
Making Python Easier to Learn with Improved

Syntax Error Reporting

by

Samantha Briasco-Stewart

S.B., Massachusetts Institute of Technology (2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

@ Massachusetts Institute of Technology 2018. All rights reserved.

Author
Signature redacted

Department of Electrical Engineering and Computer Science
May 25, 2018

Certified by..... Signature redacted
Adam Hartz

Lecturer
Thesis Supervisor

Accepted by
MASSACHUNIMY I[UTE

OF TECHNOWOGY

AUI 2 0 2018

LIBRARIES

Signature redacted
Katrina LaCurts

Chair, Masters of Engineering Thesis Committee

2

Making Python Easier to Learn with Improved Syntax Error

Reporting

by

Samantha Briasco-Stewart

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2018, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, we examine which types of compilation-time errors are most prevalent
among Python learners at MIT. Then, in order to improve Python's error reporting,
we design and implement a system to describe more accurately selected syntax errors,
the least well described of the prevalent errors. This system is tested automatically
against a set of hand-classified syntax error-producing code samples, as well as by
hand against an unclassified set. Lastly, we design and implement a graphical interface
to support the description system, and integrate this graphical interface into a popular
Python development environment, IDLE.

Thesis Supervisor: Adam Hartz
Title: Lecturer

3

4

Acknowledgments

First, I would like to thank Adam Hartz, my thesis advisor, without whom this project

would have been over before it was started. He is an amazing teacher, and I am glad

to have had the chance to work with him.

Next, Anne Kelley, my partner, for her work on her half of this project. I could

not have asked for a better person to work with.

I would also like to thank Kat Hendrickson for struggling together with me,

Graeme Campbell for forcing me to write and saying it was okay when I couldn't,

and Kade Phillips for listening to my ideas, even when they were terrible.

Lastly, I would like to thank my family, for their love and support, and for reading

my drafts and editing them with the keenest of eyes.

5

6

Contents

1 Introduction 11

1.1 Python Errors . 12

1.2 Past Work . 14

1.2.1 .Cataloging Errors . 14

1.2.2 Displaying Errors . 17

1.2.3 Fixing Errors . 18

1.3 Summary . 19

2 Implementation 21

2.1 Classifying Example Code . 22

2.2 Parsing and Categorizing Syntax Errors 23

2.3 Testing the Parser/Classifier . 26

2.4 Displaying Error Messages . 27

2.5 Testing the User Interface . 32

2.6 Summary . 32

3 Discussion 33

3.1 Alternate Design Choices. 33

3.2 Future Work. 35

3.2.1 Runtime Errors . 35

3.2.2 Proactive Checking . 35

3.2.3 Data and Analysis . 36

3.3 Conclusion. 37

7

A Error Message Output

B Scripts 43

8

39

List of Figures

1-1 A simple Python program . 12

1-2 A helpful Python error message . 12

1-3 Some syntax errors . 13

1-4 Error type (top) and message (bottom) frequencies in code submissions

to 6.01 and 6.S080 at MIT . 16

2-1 SyntaxError message output . 22

2-2 Screenshots of the classifying script's user interface 24

2-3 A screenshot of the testing script's user interface 27

2-4 The updated error display GUI in IDLE, before and after dismissing

the alert pop-up box. 29

2-5 Multiple error display . 30

2-6 A parenthesis error with highlighting. 31

9

10

Chapter 1

Introduction

According to Lahtinen et al., one of the most difficult problems novice programmers

encounter is responding to errors in their code [9]. The hypothesis leading to this

thesis' topic is that this difficulty stems from three sources:

1. inability to understand the error message

2. inability to find the source of the error

3. inability to fix the error

Novices are often unable to understand why a computer fails to execute correctly the

code they write, as they assume the computer possesses some degree of intelligence

and can therefore reason about code in the same way a human might [13]. Because of

this failure to understand why the computer is unable to execute a particular piece

of code, the novice then is unable to figure out how to find the cause of the error,

and is thus unable to fix it. For more seasoned programmers, this is less of an issue-

seasoned programmers have a better understanding of the way a computer works, and

using this understanding they can read more meaning into a received error message,

enabling them to locate the cause quicker, and then fix the cause more easily [12].

These difficulties are exacerbated by error messages that are poorly-constructed

and difficult for novices to understand [11]. Error messages often use technical jargon

to describe the errors that occur, and in many cases do not provide much to indicate

11

the source of the errors. To correct this, we have developed a system to provide

better-constructed error messages that are more helpful for novice programmers. In

particular, and for reasons discussed in the following sections, we chose to focus

specifically on syntax errors in Python.

1.1 Python Errors

1 def squared(x):
2 # square x
3 squared_x = x * z

4 # return the square of x
5 return squared_x
6
7 print(squared(2))

Figure 1-1: A simple Python program

In Python, some error messages give more useful information than others. As an

example, see Figure 1-1. This Python function has one error: on line 3, the program-

mer uses a variable z that has not yet been defined. The error message produced

when this code is run is as follows:

> python exl.py

Traceback (most recent call last):

File "exl.py", line 3, in squared

squaredx = x * z

NameError: name 'z' is not defined

Figure 1-2: A helpful Python error message

This error message is helpful: it describes where the error is (line 3), in what

function the error is ('squared'), and what the error is (a variable is not defined).

The error message also gives the specific variable that is not defined (z) and prints

12

out the line where it is first referenced. This is a well-constructed error message-it

explains what the error is, using relatively simple language, and emphasizes the actual

source of the error, in line with the guidelines put forth by Marceau et al [11J.

