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Abstract

Accurate risk stratification is essential for the proper management of patients after

an acute coronary syndrome (ACS). Currently, the most widely accepted metrics for

risk stratification are risk scores such as the Thrombolysis in Myocardial Infarction

(TIMI) score and Global Registry of Acute Coronary Events (GRACE) score. How-
ever, prior work has shown that many patients who are not traditionally defined as
high-risk by the TIMI or GRACE scores suffer adverse events such as cardiovascu-

lar death. We therefore wish to find a method of risk stratifying patients that has
greater discriminatory ability than the existing scoring metrics. We wish to find a
model that can assign a risk score using data that is routinely collected for patients
during a hospital stay. Using a dataset of over 4200 patients, we developed logistic
regression, neural network, and regression tree models to risk stratify patients for
one-year cardiovascular death post ACS. The resulting models were highly predic-
tive of risk compared to the TIMI score. Our findings highlight the efficacy of using
machine learning models trained on commonly collected clinical data to risk stratify
patients.

Thesis Supervisor: Collin M. Stultz
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In the United States, heart disease accounted for about 1 in every 3 deaths in 2018,

making it the leading killer in the country [1]. Coronary Artery Disease (CAD), a

disease characterized by the narrowing or blockage of the coronary arteries, accounted

for about 1 in 7 total deaths in 2018 [1]. Acute Coronary Syndrome (ACS) is a term

associated with the sudden rupture of plaque inside the coronary arteries, leading to

decreased blood flow to the heart. The subset of diseases covered by the term ACS

include unstable angina (UA), ST-segment elevation myocardial infarctions (STEMI),

and non-ST-segment elevation myocardial infarctions (NSTEMI) [2]. ST elevation

acute coronary syndrome (STE-ACS), which includes patients who have had a STEMI

and some patients with UA, is characterized by a heightened level of the ST segment

in a patient's electrocardiogram (ECG). An elevated ST segment indicates that a

patient has an artery that is totally obstructed. Non ST elevation acute coronary

syndrome (NSTE-ACS), including NSTEMI and some patients with UA, can cause

either no change in the ST segment or an ST segment depression. Patients with

NSTE-ACS have varying levels of arterial obstruction.

1.1 Risk Stratification

Patients who have previously experienced ACS are at an increased risk of a future

myocardial infarction (MI) as well as cardiovascular death (CVD) after the original
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ACS diagnosis. STE-ACS and NSTE-ACS differ in the level of blockage in the pa-

tient's coronary arteries. Patients who present with STE-ACS are at high risk of

cardiovascular death in the short term. These patients therefore benefit from open-

ing the blocked vessel soon after presentation. This is typically done via coronary

angioplasty, an invasive procedure that restores blood flow to affected regions of the

heart. However, patients post NSTE-ACS may have varying degrees of risk. Pa-

tients at the highest risk of adverse events benefit from invasive strategies to restore

myocardial blood flow [3]. In order to assign appropriate therapies to patients, clin-

icians assess the relative risk of future adverse outcomes in a patient. This process

of evaluating patients' future risk is known as risk stratification. Often, the adverse

outcomes considered for risk stratification of patients post ACS are CVD and/or MI.

Patients assigned a high risk measure receive more aggressive treatments, such as

cardiac catheterization. On the other hand, for patients with a low risk score, the

inherent risk of an invasive procedure may outweigh the benefits. Therefore, a reli-

able method of risk stratifying patients is needed in order to determine appropriate

therapies.

Scoring criteria currently exist that are able to risk stratify patients post ACS.

Two of the most commonly used methods are the TIMI (Thrombolysis in Myocardial

Infarction) risk score [4] and the GRACE (Global Registry of Acute Coronary Events)

risk score [5]. The TIMI risk score provides a measure of risk of future CVD or MI.

The GRACE score provides risk of all-cause death or MI. This research focuses on

comparison of machine learning methods with the TIMI risk score.

1.2 Previous Work (TIMI Score)

The TIMI risk score is a widely used scoring metric for patient risk stratification

post ACS [4]. Separate risk scores exist for STE-ACS and NSTE-ACS. We are only

concerned with the NSTE-ACS TIMI score here, as we have a greater need for risk

stratification of patients after NSTE-ACS in order to assign appropriate therapies.

The scoring criteria and corresponding risk scores for patients post NSTE-ACS are

12



given in Table 1.1.

Historical Points Death Death, MI, or
Age > 65 1 Risk Score or MI Urgent Revasc
>3 CAD risk factors 1
Known CAD (stenosis 50%) 1 0/1 3 5
ASA use in past 7 days 1 2 3 8

Presentation 3 5 13
Recent ( 24H) severe angina 1 12 26
Increasing cardiac markers 1 / 12 46
ST deviation >0.5mm 1 6/7 19 41

(a) Risk Score Points. ASA is (b) Risk of Cardiac Events (14 days) by % in
(a) iskScoe Ponts AS isthe TIMI liB study group

acetylsalicylic acid, or aspirin.

Table 1.1: TIMI risk score for UA/NSTEMI.

The TIMI risk score is easy to use for clinicians and easy to understand for pa-

tients. Few features are needed to find the TIMI score, and the features used are

easily collected. However, it has a limited discriminatory ability for risk stratifica-

tion. Previous studies have reported that patients assigned a high-risk TIMI score

only account for about 40% of CVDs [6]. Therefore, we desire a risk stratification

method with improved discriminatory ability over the TIMI risk score.

