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Abstract

We present a language for generic computation using Factor Graphs, a computation-
ally convenient data structure abstraction that has been popularly utilized for efficient
inference in the framework of probabilistic graphical models cf. [22, 15, 30].

We show that message passing over Factor Graphs is Turing-complete. As an
important contribution of this work, we show that a Factor Graph can be realized
using any Publisher-Subscriber (PubSub) infrastructure. The resulting computational
framework has multiple desirable properties.

We utilize different benchmark problems to demonstrate these properties of ex-
pressibility, ease of use, and performance, of our Factor Graph Computing framework:
(a) Integer Optimization for hard problems, (b) Page-Rank, and (c) Singular Value
Decomposition (SVD). We implement Factor Graph Computing on top of two dfferent
PubSub systems: Redis's out-of-the-box PubSub and a PubSub that we have built on
top of the Ligra graph processing system[25]. Both of these offer single machine Pub-
Sub implementations. We find that our single machine implementation is comparable
to (a) state-of-the-art commercial optimization solvers [17] for challenge optimization
benchmarks [18], (b) native Ligra [251 for large scale PageRank, and (c) a hardware
optimized implementation over 68 machine cluster of Apache Spark for computing
SVD [11]. In addition, we present a new algorithm for Integer Optimization problems
using Belief Propagation, which is of independent interest.

Our framework using Factor Graphs brings computation next to data: this re-
moves the communication bottleneck present in modern distributed computation in-
frastructures.

Thesis Supervisor: Devavrat Shah
Title: Professor, Department of EECS
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Chapter 1

Introduction

In this work, we propose a language for computation using Factor Graphs [301. A

factor graph is a bipartite graph which has two types of nodes: variable nodes and

factor nodes. Figure 1-1 shows an example of a factor graph. Formally, factor graphs

were introduced in [29, 13, 12] in the context of decoding for graph-based codes

and more generally for inference in probabilistic graphical models (also see [22, 15,

33, 9]). Distinct data and distinct computation functions are associated with each

variable node and factor node; in addition, each edge also has data, called messages,

associated along both of its directions. Variable and factor computation functions

update the data associated with edges, when the appropriate node receives a message.

Computation happens through an iterative message-passing process between nodes

of the factor graph. When a message along a particular edge direction is updated

111f2

V3  f3

= message

Figure 1-1: An example of a Factor Graph.
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by a node, it triggers the opposite end-point of the edge to re-compute data along

all of its out-going edges using the appropriate node's computation function, which

further triggers updates. Computation can be implemented in either an asynchronous

or synchronous manner.

The main contributions of this work are the following:

1. Factor graphs are computationally expressible (Turing complete)

2. They can be implemented efficiently using Publisher-Subscriber (PubSub) in-

frastructure

The main components of a Publisher-Subscriber system are publishers, subscribers

and channels. Communication happens between publishers and subscribers through

channels, and PubSub infrastructure has been built to perform this communication

efficiently. This communication works as follows: Each publisher can publish an event

(or message) to a channel, which in turn broadcasts that message to all subscribers of

that particular channel. Upon receiving a message from its subscribed channel, some

computation can be triggered at a subscriber. For a factor graph, each direction of

each edge can be considered a channel. One of the end nodes (variable or factor)

can be considered a publisher which publishes to the edge's channel, and the other

end node (factor or variable) is a subscriber subscribed to that edge channel. Upon

receiving a message from its (publisher) neighbor, the subscriber node is activated

to run its node computation function. Factor graphs are designed to have extremely

light-weight messages traversing along its edges and PubSub systems are optimized

for communicating these light-weight messages at a very high bandwidth, making it

ideal for implementing factor graph based computation.

To answer the natural question of what factor graphs can compute, we establish

that our factor graph "language", based on message-passing between nodes, is Turing

complete. This means that, unlike prior work, our language is not restrictive in its

computational power.

To understand the performance of factor graph computation, we consider imple-

mentations of factor graphs using two PubSub systems: an out of the box (unopti-

16



PubSub
Broker

-.- Publisher Subscriber.,

Subscriber

VaNe LJ Factor

States Publisher 01" &, ',_- Subscriber Node
2 3  States

C Published Message

Figure 1-2: Diagram of a PubSub system of a Factor Graph

mized) asynchronous PubSub system using Redis, with computation functions written

in Python, and a PubSub system that we built on top of the Ligra framework, written

in C.

With these two implementations, but the same "program", we study three bench-

mark problems: (a) Integer Optimization to establish that our system can solve

extremely challenging computational problems; (b) Computing PageRank for large

graph as these have been the benchmarks used historically by such frameworks, in-

cluding Ligra; and (c) Computing Singular Value Decomposition (SVD) of a large

matrix as it is the work-horse of linear algebraic computations that are prevalent in

scientific computation and modern machine learning.

We show that for easy optimization problems, our framework works as well as

popular commercial optimization solvers cf. Gurobi [17]. For benchmark challenge

binary optimization problems [18], our framework manages to converge and find an

integer solution while Gurobi seems to struggle.

For the PageRank benchmark, we utilize the Orkut network dataset from [21].

We compare the performance of our implementation with that of native Ligra. Our

implementation using Ligra-based PubSub takes similar time as that of Ligra sug-

gesting that our framework is no worse than Ligra for simple PageRank-like problems

that are canonical questions for a Ligra-like language.

Finally, we compare the Singular Value Decomposition (SVD) computation for a

very large synthetic matrix with 51M non-zeroes in a 1Mx1M square matrix. Our

framework using Ligra-PubSub obtains similar performance as the Spark benchmark

17



Factor Graph
Conversion

Factor Graph Factor Graph

Figure 1-3: Flow of data through Factor Graph Compute system using PubSub.

[11], however, using a single machine compared to 68 executors utilized in [11] along

with hardware acceleration. In terms of overall resource utilization, this is >13x

improvement (and this ignores all the overhead involved in setting up a Spark cluster,

etc.).

This work has two distinguishing advantages over prior work. One, our language

based on message passing over factor graphs is Turing complete. That being said, the

factor graph view of problems is not necessarily intuitive. However, it is possible to

design "factor graph converters" for many problems, including: optimization, linear al-

gebraic operations, and loss function minimization in machine learning (i.e. stochastic

gradient descent) as shown in Section 2.2. Second, the language (and hence program)

is decoupled from its implementation, which is based on PubSub. By utilizing the

underlying PubSub, the same computation can run in different environments with-

out changing a line of "application" code, whether it is single-machine environment,

like that based on Redis or Ligra, or a multi-machine environment, such as Apache

Kafka [19]. This is particularly helpful property for transitioning from prototyping

to production environments.

18



Chapter 2

Computation Framework

We now present our factor graph based language for computation. First, we establish

that this language is Turing complete. We then discuss how many common problems,

including graphical model inference, PageRank computation, matrix multiplication

and singular value decomposition, as well as loss-function minimization for model

learning in machine learning, can be represented in this language in a natural manner.

2.1 Factor Graph Computing

Factor Graphs were initially introduced as an abstraction for computationally efficient

inference over probabilistic graphical models [22]. They have been shown to be a

universal representation for any probabilistic graphical model. Generally, such a

factor graph has been used to derive heuristic algorithms like Belief Propagation [34].

However, by viewing the factor graph in generality rather than restricting to belief

propagation like algorithms only, we will argue that it can lead to a Turing complete

language.

2.1.1 Language of Factor Graph

We now describe the language of Factor Graph Computing [30].

Factor Graph: A factor graph g = (V, F, E) is a bipartite graph where V = {vi,. . . , v}

19



is the set of variable nodes, F = {fi, . . . , f,} is the set of factor nodes, and E C V x F

denote the set of undirected edges between variable nodes V and factor nodes F. We

shall use Q to denote rational numbers.

States and Messages: Each variable node v E V has finite dimensional state x, E QPv

associated with it for some p, 1; each factor node f E F has finite dimensional

state yf E QPf associated with it for some pf 1.

Each edge (v, f) E E with v E V, f E F has two messages associated with it, one

for each direction: message m,,f E Qbv is from variable node v E V to factor node

f E F and message mf , E Qbf in the opposite direction.

Each variable node v E V has message-update function UPDATEVARv : Qav x

F M Qbv associated with it; each factor node f E F has message-update function

UPDATEFACf : Qaf x V g Qbf associated with it. Here av, bv for any v C V and

af, bf for any f E F are such that

av = pv+ 1 bg, af = pf + E bu.
gEA((v) uEAf(f)

where K(v) = {g: (v, g) E E} represents neighbors of v and Af(f) = {u : (u, f) E E}

represents incoming neighbors of f in the factor graph g with respect to E.

Computation Dynamics: During the execution of message passing, a message can

be dynamically updated using other messages or states from nodes. Messages are

the only truly dynamic data structures that need "communication" along edges E

of a factor graph. States associated with variable or factor nodes are allowed to be

updated only as an "external" input - that is, states can not be modified by messages.

Messages are updated as follows: Precisely, for any (f, v) E E with f E F, v E V,

the message mfv is updated as

mfyv = UPDATEFACf (yf; musf, u E K(f); v); (2.1)

20



and for any (v, f) E E with v E V, f E F, the message mvsf is updated as

mv-q = UPDATEVARv(xo; mgv, g C K(v); f). (2.2)

In the above, by explicitly having v as an argument in UPDATEFACf and f as an

argument in UPDATEVARv, we are allowing for flexibility to have different update

functions for different edges incident on each factor and variable node.

Modes of Computation: There are two modes of computation: asynchronous and

synchronous. In the asynchronous mode of computation, the message update along

edge (v, f) E E for v E V, f C F from v -+ f is triggered when any of the messages

mg-v for g E N(v) is updated; similarly, the message update along edge (v, f) C E for

v c V7, f E F from f -+ v is triggered when any of the messages musf for u E N(f)

is updated.

In the synchronous mode of the computation, in each time step, all messages from

variable nodes to factor nodes are updated simultaneously and then messages from

factor nodes to variable nodes are updated simultaneously.

Output: The output of the computation is viewed as the value associated with the

messages. Specifically, the value of a pre-designated subset of messages can be viewed

as the value of computation output at any given instance.

2.1.2 Turing Completeness of Factor Graph Message Passing

To establish the expressibility of the language of Factor Graph as a Turing complete

language, we argue that a recursive neural network architecture can be simulated

within the framework of Factor Graph [30].

It has been established that recursive neural network is Turing complete [28].

Therefore, we will be able to conclude that the language of Factor Graph is Turing

complete. The proof given in [30] is as follows:

We start by defining a recursive neural network as considered in [28]. In [28], the

authors defined a processor net as a non-linear dynamical system with an external

21



input. Specifically, let t > 1 denote discrete time. Let x(t) E Qd denote the finite-

dimensional state of the dynamical system at time t with rational values. Let u(t) E

{0, 1}P denote p-dimensional external binary input at each t. The state is updated as

x(t + 1) = a-(Ax(t) + bu(t) + c), (2.3)

where A E Qdxd, b E QdXP and c E Qd are system parameters; with notation

o(qi, --- , qd) = (o-(qi), , (qd)) for qi, . . . , qd E Q; and the sigmoid function o-

R -+ [0, 1] is defined as

0 if q<0

o(q) q if q E [0, 1] (2.4)

1 if q > 1.

Theorem 1. Any processor net can be simulated using factor graph computing in

synchronous mode.

Proof. To establish Theorem 1, we need to show a factor graph representation for

any processor net. Such a factor graph is shown in Figure 2-1. Specifically, given a

processor net as described by (2.3), we simulate it using a factor graph which has

two variable nodes V = {v 1 , v 2 } and a factor node F = {f}. The state associated

with node v, is xvi = 0, while the state associated with v2 is the external input of the

processor net, xV 2 = u(t). The state associated with factor node f, yf = 0 as well.

The message update function associated with factor node f is given as:

UPDATEFAcf (yf; mri-+f, mv 2 -+f; v) (2.5)

a-(Amvlf + bmV 2 'f + c) if v = V, (2.6)
null if v = v 2-

The message update function associated with variable nodes v, and v 2 are given

22



UPDATEVAR V (xT 1 ; mf_+ 1 ; f) = mf+Vi,

UPDATEVARo 2 (xv 2 ; Mf-V 2; f) = -V2.

(2.7)

(2.8)

As shown in Figure 2-1, we initialize messages as

mvi+f = x(1)

mV2 -f = u(1)

Mf _+V= x(1)

mfav2 = null.