(a) (b)

def times(x, y): def times(x,y:
return x * y return x * y

(c) (d)

def times (x, y): def times(x, y):
retrun x * y return result = x * y

(e) (f)

def times(x, y): def times(x, y):
return x y pass x * y

Figure 1-3: Some syntax errors

However, not all of Python's error messages are this helpful. Consider the exam-

ples in Figure 1-3. These are six versions of a function intended to return the product

of two numbers, x and y, each with a unique error. Each, when run, produces the er-

ror message "SyntaxError: invalid syntax", despite each function's error having

a distinct cause. In (a), the user tried to set return (a keyword) equal to something

(x*y). In (b), the user forgot the closing parenthesis in the function definition. In

(c), return was misspelled as retrun. In (d), the user tried to return a variable

declaration. In (e), there is no * between x and y, and in (f), the user tried to use

pass instead of return.

Unlike the message given with the NameError from Figure 1-2, the SyntaxError

message returned from the examples in Figure 1-3 provides barely any useful infor-

mation. The message describes the error as being caused by "invalid syntax", but

without knowing what 'syntax' is or what would make it 'invalid', there is no infor-

mation here to help a programmer determine the cause of the error, whether it is a

missing parenthesis, a misspelled keyword, or an oddly-placed equals sign.

13

1.2 Past Work

Previous efforts to assist students with finding and fixing errors in code have focused

on studying three main areas:

1. Which errors are most prominent, and students' opinions about finding and

fixing errors

2. How to display error messages such that they effectively assist students in find-

ing and fixing errors

3. How to help students fix errors, once they are found

We will discuss the efforts in each area separately, in the following sections.

1.2.1 Cataloging Errors

Finding and fixing programming errors is a significant (and important) part of learn-

ing programming, according to Lahtinen et al. in a 2005 study [9]. The authors found

that novices, when asked, stated that finding and fixing bugs in their own programs

was the most difficult part of learning to code [9]. One source of these bugs is that

some novices assume the computer is smarter than it actually is. They believe that

it has knowledge of the future and can read ahead in its own code, or that it can

execute multiple lines at once, or that it can keep one condition in mind while exe-

cuting another line of code [13]. Another common source of errors is typographical

mistakes, compounded with misunderstandings of syntax.

14

We analyzed a dataset consisting of all submissions made to the online submission

website for 6.01 and 6.S080 (introductory MIT EECS courses) in the past year (Fig-

ure 1-4). Paying attention only to the type of error, the most common errors in the

dataset were:

1. NameError, 22.9%

2. TypeError, 22.2%

3. AttributeError, 17.3%

4. SyntaxError, 16.8%

In comparison to this dataset, a 2015 study by Pritchard et al. of Python errors

occurring in code submissions to Computer Science Circles (a website with short

courses in introductory Python) found that syntax errors were the most frequently

occurring error (as compared to fourth most frequent), occurring almost twice as

often (28.1% to 15.2%) as the second most frequently occurring error [14].

There are a few possible explanations for this discrepancy. One is that 6.01 and

6.S080 encourage students to use their own text editors (eg. IDLE) to write code,

submitting it to the website once it is ready to be graded. In contrast, the website

used in Pritchard's 2015 study encouraged students to write code directly in the online

checker, giving them a higher percentage of errors overall-640,000 out of 1.6 million

(40%), compared to the MIT dataset's 35,659 out of 217,019 (16.4%). It is possible

that because some students at MIT edit their code in a different editor and run it

before submitting, they catch syntax errors that otherwise would have been counted,

biasing the MIT dataset compared to Pritchard's. Another possible explanation,

perhaps less likely, is that MIT's submission website (and the students' own editors)

use Python-oriented syntax highlighting, which can help students recognize some

types of syntax errors (eg. misspelled keywords) more easily. Pritchard's study's

website does not have syntax highlighting, possibly leading to more spelling-based

syntax errors, or just more syntax errors in general.

15

8000 -

7000 -

6000 -

5000 -

4000 -

3000-

2000 -

1000 -

0-

NameError: name SyntaxError: AttUlmbteError:
X, is not invalid synLax Y object has
heftned no attribute V

- -
TypE1or: V tnboundLoca1 TypetError: KiyError: xv.
objt Is not Error: local object is not

1 variable Y mafable
teferenced

Figure 1-4: Error type (top) and message (bottom) frequencies in code submissions
to 6.01 and 6.S080 at MIT

16

NameError TypeError AttributeError SyntaxError IndexError Other

17500 -

15000-

12500-

10000-

7500 -

5000 -

2500-

0-

In the MIT dataset, if we include the message attached to the error, rather than

just looking at the type, syntax errors rise to third place (Figure 1-4, bottom):

1. NameError: name x' is not defined, 22.9%

2. SyntaxError: invalid syntax, 15.3%

3. AttributeError: 'x' object has no attribute 'x', 14.3%

These error messages were filtered to replace variable and type names with generic

defaults, so that the message categories would not be too specific to give meaningful

results. Syntax errors are specifically interesting in this analysis, as they required no

filtering at all to reach third place, unlike name and attribute errors.