1.3 Problem Statement

We believe that machine learning methods can be used to more reliably risk stratify

patients when compared with the TIMI risk score. Some work has already been

done to determine the efficacy of logistic regression for risk stratification of patients

after NSTE-ACS [7]. This work has concluded that logistic regression models, when

optimized correctly, can risk stratify patients with a higher discriminatory ability

than the TIMI risk score. The TIMI risk score was also initially derived from a

logistic regression model [4]. The features that were most predictive of CVD were

chosen by examining the weights learned by the logistic regression model. Logistic

regression, however, models only one type of relationship between input features and

the target variable. Machine learning methods that model other, more complicated,

13



input-output relationships have not yet been widely applied to risk stratification of

patients after ACS. We believe that other types of machine learning models may be

able to produce an even more highly discriminatory risk score to be used for risk

stratification.

In this thesis, we will analyze the ability of logistic regression, neural networks, and

regression trees to risk stratify patients for one-year CVD. We believe that machine

learning models can be more effective in risk stratification by modeling more compli-

cated relationships between clinical features and outcomes. Various clinical variables

that are commonly collected during a post ACS patient's stay in the hospital will be

used as our feature set for our machine learning models. These features include many

of the factors used to find the TIMI risk score in addition to other features. We will

use a feature set including 7 features that are readily apparent for patients after ACS

to test our machine learning models. We will also examine using as an augmented

feature set including 19 total features. We will be using these machine learning meth-

ods to predict likelihood of one-year CVD in each of the patients in our cohort. We

will be using one-year CVD likelihood as our risk measure in evaluating the machine

learning methods' discriminatory ability over that of the TIMI risk score. We will

show that, provided a descriptive feature set, machine learning methods produce risk

scores that outperform the discriminatory ability of the TIMI risk score.

14



Chapter 2

Overview of Machine Learning

Methods

We will be using several types of regression models to calculate risk measures for

post ACS patients: logistic regression, neural networks, and regression trees. In this

section, we give an overview of the machine learning techniques we will be utilizing.

First, we describe logistic regression models. Then, we will summarize neural network

models. Lastly, we describe decision tree models.

2.1 Logistic Regression

Logistic regression fits a linear function to the log of the odds of the outcomes, or

the logit function. The logit function ensures that the outcomes estimated by the

logistic regression model will be constrained to fall between 0 and 1. The relationship

is modelled as follows:
N

ln( )=wo + 1 wnzx, (2.1)
n=1

where y is the outcome (in this case, a binary variable representing whether the

patient experienced one-year CVD), Xn represents each of the N input features, wn

are the weights learned for each input feature, and wo is a bias term.

The logistic regression model is optimized by choosing the appropriate weights
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that will minimize a loss function. Often, a regularization term is added to the

loss function to avoid over-fitting of the function to the data. We make use of L2

normalization, in which the scaled squared magnitude of the weight vector is added

to the loss function. Our loss function, L(y, ), is given by

L(y, m) rmin w W + C log(exp(-yi - j) + 1) (2.2)
w,c 2

where P is the number of patients in the training dataset, y, are the actual outcomes,

#j are the estimated outcomes, here CVD, w is the vector of weights found for all

features, and C is a regularization parameter, with larger parameters indicating a

weaker L2 regularization, as the error term becomes much stronger relative to the

regularization term with larger C. It should be noted that this loss function works

only with class labels of -1 and 1 rather than 0 and 1. For logistic regression, we used

-1 and 1 as class labels rather than 0 and 1.

2.2 Neural Networks

Neural networks are comprised of nodes called neurons arranged in layers. We used a

feed-forward, fully connected neural network to estimate a risk score. A feed-forward

network is one in which the output of each node is calculated only using information

from the previous layer. A fully connected network is one in which all nodes in a layer

connect to each node in the following layer. A generalized depiction of a feed-forward,

fully connected neural network with N input nodes, one hidden layer, and M nodes

in the hidden layer is shown in Figure 2-1.

In this figure, each connection corresponds to a unique weight value. The input

nodes pass information to the model, but perform no calculations. In Figure 2-1,

each of the N input nodes outputs the value of one of the N features used. The

output of the hidden nodes and the output node are nonlinear functions of the linear

combination of the weighted outputs of the nodes from the previous layer. These

functions are called the activation functions. We have one output node in our model,

16
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Figure 2-1: Neural network model

as we wish to estimate one binary variable, CVD, in the output. In our models, each

of the nodes in the hidden layer as well as the output node have a sigmoidal activation

function. This function, o, is able to restrict outputs to fall in the range from 0 to 1.

The sigmoid function is given as follows:

1
or(a) = 1 ,ea' (2.3)

where a is the weighted sum of the output of the nodes in the previous layer.

Neural networks are optimized using the backpropagation algorithm. When using

the backpropagation algorithm, optimal weights are found to minimize a loss function.

We use binary cross entropy as the loss function for our neural networks, as we are

estimating a binary target variable. Our loss function, L(y, 9) is given as

P

C(y, ) =- Z [yi log #j + (1 - yi) log(1 - #j)] (2.4)
i=1

where P is the number of patients in the training dataset, y, are the actual outcomes,

and j are the estimated outcomes, here CVD. During backpropagation, errors be-

tween the predicted and true outcomes are calculated beginning at the output layer.