(2.9)

(2.10)

(2.11)

(2.12)

Here x(1), u(1) are the initial state of the processor net and the external input, respec-

tively. Let the factor graph computation be done in synchronous mode with the state

of v 2 being updated in time t to be the external input u(t). It can be easily checked

that the mfv, at the end of time instance t is precisely x(t + 1) of the processor net,

which completes the proof.

,0 =(Am +bm 2 f +c)

V1

M,,. 4f =f

MV2-+f = U (>0
mo2-++V ==nul)

V2 U(t) - m -o

Initialize:

Mvl-+ = x(1)
mv 2 -+f = U(1)
mf...4v = x(1)

Mf -+V2= null

Figure 2-1: Factor Graph that simulates a o-process net (a la recursive neural
network). [30]
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2.2 Applications

We now show how our factor graph language can be used to represent a variety

of computations, just by specifying the appropriate dynamics: initial messages and

variable and factor update functions. We provide examples of inference over graphical

models, PageRank, Linear Algebra, and loss function minimization for model learning

in machine learning via Stochastic Gradient Descent algorithm[30].

2.2.1 Inference Over Graphical Models

Consider a collection of n random variables, represented as X = (X1, ... , X E' 1 .

Let Pg : E -+ [0,1] represent their joint distribution. As long as Pg(J) > 0 for any

a= (o-i, ... , On) E En, there exists a probabilistic factor graph representation for Pg.

Specifically, there exists a bipartite factor graph g = (V, F, E) with V = {v1 , ... , v4}

corresponding to n variables, F = {fi, ... , fm} corresponding to factors and E C

V x F. With each factor node fi, is an associated factor function gi: EKfIU0 -+ R+

such that for any a E En,

m

P, (6) oc g ( j : vj E .(fi)) (2.13)
i=1

Z gi (og : Vi EZ Jvfi)), (2.14)
i=1

where Z = E6 Er fi=1 gi (o3 : vj E K(fi)) is the normalization constant.

The two inference tasks we are interested in are: (a) Computing the marginal

distribution: the marginalization of Xi for each i < n given (2.13) (b) Finding the

Maximum A Posteriori (MAP) assignment: the 0 E Z1 with maximal probability The

factor graph representation of our joint probability distribution is useful to design

computationally efficient heuristics known as Belief Propagation (BP) algorithms.

The variation of BP for Marginalization is known as sum-product and BP for MAP is

known as max-product. These algorithms naturally fit the Factor Graph Computation

framework.
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In both sum-product and max-product, the underlying graph for Factor Graph

Compute is the same as the probabilistic factor graph. The states associated with

variables v E V are null and the states associated with factors f E F are the factor

functions gf. For each (v, f) E E, let msy, mfav E QIE . Without loss of generality,

let E = {1, ... , k}. Then, we can view mvof, mfe, as k dimensional vector with

mv 4 f[j] (resp. mf ,[j]) representing the jth component of the message, 1 < j < k.

In the sum-product algorithm, messages are iteratively updated as follows: for

any (v, f) E E,

mv+f[j] = J mrf÷V[j], (2.15)
f'EAf(v)\{f}

mf -v [j] =gf (o-v =j; -v',v' E A(f)\v) x

S v'ezA(f)\v

For max-product, the (2.15) remains the same but (2.16) changes as

mf-V[j] = max gf (-= j; -v,, v' -EK(f)\v) x01v iEF:V'ENr(f)\v

J mv,-+f&v1. (2.17)
v'EN(f)\v

It can be easily checked that (2.15), (2.16) and (2.17) lead to defining appropriate

UPDATEVAR and UPDATEFAC functions, and hence they can be viewed as instances

of Factor Graph Compute.

2.2.2 PageRank

We show that we can compute PageRank using Factor Graph Compute. Let G =

(VG, EG) be a graph with vertices VG = {1,... , n} and directed edges EG C VG x VG-

Let Vn'(i) = {j E VG (j, i) C EG} be the set of incoming neighbors of i and

A/ut(i) ={j E VG : (ij) E EG} be the set of outgoing neighbors of i.
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The PageRank of node i E VG, denoted as PR(i), is defined as

1 - a PR(j)
PR(i) = n S IN ut (i)I,

jEin (i)

(2.18)

Here, a E (0,1) is the dampening factor. PageRank can be computed by a simple

iterative algorithm where we first set PR(i) = 1/n for all i c VG and then iteratively

apply (2.18). After several iterations this procedure will converge to the correct

PageRank value for all nodes.

We now show how to implement this iterative algorithm via Factor Graph Com-

pute. We define the associated factor graph for computation over our initial graph

G, as follows. Let g = (V, F, E) with

V = {vi, i E VG},

F = {ft, i E VG},

E = {(v, fi), (j, i) E EG} U {(vi, fi)}.

The state of variable node

with factor nodes fi E F is

(vj, fi) E E, with j =A i,

Vi E V, xvi, is set to j out(i)j. The state associated

set to null. We initialize messages as follows. For any

mv3 __ f= 0, mfz4, = 0. (2.19)

For any (vi, fi) c E

1
m = 0, m * = -. (2.20)

n

The message updates dynamics can be written as follows. For any (vj, fi) E E with
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Tnvj_+f, m f __ V.7(2.21)

M = 0. (2.22)

And for (vi, fi),

mn , = 0, (2.23)

mnf,= + & m+ fg. (2.24)

v EA (f )\ vi}

It can be seen that (2.21)-(2.24) lead to the appropriate UPDATEVAR and UPDATEFAC

definitions. The value of PR(i) at any time (after some number of iterations) is just

mnf,, for all i E VG.

2.2.3 Machine Learning and (Stochastic) Gradient Descent

Optimization, and in particular, Stochastic Gradient Descent has become a corner-

stone of supervised learning. This works by observing data (yi, xi), 1 < i < N where

xi are features and yi are targets of interest. The goal of this procedure is to learn a

model that helps predict an unknown target y, given some features x. This can be

viewed as solving an optimization problem of the following form:

minimize n L(yi, xi; 0) + R(9) over 6 C Rd. (2.25)

o E Rd represents the model parameter and L(y, x; 6) represents the loss-function

parameterized by 0 which captures the "loss" or error in predicting target y using

features x, for a specific value of 0. The model regularizer R(9) imposes a penalty for

complex models, where complexity is a function of 0. The gradient descent algorithm
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for (2.25) can be written as follows: components of 0 are iteratively updated as

I n OL OR
Ok+ - O -O-a - (yi, i; ) + () (2.26)

n _00k a6 0)

for 1 < k < d.

We show how this algorithm can be implemented in the Factor Graph Compute

framework in a straight forward manner.

Define a factor graph 9 = (V F, E) with V = {vi,... , V} where Vk corresponds

to 9 k for 1 < k < d, F = {fi, ... , f,, fn+}I where fi corresponds to data point (yi, xi)

for 1 < i < n and fn+1 corresponds to regularization, and all possible edges between

V and F are present, i.e. E = V x F. The state associated with variable nodes is

null, state associated with factor nodes fi, 1 < i < n is the data observation (y , xi),

state associated with fn+1 is null.

All messages are initially set to 0. The associated message update dynamics for

gradient descent are as follows:

mVkf -- mfj-+vk + mffl-+Vk, (2.27)
\ 

(j=1/

MfmVk = {, - aO (yiz; [m f]1<_rd), Kuk (2.28)

a 0k ([mVej ]1<id), i=n+1

for all I < k < d, 1 < i < n + 1. In 2.27, mvkf, for all i is identical and represents

the value of kth component of model parameter.

These messages, which correspond to the model parameter, are the output of the

algorithm. It can be checked that (2.27) and (2.28) provide the appropriate UPDAT-

EVAR and UPDATEFAC functions, thus showing gradient descent can implemented

using Factor Graph Compute. For gradient descent, the above message updates have

to be performed synchronously. If the message updates from factors are coming in

at random and / or asynchronously, the algorithm becomes an implementation of

stochastic gradient descent.
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2.2.4 Linear Algebra

Linear algebra is central to most modern scientific computing. The key operation in

Linear Algebra is matrix-vector multiplication. We argue that it fits into the Factor

Graph Compute model in a seamless manner. To that end, let b E R" be a vector,

A E R n" be an n x n matrix and our interest is in Ab. We define the factor graph

g (V, F, E) as

V = {vi, 1 < i < n}, F = {ff, 1 j < n}, E = V x F. (2.29)

The variable nodes correspond to components of b, the factor nodes correspond to

columns of A. The state associated with all variable nodes is null and state associated

with factor node fi is the ith column of A, which is n-dimensional vector a.=

[Aki]1<k<n. The messages are initialized as follows: for all 1 < i, j < n,

mV-f = b if j = i (2.30)
0 otherwise.

my.7" = 0. (2.31)

The following message updates need to happen only once, in a synchronous manner.

First we send messages from factor nodes to variable nodes and then variable nodes

to factor nodes. The precise update dynamics are as follows: for all 1 < i, j n,

mf3-v = m3,f3 a je (2.32)

M{-f = Ei mj,-+ if j = i (2.33)
0 otherwise.

In the above, ej = [0 ... 1 ... 0] is the vector with one 1 in ith component. Observe

that the message mvif is the ith component of vector Ab. Repeatedly iterating the

above leads to a power-iteration like algorithm which can become the key step for

performing Singular Value Decomposition.
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Chapter 3

Publisher Subscriber (PubSub)

3.1 Background

Publish Subscribe (PubSub) [32] is a widely used software pattern for communicating

"events" between different entities, at scale. A PubSub system consists of Publishers

and Subscribers who do not need to know about each others' existence and com-

municate by publishing / subscribing to pre-defined Channels. This decoupling of

senders (Publishers) and receivers (Subscribers) through the interface of communi-

cation channels has made it a particularly suitable infrastructure for a variety of

applications.

PubSub systems have found many applications such as in gaming, in building chat

systems, asynchronous event notifications [7], stream ingestion [16], and log processing

[19]. Different PubSub systems come with different guarantees and properties. These

include exactly-once, at-most once, or at-least once delivery and processing [16].

PubSub systems have the advantage that neither Publishers nor Subscribers need

to know the communication topology. That is, messages are broadcast without Pub-

lishers knowing the message destination. Decoupling Publishers and Subscribers al-

lows for scaling each independently of the other. The PubSub pattern is similar to

message queues. Unlike message queues, PubSub messages are broadcast and done

so immediately and asynchronously. There is no queuing of messages, and messages

can be processed by multiple Subscribers at once.
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PubSub
Broker

-Publisher Subscriber,-

Publisher -ubscrib

Published Message

Figure 3-1: A diagram illustrating a pubsub system

There are several implementations of PubSub available including Apache Kafka

[19], Redis [23], Akka [3], and zeroMQ [5]. Large scale and commercial implementa-

tions of PubSub systems include Google PubSub [16], Amazon Simple Notification

Services [6], and Apache ActiveMQ [8].

The main components of a PubSub system are Publishers, Subscribers, Channels,

Subscriptions, Events, and a Broker. Subscribers first subscribe to channels of in-

terest. These subscriptions can be maintained by the Broker or by the Subscribers

themselves. Publishers can publish, some data, which we call an event, to any channel,

with the intention of the event being delivered to the subscribers of that particular

channel. When an event is published to a channel, it is routed to the relevant sub-

scribers by the Broker, which is typically a type of message switch. Given an incoming

event, the Broker relays the event data over the appropriate channel, then triggers the

relevant subscribers. Finally, the triggered subscribers run their associated callback

functions with the relayed event data as input.

PubSub can be run synchronously or asynchronously. In a synchronous PubSub

system, all publishers publish simultaneously, and all relevant subscribers are trig-

gered simultaneously by the Broker. In an asynchronous PubSub system, publishers

can publish at different times, and triggering of Subscribers and running of callback

functions does not need to happen at the same time.
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3.2 Formalism of PubSub

Formally, we define a PubSub system II = (S, P, C, S, B, (t)) as consisting of a set

of subscribers S, a set of publishers P, a set of channels C, a set of subscriptions S,

a Broker B, and a set of events E(t) which varies with time t.

Let P = {pi,. .. ,pm} be the set of publishers, C = {ci, ... , cL} be the set of

channels, and S = {s 1,...,s s} be the set of subscribers. Let SUB(c) C S be the

set of subscribers that are subscribed to a given channel c C C. A publisher p E P

can publish to any channel c C C. The primary dynamics in PubSub consists of a

publisher, say p E P publishing a "message" to a channel, say c E C , which in turn

gets relayed to all the subscribers s c SUB(c) which in turn triggers call-back function

f, associated with the subscriber s C S with input as the "message" relayed as well

as information about the publisher and channel.