1.2.2 Displaying Errors

Another focus is on studying how to display error messages to students such that they

are able to find and fix the causes of those error messages effectively. Interestingly,

the results of studies in this area are sometimes contradictory. In a paper on com-

piler error messages, Nienaltowski et al [12] examined the effects of various types of

error messages-long explanations, more terse versions, and entirely visual messages

(highlights, etc)-on the accuracy and speed of computer science students who saw

and attempted to correct them. The results of this examination were interesting: the

authors found no significant relationships between the kind of error message and the

accuracy or speed of the correction [12]. This was not supported by other papers,

however; an earlier paper by Marceau et al. 1111 concluded that error messages with

shorter words were easier for novices to understand, and visual error messages ac-

tually helped users, as long as the visualization emphasized the actual source of the

error in the code [11].

Lee and Ko wrote an application they called Gidget as another method of display-

ing errors. They intended this application to personify the computer, so that novice

programmers could blame the computer rather than themselves, when their code

didn't work [10]. By framing error messages in such a way as to make the computer

17

seem apologetic when unable to execute a program, Lee and Ko found that users

were less discouraged when encountering errors, viewing the error as the computer's

fault for not understanding, rather than the user's fault for writing bad code. They

observed that, when presented as a game, novices using Gidget completed median 5

levels, while novices with a similar (but not personified) editor completed only median

2 levels [10].

Another application, Detective, written by Hartz [6], focuses on giving helpful

hints to users faced with certain types of Python errors. Users faced with a name

error, for example, will see a list of variables from their code that are similar to the

variable the error is complaining about, on the chance that they misspelled one of

those [6].

1.2.3 Fixing Errors

The final focus of past efforts is on studying how to help students effectively fix errors

once they are found. One application, Whyline, written by Ko and Meyers [8], enables

users to run their own (Java-based) graphical applications inside the application.

Then, after executing a series of clicks, the user can ask questions to Whyline about

why their application did or did not do a certain operation [8]. The authors found

that, compared to a previous study of experts debugging Java code without the

help of Whyline, users of the system (ranging from novices to experts) were able to

complete debugging tasks in less than half the time. (On average, users of Whyline

took 4 minutes to complete a task, as compared to the average of 10 minutes from

the previous study).

Another paper, by Hartmann et al., describes a system that crowd-sources solu-

tions to error messages in Java and C++, so that students who have found an error

can easily see several possible solutions, rather than having to brainstorm them on

their own [5]. Hartmann et al. found that this approach worked fairly well, with on

average about half of the queries to their system resulting in suggestions that students

found useful.

18

1.3 Summary

The problem that we set out to solve in this thesis, then, is that Python's syntax error

messages are uniquely unhelpful when compared to Python's error reporting in gen-

eral, especially when the programmers encountering the error messages are novices.

Past research confirms that novices experience significant difficulty in debugging syn-

tax problems in Python. Other efforts concluded that simplifying error messages

assisted novices in more quickly and easily finding and fixing bugs in their programs,

although those efforts focused on different languages. (Marceau, for example, focused

on DrScheme [11].) To solve the problem, we wrote a two-part system that first

classifies syntax errors into smaller, well-defined categories, and then labels each with

a distinct, helpful message and error location. We also integrated this system into

IDLE, a popular Python editor.

Chapter 2 describes the inner workings of our system. This includes: a script we

used to manually classify several hundred example faulty code segments; the parser

we used to re-parse the faulty code and the heuristics we used to define each category

of error; scripts we used to manually and automatically test the workings of the

parser/classifier; and the integration of the parser/classifier into IDLE and additional

features added thereafter. Chapter 3 contains a discussion of proposed features and

other avenues for future work. Finally, Appendix A gives a complete list of error

messages used as output from the parser/classifier, and Appendix B gives the complete

code of the scripts used to classify examples and test the parser/classifier.

19

20.

Chapter 2

Implementation

This project aimed to assist students in learning how to program in Python by making

Python syntax errors more detailed and easier to understand. Our goal was to use

these simpler, more detailed error messages to improve students' debugging skills,

eventually allowing them to interpret Python's original, less detailed error messages

on their own.

We decided to focus on syntax errors in Python rather than some other class of

errors or some other programming language for a few reasons. Firstly, Python is

the language used in most introductory EECS classes at MIT, as well as in most

introductory CS courses at top-ranked universities [3]. Secondly, syntax errors in

Python are quite common, with 15.3% (in the MIT dataset (Section 1.2.1)) and

28.1% (in Pritchard's dataset [14]) of all errors being syntax errors. Lastly, syntax

errors return the most ill-defined, imprecise error messages of the common types we

found in the MIT dataset.

There are two basic components to a syntax error message, which we handle

separately. Figure 2-1 shows an example SyntaxError message. The two basic com-

ponents are:

1. The error message ("SyntaxError: invalid syntax", at the bottom)

2. The location of the error (the file name and line number, and a copy of the

faulty line with a caret showing the exact location)

21

> python example.py

Traceback (most recent call last):

File "ex.py", line 1

if x = y:

SyntaxError: invalid syntax

Figure 2-1: SyntaxError message output

If the recipient of the error message is using an IDE or other graphical editor (for

example, IDLE, which is included with the CPython interpreter [2] and is commonly

used in MIT classes), this location information is replaced by a highlight on the line

where the error occurred. We tackle each of these components separately in creating

our system.

In Section 2.1, we describe the script used to classify example faulty code submis-

sions for later use. Section 2.2 describes the parser/classifier we created for use in

separating out specific syntax errors. Section 2.3 explains the testing process for the

parser/classifier, including scripts we created to manually and automatically check its

responses compared to the examples previously classified. In Section 2.4, we explain

how this system is integrated into IDLE, a graphical editor, for ease of use. Lastly,

in Section 2.5, we describe the testing process for the graphical modifications.