17



Weights from the hidden layer to the output layer are adjusted to minimize the error

at the output layer. The error is then calculated at the hidden layer, and weights

are again adjusted accordingly. This continues until all weights in the neural net-

work have been updated. The network then updates the predictions using the new

weights and repeats the backpropagation process. Backpropagation continues for a

set number of epochs, chosen such that the model converges to an optimal solution.

A fully connected, feed-forward neural network with at least three layers (one or

more hidden layers) is also referred to as a multi-layer (ML) perceptron. Accordingly,

a feed-forward neural network with no hidden layers is called a single-layer (SL)

perceptron. We will use these terms in the remainder of the paper to distinguish

between models with one hidden layer and models with no hidden layers.

2.3 Decision Trees

Decision trees use values of the input features to follow a path according to a graph-

like model and estimate a target variable. An example of a decision tree regression

model with a binary target variable is shown in Figure 2-2. A, B, and C are the input

features and Y is the predicted outcome. Decisions are made at each of the nodes

using logical relationships on the input features. To make a prediction, we travel

through the tree until a leaf, or an outcome node, is reached, where the prediction

is assigned. Unlike in neural network models, connections in a decision tree graph

do not correspond to weights, but rather to a pathway traveled to reach a leaf. The

depth of the tree is equal to the number of decisions that must be made to reach

a prediction using the decision tree. The maximum depth of the tree in addition

to other parameters must be restricted during training of a decision tree in order to

avoid each item in the training dataset having its own leaf in the model.

Decision trees are weak prediction models that often perform worse than neural

networks or logistic regression [8]. Decision trees also have a tendency to overfit

during the training stage of learning. Multiple methods exist to improve the efficacy

of decision tree models.

18
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Figure 2-2: Example decision tree model.

2.3.1 Gradient Boosted Trees

Gradient boosting is one method that has been successfully used to improve decision

tree learning models [8]. Gradient boosting is a type of gradient descent algorithm.

Gradient descent algorithms are optimization algorithms in which steps are taken

iteratively to minimize a loss function. During each learning step, the algorithm

updates the tree model to fit the negative gradient of the loss function. In our

gradient boosted tree models, we use mean squared error as the loss function. Our

loss function, L(y, y), is thus given as follows:

P

L(y, _) = - 2, (2.5)
i=1

where P is the number of patients in the training dataset, y, are the actual outcomes

and #j are the predicted outcomes. First, an initial decision tree model is found.

Then, the residuals between the actual outcomes and the predicted outcomes are

found. A new decision tree model is found by fitting the tree to the residuals. When

using mean squared error as the loss function, the residuals are equal to the negative

gradient of the loss function. The tree is updated iteratively for a set number of

boosting stages, where at each stage a model is constructed for the residuals arising

from the previous stage, chosen such that the model converges to an optimal solution.
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2.3.2 Random Forest Trees

Random forest trees also improve on the performance of regular decision trees [91.
This method makes use of bagging, or bootstrap aggregating, which is when many

smaller training sets are chosen randomly from a set of data. Separate trees are

trained on each of the random bootstraps. The output is the mean of the predictions

output by each of these many decision trees. Random forest trees also make use of

feature bagging, in which the feature used to make the decisions at each node are

chosen from a random subset of the features. Feature bagging is an effective measure

to reduce effects of overfitting, as decision trees choose decisions that separate the

training data most decisively. Often, a decision tree may make decisions that split

the data well in the first branches of the tree, but the decisions may not result in the

most accurate final result. Feature bagging reduces effects of overfitting, especially

in the first few stages of the decision tree.

20
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Chapter 3

Results and Discussion

3.1 The MERLIN Dataset

The data for this experiment were collected as part of the MERLIN-TIMI 36 (Metabolic

Efficiency with Ranolazine for Less Ischemia in Non-ST-Elevation Acute Coronary

Syndrome - Thrombolysis in Myocardial Infarction 36) trial to study the efficacy

and safety of the drug ranolazine in reducing ischemia in post NSTE-ACS patients

[10]. This study concluded that ranolazine had no effect on the likelihood of CVD

in post NSTE-ACS patients. Therefore, we are able to use all patient clinical data

from this trial to study the discriminatory ability of machine learning methods for

risk stratification.

We used two differently sized feature sets to evaluate our models, one with 19

features and the other with 7 features. From the datasets, we created 100 boot-

strapped training and testing datasets with 80%/20% training/testing splits. Deaths

were stratified among the training and testing datasets. The models were trained on

the training sets, and evaluated on the testing sets.

3.1.1 Full Feature Set

The full set of features used in this study from the MERLIN trial is listed in Table

3.1. It should be noted that the table provides a measure for the TIMI risk group

21



rather than the TIMI risk score. TIMI risk group 1 includes all patients with a TIMI

risk score from 0-2, TIMI risk group 2 contains those with a risk score from 3-4, and

TIMI risk group 3 includes TIMI risk scores from 5-7. All non-binary features were

normalized to fall between 0 and 1. Pre-processing steps taken on the feature set

are detailed in Appendix A. This feature set is used to evaluate the efficacy of SL

and ML perceptrons in addition to logistic regression. As decision tree models are

highly prone to overfitting, the large number of features for the full feature set would

likely lead to overfitting for the tree models. The models would either need to make

a large number of decisions to use all the features, resulting in few patients included

in each leaf, or not using the entire feature set, which would make it more difficult to

compare tree models across bootstraps. Therefore, we do not use the full feature set

to evaluate decision tree models.