To execute the above dynamics, implementation of a PubSub system usually in-

volves a Broker that manages various state information as well as execution of oper-

ations accordingly. We will not go into detail about how the broker is usually imple-

mented, however make some high level remarks. To begin with, the broker manages

registration of publishers, channels, subscribers and subscription of subscribers to

channels, and provides an interface to alter this state.

The broker manages the set of "events" which need to be communicated at each

point of time. These are primarily messages published by publishers but have not yet

been relayed to their subscribers. The broker executes these events by first relaying

the message to appropriate subscribers depending on the subscription topology, then

executing the call back functions at each subscriber that received new message and

updating the "event queue" upon successful completion. The broker provides interface

for publisher to publish to message to a channel, i.e. create an event.

From an end user's perspective, the interfaces (or function calls) that PubSub

exposes are as follows:

* Registration

- PUBLISHER(publisher id): register publisher id as publisher.
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- CHANNEL(channel id): register channel id as channel.

- SUBSCRIBER(subscriber id, callback function): register subscriber id as sub-

scriber with associated callback function.

- SUBSCRIBE(channel id, subscriber id): subscribe subscriber id to channel id,

i.e

SUB(channel id) = SUB(channel id) U {subscriber id}.

* Publish

- PUBLISH(publisher id, channel id, message): publish message on channel chan-

nel id from publisher publisher id.

3.2.1 Subscribers

Each subscriber s E S has a set of subscriptions C, C C, a trigger status T, E {O, 1},

subscribe function SUBSCRIBE,, and callback function f,.

The set of subscriptions C, is just the set of channels to which subscriber s is

subscribed. The triggered status T, is 1 if subscriber s has been triggered and 0

otherwise. The function SUBSCRIBE adds a specified channel to the subscriptions of

s:

C, U {c} = SUBSCRIBE, (c) (3.1)

The set of all subscriptions S is {C Vs E S}.

The callback function for subscriber s, f,, is application dependent and is run

after the subscriber s has been triggered, that is, when T, = 1. After running f8 , the

triggered status of s is reset, that is, T, is set to 0.

3.2.2 Publishers

Each publisher p E P has publish function PUBLISH associated with it . An event is

denoted as epc, where p denotes the publisher of the event, and c denotes the channel

34



to which the event is meant to be published. Typically, a publisher can publish to

any channel. At a particular time t, the PUBLISH function updates the entire set of

PubSub events, 8(t) with epc as follows:

PUBLISH(epC) = E(t) U fep,,c (3.2)

The interface for PUBLISH is given in Interface 1. The method PUBLISH takes in a

channel c, and event e. The details of publishing are dependent on the implementation

of PubSub.

Algorithm 1 PUBLISHERINTERFACE

procedure PUBLISH(C, e)

3.2.3 Broker

The Broker B has S, the set of all subscriptions, 8(t), the set of events published to

all channels at time t and ST(t) C S, the set of all triggered subscribers at time t.

The Broker B also has functions RELAY, TRIGGER, and RUN.

The function RELAY checks 8(t) at each time t, then calls TRIGGER to update

the trigger status of subscribers with incoming events on their subscribed channels,

and finally, facilitates running the callback function f, on incoming events for each

triggered subscriber via the function RUN.

The function TRIGGER updates the set of triggered subscribers ST by using the

set of subscriptions S to determine the set of channels which have incoming messages:

Cin = {cj ep-c E 8(T)}, and setting the trigger status T, for every subscriber s E S

to 1 if s is subscribed to c E Cin, that is, if c E Cin n Cs, and T, = 0 otherwise.

The function RUN applies the callback function f, to events published to triggered

subscribers s c ST.

We give an implementation of RELAY in BROKERINTERFACE (Interface 2). The
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functions TRIGGER and RUN are given as:

ST(t + 1) = TRIGGER (6E(t + 1), ST(t), S) (3.3)

f8(er-c) = RUN(E(t + 1), ST(t + 1), S), (3.4)

Vs E ST(t + 1), C E Cfn C (3.5)

Algorithm 2 BROKERINTERFACE

procedure RELAY (stopCondition)
while stopCondition $ True do

ST +- TRIGGER(9, STS)

RUN(ST)

iter++
return

procedure TRIGGER(S, ST, S)
for all ep-c E do

subs +- S[c]
for all s E subs do

ST[s] +- 1

procedure RUN(ST)
for all s E ST do

fs(ep-+c)

3.2.4 PubSub Dynamics

PubSub dynamics begin when some publisher p E P publishes an event epaC to

some channel c. Publishing an event updates the set of all events 9(t) at time t. The

Broker B subsequently runs RELAY on the E(t), which then triggers Subscribers with

incoming events, and finally runs the callback function for each triggered Subscriber,

on the incoming event(s).

The dynamics of PubSub can be summarized as follows. At any time t, for all

p E P, and any channel c E C, if event epec is published:
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E(t + 1) = PUBLISH (S(t), ep-÷) (3-6)

ST(t + 1) = TRIGGER (S(t + 1), ST(t), S) (3.7)

fs (ep-+c) = RUN(S(t + 1), ST (t + 1), S), (3.8)

Vs E ST(t + 1), c E Cin CO (3.9)
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Chapter 4

Factor Graph Computing With

PubSub

4.1 Formal Mapping

For programming in the Factor Graph Compute framework, as an end user, one simply

needs to worry about the Registration process. This involves defining the factor graphs

and associated update functions. The implementation of Factor Graph Computing

using PubSub then executes the computation associated with it.

We show how Factor Graphs and their message passing dynamics can be realized

via an underlying PubSub system. We then discuss the programming interface for

Factor Graphs implemented on top of a PubSub system. We emphasize the simplicity

of the programming interface for expressing a wide variety of computations given by

Factor Graphs and the scalability of computation achieved by utilizing PubSub. We

introduce generic interfaces for various aspects of our system which are independent

of any particular implementation of PubSub.

Let g = (V, F, E) be a Factor Graph, and let H = (S, P, C, S, E(t), B) be a PubSub

system. Since each edge in (v, f) E E, with v E V, f E F has two messages associated

with it, m,,f and mf v, it is convenient to work with directed edges. We denote

the set of directed edges as F. That is, for every edge (v, f) E E, we have edges

(v, f), (f, v) E F.
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4.1.1 Factor Graph Structure with PubSub

In order to realize a Factor Graph, we first encode its structure using PubSub Sub-

scribers and channels. First, we let each node i C V U F in 9 be a Subscriber si E S,

and each directed edge (i, j) E k be a channel cij E C. This gives us, for our PubSub

system, S= VUF and C=E.

4.1.2 Factor Graph Dynamics with PubSub

Factor Graph dynamics involve propagating messages between neighboring nodes and

computing new outgoing messages at each node. When a node i sends a message misj

to its neighbor j, node j is triggered and runs UPDATEVAR or UPDATEFAc on the

incoming message.

To capture Factor Graph dynamics in PubSub, we let Factor Graph messages be

PubSub events. In order to be notified of events (message) from its neighbors, node

i must be subscribed to all channels cji for all j E A(i). The set of subscriptions for

any particular node i is then Cs, = {cji j E .A(i)}.

PubSub dynamics are induced by publishers publishing events to particular chan-

nels, and the Broker subsequently relaying the published events and triggering sub-

scribers to run their callback functions.

In order for a node i to propagate a message misj to its neighbor j using PubSub,

it must publish misj to any channel subscribed to by sj.

Thus, having node i publish message miss to channel cij as event ep,, enables

propagation of message mij from node i to node j.

In order to propagate outgoing messages, each node must be also be a Publisher,

giving us P = S = V U F.

Though in general, Publishers can publish events to any channel c E C, in the case

of Factor Graphs, a particular node i only needs to publish to channels representing

its outgoing edges, cij where j E K(i). We can restrict the set of channels any node

i can publish to, as the subset Cpi = {ciI j E A(i)}.

After receiving an incoming message mies, node j must compute outgoing mes-
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sages using UPDATEVAR or UPDATEFAC. Since misj is just the event e+co, by

setting the callback function fj associated with sj to UPDATEVAR or UPDATEFAc,

the Broker will trigger node j to compute its outgoing message once mi-+ is published

to channel cij.

4.1.3 Factor Graph Node Updating

Factor Graph computation is accomplished by each node locally running UPDATEVAR

or UPDATEFAC on incoming messages. In this section, we specify the programming

implementation and interface for realizing the update function at a particular node.

The realization of this is given by MESSAGEPASS in Interface 3.

Since the dynamics of message passing, triggering of nodes, and running of callback

functions (MESSAGEPASS) for each node is transparently handled by PubSub, only

Interface 3 needs to be separately implemented in order to specify how to enable

Factor Graph computation at each node.

First, we define the state si of a node i as the set of incoming messages from all

neighbors of i, the node type, and the node factor function, if relevant.

We realize sets of messages as the collection of pairs:

{(ej, ms+i)| Vj E N(i)} (4.1)

where eji is some identifier of edge (j, i). Similarly, The incoming message mi" from

node j is realized as the pair (eji, mj-i) and outgoing message mout is realized as the

collection of pairs {(eij, misj)| VJ E W(i)}.

For a particular node i, the function MESSAGEPASS performs three main steps:

1. First, the function UPDATESTATE updates the message value of the pair in si

which has edge ID corresponding to the edge ID of mi, with the message value

of mi, and returns the updated state.

2. Next, the function COMPUTEOUTGOING applies UPDATEVAR or UPDATEFAc

to the updated state and returns the outgoing messages mout
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3. Finally, the function PROPAGATEMESSAGES, sends the messages in m"t to the

appropriate neighbors of i via PubSub. For each pair (eij, m+j) E mout the

node i publishes the event esc, = (ei, ma+j).

In general, the details of FETCHSTATE and PERSISTSTATE in STATEINTERFACE

will depend on the underlying data store used for managing and persisting state si.

The details of UPDATEVAR and UPDATEFAC are application dependent. In Sec-

tion 4.1.5 a consistent programming interface across applications is provided.

Algorithm 3 NODEINTERFACE

procedure MESSAGEPASS(min, i)

si <- UPDATESTATE(min, i)
mout <- COMPUTEOUTGOINGMESSAGES(si)
PROPAGATEMESSAGES(mout, i)

return

procedure UPDATESTATE(min)

Si <- STATE.FETCHSTATE(i)
for all (eki, mk--+) E si do

if eki == eji then
mTk-+ <- Mj

Si <- STATE.PERSISTSTATE(i, si)
return si

procedure COMPUTEOUTGOINGMESSAGES(Si)
if si.type == fac then

mot = UPDATEFAC (si.messages, si. actor_ function)

if si.type == var then
mout = UPDATEVAR(si.messages)

return mout
procedure PROPAGATEMESSAGES(mout)

for all (eij, mi.+) E mout do
PUBLISHER.PUBLISH(Cij, (eij, mi..))

return

Algorithm 4 STATEINTERFACE

procedure FETCHSTATE(i)

procedure PERSISTSTATE(i)
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4.1.4 Factor Graph System

First, Factor Graph computation requires: a PubSub system I = (S, P, C, S, E(t), B),

a memory store M for handling Factor Graph state on top of which STATEINTERFACE

is implemented, and a Factor Graph specification. For example, this could be a

file T E for representing factor graph structure: an adjacency table or adjacency list

representing each directed edge in E with edge weights as initial messages, and another

file FVUF specifying state for each node in V U F: node type and factor function (if

relevant).

We now describe how computation runs in the entire system for a Factor Graph

g = (V, F, E) implemented on top of a PubSub system.

1. Initialize PubSub: Register each edge (i, j) E FE as channel cij E C, and

subscribe each node to its relevant channels. Start the PubSub Broker B.

2. Load Factor Graph State: Initialize the state for each node according to

entries of FVUF. Details will depend on the memory store used for storing and

managing state.

3. Initialize Computation: Computation begins by having a subset of nodes

(such as all variable nodes) publish their initial messages along all neighboring

edges, at which point the PubSub Broker starts delivering messages and triggers

neighboring nodes to perform their respective computations via MESSAGEPASS.

4. Run Computation: At each time t, if a particular node i wants to propagate

a message mij over a particular edge (i, j), it publishes the event e -, =

(eij, mij) to the channel cij. The broker subsequently relays the message to all

subscribers of channel cij (in this case, just node j), triggers node j (the only

subscriber of channel cij), and runs the callback function associated with node

j with m as the input, which is just the update function associated with node j.

5. End Computation: Finally, computation concludes once all nodes have met

some sort of stop criteria. This stop criteria is implementation and application

dependent.
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6. Read Result: The end result of the computation can be read by inspecting

the collection of messages in the state of each variable node.

