mentioned): 
 

1. Selector Training: In the case of the AffectNet dataset, when simulating a selector with 
perfect knowledge (i.e. it predicts every given emotion with 100% accuracy), the resulting 
predictor surpasses the one-size-fits-all model by a large margin. Other experiments 
performed have deduced that emotion expression classification needs to be 80% accurate 
to improve arousal estimates and 85% accurate to improve valence estimates. However, 
I have been unable to learn a selector that meets these criteria via gradient descent. More 
analysis and research into why this is happening should be addressed in future work. Such 
future work could even produce novel tools and methods of approaching the problems 
addressed in this research (e.g. multiple models currently exist for estimating emotion 
expressions from images that could potentially be used in-place of this learned selector; 
while professional valence and arousal annotators typically disagree regarding the exact 
values of valence and arousal in a given image, even members of the general public would 
less likely disagree regarding the emotion expressions contained in an image, suggesting 
that a tool that takes an emotion and face as an input and returns the contained valence 
and arousal estimates based on the given emotion would be useful). 
 

2. Temporal Correlation: When working with AVEC, videos were split into frames and 
randomly shuffled to form datasets as described in a previous section. However, from a 
machine learning standpoint, this could cause issues in that very similar frames (such as 
two frames from the same second) could appear in both the training and validation sets, 
meaning that our models could have essentially seen frames during evaluation that were 
part of its training set. Therefore, this could have resulted in performance values that were 
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better than what the values should have been due to not taking temporal correlation into 
account. Future work should be done to shuffle in a way that mitigates this issue. 
 

3. Training Set Size Differences: When evaluating the effects of learning with a small 
amount of target data, models originally trained with source data and then fine-tuned with 
target data were compared to models learned from target data alone. It was found that 
training on source first before fine-tuning with target data improves performance, but it is 
important to note that this phenomenon could be simply due to the sheer number of extra 
training examples a network trained on source would observe compared to the small 
amount of examples a network trained only on limited target data would observe. At the 
same time, target-trained networks performed very well with even small amounts of target 
data; this could be attributed to the fact that even though such networks had regression 
layers that had not been trained on source data, they still used features from ResNet 
architectures that had weights from training on source data. More analysis of the effects 
of adaptation with target data versus training entirely from scratch with the same amount 
of target data should be performed in light of these observations. 
 

4. Population Adaptation versus Person Adaptation: Experiments with AVEC were 
performed in a way such that one expert was trained per source subject, but when it came 
to adapting to target subjects, all of the experts were adapted to all of the target subjects 
together (i.e. their data were pooled and the experts and selector were together adapted 
to all of this pooled data to minimize differences between weighted sum of expert outputs 
and the ground truth). This is still a valid method of semi-supervised domain adaptation, 
given that this method does not utilize the subject ids during training, but this cannot be 
called an instance of personalized domain adaptation because the target domain in this 
case is a population of target subjects and not an individual target subject. Future work 
should be done to observe how well this training algorithm performs when the target 
domain consists of data from a single person instead of data from a population. 
 

5. ResNet Feature Vector Size: While working with both the AffectNet and AVEC datasets, 
the experts and selector layers (or just the sole shared network in the case of the general 
model) received input directly from the ResNet. The output of the ResNet has width 2048, 
meaning that any layer performing regression to valence and arousal outputs is a 2048 x 
2 weight matrix, and the selector layer is of size 2048 x n (where n is the number of 
experts). While it is possible to find locally optimal solutions for these matrices via gradient 
descent, this does not allow for much flexibility while finding the solution. Therefore, more 
experiments should be done that add additional dense layers with nonlinear activation 
functions (such as ReLU) that shrink the feature dimension in-between the ResNet and 
any layers previously receiving ResNet features as input to examine the effects of having 
better-processed features along with a smaller number of weights to use in the last layer. 
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9. Future Work 
 
There are at least two additional areas where future work can take place aside from addressing 
the limitations discussed above. One is to work with more datasets (especially since the use of 
only two datasets could be seen as a limitation as well). An additional database with which 
experimentation and evaluation would be useful is the Automatic Sentiment Analysis in the Wild 
(SEWA) database [27]. This database can be thought of as a larger version of the AVEC dataset, 
with which more experiments and different types of experiments can be performed. First, the 
SEWA database contains data from 398 subjects that are together from 6 different cultures [27]. 
From a personalization perspective, it would be interesting to examine how the training strategy 
employed with these other datasets performs. Specifically, one would be able to test how well 
models obtained through “personalization” to a culture, personalization within a culture, and 
personalization irrespective of culture perform against each other. 
 