2.1 Classifying Example Code

We first examined the MIT database mentioned in Section 1.2.1, comprising code

submissions from students in 6.01 and 6.3080, which are two introductory EECS

classes. We manually classified 1048 SyntaxError-producing student code samples

into 12 different categories, including "mismatched parens", "incorrect operator usage",

and "missing colon before indented block". The categories are intentionally vague, to

maximize ease of classifying submissions.

To make manual classification as quick and painless as possible, we wrote a simple

script to recurse through the file tree in which the student code samples were stored,

22

giving the user of the script a descriptive ASCII-art-based interface to use while

classifying samples. Figure 2-2 presents screenshots of the user interface. The script

presents the student's code in full, with line numbers, along with the full text of

the original error produced by Python's runtime. It then prompts the user to enter

one of twelve shortcuts for the different error categories, and, if the selected category

requires extra information (eg. the "other" category), it prompts the user to provide

that extra information (such as the actual cause of the error). The full text of this

script can be found in Appendix B.

Based on these classified categories, the three most common errors were those

listed above. With description, they are:

"missing colon before indented block": The line before an indented block does

not end in a colon. (For example, the line containing the condition in an if

statement.)

"mismatched parens": Either an opening or closing parenthesis, bracket, or brace

is missing.

"incorrect operator usage": An operator is used incorrectly. (For example, using

'=' instead of '==' or '&' instead of 'and'. The '=' rather than '==' when used

in if statements was most common among errors of this type.)

Once we had identified a basic ordering by frequency, we decided to tackle error

causes in order from most to least common, while paying attention at the same time

to the ease of implementing a checker for each cause.

2.2 Parsing and Categorizing Syntax Errors

We started this phase of work by exploring options for a parser to use on our erroring

code. We initially looked at how IDLE parsed code when it was about to be run,

to see if we could simply modify that code to get the desired effect. Unfortunately,

the IDLE parser would not output the incomplete parse tree (the one that was in

23

python3 fnd.py - pythm3 - Python new-find.py -100 9

Welcome to the error checker!
at any time you can:
enter the string "undo" to remove the previous entry (if you make a mistake)
enter the string "quit" to exit the program cleanly (if you'd like to not do this anymore)
hit enter to begin!

PyS=3 new-fbid py python - Pytn nwfind.py -- 1 Sx44

Please choose what the actual error is for this function, given the following options:
a -> mismatched parens
b -> using a keyword in an incorrect way (eq. saving something to a keyword)
c -> using an operator in an incorrect way (eq. using '=' instead of '==' in an if statement
d -s no colon before indented block
e -> colon without indented block
g -> mismatched indentation
h -> infix operator with 1 argument instead of 2
i -> missing operator between operands

-> used wrong keyword
k -missing parens (eg. around print args)W - typo
x cause of error is not in student's code
y -> cause of error is not one of the above
z -s unknown

type the character matching your selection, then press enter.
alternatively, enter 'undo' to undo the previous selection,or 'quit' to exit the classifier and save
your progress.

additional information: the message accompanying this error was:
line 6 : if numbers == H
SyntaxError: invalid syntax

numbers = 121

count - B
total = 0

if numbers - []
print(NONE)

elif len(numbers) == 1:
print(numbers Iel)

else:
while count o len(numbers):

pls - numbers[counti
total - total + pls
count - count + 1

print(total/len(numbers))

enter error code here -

Figure 2-2: Screenshots of the classifying script's user interface

24

the process of being built at the time the error was found), and would instead return

merely an error giving us no additional information towards tracking down the source.

We next considered using a pre-built parser or parser generator, one that would

return a partially-built parse tree or a parse tree with gaps in the case of a parse error

occurring. We looked at three potential pieces of software:

1. PLY [1], a fairly complex (but designed for Python) parser and lexer

2. The parser from Kaplan's master's thesis [7], an extremely complex but also

extremely customizable parser generator

3. Parso [4], a much simpler parser ready-made for the Python grammar, which

saves errors as 'error tokens' rather than outputting a partial parse tree from

the time of the error

Of these three, we chose Parso, as it was the simplest and easiest to set up, while

still working for the desired purpose (i.e., showing us the errors in a piece of code in

a programmatically explorable way).

The main issue with IDLE's parser was that upon finding a syntax error in a

section of code, it would return an error and not continue parsing. In contrast, Parso

inserts an ErrorNode at the location of the error (containing the failed-to-parse text),

and continues parsing. Thus, it eventually returns a complete parse tree, with any

syntax errors replaced by ErrorNodes. An ErrorNode contains only the code directly

causing the syntax error, so that the tree around it (as much as possible) is preserved.

Thus, given a 'complete' parse tree from Parso, one can iterate over each node in the

tree, paying special attention to those denoted as ErrorNodes.

Then, given an ErrorNode, it is possible to look at the context surrounding and

within it to find the root cause of the error. For example, if the actual error is that

a coder used '=' instead of '==' in an if statement (a common error), then the

ErrorNode will contain the text '=' and will have as its parent somewhere the clause

of the original if statement. We can then make a rule saying "if an ErrorNode has as

a parent an If Clause, and the ErrorNode contains an operator that is not allowed

25

in an if statement (such as '='), then the error is most likely because the coder used

a disallowed operator." Similar decision trees can be made for nearly all error nodes.

We also made certain that each newly-constructed error message returned from

this parsing/classifying system contained easy-to-understand language. A full list of

our output error messages, along with an example syntax error that would trigger

each one, can be found in Appendix A.