3.1.2 Reduced Feature Set

A reduced-size feature set is shown in Table 3.2. This reduced feature set is a subset of

the features shown in Table 3.1. The reduced feature set includes the same patients

as the full feature set, but some of their clinical features have been omitted. The

reduced feature set contains fewer features than the number used to calculate the

TIMI risk score. By limiting the number of features in our feature set, we wish to

test if machine learning methods can provide a reliable risk metric when data on a

limited number of clinical variables are available. We wish to determine if a small

set of highly descriptive features can provide a reliable risk metric for patients. The

feature set shown in Table 3.2 is used to evaluate SL perceptron, ML perceptron,

logistic regression, decision tree, gradient boosted tree, and random forest tree.
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Features

Total Patients

Total One-Year CVD

1. Age

20-40

40-60

60-80

80+

2. Gender (Female)

3. BMI

15.0-25.0

25.0-35.0

35.0+

4. Diabetes

5. Hypertension

6. Smoker

7. Prior myocardial infarction

8. Prior PCI or CABG

9. Congestive heart failure

10. Ventricular arrhythmia

11. Resuscitated sudden death

12. Creatinine clearance <60mL/min

13. Index event type (NSTEMI)

14. ST Depression > 1mm

15. TIMI risk group

1

2

3

16.

17.

18.

19.

Prior angiography

Aspirin during hospitalization

Beta blocker during hospitalization

ACE-I/ARB during hospitalization

Patient Cohort

4246

149 (3.51%)

52 (1.22%)

1623 (38.2%)

2294 (54.0%)

277 (6.52%)

1475 (34.7%)

930 (21.9%)

2902 (68.3%)

414 (9.75%)

1422 (33.5%)

3113 (73.3%)

1115 (26.2%)

1406 (33.1%)

1102 (25.9%)

680 (16.0%)

147 (3.46%)

24 (0.565%)

891 (21.0%)

2245 (52.3%)

1550 (36.5%)

1157 (27.2%)

2232 (52.6%)

857 (20.2%)

1413 (33.3%)

3729 (87.8%)

3558 (83.8%)

2995 (70.5%)

Table 3.1: Baseline characteristics for the patient cohort used in the full feature
set. BMI is body mass index; PCI is percutaneous coronary intervention; CABG is
coronary artery bypass surgery; ACE-I is angiotensin-converting-enzyme inhibitor;
ARB is angiotensin receptor blocker.
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Features Patient Cohort

Total Patients 4246

Total One-Year CVD 149 (3.51%)

1. Age

20-40 52 (1.22%)

40-60 1623 (38.2%)

60-80 2294 (54.0%)

80+ 277 (6.52%)

2. Gender (Female) 1475 (34.7%)

3. BMI

15.0-25.0 930 (21.9%)

25.0-35.0 2902 (68.3%)

35.0+ 414 (9.75%)

4. Hypertension 3113 (73.3%)

5. Smoker 1115 (26.2%)

6. Prior myocardial infarction 1406 (33.1%)

7. Prior angiography 1413 (33.3%)

Table 3.2: Baseline characteristics for the patient cohort used in the reduced dataset.
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3.2 AUC

The area under the curve (AUC) for the receiver operating characteristic (ROC) curve

is one metric often used to evaluate the discriminatory ability of machine learning

models. The ROC curve is found by plotting the true positive rate of the predictions

against the false positive rate. The AUC is then found by computing the area under

the ROC curve. An AUC of 1.0 indicates the model is able to perfectly discriminate

between high-risk and low-risk patients. An AUC of 0.5 indicates the model is unable

to distinguish between high- and low-risk patients. An AUC of 0 means all patients

who were high-risk were classified as low-risk and all low-risk patients were found to

be high-risk by the model.

The AUCs for both the full and reduced feature set can be seen in Figure 3-1.

These AUCs were calculated on the testing datasets over each of the 100 bootstraps.

The mean AUCs and 95% confidence interval (CI) for each of the models are dis-

played in Table B. 1 (full feature set) and Table B.2 (reduced feature set) in Appendix

B. Figures 3-1a and 3-1b show that the machine learning methods coupled with the

augmented feature set are better able than the machine learning methods with the

reduced feature to discriminate between high-risk and low-risk patients. Logistic

regression and ML perceptron produced the highest median AUC values. SL per-

ceptron had a larger median AUC than the TIMI risk group, but produced AUCs

lower than ML perceptron and logistic regression. Figure 3-1b shows that most mod-

els with the reduced size feature set had comparable AUCs to the TIMI risk group.

Logistic regression, ML perceptron, gradient boosted trees, and random forest trees

produced results with AUCs slightly higher than the AUCs calculated on the TIMI

risk group. Conventional decision tree AUCs were slightly lower than those for the

TIMI risk score, and SL perceptron AUCs were quite a bit lower. The AUC values

found suggest than ML perceptron and logistic regression produced risk scores with

the greatest improvement in discriminatory ability compared to the TIMI risk group.