During each time step of the computation, for an event erece published by node

i to channel cij at time t, the Broker runs RELAY, updating as:

9(t + 1) = PUBLISH (S(t), ep,-+ce) (4.2)

= 8(t) U {ep4ci = (ei, mi- )} (4.3)

ST(t + 1) = TRIGGER ((t + 1), ST(t), S) (4.4)

= ST u {s} (4.5)

fs (epcj i) = RUN(E(t + 1), ST(t + 1), S) (4.6)

= MESSAGEPASS((eij, mj-*) i) (4.7)

4.1.5 Update Function Interface

Factor Graphs allow us to implement a variety of different computations by sim-

ply specifying initial messages and the appropriate UPDATEVAR and UPDATEFAc

functions.

In Interfaces 5 and 6, we provide a simple interface for the UPDATEVAR and

UPDATEFAC functions. This interface breaks each node's update function into two

stages: UPDATENODE and UPDATEEDGE.

The UPDATENODE function for a particular node i computes an aggregate state

based on taking all incoming messages from neighbors of i. It takes in a set of edge

ID, message pairs M, and returns an aggregate NODESTATE (scalar, vector, etc)

depending on the problem.

The function UPDATEEDGE is used to compute the particular message update

along an edge, based on the aggregate NODESTATE returned by UPDATENODE. For

a particular edge ID eij, the function UPDATEEDGE takes NODESTATE, N, and the

edge, message pair (ei, m,÷-) E M, to compute the new message.

In the case of factor nodes, the functions UPDATENODEFAC and UPDATEEDGE-

FAC also take the corresponding factor functions into account when computing new
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messages.

Each application would have to implement the appropriate UPDATENODE and

UPDATEEDGE functions. These functions are independent of Factor Graph struc-

ture and dynamics implementation, meaning that they can be ported across Factor

Graphs, PubSub systems, and environments, without needing to be changed.

As an example, when considering the case of Sum-Product Belief Propagation, the

function UPDATENODEVAR would compute the product of all incoming messages as

the node state, and the function UPDATEEDGEVAR would divide the node state

(product of all incoming edges) by the incoming message along that particular edge.

This gives us the desired outgoing message along edge (i, j) from variable node i to

factor node j:

mi = H (i) T (4.8)

= 1 m.' (4.9)
ncA/(i)\j

Algorithm 5 UPDATEVARINTERFACE

procedure UPDATEVAR(E)
n +- UPDATENODEVAR(M)

for all e, E M do
e[ec] +- UPDATEEDGEVAR(n, M)

return e
procedure UPDATENODEVAR(M)

procedure UPDATEEDGEVAR(n, m)

4.2 Heuristics for Scaling

The Factor Graph Computing implementation using PubSub described above can be

made efficient as graph size grows using simple heuristics described next.
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Algorithm 6 UPDATEFACINTERFACE

procedure UPDATEFAc(M, F)
n +- UPDATENODEFAC(M, F)

for all e, E M do
e[ec] +- UPDATEEDGEFAC(n, M, F[ec])

return e
procedure UPDATENODEFAC(M, F)

procedure UPDATEEDGEFAC(n, m, f)

4.2.1 Nodes As Channels

For factor graphs which are dense, i.e. the number of edges are much larger than

number of nodes (IEI > V + IF), it makes sense to consider each node (in V U F)

as a channel. Each message update mf , mf , is then published to the channel

corresponding to the receiving node rather than the corresponding edge. This will

help scale PubSub infrastructure better with respect to the number of channels.

We can reduce the total number of PubSub channels by utilizing nodes as channels,

rather than edges. In this case, when a publisher pi, corresponding to a node i in

a Factor Graph publishes some event erec, we let c = ci rather than cij, j E N(i).

Now, each neighbor of i: j E K(i) subscribes to channel ci. Now the set of channels C

is exactly the set of nodes in our Factor Graph: V U F, and the set of subscriptions is

the set of edges E of the Factor Graph. Now, events will be sets of edge ID, message

pairs: ep,,c, = {(eij, m+is)I j E Af(i)}. As before, Subscribers can match the relevant

edge ID with edge IDs in their state and filter out any messages which are irrelevant

and meant for other neighbors node i.

4.2.2 Partitioning

The key characteristic of Factor Graph Compute is that the compute (and data

storage) associated with each node is very light. Therefore, it can make sense to

"group" a collection of variable nodes and factor nodes as "partitions" in the factor

graph so that the resulting "partitioned" factor graph is smaller than the original

factor graph, while keeping the size of each partition manageable. This partitioning
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can be simply done in a greedy manner or can be done cleverly by utilizing graph

partitioning methods that minimize the number of edges crossing or minimize the

weighted cut size between partitions. In our experiments, we utilize a greedy method

to obtain non-trivial performance speedup.

Partitioned Factor Graph Structure

As stated previously, from a Factor Graph g = (V, F, E) we can in turn build a

Partitioned Factor Graph, gP = (VP, FP, EP). Each variable partition vP E VP, and

each factor partition fP E FP are just sets of variable and factor nodes, respectively.

Edges between partitions exist if any node in a particular partition has an edge

with a node in another partition of our original Factor Graph. Specifically, let vP be a

variable node partition and fP be a factor node partition. If the edge (v, f) exists, for

variable node v E vP and factor node f C fP, then there exists an edge (VP, fP) E EP

between partitions vP, fP in gP.

From our definition of Factor Graph, every variable node v maintains state xv

and every factor node f maintains state yf. For 9P, each variable partition vP E VP

maintains state xP = xv and each factor partition fP E FP maintains state yp =

Uf Eff yf. The state for each partition can also be represented as EDGECOLLECTIONS.

For implementation purposes, in order to properly update state, the state of a

partition i, si needs to capture the relationships between nodes, edges, and respective

messages. Within a particular partition, these relationships can be thought of as a

tree, shown in Figure 4-1. When an incoming message is received by a partition,

only the set of subtrees which contain edges with updated messages, denoted as s,

is required for computing outgoing messages.

Partitioned Factor Graph Dynamics

The programming interface for Partitioned Factor Graphs is given by PARTITIONIN-

TERFACE in Interface 7. This interface is quite similar to that of NODEINTERFACE

except that in the function MESSAGEPASS, outgoing messages are computed using si

rather than si.
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Nodes

Edges ---

Messages b
Figure 4-1: Partition Tree

The Partition version of UPDATESTATE takes incoming messages mi" and a par-

tition identifier i and outputs s . The interface for handling partition state, PAR-

TITIONSTATEINTERFACE, given in Interface 8 is implementation specific, and must

handle computing which nodes in the partition need to be updated and returning the

appropriate sq

The function UPDATESTATE for Partitions applies the node version of UPDATES-

TATE to each node subtree in s and returns a set of outgoing messages, mou.

Like in the unpartitioned version, the implementations of PARTITIONSTATEIN-

TERFACE and PUBLISHERINTERFACE depend on the underlying data store and Pub-

Sub system used. As the compute, state, and PubSub components are independent

of each other, scaling can be done in a similar manner as with unpartitioned Factor

Graphs.
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Algorithm 7 PARTITIONINTERFACE

procedure MESSAGEPASS(min, i)

s< +- UPDATESTATE(min, i)
mout +- COMPUTEOUTGOINGMESSAGES(Si, i)
PROPAGATEMESSAGES(Mout, i)
return

procedure UPDATESTATE(min, i)
s +- PartitionState.UPDATESTATEMESSAGES(i, min)
return sz

procedure COMPUTEOUTGOINGMESSAGES(si, i)
mout t- [1
for all n E s' do

mout[n] +- Node. COMPUTEOUTGOINGMESSAGES (s [n], n)

return Mout

procedure PROPAGATEMESSAGES(mout, i)

Publisher.PUBLISH(i, mout)

return

Algorithm 8 PARTITIONSTATEINTERFACE

procedure UPDATESTATEMESSAGES(i, min)
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Chapter 5

Implementation

Using the generic interfaces presented in the previous section, Factor Graphs can be

implemented on top of different PubSub systems based on application requirements.

We present a synchronous implementation of Factor Graphs on top of a custom

PubSub system we implement using the Ligra graph processing framework, and an

asynchronous implementation of Factor Graphs on top of Redis, a popular in-memory

store with PubSub capabilities. We choose Ligra as it is a specialized, single-machine

graph processing system, and we choose Redis as it is an off-the-shelf, widely-used

in memory storage system which can be used on one machine or easily extended to

operate over several machines.

We demonstrate how to implement the necessary Interfaces in both Ligra and Re-

dis and utilize the same UPDATEVAR and UPDATEFAc code across implementations.

Implementing Factor Graphs on top of these systems enables them to perform a

variety of computations they were not initially meant for: such as optimization, linear

algebra, and graph processing.
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5.1 Synchronous Factor Graph Computation

5.1.1 Ligra

Ligra [25] is a specialized system for single machine, shared memory, large scale graph

processing, written in C. Ligra was built for high performance implementations of

traditional iterative graph algorithms such as Breadth-First Search, PageRank, and

Connected Components. Ligra computations are run in parallel, using threads, and

each iteration of the computation over the input graph happens synchronously. That

is, the next iteration over the graph only starts once the current iteration is finished.
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Subscriber_ID =v1
Subscriptions ={f f2)
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Subscriber ID =v2
Subscriptions ={f f}3)
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Figure 5-1: Illustration of Factor Graph Compute using PubSub based on Ligra. The
implementation of PubSub using Ligra effectively rotates between variables nodes
and factor nodes as the frontier; above, variable nodes are depicted as the frontier.

5.1.2 PubSub Messaging in Ligra

Ligra runs computations in synchronous iterations on specified subsets of nodes in

the graph. In the case of PubSub, this means that published events are relayed to

Subscribers by the Broker and each triggered Subscriber finishes running its callback

function, before any new messages can be published and relayed in the next iteration.
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The main PubSub BROKER.RELAY method is implemented as a loop in Ligra.

Each iteration of BROKER.RELAY first runs BROKER.TRIGGER to determine trig-

gered subscribers and then BROKER.RUN to run callback functions of the triggered

subscribers.

The set of triggered subscribers, ST is represented as a Ligra FRONTIER. A Ligra

FRONTIER is a subset of nodes in a graph on which to perform computations via the

Ligra method VERTEXMAP.

Since each node in the Ligra graph is a subscriber, the subscriber callback functions

can be run in parallel on the current FRONTIER by Ligra's VERTEXMAP method.

In addition, we pass any application dependent variables to the BROKER.RELAY

function, so that the Broker and Subscribers have access to them. In particular, for

the case of Factor Graph, main memory arrays for Factor Functions and State are

passed into the BROKER.RELAY method so that individual subscribers have access.

In addition, creating these arrays ahead of time improves performance by avoiding

arrays having to be creation of new arrays during each subscriber iteration.

5.1.3 Factor Graph Structure in Ligra PubSub

Since Ligra is already highly optimized to handle very large graphs while processing

each node and edge individually, we do not introduce any additional partitioning in

our implementation and have each directed edge as its individual channel.

Recall that for some particular factor graph g = (V, F, E), and directed edges F,

we want a PubSub system HLIGRA = (S, P, C, S(t), B) with:

S=P=VUF (5.1)

C= (5.2)

Each node i E V U F of g is both a Publisher and Subscriber. Each directed edge

(i, j) GE represents a channel. A node i is subscribed to channel ci if j E A(i).

Ligra keeps track of directed graph structure and provides interfaces to access

edges, nodes, and edge weights. We utilize Ligra itself to store PubSub subscriptions
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via graph edges and we track events via edge weights. That is, the event epic+Cjj e E(t)

is stored in Ligra as the current weight of edge (i, j). Publishing is accomplished by

using standard Ligra interfaces to write events as edge weights.

5.1.4 Factor Graph Computation in Ligra

Implementing full Factor Graph computation in Ligra first requires a PubSub system,

a memory store M, and a Factor Graph specification. The Ligra system itself is

used as PubSub, Factor Graph structure specification is represented as a file in the

adjacency graph format [11, FE with edge weights as initial messages. Factor Graph

state specification is a seperate file FVUF with node IDs mapped to node type and

factor function, if relevant.

Factor Graph state involves keeping track of incoming messages, node type, and

factor function for each node. Messages, which are PubSub events, are already stored

in Ligra as edge weights. Factor Functions are stored in Ligra as a C array, Mf actor.

For a particular node i, its node type is inferred by whether or not the entry Mfactor [i]

exists - a node is a factor node if it exists and variable node otherwise.