2.3 Testing the Parser/Classifier

Throughout the process of creating each decision tree, we tested the output from our

parsing/classifying system. At first this was done by comparing it to the previously

classified code samples, automatically. We created a mapping from error messages

to classification, and then simply checked whether a given code sample produced an

error message that mapped to its classification. As we added more decision trees

and the relative error descriptions became more and more specific, however, it was

no longer possible to use the vague classification categories. As such, we modified

the classification script so that instead of showing the student's code with Python's

response, it showed the student's code with the output from the parser/classifier.

Then, we prompted the user to answer whether the parser/classifier's output was

correct or not-whether it gave the location and proper description of at least one

error that was in the file. If the user said it was not correct, we also requested

additional information. Code samples that were marked correct had their identifiers

stored in a file so as not to be tested again, and code samples that were marked

incorrect had their identifiers stored (along with the extra information) in a separate

file so that we could later use that information to fix bugs or add features to the

parser/classifier.

In addition to these manually tested cases, the testing script automatically dealt

with cases where one of the following things happened:

* An error was returned for code that did not produce an error in Python

26

* No error was returned for code that produced an error in Python

" The parser/classifier broke while parsing a code sample

" No error was returned for code that did not produce an error in Python

All but the last of these cases were stored as incorrect results, with applicable messages

for additional information. (The last was stored in the "correct" file, which did not

have any additional information attached.) Figure 2-3 shows an example screenshot

of the testing user interface. Similarly to the classification script from Section 2.1,

the user interface for this script was optimized for ease of use.

R * 4- amoW -rewchnsic-as b r-ssh resean*4Pskos1.medu- 1Ox2

6 5 10 15 20 25 36 35 40 45 50
9 px=1
I py-2
2 a=3
3 b=4
4 c-5
5 distance=(a*px+b*py_cI/(a**2+b**2) (9.5)
6 if(distance2=0)
7 print(distance)
8 else
9 print(-distance)
10

parso result: statement must end with a colon
parso start- (7, 9) end- (9, 0)
is this correct? (Y/n)n
what did parso get wrong?!

Figure 2-3: A screenshot of the testing script's user interface

This testing script was re-run every time a significant change was made to the

parser/classifier, either adding more decision trees or modifying current ones. A copy

of the full code of our testing script can be found in Appendix B.

2.4 Displaying Error Messages

With a mostly complete error description system (our parser/classifier), we started

looking at how to integrate it into a graphical interface. Our first task was to decide

between IDLE and Detective as the editor upon which to build our error display.

27

We decided on IDLE, because even though it had a noticeably confusing code base,

we felt that novice learners at MIT would be more likely to recognize and know

how to use it. (Again, IDLE is the default recommendation for students in MIT

introductory EECS classes who have not yet chosen their preferred editor. It is also

the only syntax-highlighting editor available on the laptops students are encouraged

to use in 6.01, one of the more popular introductory EECS classes.) In addition, we

had already started investigating IDLE's code base, while looking into parser options

(see Section 2.2).

Our modified error display system in IDLE works as follows. When the user at-

tempts to run a file, it is first checked for syntax errors. In the default version of

IDLE, if a syntax error is found, the error message returned by Python is displayed

as an alert pop-up box to the user, and the location of the error is highlighted. In

our modified version, if a syntax error is found, a call is made to the error description

system, passing in the erroring file. The error that is returned from the error descrip-

tion system is displayed in a separate window to the right of the editing window, and

is highlighted in a color matching the (also highlighted) error location.

A pair of screenshots of this user interface can be found in Figure 2-4. On the

left of each screenshot is the editing window, in which we've written a short program

with a syntax error. To the right is the error window, displaying our error description

system's output. The top screenshot is the state of the GUI immediately after the

user attempts to run the file; an alert pop-up box appears, informing the user that

syntax errors were found. The bottom screenshot is the state of the GUI after the

user dismisses the alert; here we can see the highlighted error, in the same color as

the message in the error box. The pop-up box is necessary because, if it were not

there, the shell window (not shown in these screenshots) would become focused after

an attempt to run the code, regardless of whether that attempt was successful or not.

The alert circumvents this, keeping focus on the editor window.

We also implemented support for displaying multiple errors. An example is shown

in 2-5. This program has several errors, and two of them have been caught by the

error description system. One is highlighted in red, and the other in blue, and each

28

exapkL " - J/UweoW/ek*exf4Ip (3.&4)

retrnThwo were syntox wrors foundi.Soo Error*
wwkdow for detab&s

_wrpp - (&4

0, ftnco)

Figure 2-4: The updated error display GUI in IDLE, before and after dismissing the
alert pop-up box.

29

has a matching highlighted message describing it.

* 8 example.py - IUsers/erosolar/DesktopIexample.py (3.6.4)

for letter in "

freqDict[letter] 1
letter tn freqDict

freqDict[letter] - freqDict[letter] + 1
- ,n freqDict

Figure 2-5: Multiple error display

The last graphical improvement that we implemented is smart parenthesis finding.

Many of the classified errors were due to mismatched parentheses, and we thought

that the best way to help novices with mismatched parentheses errors was to have

accurate highlighting, to show in what area we guessed the missing parenthesis was

likely needed. To implement this, we first modified the error description system to

return not only a message but also starting and ending positions. Then, given these

positions, we modified the highlighting system in IDLE to take both the starting

and ending positions, and highlight between them. By default, IDLE's highlighting

system takes one position, and highlights from that to the end of the word or line.