A second dataset that would be great for testing against the methods used in this paper was 
obtained partly through a collaboration between two of the MIT Media Lab groups: the Affective 
Computing Group and the Personal Robots Group. Through this collaboration as well as with the 
Affective Computing Group’s own resources, the Affective Computing Group obtained videos of 
children interacting with robots, specifically a Tega robot created by the Personal Robots Group 
and a NAO robot owned by the Affective Computing Group. Two types of children participated as 
subjects in this study: children diagnosed with autism and children without autism. These videos 
were professionally annotated with engagement levels and valence and arousal measures, and 
they were additionally annotated via the OpenFace toolkit with information such as locations of 
the facial landmarks and bounding boxes [19]. All of this data and information is currently stored 
in the Affective Computing Group’s data storage. 
 
Due to the differences between the ways in which children of the two groups express emotions 
and engagement, a model for predicting engagement, valence, and/or arousal given video frames 
that was trained on all of the data would be expected to perform poorly. If a type of personalization 
through the techniques discussed were to be applied, one would hope that a model would be able 
to control for the differences between types of children and accurately predict engagement and 
expressed emotions. 
 
Aside from training and testing models on more datasets, there is another technique that would 
be interesting to explore as a potential personalization and domain adaptation method. This 
technique is known in the academic literature as “student-teacher learning”. It involves first 
training a complex network (the “teacher”) on a dataset and obtaining predictions from that 
network. Then, a simpler network (the “student”) is trained on the same dataset except that the 
labels used are the predictions of the more complex network. By training the student to predict 
like the teacher on the given data, this method accomplishes the task of “model compression”, 
which trains a simple model to perform like a complex one. 
 
Student-teacher learning and model compression typically are not domain adaptation techniques. 
However, a recent paper discusses a “novel domain adaptation method for DNN acoustic models 
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based on the knowledge distillation framework” [28]. The research in this paper comes from a 
different context in that it deals with audio data instead of image data and uses classification 
models to predict discrete classes instead of regression models to predict over a continuous range 
of values. At the same time, it should be possible to derive an analogous algorithm from the 
methods used in their work that can be utilized with the problems explored here. Adapting their 
methods to problems of valence and arousal estimation from face images is definitely an area for 
future work.  

10. Conclusion 
 
As machine learning becomes more powerful, its applications grow more numerous as well. Facial 
expression analysis is one of the latest applications of machine learning in the realm of affective 
computing. If machine learning systems were able to measure engagement and expressed 
emotions based on facial expressions, then as a minimum, human-robot interactions could be 
greatly improved, and systems that improve users’ emotional states could be more reliably 
developed. Unfortunately, accurate estimation of expressed emotions based on facial 
expressions is difficult to do both due to the limited amount of labeled training data and the 
numerous differences between various types of people. Personalized machine learning appears 
to be one solution to this problem, and domain adaptation may be the way to personalize models 
to give more accurate results both on seen and unseen data. However, the exact manner in which 
the domain adaptation should or could be performed is still an open question. 

My research sought to find the best ways to perform this model adaptation with the end goal of 
creating a personalized machine learning system that can accurately predict valence and arousal 
given images of facial expressions. The end system’s change in accuracy relative to a baseline 
model and required amount and type of training data provided important insight into ways in which 
personalization can be achieved in related fields. Additionally, my research showed the benefits 
and drawbacks of using a mixture of experts approach to perform this domain adaptation. Based 
on the results from working with the AffectNet and AVEC datasets, the mixture of experts 
approach shows promise in that models that employ it perform as well as baseline models if not 
better, but more research needs to be done with regard to exploring how to effectively train the 
selector. This is definitely something to research when working with more datasets and when 
changing the network architecture to reduce the number of features. At any rate, the methods 
discussed here have contributed a new technique and foundation of a solution to the problem of 
the estimation of valence and arousal from face images. 
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Appendix 
 
Code Guide 
 
Function Description 
fit_model The purpose of this is to fine tune the Resnet to target context 

(dataset) and also extract the deep features for training more 
sophisticated models for affect estimation. 

get_preds_from_model Given model weights, obtains output features and predicted 
valence and arousal values and saves them to a csv file 

fit_reduction_network Given ResNet features and corresponding labels, trains a series 
of dense layers and gets dimension-reduced output features 
and saves them to a file 

train_experts Given reduced features and corresponding labels, trains a 
mixture of experts architecture (in a supervised or unsupervised 
way based on settings) and saves output features and 
predictions to a file 

 
CSV File Structure 
 
Each row in a CSV file consists of entries corresponding to an input example that can be 
grouped as follows (from left to right): 
 
pid | features | labels | predicted labels | group flag 
 
Column Group Description 
pid Unique identifier 
features ResNet output features  
labels Ground-truth labels for example 
predicted labels Regression layer predictions 
group flag Train/Val/Test group indicator 
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