Below, we detail the steps of Factor Graph computation in Ligra.

1. Initialize PubSub: PubSub is initialized in Ligra by first creating a Ligra

GRAPH from FE. Since the Ligra GRAPH structure encodes vertices and their

edges, no additional work needs to be done in order to specify PubSub subscrip-

tions.

2. Load Factor Graph State: Initialize the array Mfactor from FVUF

3. Initialize Computation: The subset of initially triggered subscribers, ST(0),

which will kick off PubSub are specified as the initial Ligra FRONTIER. This is

typically the set of variable nodes V for Factor Graph computation. PubSub

computation begins by passing the initial FRONTIER to the BROKER.RELAY

method which begins a loop in Ligra for iterative computation.
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4. Run Computation: As the set of triggered subscribers is already specified

(ST(0)), the function BROKER.TRIGGER can be skipped in the initial iteration.

Otherwise, the function BROKER.TRIGGER updates the FRONTIER with the

latest set of triggered nodes. The function BROKER.RUN runs callback functions

for each triggered subscriber (node) in parallel by using Ligra's VERTEXMAP

function on the current FRONTIER. For Factor Graph Computation, the method

MESSAGEPASS and the initial FRONTIER are passed into VERTEXMAP to com-

pute and publish outgoing messages for each node in the FRONTIER.

5. End Computation: Subsequent iterations are run by continuing BROKER.RELAY

until the stop condition is reached (i.e. after a certain number of iterations have

been completed), which ends the computation.

6. Read Result: The result of the computation can be read from the final state

of variable node entries by inspecting the out weights of edges of variable nodes.

Synchronous Factor Graph computation using a shared memory Broker like Ligra

is well-suited and optimized for single machine computation, when all data (the entire

Factor Graph) can fit in memory. However, when data is too big to fit in memory,

computation must happen across multiple machines. In order to handle this case, we

present an asynchronous implementation of Factor Graph computation in the next

section, which is suitable for multi-machine environments.

5.1.5 Broker Interface in Ligra

The PubSub Broker RELAY method is implemented as a loop in Ligra, which runs

for a specified number of iterations. Before beginning the loop, the FRONTIER is

initialized to an initial subset of subscribers ST(0). For Factor Graph computation,

this is usually the set of variable nodes. When an initial FRONTIER is provided in

the first iteration of RELAY, the function TRIGGER does not need to be run, but is

run for every iteration after.

The OUTBOX keeps track of which publishers have published messages, and the

INBOX keeps track of which subscribers are to be triggered.
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The function TRIGGER first determines the set of subscribers which are to be trig-

gered, through the method INCOMINGMESSAGES. This message is implemented via

Ligra's EDGEMAP interface, which, in parallel, applies the function CHECKFORIN-

COMING over every directed edge in our graph.

Given a directed edge (i, j), CHECKFORINCOMING sets INBOX[i] to INBOX[i] OR OUTBOX[J].

If INBOX[i] is set to 1, then node i has incoming messages from its subscribed channels,

and will subsequently run its callback function.

Next, the OUTBOX is reset, that is, every entry is set to 0, indicating there are no

outstanding published messages,

Finally, the method TRIGGER updates the FRONTIER based on the updated values

of INBOX. Since, in our PubSub system, we have P = S, that is, every subscriber

is publisher, we SWAP the values of INBOX and OUTBOX. This is because every

subscriber will subsequently have a message to publish.

Algorithm 9 BROKERINTERFACELIGRA

procedure RELAY(maxlters, inbox, outbox, Frontier)
iter +- 0

while iter < maxlters do
if iter > 0 then

Frontier <- TRIGGER(Frontier, inbox, outbox)

RUN(Frontier)
iter++

return
procedure TRIGGER(ij, inbox, outbox)

EDGEMAP(Frontier, INCOMINGMESSAGES(inbox, outbox))
Frontier <- Frontier(inbox)
VERTEXMAP(Frontier, PRVERTEXRESET(outbox))
SWAP(outbox, inbox)
return Frontier

procedure RUN(Frontier)
VERTEXMAP(Frontier, G, Subscriber.listen)

procedure INCOMINGMESSAGES(ij, inbox, outbox)
inbox[i] <- inbox[i] OR outbox[j]
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5.1.6 Subscriber Interface in Ligra

Graphs in Ligra consist of directed edges, so every undirected edge (i, j) in our factor

graph, is stored twice in Ligra, as (i, j) and (j, i) (once for each direction). As part of

its GRAPH structure, Ligra provides interfaces for accessing the degree of each node

as well as its (directed) neighbors and weights.

A message from a node i to node j is stored in Ligra as the weight of edge (i, j),
and can be accessed using Ligra's GETWEIGHT and SETWEIGHT functions.

The function RUNCALLBACKFUNCTION runs the supplied callback function f on

the incoming messages min and the current vertex Vi. In our implementation, we pass

the function MESSAGEPASS as the callback function.

5.1.7 Publisher Interface in Ligra

Each published event epseg is stored as the weight of edge (i, j). In Ligra, this

is implemented by setting the OUTWEIGHT of node Ni with respect to neighbor

j. Edge weights in Ligra can be accesed and set through a Ligra VERTEX interface.

This is done by the Ligra VERTEX methods GETOUTWEIGHT and SETOUTWEIGHT.

The method PUBLISH thus takes the Ligra VERTEX associated with the publisher,

channel (edge) to publish on, event (message) to publish and updates the appropriate

OUTWEIGHT.

Algorithm 10 PUBLISHERINTERFACELIGRA

procedure PUBLISH(j, epecy I Vi)
Vi .SETOUTWEIGHT(j, ep+cj)
return

5.1.8 Factor Graph State Interface in Ligra

Since the Ligra implementation of PubSub is synchronous, the set of published mes-

sages for a particular node (incoming edge weights) is exactly its state (incoming

messages from neighbors). Thus, no extra work is needed to implement STATEIN-

TERFACE, as getting and setting edge weights is enough to access state.
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Since factor functions are static and do not change over the course of a compu-

tation, factor functions are kept in main memory using array Mfactor in Ligra. The

factor function of node i is stored as the array entry Mfactor[i]. If a particular node is

a factor node, it contains an entry in Mf actor, and if a node is a variable node, it does

not contain an entry in Mf acto, array. For factor functions which can be represented

as vectors, each factor node entry of the Mfactor is a pointer to an array containing

the factor function entries. Otherwise, if the factor function can be represented as a

scalar, each entry corresponding to a factor node contains the factor function scalar

itself.

In order to improve performance, an array Mstate is pre-initialized before compu-

tation starts. For a particular node i, its entry in Mstate is a pointer to an array. This

avoids having to create arrays to hold all incoming messages each iteration, when

running MESSAGEPASS.

Persisting state (in memory) is not needed, as this is done by Ligra when writing

edge weights via publishing. The STATEINTERFACE for Ligra is given in Interface 11.

Algorithm 11 STATEINTERFACELIGRA

procedure FETCHSTATE(Vi, Mstate)

si +- Mstate [i]
for all j E GETINDEGREE(V[i]) do

si[j] <- GETINWEIGHT(Vi,j)

return si

5.1.9 Node Update Functions in Ligra

Each subscriber implements NODE.MESSAGEPASS as its callback function. All meth-

ods in Interface 3 are implemented in C.

Computation of message updates by UPDATEVAR and UPDATEFAC is accom-

plished by implementing Algorithm 16 in Cython [10]. Cython enables writing Python

code which runs as C code and can be imported into C programs.

This allows us to write our UPDATEVAR and UPDATEFAC functions once and

port it across Python and C implementations without worrying about details of the
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underlying PubSub system.

The main memory arrays MAstate and Mfactor are accessible by MESSAGEPASS in

Ligra as they are passed to the underlying SUBSCRIBER via the VERTEXMAP method

used in BROKER.RUN.

5.2 Asynchronous Factor Graph Computation

5.2.1 Redis

In addition to our Ligra implementation of PubSub, we also present an implementa-

tion in Redis [23], a popular in-memory key-value store which also has out-of-the-box

PubSub capabilities.

While Ligra is meant for single machine graph processing and handles in-memory

storage and compute, Redis has no compute capabilities but its storage and PubSub

capabilities can be utilized on a single machine or extended to work with multiple

machines over a network.

Unlike with Ligra, our implementation over Redis is completely asynchronous.

Our Redis implementation is highly unoptimized as compared with our Ligra

implementation (as Redis is a general purpose system, not necessarily meant for fast

compute). However, we emphasize Redis's ease of implementation, setup, and ability

to scale to multiple machines. All interfaces are implemented in Python.

We are able to port our same UPDATEVAR and UPDATEFAc code from the Ligra

implementation, as it implemented in Cython for use with Redis PubSub. Callback

functions are implemented in Python, and use the Redis-Py [2] library to handle

interfacing with Redis.

5.2.2 PubSub Messaging in Redis

Redis provides its own PubSub interface. Redis is its own Broker which runs as its own

process. Through its PubSub interface, the Redis PubSub Broker handles relaying

events over channels and specifying and storing subscriptions, assigning Subscriber
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callback functions, and publishing messages.

Triggering is handled by Subscribers, rather than by the Broker. Each Subscriber

runs as its own process which periodically checks the Redis PubSub Broker for relevant

published events to see whether it has been triggered. If a Subscriber has been

triggered, it runs its assigned callback function on the relevant event, which is relayed

by the Redis Broker.

Redis only publishes events which are strings. In our Python implementation, all

outgoing events ep_,c are first encoded as strings strings before being published. This

is given in PUBLISHERINTERFACEREDIS in Interface 12.

On a single machine, we utilize Unix sockets for PubSub communication with

the Redis Broker. For multi-machine implementations, it is possible to utilize TCP

connections for communication with the Redis Broker.

Algorithm 12 PUBLISHERINTERFACEREDIS

procedure PUBLISH(C, epc)
REDISPUBLISH(C, PICKLE(ep-+c))
return

5.2.3 Factor Graph Structure in Redis PubSub

Our asynchronous Factor Graph is implemented in Redis and Python, which unlike

Ligra, are not optimized for dealing with large graphs operations. In order to reduce

complexity, our Redis implementation utilizes node partitioning, so each Subscriber is

a Partition Node, and the total number of Partitions corresponds to the total number

of processors or compute units on our system.

In order to minimize the number of subscriptions which Redis needs to track, we

use Partition Nodes as channels, rather than edges. Each subscription now becomes

an edge between Partition Nodes.

In the case that a Partition Node Subscriber receives a message which does not

contain updates for any of its edges. The function UPDATESTATE would return an

empty set as s if that is the case and no further upating would be necessary.

60



5.2.4 Factor Graph Computation in Redis

We implement asynchronous Factor Graph computation using Redis as the PubSub

system, with one process per Subscriber (Partition Node). The state for each Partition

Node is represented as a Python object and stored in process memory.

Like our synchronous implementation, Factor Graph structure can be specified as

a file in the adjacency graph format [1], T E with edge weights as initial messages.

Factor Graph state specification is a seperate file FVUF with node IDs mapped to node

type and factor function, if relevant. In addition, Partition Nodes are specified in a

separate file FyPUF where each line contains a Partition ID mapped to IDs of nodes

contained within that partition. Partition edges are specified in a file .TE which has a

line for each edge between partitions. The identifier (Partition ID) for each partition

is stored in the name of the process associated with the particular Partition.

The Subscriber callback function which implements PARTITIONINTERFACE is writ-

ten in Python. We give both Python and Cython implementations of the function

COMPUTEOUTGOINGMESSAGES for Partitions and for Nodes.

The set of outgoing messages mout and incoming messages min are represented as

NumPy Arrays [31]. Each edge ID, message pair (eij, mij) E mot, mi, is represented

as a row in the NumPy Array.

Since MESSAGEPASS is the callback function for each Partition Node, the under-

lying Subscriber is relayed mout via the Redis Broker.

Publishing via the PROPAGATEMESSAGES is handled by Redis's PUBLISH com-

mand.

Below, we detail the process of Factor Graph computation in Redis:

1. Initialize PubSub: PubSub is initialized by starting one subscriber per par-

tition ID by reading FVPUF. Specifying subscriptions is done by reading in -77k

and handled by the Redis PubSub interface. Each Subscriber and the Broker

are started as their own processes by Redis.

2. Load Factor Graph State: State for each partition is initialized by creating

a Python object for state for each partition. Details of how state is stored as

61



in-memory Python objects is given in the next section.

3. Initialize Computation: Computation is initialized by first having each vari-

able partition publish its initial message via Redis PubSub interface, after which

the Redis PubSub Broker takes care of relaying subsequent events.