Our errors, and especially missing parenthesis errors, often span more than one word,

and so benefit from having highlights with starting and ending positions.

The "missing parenthesis" error is returned by our error description system when a

user's parentheses are mismatched. Sometimes, we can look at the surrounding code

to compute a compact range where the missing parenthesis should be located. A

good example of this is shown in Figure 2-6. Here, the user has forgotten the closing

parenthesis in the condition for their if statement. Ignoring the missing parenthesis

for the moment, the error that our description system would return is that a colon

doesn't make sense in the middle of a conditional statement. As we know that the

actual error is a mismatched parenthesis, we can ignore the cause of the error and

focus on the location. Since the error is that the colon doesn't make sense inside this

30

parenthetical environment, that means the colon is likely supposed to be outside of

the parenthetical, and thus that the closing parenthesis is likely between the matching

opening parenthesis and the colon. Thus, that area is highlighted in the figure.

* __ wnp -/Usesoar/ekto~ap.py (3--4)
funco:

3

Figure 2-6: A parenthesis error with highlighting.

We implemented similar logic for all missing parenthesis/bracket/brace errors. It

does not work in all cases, especially when the error that our parser returns is in

a completely different area, or when the error is a legitimate error or otherwise not

related to a piece of syntax that doesn't make sense inside a parenthetical context

(eg. "incomplete operations" are incomplete operations regardless of whether or not

they happen inside a parenthetical context). That said, this parenthesis matching

logic does assist in some cases, and is no worse than the default highlighting (which

highlights only the parenthesis/bracket/brace that is unmatched), so is a net positive.

Because we had modified the system to place highlights in text in IDLE, it was also

necessary for us to modify the system to remove highlights from text. The original

highlighter module in IDLE had a feature where it would remove colorization from

a newly edited line, most likely to make it look like a coder had possibly fixed the

error causing the highlight. As our new highlighter took a range, and thus could span

multiple lines, we added a check to the highlight-clearing function: if a tag that was

cleared was one of our error highlight colors, it would also remove that color wherever

else in the document it was. That way, when a multi-line highlighted error was edited

or fixed, the entire highlight for that error would disappear. Note that this does not

break highlighting for multiple errors if displayed, as each error is highlighted in a

31

unique color, to provide a visual mapping between error locations and messages.

2.5 Testing the User Interface

To test the GUI, we manually created test files with common syntax errors and ran

them in our development version of IDLE, verifying at each step that the GUI acted

as we expected and in general was simple and easy to use. We focused on making sure

that the error output showed up in the correct location, that the error highlighting

was easily visible to the user, and that the GUI reacted to interactions as expected.

This testing was much more straightforward than the testing described in Section 2.3,

as we were testing improvements made to an existing interface, rather than an entirely

new system.

2.6 Summary

In this chapter, we described our approach to classifying sample messages; the con-

struction of our parse-tree-based syntax error describer and the modifications made

to IDLE, our graphical editor of choice; and the testing of the entire system, piece by

piece. The combination of all of these pieces is a graphical editor that, when a syntax

error is detected, displays a descriptive error for the specific type of syntax error that

has occurred and highlights the portion of code in which the specific error occurred.

32

Chapter 3

Discussion

In the course of our work on this project, there were a few design choices we made

that are discussed in more detail in the first section below. Following that, we present

a selection of possible avenues for future work on this and similar topics.

3.1 Alternate Design Choices

We accomplished the majority of our work by making small modifications to different

systems (IDLE and Parso) and combining the results, instead of writing an entirely

new system from scratch. We chose to do this for a few reasons. Although writing a

new system would allow us to effectively control code quality and make it easier to find

and fix bugs in the system, it would require exponentially more work to implement

and most of that work would be auxiliary to the main goal of making error messages

easier to use. As such, we chose to make modifications to IDLE to implement our

graphical user interface, and to use Parso as a base for our error description service.

Another decision we made was to focus on errors once they occurred-once the

error message from Python would have shown up-rather than proactively. While

displaying potential errors as the student was in the process of wriitng code might have

been more helpful in terms of shortening the debugging cycle, we felt it was important

to maintain as small a presence as possible, in order to minimize our impact on the

default version of IDLE. We wanted not only to help students understand the error

33

messages they received through our system, but also to aid them in getting used to

how error messages would occur outside of our modified editor. In this way, novices

using our editor could more quickly and effectively gain the experience that a more

seasoned programmer would use to debug syntax errors given normal error messages.

We also wanted to make sure that our system would not become annoying to users,

the way a proactive tool might.

In the beginning of this project, we decided to focus on syntax errors in Python.

Using the MIT dataset as well as the one used in Pritchard's study [14], we had

identified that this type of error is relatively frequent, and by examining syntax error

messages as compared to other types of errors in Python, we knew they had relatively

uninformative error messages. It was the combination of these two reasons that led

to our decision to focus on syntax errors, and not either one on its own. In the MIT

dataset, for example, there were other errors ("type", "attribute", and "name", specifi-

cally) that occurred more frequently and that we could have focused on, theoretically

leading to a bigger impact on our group of users. We chose not to do this for one main

reason: we felt there was more room to improve syntax errors than the other types.

As we stated in Section 1.1, Python syntax errors specifically are vague, and often do

not give any information about the cause of the error beyond a possible location. In

comparison to this, type, attribute, and name errors (the three more common types of

error listed above) each have more detailed error messages that give the name of the

variable that had an issue, a description of the issue, and the location of the specific

use of the variable that caused the issue. We felt that the improvements we could

make to these errors would mainly be an explanation of what could have caused the

issue, with possible highlights on surrounding code that might help explain. In total,

however, the work that could be done and the possible improvements to be made

were fairly negligible, leading us to choose Python syntax errors as our focus.