Note in Figure 3.1 that the TIMI risk group, was used as a feature to calculate our risk

score. We determined that the addition of the TIMI risk score did not significantly
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sTIM Risk Group
li1Mi Risk Group

Random Forest Tree 0- 0

Logistic Regression - Gradient Boosted Tree

Decision Tree 0

SL Perceptron 0 Logistic Regression 0

SL Perceptron >O' o
.1-ML Perceptron - 0

0.45 050 D5 16 6S 070 075 0.80 0.85 090 045 050 055 0.6 065 070 075 OiO 5 090
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Figure 3-1: AUCs calculated for the testing dataset for each of the 100 bootstraps.

The center line in each box represents the median; the box shows the 25th through

75th percentile; the whiskers show the spread out to 1.5*IQR (inter-quartile range,

or the difference between the 25th and 75th percentiles) above the 75th percentile;
the dots are the outliers.

affect the discriminatory ability of the risk measure we found. Using a feature set

that included all features in Table 3.1 but excluding the TIMI risk group, the AUCs

changed minimally. For example, with a feature set excluding TIMI risk group, ML

perceptron had an AUC of 0.779 (95% CI [0.772, 0.786]), compared to an AUC of

0.777 (95% CI [0.771, 0.783]) using a feature set that includes the TIMI risk group.

The p-value was 0.0013, indicating these AUCs were not significantly dissimilar.

The differences between the AUCs calculated on the training and testing datasets

are depicted in Figure 3-2. The median differences for all models for both the reduced

and full feature sets range from near 0 to about 0.04, showing that the models are

not significantly overfitting to the training sets. When comparing Figure 3-2a with

Figure 3-2b, we see that the differences between the AUCs on the training and test-

ing datasets for models using the reduced dataset have a larger range over the 100

bootstraps than the differences for the models using the augmented feature set. This

suggests that with a smaller feature set, discriminatory ability is not as consistent

across many bootstraps as the discriminatory ability of models using the full feature

set. The test sets for the reduced feature set models produce results with AUCs lower

than the AUCs for the training set, suggesting the models are overfitting more often

for the reduced data set models than the full feature set models.
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Figure 3-2: AUCt, - AUCte for each of the 100 bootstraps.

3.3 Relative weights of features

3.3.1 Full feature set

A bar graph of the average weights found by the logistic regression model is shown

in Figure 3-3. The feature index labels match the indices for the features in Table

3.1. We see that the weights with the largest magnitudes are indices 1, 9, and 14,

which correspond to age, the presence of congestive heart failure, and ST depression,

respectively. This suggests that these three features are the strongest predictors of

one-year CVD in this cohort. Age has the largest weight, with a magnitude more

than twice that of the next largest weight, corresponding to congestive heart failure.

This large weight shows that age is the strongest predictor of one-year CVD in our

model. Five of the features have negative weights, suggesting that our model has

learned that these features lead to reduced likelihood of CVD in our cohort. The two

features with the largest negative magnitude for their weights were prior PCI/CABG

and recent aspirin usage. The feature with the smallest weight was diabetes. This

suggests our model believes diabetes to be a poor predictor of CVD in this patient

cohort.

3.3.2 Reduced feature set

A bar graph of the average weights found by the logistic regression model on the

reduced feature set is shown in Figure 3-4. The feature index labels match the num-
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Figure 3-3: Logistic regression weights for the model trained on the full feature set
averaged over 100 bootstraps.

bered features in Table 3.2. As in Figure 3-3, age has the largest weight, suggesting

the model has found age to be the strongest predictor of CVD for this cohort. BMI

has the next largest weight, and it's negative. The model learned that larger BMIs

decrease the risk of CVD. Gender is the smallest weight with a value close to zero.

The small weights corresponding to gender in Figures 3-3 and 3-4 show the models

have learned that gender is a poor predictor of CVD for this cohort.

3.4 Hazard Ratio

The hazard ratio measures the ratio of the hazard rates in a high risk group to a low

risk group [11]. Our hazard ratio is thus defined as follows:

HR =- Rate of CVD for patients in high risk group (3.1)
Rate of CVD for patients in low risk group
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Figure 3-4: Logistic regression weights for the model trained on the reduced feature

set averaged over 100 bootstraps.

The hazard ratio is calculated using a Cox proportional hazards model. In our case,

the hazard ratio would be the ratio of the rate of CVD in some high risk group

compared to the rate in some low risk group. We define the high-risk group as

patients with a risk score above the 75th percentile of all risk scores in the patient

cohort output by each model and the low-risk group as patients with a risk score

below the 75th percentile for the risk score produced by each model. If a model is

unable to distinguish between low-risk and high-risk patients reliably, the hazard ratio

will be 1. In order for us to say that the hazard ratio is truly above 1, the lower 95%

confidence interval must be above 1. A higher hazard ratio means that the model is

able to better distinguish between high-risk and low-risk patients.