4. Run Computation: Each subscriber periodically checks the Redis Broker to

see whether it has been triggered. If a particular subscriber (partition) has

been triggered, it runs its callback function MESSAGEPASS, with mi supplied

from the Redis Broker. As each partition node subscriber is its own process,

computation is run in parallel across all partitions. Unlike the Ligra imple-

mentation, computation is asynchronous - subscribers are triggered as they are

ready, rather than waiting for a global notion of iteration to complete.

5. End Computation: Computation ends when each Partition node has reached

its stop condition (i.e. after a certain number of iterations have been completed

for a particular node). The status of stop condition (such as a counter) can be

stored in the Python object representing partition state.

6. Read Result: The result of the computation can be read from the final state

of variable node for each variable partition.

This asynchronous implementation of Factor Graph computation is well-suited

for multi-machine computations. When data (Factor Graph) is too large to fit in

memory on a single machine, Partitions can be distributed across several machines.

The advantage of PubSub is that each machine can operate individually and does not

need to be aware of the global topology. A Broker such as Redis is well-suited for

coordinate communication across multiple machines.

5.2.5 Factor Graph State

We use Python objects to represent the state of each partition. Python objects are

stored in process-memory. This guarantees that only the current process can access

62



and modify its state. The function FETCHSTATE returns the Python object for the

state of the appropriate partition.

The State object stores the partition's tree in two collections, E and N. The

collection E captures relationships from edges to nodes and messages. The collection

N stores relationships between nodes and edges. The state of a partition can be

given as si = E U N. We define N6 C N as the subset of nodes with updated edge

messages. The partition state to update can be given as si = E U N6 . We give two

implementations of the State object: one in pure Python, and one which is optimized

to be used for Cython implementations of COMPUTEOUTGOINGMESSAGES functions.

Algorithm 13 REDISPARTITIONSTATEINTERFACE

procedure UPDATESTATEMESSAGES(i, mi,)

si <- FETCHSTATE(i)
NJ +-- [ ]
for all e, m E min do

if Cython is True then
e +- CONVERTIDTOROw(si, e)

updated +- UPDATEEDGEMESSAGELEAF(si, e, m)
if updated is True then

N 6 [n] +- FETCHEDGENODETOUPDATE(si, e)

i - (N, si. E)
return s

procedure UPDATEEDGEMESSAGELEAF(Si, eid, m)
if si.E[eid] # 0 then

si.E[eid] [M] +- M
return True

else

return False
procedure FETCHEDGENODETOUPDATE(si, eid)

nid +- si.Eleid][nid]
n +- si.N [nid]
return n

procedure CONVERTIDTORow(si, eid)
erow +- si.C [ei]
return erow
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5.2.6 Python

In a pure Python implementation of State, both collections E and N can be repre-

sented as Python dictionaries.

The dictionary E maps edge IDs to its parent node's ID and its latest incoming

message. This enables fast lookups for checking which nodes in the partition have new

incoming messages in FETCHEDGENODETOUPDATE and fast updates for updating

the incoming message for a particular edge in UPDATEEDGEMESSAGELEAF. Entries

in E can be thought of as representing the mappings eCd '-+ (nTid, M).

The dictionary N maps the ID of each node in the partition to a collection of

its edge IDs, which can be represented as a Python set or list. Entries in N can be

thought of as representing the mappsings nid '-+ {eids}.

The function UPDATEEDGEMESSAGELEAF updates the message of a particular

edge in E, given the new incoming message m, and the ID of the edge to update, e.

The function FETCHEDGENODETOUPDATE first retrieves naid, the ID of the node

in the partition associated with edge with ID eid and then retrieves the collection of

edge IDs associated with nid, which is returned at added to N6.

The final state returned, s consists of both N6 and E.

5.2.7 Cython

For our Cython implementation of COMPUTEOUTGOINGMESSAGES, the collections

E and N for a particular partition are represented as Numpy arrays, since Cython

has out of the box support for Cython. Rather than indexing E and N by the ID of

the respective edge or node, we index them by their row number in E or N.

Each row of the the Numpy array for E represents a particular edge e, consisting

of the edge ID, the row in N of the node in the partition associated with e, and

the latest incoming message m. The collection E can be thought of containing the

mappings erow '-+ (eid, nromi, M).

Each row of the Numpy array for N represents a node in the partition, and each

column represents an edge in the partition.
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A particular entry Nj E N is 1 if edge j belongs to node i, and 0 otherwise. Edges

are stored as columns in the same order they appear in E, meaning the jth column

of N corresponds to the jth row of E. Entries in N can be thought of as representing

the mapping nro, {erows}.

Numpy arrays with rows of variable length are represented as Numpy arrays of

Python lists. Passing Python objects into Cython functions slows down the imple-

mentation, so the Numpy array N is maintained as a rectangular array of integers.

The array N is typically sparse, and can be represented as a sparse array. Sparse

arrays can be represented in COO or CSR format, and for easy access by Cython,

can be broken into three separate Numpy arrays consisting of entries, non-zero rows,

and non-zero columns. Since entries in N are 0 or 1, only the arrays of non-zero rows

and non-zero columns are needed.

Since incoming and outgoing messages are indexed by edge IDs, each State object

in this implementation also includes a Python dictionary C which maps edge IDs to

edge rows in the function CONVERTIDToRow.
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Chapter 6

Experiments

In this section, we describe experiments performed to validate properties of the Factor

Graph Compute framework in practice. To establish that the framework is versatile

and can solve a variety of different problems, we present experiments for three im-

portant classes problems: (a) Integer Optimization, (b) PageRank, and (c) Singular

Value Decomposition.

First, using the Factor Graph Compute framework, we show that a simple variant

of the belief propagation algorithm can solve optimization problems. Our implemen-

tation performs competitively with respect to a state-of-the-art commercial solver for

a range of optimization problems including easy, hard and challenging.

Next, we show that for PageRank computations, the Factor Graph Compute

framework with Ligra as the underlying PubSub system performs comparably with

respect to Ligra[25, 27, 26]. This suggests that our framework does not add much

inefficiency on top of the underlying PubSub. It should be noted that Ligra has

benchmarked excellent performance for PageRank computation against a variety of

other solutions [25, 27, 26].

Finally, we find that our single machine implementation of Factor Graph Compute

using Ligra PubSub does >13x better for computing Singular Value Decomposition

of a large matrix compared to that of Spark, with respect to similar size matrix

reported in the literature. We could not produce this benchmark and hence we are

using Spark's performance for data point reported in the literature for similar matrix.
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Our experiments utilize the following datasets: two (hard and challenge) binary

optimization problems from benchmark datasets [181, the popular Orkut graph to

compute PageRank and a very large sparse matrix to test scalability of our framework

by computing its singular value decomposition.

6.1 Optimization

Here we describe our optimization algorithm in the Factor Graph Compute frame-

work. The algorithm is an adaptation of the belief propagation algorithm for inference

for graphical models. Consider an optimization problem in the canonical form:

n

max wixi over 'E R, bE Rrn, A E Rnxn (6.1)
i=1

subject to Ai < b (6.2)

This is equivalent to finding Maximum A Posteriori (MAP) with respect to distribu-

tion

pQF) = eZ=1 WiXJ l{aTYbc} (6.3)
j=1

This suggests that we can use the max-product belief propagation algorithm, imple-

mented in our Factor Graph Compute framework, for solving the associated opti-

mization problem.

To evaluate the performance of the algorithm, we focus on binary optimization

problems. The belief propagation algorithm is a heuristic for binary optimization and

not an exact solution, with the exception of a few special cases (tree-structured factor

graphs) [13]. To account for this, we utilize various modifications to the original

belief propagation algorithm: Variable Node Decimation to speed up convergence,

and Sampling to speed up execution.
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6.1.1 Variable Node Decimation

In practice, loopy belief propagation is not guaranteed to converge. In order to

both guarantee and speed up convergence, we implement a Decimation procedure.

Decimation is a procedure to fix the beliefs of particular variables while running belief

propagation, to avoid cycling of values. At a high level, our decimation algorithm

works as follows:

Following the execution of the belief propagation algorithm for the binary MAP

problem, the messages at each variable node can be interpreted as a relative "score"

for the value of each variable (its probability of taking on a value of 1 vs 0) in the

optimal solution. In the context of belief propagation, this is simply the product of

messages coming to the node from all of its associated factor nodes. In addition,

each variable node is assigned a "proposed value" which is just its highest probably

value (1 or 0), where the probability is given from incoming messages as above. We

only "decimate" or "fix" values for those variable nodes with a "proposed value" of 1;

effectively we treat assignment of value 0 to a variable as the default or natural.

In each iteration of the decimation procedure, we consider the top K variables

(where K is a pre-specified parameter, usually a small value), sorted in descending

order of their probability of being 1.

Intuitively, if a node believes that it should be 1 with probability close to 1, it

might make sense to "fix" its value as 1, subject to its constraints.

As constraints are encoded by factor nodes, we use them to decide whether to fix a

particular variable node value. That is, once we choose the top K variables as above,

each factor node with which it interacts casts a "vote" as to whether a particular

node should be fixed. Each factor node votes on its neighbor variables in a greedy,

iterative manner. A factor node sorts all of its variable neighbors by their probability

of being 1. It then sequentially checks if setting them to 1 will violate the constraint

or not. If it violates the constraint, then the factor node votes against that particular

neighboring variable node being set to 1; else it votes for the neighboring variable

node being set to 1.
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If a variable node, amongst the top K chosen, receives unanimous positive votes

from all neighboring factors, it will set its value to 1 and it will be "decimated" (or

fixed) for the duration of the computation. The decimated variable nodes effectively

stop participating in the algorithm.

Decimation Algorithm

Our decimation procedure is run after every variable node has processed t iterations.

After decimation is run over all variable nodes, the message passing procedure con-

tinues. The decimation algorithm is given in 14:

Algorithm 14 BP-DECIMATE

procedure DECIMATENODES (V, F, n)

V÷-[]
Vf 8 +-[]
Vd+-[]

for all v E V do
V[v] <- ASSIGNSCORE(V)

for all f E F do
Vf, [f] +- ASSIGNFACTORSCORE(V, f)

d +- 0
for all v E V do

if SORT(V,)[v] = 1 and d < n then
Vd[d] <- V[v]
d <- d + 1

for all Vd E Vd do DECIMATENODE(Vd)

During decimation, each variable node i is assigned a score by the function As-

SIGNSCORE. In the case of binary programming, the score is just the probability that

a particular variable node takes on a value of 1. This is computed using node i's

incoming messages as the normalized value of Jjc(i) mjsi(1), which corresponds to

node i's estimated marginal distribution thus far. Each node also keeps track of its

decimated marginal, which is just node i's highest probability value.

The function ASSIGNFACTORSCORE is applied to every factor node. For every

factor node j, this function checks whether the decimated marginal values of the

neighbors of j violate the factor function constraint. All decimated marginal values
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of neighbors of j are sorted, in descending order, by their score. For each neighbor, i,

of j, Each factor node computes whether its factor function is violated by its variable

neighbor's current decimated marginal. Each edge (i, j) is assigned a factor score

of +1 if the decimated marginal of node i satisfies the factor function constraint of

node j and -1 otherwise.

Variables with decimated marginals which do not violate any factor functions

are eligible for decimation.

Next, variable nodes are sorted in decreasing order by score. The top num-todecimate

variable nodes whose decimated marginal does not violate any factor neighbors, are

chosen to be decimated (set to their decimated marginal), and can no longer change

for the remainder of running Max-Product Belief Propagation.

In our PubSub implementation, we implement the decimation procedure as a

separate subscriber, subscribed to all partition channels. Once each node has updated

its value t times, the decimation procedure is run before continuing with Max-Product

Belief Propagation. Edges are represented as Python dictionaries which keep track of

the current score, decimated marginal, factor scores, and decimation status

values. All values of decimation status are initialized as False at the beginning.

values of score, decimated marginal, and f actor scores are reset for undecimated

variables after each round of decimation.

6.1.2 Speeding Up By Sampling

In order to give a practical implementation of the factor update function for Max-

Product Belief Propagation, we introduce a modified algorithm BP-SAMPLE, based

on sampling.