34

3.2 Future Work

In this section, we list a selection of possible avenues for future work in this area.

3.2.1 Runtime Errors

One thing we were planning to do during the course of this thesis project was ex-

tending our error description system to improve the error messages of runtime errors

as well as syntax errors. We didn't eventually implement this, because catching run-

time errors would require more infrastructure than the simple "parser with decision

trees" approach we used for syntax errors. However, it would be an interesting course

of work-for example, one could highlight the original declaration (or most recent

declaration, semantically) of an error-causing variable, hopefully giving a partial ex-

planation as to why the error occurred. For a type-based error, for example, the

system could explain (given the declaration) the original type of the variable and the

operation's expected vs. actual types, to explain why the type-based error occurred,

similarly to Detective's [6] descriptions of type- and name-based errors. For an out-

of-bounds error, as another example, the system could keep track of the length of an

array and explain how it was changing over time, to give the student an idea of why

a particular access was out of bounds.

3.2.2 Proactive Checking

Another future course of work could focus on writing a proactive system to detect

errors. Our system focused on catching errors reactively, once Python had detected

an error. A proactive system would look for errors as the user typed or when the

file was saved, giving feedback at times other than when the code was run. This

would likely, as discussed earlier, shorten the debugging cycle, allowing for quicker

feedback to the user. Of course, care would need to be taken to ensure the system

did not become annoying to a user, thus detracting from the joy of programming,

but there is likely a lot of data that could be used to assist a programmer in working

more effectively-in addition to catching bugs before they actually cause errors. For

35

example, the system could keep track of variables with the same name, so that when

one copy of a variable's name was changed, the others could be suggested as needing

changes. Alternatively, the system could keep track of the programmer's copy register,

pointing out copy-pasted code blocks as being locations where variable names might

need to be changed, or recommending those code blocks for abstraction into functions,

to discourage copy-pasting in general.

A system relying less on typing information could instead focus on static analysis

of the code as it is written, finding variables that aren't declared when accessed,

operations that don't have the expected type signature (int + string, for example), or

abnormal indentation (as an indicator for possibly wrong control flow), and pointing

those situations out to the programmer as possible bugs-similar to linting system.

In general, when considering a proactive checking system, it is important to make

sure that the system is helpful rather than annoying. To this end, one must consider

how the user interface of such a system would look, and to include ways for a user

to ignore specific instances of, or disable completely, functionality that they might

consider unhelpful or annoying. A proactive system should be as easy to use and as

non-frustrating and non-annoying as possible, lest it be disabled entirely.

3.2.3 Data and Analysis

We made some testing-related modifications to our updated version of IDLE, to record

data from a few test runs that were made. A similarly modified editor could be used

to generate larger datasets for more in-depth examination than that described in

Section 1.2.1. A modified version of IDLE that could save separate versions of a file

when saved in the editor, or when run in the editor, could produce a large body of

data (in the form of possibly error-producing code samples) that might give more

insight to how likely beginning coders are to encounter errors, what types of errors

are most likely, or what fundamental misunderstandings are common among those

beginning coders, among many other avenues of analysis.

36

3.3 Conclusion

In this chapter, we've discussed some choices that we made in the course of implement-

ing our error description system, and we've given some examples of future work that

could be undertaken. There are several interesting avenues for future work inspired

by this project, in a few different directions.

Overall, through the course of this project, we created a system that improves

Python syntax errors by more distinctly categorizing them, giving descriptive mes-

sages for each category, and displaying those messages, along with highlights, in an

improved graphical editor. We thoroughly tested this system, and are confident that

it will improve novice programmers' experience in debugging programs in Python.

37

38

Appendix A

Error Message Output

Error Message Code Example

Invalid Python. Likely copy/pasted header
from the terminal.

++ is not a valid operator

-- is not a valid operator

{} is for dictionaries only

function definition needs 0

function definition must have a name

function arguments must be variables

The keyword pass should not be followed
by anything on the same line

Missing parentheses in call to 'print'

Missing corresponding try

Can't assign value to variable in return
statement

Can't assign value in return statement;
attempting comparison with invalid com-
parator

Incomplete variable assignment

Python 3.6.4 (default, Mar13
2018, 14:40:33)

x++

x--

if (x < 3) {...

def foo:

def (x, y):

def foo(3):

pass x = 3

print x

no 'try:' here

except:

return x = 3

return 3 = 3

39

I

Error Message Code Example

Variable types do not need to be declared

Operator not valid comparison

if 1 statement must end with a colon

Incomplete operation

two var names in a row

Missing operator; need * for multiplication

Missing operator between numbers

Missing operator

Missing operator

Malformed for loop

Malformed 'f or' loop; missing 'in' in for
loop

Malformed for loop; uses comparison in-
stead of iteration

Malformed 'f or ' loop

Missing corresponding if /elif

Should be 'elif' instead of 'else if'

Comparison operations must have at least
two operands

! is not an operator in Python

Misplaced or misused colon

Malformed string; missing closing "2

'elif ' requires a condition

Misplaced or misued colon

'if ' requires a condition

'else' should not have a condition

int x = 3

if x = 3:

if x = 3

x = 3 +

this thing = 3

x =3y

x =3 3

x = "Hi" y

x = (y + 2)

f or x == 3:

for x range(5):

for x < 5:

for x in range(1:5)

no 'if:' or 'elif:' here

else:

else if x > 3:

if x > 3 and < 1:

if x:!