The hazard ratios calculated on the outputs of the models we tested are shown in

Figure 3-5. The mean HRs and 95% CIs for each of the models over the 100 bootstraps

are displayed in Table B.3 (full feature set) and Table B.4 (reduced feature set) in

Appendix B. Figure 3-5a shows the hazard ratios calculated using the full feature set

over the 100 bootstraps. The logistic regression and ML perceptron models on the
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full feature set had a higher median hazard ratio than the TIMI risk group, and SL

perceptron had a lower median HR. The TIMI risk group had the widest spread in

hazard ratios. However, more TIMI risk group HRs were on the higher end of the

graph than HRs calculated on the outputs of the machine learning models. Logistic

regression models provide results with HRs just as high as the HRs on the TIMI risk

group, but with fewer results on the high end of the spread of HRs. Figure 3-5b

shows the HRs using the reduced size feature set. The median HR using the TIMI

risk group was higher than the median HR for all of the machine learning models for

the reduced feature set. The TIMI risk group had HRs of up to 12, while the machine

learning models trained on the reduced size feature set only had HRs reaching as high

as 8. The SL perceptron method produced outputs with particularly low HRs. Some

HRs went even lower than 1, indicating the SL perceptron produced results placing

a higher rate of risk in the group determined to be low risk. ML perceptron, logistic

regression, and the decision tree models for the reduced feature set all produced HR

results with a similar median and spread.

II RikGoup 00l]-----~ a14 i Gop I0
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Logistic Regression 0 C Gradient Boosted Tree 0 00

Decision Tree CO 0

SL Perceptron Logistic Regression - o

SL Perceptron o-F - 0
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(a) Full Feature Set (b) Reduced Feature Set

Figure 3-5: Hazard ratios calculated for the testing dataset for each of the 100 boot-
straps.

3.5 Net Reclassification Improvement

The Net Reclassification Improvement (NRI) measures the added usefulness of a

newer model over an older one. The NRI has previously been successfully applied to

risk stratification models [121. Multiple variations in the definition of the NRI exist.
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We make use of the two-category NRI in the evaluation of our models because we are

analyzing a binary target variable. The two-category NRI is formulated as a linear

combination of probabilities and is defined as follows:

NRI = P(upevent) - P(downlevent) + P(downnon - event) - P(uplnon - event),

(3.2)

where the 'event' indicates CVD occurred, 'non-event' means the patient did not

experience CVD, 'up' indicates the old model characterized the patient in the low

risk group while the new model placed the patient in the high risk group, and 'down'

indicates the old model characterized the patient as high risk while the new model

characterizes as low risk. For example, an NRI of zero indicates the new model had

the same discriminatory ability as the old model. A negative NRI indicates the new

model was not able to discriminate between low-risk and high-risk as well as the old

model, and a positive NRI shows the new model discriminated more accurately than

the old model. The NRI ranges from -2 to 2. An NRI of 2 indicates the old model

classified no patients correctly, while the new model was able to discriminate correctly

between all high-risk and low-risk patients. An NRI of -2 indicates the new model

classified none of the patients correctly, but the old model identified all high- and

low-risk patients correctly.

The NRIs showing the improvement of each of our models for the full feature set

over the TIMI risk group are shown in Table 3.3. Table 3.4 shows the NRIs for models

used with the reduced feature set compared with the TIMI risk group. Both the mean

NRI and the 95% CI are shown. When calculating each of these NRIs, the TIMI risk

group was the old model. The new models are given in the tables. The NRIs found

using the predicted outcomes on the test dataset are shown in both tables. The

testing dataset NRIs for the machine learning models with the augmented feature

set are positive and with CIs that do not overlap zero. This shows that the machine

learning models with a larger set of features exhibit heightened discriminatory ability

over the TIMI risk group. The logistic regression and ML perceptron showed a larger
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New Model NRI test

ML Perceptron 0.121 t 0.0198

SL Perceptron 0.0310 t 0.0205

Logistic Regression 0.127 t 0.0191

Table 3.3: Mean NRIs and 95% CIs for various models and the full feature set com-

pared with the TIMI score

improvement over the TIMI dataset. Both models had a mean NRI around 0.12

over 100 bootstraps with the full feature set. SL perceptron, however, showed poorer

performance. The lower bound of the 95% CI was about 0.01, not much larger than

zero. However, the 95% CI is still positive, indicating with a high likelihood that SL

perceptron exhibits a higher discriminatory ability than the TIMI risk score. The

mean NRIs on the testing datasets for each of the models with the reduced feature

set were negative. This suggests that the models paired with the reduced size feature

set had poorer discriminatory ability than the TIMI risk group. Additionally, only

the confidence interval for the gradient boosted decision tree overlapped with zero.

The CIs below zero suggest that the results using the machine learning models with

the reduced feature set had significantly worse discriminatory ability than the TIMI

risk group. SL perceptron had the worst discriminatory ability compared with the

TIMI risk score, with an NRI of -0.191 (95% CI [-0.0221, -0.169]).

More NRIs comparing machine models with each other are shown in Table B.5

(full feature set) and Table B.6 (reduced feature set). The very small mean NRI

comparing the logistic regression and ML perceptron results for the full feature set,

especially compared with the size of the CI, indicate that for the full feature set,

logistic regression and ML perceptron have similar discriminatory ability for risk

stratification.
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Table 3.4: Mean NRIs and 95% CIs for various models and the reduced feature set
compared with the TIMI score