Recall the message update equation (2.17) from factor node to variable node. For

binary optimization, generating each factor to variable message requires solving the

following maximization problem: let nr = JA(f)j be the degree of factor node f;
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probability wk E [0, 1] for 1 < k < nf; and function g: {0, 1}If -+ R+.

nf

maximize g(Ui, .... , Unf) H wgk(l - 1-7k

k=1

over 0k E {0, 1}, 1 I k <fnf. (6.4)

Exactly Solving (6.4) requires enumerating over 2nf values. Since this computation

quickly becomes unwieldy as nf becomes large, we can utilize a simple approximation

that is effective for large nf: sample r < 2nf binary strings from {0, 1}"f from the

following joint probability distribution where the probability of a particular binary

vector (Jk)1kinf E {0, 1}f is given by

ff

P(-1,. ... , Unf) = l WgO'(1 - w )1-9k(.)

k=1

Let Y C {0, 1}"f be this random subset. Then we simply maximize over this sampled

set, i.e.

nf

maximize g(i,. .. , On) 71Wk (1 )1-wk
k=1

over (Uk)1 kenf E Y. (6.6)

We can interpret each message mekaf, Vk E K(f) as a probability distribution over

{0, 1}, which is just the probability distribution of ck. In particular, we have m'klf[01 =

P (oU = 0) and mklf[1] = P (Uk = 1). From this, we get each term of the form

wgk (1 - w)a--k in 6.5. Thus, we can compute 6.6 by just sampling values from the

appropriate incoming messages meak.

Our algorithm based on this method essentially computes 6.6 as

1
Smax{g(yj)FREQ (yj)}

Y1 (6.7)

= max {FREQ (yj)} (6.7)
YI g(k%)=1

Vyj EY
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where Y is the set of samples from the joint probability distribution given by Hlvkr(f) mVk-f

and g(y33 ) is the factor function evaluated at sample yj E {0, 1}f.

BP-Sample Algorithm

We now describe our algorithm for computing Max Product belief propagation factor

functions based on sampling, in Algorithm 15. First, the function GENERATESAM-

PLES, takes in a set of incoming messages, M and number of samples to generate,

n, and then generates n samples from the joint distribution over M. This method

returns an array of of n samples, where each sample is a vector of length IMI. In the

case of binary programming, each sample is a vector in {0, 1}IMI.

Algorithm 15 BP-SAMPLE

procedure GENERATESAMPLES(M, n)
S <- []
for all m E M do

S[m] +- SAMPLES(n, m, {0, 1})

procedure BPFACTORUPDATEFROMSAMPLES (S, f)

S, +- UNIQUEWITHCOUNTS(S)

fmax +- 0
for all (s, c) E S, do

fc <- f(s) * c
if f, > fmax then

fmax +- fc

return fmax

The function BPFACTORUPDATEFROMSAMPLES, takes an array of samples, S,

and a particular factor function f and computes 6.7. First, the function UNIQUE-

WITHCOUNTS takes in S and outputs a set S, of pairs (s, c) where each s is a unique

sample from S and c is the count of the number of times the unique sample s occured

in S. Then, for each (s, c) E Sc, f(s)FREQ(s) is computed by evaluating the factor

function f at s and multiplying by c. The maximum value, corresponding to the

frequency of the mode, so far, is kept track of as fmax and max{f(s)FREQ(s)} is
sES

returned after termination. This value can be normalized before being returned.
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BP-Sample Algorithm Performance

For an instance of an optimization problem, we provide the comparison of speed

up achieved by this approximation as well as the approximation error introduced in

the message values by the algorithm. Specifically, Figure 6-1 presents the speedup

achieved through the sampling approximation and the approximation error.

In Figure 6-1 (upper left hand side) we show the Log of the speedup by using

the sampled version of Belief Propagation compared to the original algorithm, as

the number of factor node neighbors increasesfrom 1 to 20 for binary variables. In

optimization, this corresponds to the number of variables in a particular constraint.

We note that there is exponential speedup as the number of neighbors increases. In

Figure 6-1 (upper right hand side) we show the normalized f 2-norm of the error by

using the sampling algorithm versus the original algorithm. This is the f2-norm of the

difference between answer from the sampling algorithm and the original algorithm, di-

vided by V(2) which is the maximum f2 norm error. Factor Function constraints were

of the form E' 1 xi < r where n is the number of factor node neighbors/constraint

variables and r E {1, ... , n} is an integer selected uniformly at random. The upper

bound for the error in Figure 6-1 is about 0.4, while most values of the error is close

to 0. The lower the value of r (i.e. close to 1) the harder it is to sample relevant

events as the number of neighbors/variables goes up. The upper bound on the error

just corresponds to not sampling rare events for lower values of r and the sampled

message being returned as [0.5,0.5]. The speedup by using this method is exponential

and we later show that using this method still results in high quality solutions.

BP-Sample Interface

We now give the programming interface for implementing Sampled Max-Product

Belief Propagation. For the interface, we only need to define the appropriate UPDATE

functions for our variable and factor nodes:

For a variable node vi c V, the function UPDATENODEVAR takes a set of in-

coming messages M, a weight w and computes a new outgoing message mv,-(n) =
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Figure 6-1: Top left: The log speedup from the sampling algorithm.
fraction error from the sampling algorithm. Bottom: The fraction
the optimal objective in the limit (0.55) for MWIS
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ewixi Hme m where mi E Z' and n E Z,,. The input weight w is the weight wi

associated with variable xi in the optimization objective. The vector W is e'ixi eval-

uated over all values of xi, component-wise, where xi is just the domain over which

messages are defined. In the case of binary programming, for some particular w:

W = exp(w * DOMAIN(M))

= exp(w * [0, 1])

= [1, exp(w)]

(6.8)

(6.9)

(6.10)

The function UPDATEEDGEVAR divides out a particular message, computing, for
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Algorithm 16 SAMPLEDBPINTERFACE

procedure UPDATENODEVAR(M, w)

W +- exp(w * DOMAIN(M))

n <- W fJ m
mEM

return n
procedure UPDATEEDGEVAR(n, m)

e <- NORMALIZE (n)
return e

procedure UPDATENODEFAc(M, s)
n +- GENERATESAMPLES (M, s)
return n

procedure UPDATEEDGEFAC(n, m, mi, f)
e - []
Smi <- n \ {n[mi]}
for all i E m do

e[i] +- BPFACTORUPDATEFROMSAMPLES(Smi, fmi)

return NORMALIZE(e)

variable node v E V, and factor node f E J(v):

ewvXv HigeK(v) mg+v (6.11)
mvsf = (.1

mf -v

= eWvXv 11 mg9 + (6.12)

geK(v)\{f}

For computing new factor node messages, we use the BP-SAMPLE algorithm.

First, for a particular factor node f E F, the function UPDATENODEFAC takes an

array of incoming messages M, and number of samples to generate, s for the sampling

algorithm. Samples are generated from the joint probability distribution given by the

product of the incoming messages in M by the GENERATESAMPLES function. The

set of all samples is used as the node state.

For computing a new outgoing message to variable node mf v, v E K(f), the

function UPDATEEDGEFAC takes the previously generated set of samples as the node

state, the incoming message m corresponding to mvof, the index, mi of m with

respect to M, and the factor function, f. The set of samples Sm, is the set of samples

given in the node state, n, without the samples associated with the current edge.

76



6.1.3 Benchmarks

We evaluate the performance of our algorithm (and Factor Graph Compute frame-

work) over several binary optimization problems as benchmarks: both synthetically

generated problem instances (random instances of maximum weight independent set)

as well "real world" challenge benchmarks of varying difficulty, from the well known

optimization benchmark library [18]. We compare our algorithm's performance with

Gurobi [17], a state-of-art commercial solver. The standard optimization problem

format is MPS (Mathematical Programming System), which we then convert into

respective factor graphs in a straightforward manner. All optimization experiments

are run on a 32-core machine with 110GB of main memory, and using our asyn-

chronous Redis implementation of PubSub.

In our Redis implementation, we utilize 30 partitions - 15 variable node partitions,

and 15 factor node partitions, with 1 subscriber process per partition.

In addition, for each problem, we set particular decimation threshold D. We

decimate the variable solutions every time all nodes have performed D iterations.

The decimation function is implemented as a separate subscriber, which is subscribed

to all variable node channels. The Decimation subscriber keeps track of the number

of nodes which have completed D iterations. Each time a variable node partition, P"

publishes a message, the Decimation subscriber increments the iteration count of Pi.

All iteration counts are stored as keys in Redis.

Once all nodes have completed D iterations, the variable node performs the deci-

mation procedure, after which message passing continues

All subscriber callback functions and update functions are implemented in Python.

Each problem has different decimation parameters which are specified with results of

each problem.

Random Instances of Maximum Weight Independent Set.

Consider a graph G = (V, E) and set of positive weights W = {wi} assigned to each

node i E V. The maximum weight independent set problem [24] can be expressed as
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the following binary programming problem:

max Zwixi over xi E {, 1} Vi, (6.13)
iEV

subject to xi + xj < 1, V(i, j) E E. (6.14)

In order to benchmark the accuracy of our framework, we utilize the following fact to

generate benchmarks for MWIS over synthetic graphs: Let G(n, p) be an Erdos-Renyi

random graph of size n nodes, edge probability p = L, and weights wi sampled from

an exponential distribution with mean A = 1. Let x*= (x*) be an optimal solution

to the MWIS problem. Then, it is shown in [141 that

lim Z wix ~ 0.55 (6.15)limn->oo n

We evaluate our algorithm's performance for n = 100, 1000, 10000 and 100000. In

Figure 6-1 (log-log scale) we plot the fractional error with respect to the optimal limit

per (6.15) as problem size n changes for both our algorithm as well as for Gurobi. As

can be seen, both our solver and the Gurobi solver have small and comparable error

with respect to asymptotic limit. This seems to suggest that for "simpler" instances

of binary optimization, our solver does indeed find (near) optimal solutions.

Challenging Benchmark Optimization Problems

We test our framework on optimization problems provided by [18], a standard repos-

itory for integer programming problems and for benchmarking associated solvers.

Optimization problems from [18] are stored in the .mps file format, which we convert

from to our factor graph representation. We pick the following problems:

" p6b.mps - Maximum Independent Set

* f 2000 . mps - Pseudoboolean Optimization with unknown integer feasibility and

objective

The problem p6b.mps is a Maximum Independent Set problem, formulated as a
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binary program, with 462 variables and 5,852 constraints. This problem was formu-

lated in [18] (see p6b) and describes the maximum independent set problem over a

component of the 2048-node graph. This problem is known to be feasible with op-

timal objective (maximum independent set size) of 63. This is classified as a hard

problem in [18] which means that it could not be solved within one hour using a com-

mercial MIP solver. For this problem, our solver achieve a feasible solution with an

objective value of 52, which is not too far from optimal objective. We note that the

Gurobi solver finds several solutions, including the optimal value of 63, but most of

its subsequent time is spent in trying to figure out whether this is an optimal solution

or not.

The problem f 2000. mps is a pseudo-boolean satisfaction (SAT) problem, formu-

lated as a binary program, with 4,000 variables and 10,500 constraints. This problem

is given in [18] (see f2000) and is currently an open problem - the integer objective and

feasibility are unknown. The optimal objective for the linear programming relaxation

of this problem is given as 1331. This problem is classified by [18] as an open prob-

lem, meaning no commercial MIP solver is currently able to give an integer objective.

The goal here is to find a (close to) feasible solution with maximal objective value.

Our solver achieves an objective value of 1938, with ~ 6% violated constraints. In

contrast, for this problem, Gurobi struggles to converge to an integer objective - it

finds the relaxed linear objective, and like the previous problem, spends subsequent

iterations verifying whether it is the best (relaxed) solution.

For both problems, we employ a decimation threshold of D = 200 iterations and

decimate 10 nodes every time.

6.2 PageRank

As explained in Section 2.2.2, PageRank of a graph can be computed using the Factor

Graph Compute framework in a straightforward manner. Given a graph with N

nodes, we initialize all message as 1/N.

To evaluate performance of our PageRank algorithm, we utilize the Orkut network
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dataset from [21]. Orkut is an online social network - nodes represent users and edges

represent "friendship" relationships between users. The network dataset consists of

3 million nodes and 117 million undirected edges. The factor graph of the Orkut

network consists of 120 million nodes and 468 million (directed) edges. We compare

our performance with respect to Ligra [25] which seems to one of the best performant

in the recent literature on this question set.

For our Factor Graph Compute implementation of PageRank, 2 iterations is equiv-

alent to 1 iteration of PageRank over the original graph. The first iteration consists of

variable nodes publishing their messages to factor nodes, and the second iteration in-

volves factor nodes publishing their messages back to variable nodes, upon which the

experiment terminates. We use our implementation of UPDATEVAR and UPDATEFAC

function in Cython and we utilize Ligra based PubSub to make it compatible with

Ligra implementation.