33

New Model NRI test

ML Perceptron -0.0309 0.0204

SL Perceptron -0.191 0.0221

Logistic Regression -0.0385 0.0208

Decision Tree -0.121 0.0198

Gradient Boosted Tree -0.0106 0.0226

Random Forest Tree -0.0367 0.0236



34



Chapter 4

Conclusions and Future Work

The results in the previous chapter suggest that machine learning methods can pro-

duce a risk score with a greater discriminatory ability than that of the TIMI risk

score, but only if a more descriptive set of features is available than those used to

calculate the TIMI risk score. If only a small number of features is available, the

machine learning methods produce a risk metric with a discriminatory ability similar

to that of the TIMI risk group. Both ML perceptron and logistic regression offer im-

proved discriminatory ability using the full feature set. Using the full feature set, SL

perceptron does not discriminate between high- and low-risk patients as well as ML

perceptron or logistic regression, but SL perceptron still produces a risk score with

higher discriminatory ability than the TIMI risk score. Using the reduced size feature

set, the ML perceptron, logistic regression, decision tree, gradient boosted tree, and

random forest tree models exhibited discriminatory ability a bit worse than that of

the TIMI risk group. Each of these models produced average AUCs that were slightly

higher than those found for the TIMI risk group, but the NRIs for each of these mod-

els when compared with the TIMI risk score were slightly negative. The HRs for the

machine learning models were worse than those for the TIMI risk group. The con-

flicting results of the performance metrics make it difficult to determine if the models

other than SL perceptron used with the reduced size feature set produced slightly

improved or slightly worsened risk metrics compared with the TIMI risk group. How-

ever, with the reduced size feature set, SL perceptron performs consistently worse
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than the TIMI risk group when evaluated using the AUC, HR, and NRI. Out of all

models evaluated, ML perceptron and logistic regression paired with the full feature

set produced the risk score that had the highest discriminatory ability.

Our results indicate that a more descriptive feature set could improve the results

of the machine learning methods. We found the performance of machine learning

methods using the full feature set improved, but little or no improvement using the

reduced feature set. Therefore, it seems that the features are primarily responsible for

the improved performance, not the models used. Additionally, ML perceptron and

logistic regression had similar discriminatory ability, although ML perceptrons are

able to model much more complicated relationships than logistic regression models.

Future work should include an investigation of the proper features to use with machine

learning methods to improve the overall performance. Some features that were not

included in this study may be highly predictive of CVD. For instance, our reduced

feature set did not include all data used to calculate the TIMI risk score. In order

to compare the discriminatory ability of the TIMI risk score with that of machine

learning methods more directly, machine learning methods must be tested using a

feature set that is the same as the feature set used to find the TIMI risk score.

Additionally, we only compared our results with the TIMI risk group, rather than

TIMI risk score, because of lack of data for the TIMI risk score for our patients. For

a more accurate comparison, we need data on the TIMI risk score.

Other datasets could provide a larger feature set and larger patient cohort to test

the efficacy of additional features in providing a risk score. However, as the size of the

feature set relative to the size of the patient cohort increases, the risk of overfitting to

the feature set increases accordingly [7]. The larger the feature set becomes, the larger

the size our dataset must be in order to avoid overfitting. Therefore, in order to avoid

overfitting with a larger number of features, we must collect data on a larger number

of patients. The GRACE dataset contains a larger patient population and feature

set than the MERLIN dataset; the GRACE dataset contains tens of thousands of

patients, hundreds of features, and many long-term and short-term outcomes [5]. Our

dataset also only included 149 CVDs; a dataset including more patient deaths, such
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as the GRACE dataset, may improve the ability of the machine learning methods to

be accurately trained. Studying the usefulness of models trained using larger numbers

of features and patients might be a promising future direction. The GRACE dataset

could be one useful source of data for studies using machine learning models applied

to new features not included in this study.

Previous work has included applying machine learning algorithms to features ex-

tracted from a patient's ECG [6]. This work has shown that ECG-morphology based

risk metrics can be used to identify some patients that are generally classified as low-

to moderate-risk using only patient record risk features. Creating a feature set that

combines ECG features with patient record features could increase the discrimina-

tory ability of machine learning models by allowing us to reliably identify a larger

number of high-risk patients. Our feature sets in Figure 3.1 and Figure 3.2 included

a binary variable indicating whether ST depression was present in the patient's ECG.

However, more information may be extracted from the ECG that might improve the

discriminatory ability of these algorithms. For example, the level of ST depression

was not included in our models for this thesis. ECG data and patient record data

combined could allow us to create even more powerful models for risk stratification.

Other machine learning methods may also be applicable to risk stratification mod-

els. The decision tree models applied in this paper were all regression trees; they were

able to output risk measures that fell between 0 and 1. Their outputs were a pre-

diction that was the average value of the outcomes included in the patients in each

leaf. Classification trees could also be easily applied to our problem. Classification

trees output a prediction of the class of a patient. In this case, we have two output

classes, high-risk or low-risk. The classification trees would predict whether each pa-

tient would experience one-year CVD, and this prediction would serve as their risk

class. Another classification method that may be applicable to risk stratification is a

support vector machine (SVM). SVMs find a decision boundary in multidimensional

space between two classes of objects and predict the side of the decision boundary

on which each patient falls by calculating a linear combination of the patient's fea-

tures. As we have two classes in our problem, SVMs are applicable. Although it is
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a classification algorithm, higher granularity of the risk measure prediction may be

found by finding an input's distance from the decision boundary. Different decision

boundaries can be used when implementing an SVM. Decision boundaries may be

linear or kernelized.

Risk stratification has many applications in healthcare, from deciding who should

be serviced in the emergency room first to assigning therapies for a number of diseases

other than ACS, such as diabetes and cancer. When a model is trained, it does not

need to be trained again. Once a reliable model is found, it can be used repeatedly

to find a risk measure by providing the model with the necessary features. Machine

learning methods' successful application to ACS suggests a hopeful outlook for those

looking to apply machine learning to risk stratification for other ailments. Machine

learning models could help doctors to enhance their discriminatory ability when risk

stratifying patients, allowing them to provide more targeted therapies and assess each

patient's needs.
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Appendix A

Materials and Methods

A. 1 Pre-processing

The original MERLIN dataset included 4395 patients and three features in addition

to those listed in Table 3.1. 'Age > 75' was a binary feature included in the original

MERLIN dataset. It was removed due to it being repetitive, as raw age was already

a feature included in the set. 'Left ventricular ejection fraction' was also removed due

to it missing values for about a third of the patients. Additionally, 'Patient ID' was

removed, as it gives no clinical information about the patients, but rather functions as

an identifier. Lastly, patients were removed from the dataset who were missing entries

for any of the remaining features. This step removed 149 patients from the dataset.

Before running the machine learning algorithms, the dataset was divided into training

and testing datasets with an 80%/20% split with deaths stratified among the training

and testing sets. 100 bootstraps of the training and testing datasets were found, and

the machine learning algorithms were trained on each of the bootstrapped training

sets separately. We also created the list representing the target outcomes, one-year

CVD. We were provided with information on the number of days CVD occurred after

the patient checked into the hospital and a binary variable on whether the patient

experienced CVD. Pre-processing was needed to obtain an outcome variable for one-

year CVD. This was obtained by examining whether the patient's CVD occurred

within 365 days of hospital admittance for ACS.
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A.2 Code

Code for this project was written in both Python and MATLAB.

The neural network models were written using Keras in Python [13]. Models for

the reduced feature set and augmented feature set were optimized separately using a

grid search. Both the full and reduced feature set ML perceptrons had 25 nodes in

the hidden layer and a batch size of 2'. The full feature set ML perceptron was run

for 200 epochs, while the reduced feature set model was run for 240 epochs. The SL

perceptrons was run with a batch size of 2' for both the full and reduced size datasets.

The SL perceptron was run for 200 epochs for the full size feature set and 240 epochs

for the smaller feature set. Both L, and L2 regularization were used concurrently

for the SL perceptron. Regularization parameters were optimized by a grid search,

which found the optimal parameter values to be A, = 10-' and A2 = 10 . The loss

function used was binary cross entropy.

The logistic regression and decision tree models were created using scikit-learn

in Python [14]. Multple parameters were optimized using a grid search, training on

each of the training sets and finding predictions on each of the testing datasets. The

logistic regression models were run on both the full and reduced feature sets with L2

regularization and a A of 10'. The regular decision tree was run with a minimum of

1024 samples per split, a minimum of 256 samples per leaf, and a maximum depth

of 6. The gradient boosted tree was run with a minimum of 512 samples per split, a

minimum of 128 samples per leaf, a maximum depth of 2, and a learning rate of 0.01.

The random forest tree had a minimum of 1024 samples per split, a minimum of 128

samples per leaf, and a maximum depth of 6.
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Appendix B

Tables

Model AUC test

TIMI Risk Group 0.680 0.00784

ML Perceptron 0.777 t 0.00639

SL Perceptron 0.730 0.00727

Logistic Regression 0.771 0.00670

Table B.1: AUCs calculated on the testing dataset for various models on the full
feature set.

Model AUC test

TIMI Risk Group 0.680 + 0.00784

ML Perceptron 0.690 + 0.00828

SL Perceptron 0.630 + 0.0110

Logistic Regression 0.691 0.00860

Decision Tree 0.679 0.00816

Gradient Boosted Tree 0.700 + 0.00830

Random Forest Tree 0.693 0.00842

Table B.2: AUCs calculated on the testing dataset for various models on the reduced
feature set.

41



Model HR test

TIMI Risk Group 4.54 0.565

ML Perceptron 7.88 0.328

SL Perceptron 5.42 0.307

Logistic Regression 4.61 0.283

Table B.3: HRs calculated on the testing dataset for models on the full feature set.

Table B.4: HRs calculated on the testing dataset for models
set.

on the reduced feature

Old Model New Model NRI test

LogReg SKLearn Neural network 0.0066 + 0.00887

Table B.5: Net reclassification index and 95% confidence interval for models using on
the full feature set.

Table B.6: Net reclassification index and 95% confidence
the reduced feature set.

interval for models using on
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Model HR test

ML Perceptron 3.45 0.233

SL Perceptron 3.49 + 0.249

Logistic Regression 2.18 0.147

Decision Tree 3.71 0.268

Gradient Boosted Tree 3.77 0.267

Random Forest Tree 3.52 t 0.271

Old Model New Model NRI test

LogReg SKLearn Neural network 0.000648 0.0724

Neural network Gradient Boosted Tree -0.0180 0.149

Decision Tree Gradient Boosted Tree -0.0822 0.133

Gradient Boosted Tree Random Forest Tree 0.0316 0.137

LogReg SKLearn Random Forest Tree 0.0143 0.163



Appendix C

Figures
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(a) Full Feature Set
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(b) Reduced Feature Set

Figure C-1: HRt,/HRte for each of the 100 bootstraps.
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