Benchmarks are run with 32 threads and compiled with g++ using CilkPlus [4]

to enable parallelism. We conduct benchmarks using both our implementation in

Cython on top of Ligra and a PageRank implementation written in native C for

Ligra.
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6.2.1 Implementation

Algorithm 17 implements the PageRank UPDATEVAR and UPDATEFAC functions over

a factor graph g = (V, F, E). This algorithm implements a slightly different variant

from that described in section 2.2.2, which we describe now. One can see this imple-

mentation and that given in 2.2.2 are ultimately equivalent. In this implementation,

our Factor Graph for PageRank g = (V, F, E), of an undirected graph G = (VG, EG)

is as follows:

V = {vi, i E VG}, (6.16)

F = {fij, (ij) E EG}, (6-17)

E = {(vj, fij), vj, vi E V, fij E F, i E AfG (j) (6.18)

Essentially, all nodes in the original graph G become variable nodes of the factor

graph g, and all edges in G become factor nodes in G. The notation ArG(vj) just

means the neighborhood of node i E VG. We initialize messages as follows:

mvf eg(v) =n (6.19)

mf-+vjg(f) = null (6.20)

We specify state for each node as follows:

xv = [mfv , ... , mfk_]T E Qk (6.21)

Yf = [mvnlf, . . , mv f]TE Q1 (6.22)

k = JA-(v)I, l = JA-(f)1 (6.23)
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We specify computation dynamics as follows:

mv-f = UPDATEVAR(xv; mnar, g E .~(v); f)

1-d (mv
- +d mg+ + x [k]

n
kEN~- (v)\{g}

mf-v = UPDATEFACf(yf; muf, u E -(f); v) (6.24){deg(u) i

null if u = v

6.2.2 Interface

Algorithm 17 PAGERANKINTERFACE

procedure UPDATENODEVAR(M, d, N)

n -Ld ~+d ESm
mcM

return n

procedure UPDATEEDGEVAR(n, m)
e <- n

return e

procedure UPDATENODEFAc(M, f)
n +- Eiv m *f [m]-'
return n

procedure UPDATEEDGEFAc(n, m, mi, f)
e +- n - m *f [mi]-
return e

In Algorithm 17, the function UPDATENODEVAR computes the PageRank of a par-

ticular node v E V, as in 6.24, given an array of incoming messages M, the damping

factor d, and total number of nodes N. Node v sends its newly computed PageRank

value (node state n) to all neighbors, so the function UPDATEEDGEVAR returns n

which is exactly the PageRank of v. The functions UPDATENODEFAC and UPDA-

TEEDGEFAC correspond to dividing incoming PageRank values by the degree of the

appropriate node, as in equation 6.24. For a particular factor node f E F, the factor

function of f contains the degrees of the neighbors of f. The function UPDATEN-

82



ODEFAC for f computes the node state

n= Zmf [m]- 1  (6.25)
mEM

Z 1 PR(g) (6.26)
deg(g)9ENr(f )

The function UPDATEEDGEFAC for a particular edge (f, v) computes

mfyv = n - mf [mi] (6.27)

g(g)PR(g) - d PR(v) (6.28)
geNf( f)

1
= PR(g), g fv (6.29)deg(g)

Since all factor nodes have 2 neighbors, giving us the desired value for the new message

mf , to send along edge (f, v). The damping factor d and number of nodes in the

graph, N are given at the start. Factor functions are stored as arrays and represent

the degrees of the appropriate nodes in the original graph. All messages are initialized

to .

6.2.3 Benchmarks

In Table 6.1, we show the total time to run a single of iteration of PageRank in our

framework, as well as using the Ligra framework [25]. Our runtimes for PageRank over

the Orkut factor graph, implemented using Ligra PubSub, is similar to that of running

PageRank over the Orkut factor graph, using Ligra's PageRank implementation. For

two iterations of Ligra PubSub, which corresponds to a single iteration of PageRank,

we achieve a running time of 4.62 seconds. Two iterations of Ligra PageRank over

the factor graph runs in 3.5 seconds. This demonstrates that while Ligra itself is

optimized for graph algorithms, performing similar computations by using it as the

PubSub for Factor Graph Compute does not slow down the system by much, while

providing a large gain in expressibility and flexibility to solve a variety of different
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problems.

Implementation Nodes Directed Edges Iterations Time (seconds) Parallelism
Factor Graph Compute 120,257,524 468,739,654 2 4.62 32 threads

Ligra 120,257,524 468,739,654 2 3.5 32 threads

Table 6.1: Ligra and Factor Graph Compute (w/Ligra PubSub) have comparable
PageRank performance

6.3 Singular Value Decomposition

PageRank is a special instance of Singular Value Decomposition (SVD). Implementing

SVD involves matrix-vector multiplication, which, as we showed earlier in Section

2.2.4, fits the Factor Graph Compute framework in a straightforward manner.

6.3.1 Implementation

Using matrix-vector multiplication, it is straightforward to implement algorithms such

as Singular Value Decomposition (SVD).

We consider the special case of computing the SVD of a square, positive semi-

definite matrix A. Computing the singular values of A can be done using a power

iteration. This involves a series of matrix multiplies of A, for some number of it-

erations, n, and an initial random vector 7. Each iteration gives a new vector

Xn= AX_ 1 /IIA7 |.

This can also be thought of as continually multiplying the initial vector 7 by A

a number of times, with a normalization step after each iteration. Computing the

result of An corresponds to running n iterations of the matrix-vector mutliplication

algorithm (with normalization), given in algorithm 18.

This can be achieved by using matrix-vector as described in Section 2.2.4 along

with another sub-routine that computes the norm of a vector (this is just addition and

can be viewed as a factor node connected to all variable nodes in our factor graph).
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6.3.2 Interface

The interface for SVD is very similar to PageRank. Rather than initializing all nodes

to -, we initialize our nodes to a random value xi E R, which corresponds to picking

a random vector for the power iteration.

Algorithm 18 SVDINTERFACE

procedure UPDATENODEVAR(M)

n +- m
mEM

return n
procedure UPDATEEDGEVAR(n, m)

e +- n
return e

procedure UPDATENODEFAc(M, f)
n <- 0
for all m E M do

n +- n + m * f[m]

if IIMII == 1 then
n <- 2 * n

return n
procedure UPDATEEDGEFAC(n, m, mi, f)

e +- n - m * f[mi]
return e

Since SVD is implemented as a power iteration of matrix-vector multiplies, it

implements the UPDATEVAR and UPDATEFAC functions for Matrix-Vector Multipli-

cation given in Section 2.2.4.

For a particular variable node i, the function UPDATENODEVARABLE takes a

collection of its incoming messages, M and returns its sums as the node state. The

function UPDATEEDGEVARIABLE returns the node state previously computed as the

outgoing messages along all edges of i.

For a particular factor node f, with variable node neighbors vi, vj, the outgoing

message along an edge (f, vi), after applying UPDATEFAC, should be aiymn where mj

is the incoming message from node vj.

The factor function for f is an array f actor_function, containing entries aij, aji

from our input matrix. The function UPDATENODEFACTOR computes as the node
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state, nf, nf = aimn + ajimi, where mi, in.

The function UPDATEEDGEFACTOR for an edge off, (f, vi) computes nrf-aimi =

aijmj as the message to send along edge (f, vi). The case where j = i corresponds

to a diagonal element aii of our input matrix. In this case, f actor_function only

contains a single element, aii, and the function UPDATEEDGEFACTOR just returns

the computed node state nf = ajimi as the outgoing message along edge (f, vi).

PageRank computation is a special instance of Singular Value Decomposition as

it tries to compute leading eigenvector of a specific matrix. As discussed in Section

2.2.4, matrix-vector multiplication fits the Factor Graph Compute framework in a

straightforward manner. We will utilize this basic operation to compute Singular

Value Decomposition (SVD) of a matrix.

To that end, it is sufficient to consider a square, symmetric matrix A since com-

puting singular vectors of matrix M boil down to computing eigenvectors of MMT

or MTM. In particular, we shall employ power-iteration (ideally, it's variants such

as Lanczos method [20] but for simplicity as well as fair comparison with results re-

ported in literature [11] we shall consider power-iteration only). Here, starting with

a random initial vector 'o, the goal is to iteratively compute

1
Xn= 1 Ain_ 1. (6.30)

This can be achieved by using matrix-vector multiplication sub-routine as in Section

2.2.4 along with another sub-routine that can compute norm of a vector (which is

simply addition, can be viewed as a 1-factor graph with all components of vector as

variables connected with it). That is, such an iteration can be implemented in our

framework in a straightforward manner.

6.3.3 Benchmarks

We ran our experiments for SVD using Ligra as our PubSub system. We generated

a synthetic sparse square symmetric matrix with dimensions 1M x 1M and 51M

non-zeros (out of 1012 possible entries). The associated factor graph for this sparse
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matrix has 26,499,350 nodes and 203,994,406 (directed) edges. All computations

are run with 32 threads and Ligra compiled with g++ using CilkPlus [4] to enable

parallelism. One power-iteration of SVD corresponds to two iterations (one variable

and one factor) in the Factor Graph Compute framework.

As reported in the Table 6.2, it takes 0.98 seconds of wall-clock time to compute

one iteration of power-iteration for such a matrix.

We compare our SVD experiments on a sparse square matrix against the Spark

SVD benchmark reported in [11]. The Spark benchmark correspond to a "tall and

skinny" with 51M non-zeroes. Computing the singular value decomposition (along

the skinny side) results in a much smaller square matrix. The Spark benchmark was

run using 68 executors in the Spark environment with a wall-clock time of 0.2 seconds.

Thus, the total time over all 68 executors is 0.2 * 68 = 13.6 seconds. The reported

experiment for Spark utilized 8GB of memory per executor and hence total of 544GB

of memory.

In contrast, our SVD experiment was run on a single 110GB memory machine

with 32 threads. Comparing our total compute time, which is 0.98 seconds on a

single machine, with that of 13.6 seconds for Spark, suggests an improvement of

> 13x.

Table 6.2: SVD Experiments
Implementation Dataset Time (seconds) Parallelism

Factor Graph Compute SPARSE51NZ-FACTORGRAPH 0.9815 32 threads
Spark TALLANDSKINNYSPARSE51NZ 0.2 68 executors

6.4 Scaling

We consider the scaling properties as we increase parallelism of our system. We run

a single iteration of PageRank on our asynchronous Factor Graph Compute imple-

mentation which uses Redis as PubSub. This corresponds to every variable node

publishing its initial message, all factor nodes computing outgoing messages, variable

nodes receiving all messages from their factor neighbors and computing outgoing
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Figure 6-3: Performance metrics scale linearly with the number of processors

messages. Our implementation uses a partitioned factor graph with the same num-

ber of variable and factor partitions. We assign nodes to their respective partitions

uniformly at random, which corresponds to the simplest or worst-case partitioning

scheme. All benchmarks are run on the Amazon Product Co-Purchasing Network

dataset [21] which consists of 403,394 nodes and 3,387,388 (directed) edges. The

corresponding undirected factor graph consists of 2,846,802 nodes - 403,394 variable

nodes and 2,443,408 factor nodes, and 4,886,816 edges. We consider the following

metrics: average iteration time per partition, average message size (number of mes-

sages published per partition)

We run our benchmarks on a single machine with 32 processors and scale the

number of processors from 2 to 30, with 1 partition for each processor. In Figure

6-3 we see that the average iteration time, and average message size improve as the

number of processors (amount of parallelism) increases. The average iteration time

drops from 10 seconds to about 0.24 seconds, which is about a 42x speedup. The

average message size drops from 4,886,816 messages to 325,787.7333 which is about

a 15x improvement.

Figure 6-3 confirms that the system performance scales linearly with the available

resources which is the best one can expect. This also hints at the possibility that the

same "program" can run on a single machine PubSub or can scale gracefully when

run on distributed PubSub.
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Chapter 7

Conclusions

We introduce a computational framework based on factor graphs implemented using

PubSub infrastructure. This framework is expressive (Turing complete), allows for a

unified "programming" interface across different environments, and scales seamlessly.

We showed our framework provides excellent performance, and is comparable to the

state of the art, for binary optimization, graph, and Linear Algebra problems. How-

ever, though our language based on Factor Graphs is Turing complete, the factor

graph view of a given problem is not intuitive. It is not generally straightforward to

convert problems into their factor graph representation. Making this framework "user

friendly" requires building transformers to convert problems from the standard view

to the factor graph view. This is feasible for a large class of problems including those

discussed in Section 2.2.
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