x = 3 + y:

x = "a string

elif:

elif: x > 3:

if:

else x > 3:

'This would be replaced with whatever colon-requiring statement the student used
2 replaced with "opening" and "' as appropriate

40

Error Message Code Example

Error Message Code Example

Missing (3

unindent does not match any outer
indentation level

variable cannot be parameter and global

x = 3 + 4)

if x > 3:

x = x + 3

print(x) # error here

glob = 3

def foo(x, glob): # error here

3replaced with one of),{,}, [,] as appropriate

41

Error Message Code Example

42

N 'Fi @ @ $02!1*14111 FWF1'-10 1"CInil+n,. .. ., , -- . --. ,... .-- n. -.- s.4 sl- - ..-... , .f.i.- ,.....' !,...-..,-.... . .

Appendix B

Scripts

Listing B.1: Hand-Classification Script

i""f F1

Used to hand-classify code samples as containing a given syntax error.

Samantha Briasco-Stewart (erosolar@mit. edu)

"f ""

import os

import re

from enum import Enum

import json

BUILTINTYPES = ["' list '", "

def fix_ message(matchobj):

"f i "

sanitizes error message

numbers, function names,

generic replacements

f "t "f

"'str ' "]

by removing specific variable names,

etc , and replacing with (constant)

fmessage = matchobj. group()

fmessage = fmessage [: -11

def repl(matchobj):

"f "f "f

designed to limit known types to those in BUILTINS,

so user-made types will be replaced

43

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

'dict '", "'i int '", I

23 """

24 if matchobj. group() in BUILTIN_TYPES:

25 return matchobj. group ()

26 return "'x'"

27

28 if fmessage. startswith ("Attribute"):

29 fmessage = re .sub(r" '[^']*'", repl , fmessage)

30 else:

31 fmessage = re.sub(r" '1'i*'", "'x'", fmessage)

32 # replace named functions with fo

33 fmessage = re.sub(r"\w+\(\)", "fo", fmessage)

34 # replace things after KeyError with xyz

35 fmessage = re.sub(r"KeyError:.*", "KeyError:-xyz", fmessage)

36 # replace numbers with n

37 fmessage = re.sub(r"[0-9]+", "n", fmessage)

38 return fmessage

39

40

41 ERR_TYPEREGEX =re .compile (r " (\w+Error)")

42 ERRMESSAGE_REGEX = re . compile (r " (\w+Error [<J*)<")

43 def parse _error _things(ftext)

44 if"",

45 Looks at a json response from catsoop and parses out the type of

46 error, the error message, and a sanitized version of the error

47 message (without specific variable names), returning all three.

48 """

49 # only label syntax errors

50 if "SyntaxError" not in ftext:

51 return None

52 # parse out message included (eg. location) with Python output

53 idx = ftext . index ("Error")

54 matchobj = ERR_TYPE_REGEX. search (ftext , idx -15, idx+20)

55 if matchobj is None: # no error found

56 return None

57 file _ error = matchobj group ()

58 matchobj = ERRMEESAGE_REGEX. search (ftext , idx -20, idx+100)

44

if matchobj is None:

return None

origmessage = matchobj .group() [:-1]

file-message = fix message (matchobj)

return (file _ error , file _message , origmessage)

LINEREGEX = re .compile (r " (line -\d+[^\<]*)<br\/>([^\<]*)<br\/>")

def parse_ error_ line (ftext)

,, ,, if

looks at json response from catsoop to parse out the location of

the error

If F1 It

figure out the erroring line of code, and where it is

ftextobj = json.loads(ftext)

loc None

resp ftext obj ["response"]

if "line" in resp:

idx = resp.rindex("line")

matchobj = LINEREGEX. search (resp , idx-2, idx+150)

if matchobj is not None:

loc = matchobj .group (1) + "-:-" + matchobj .group (2)

return loc

class ErrorKeyword (Enum):

Defines different types

PARENS 'a' #

KVORD= 'b' #

OPERATOR 'c' #

NEEDSCOLON - 'd' #

BADCOLON = 'e' #

INDENTATION = 'g' #

of syntax errors

unbalanced parentheses

incorrectly used keyword (eg.

incorrectly used operator (eg.

no colon where there should be

colon where there shouldn 't be

mismatched indentation

'return 3')

'if x 4

one

one

45

95 INFIX = 'h' # infix operator with one argument (eg. '1 +')

96 NOOP = 'i ' # missing operator between operands

97 WROiNG4_KEYWRD ='j ' # used wrong keyword (eg. 'pass ' for 'return ')

98 MISSINGPARENS = 'k' # missing parens (eg. around print args)

99

100 TYPO= 'w # simple typo (no obvious understanding error)

101 NOT_STUDENT 'x' # cause of error not in student 's code

102 OTHER = 'y' # cause of error is not in above list

103 UNKNOWN z # hand-checker could not determine cause

104

105

106 def user-interface(:

107 """

108 prints the ascii art interface for the user to see when classifying

109 a particular code sample

110 " "f

111 print ("=*100)

112 print (" Please-choose-what-the-actual-error -is -for-this -function

113 + "given-the-following-options:")

114 print ("a-->-mismatched. parens ")

115 print ("b-> using -a-keyword- in-an- incorrect -way-"

116 + " (eg. -saving -something-to-a-keyword) ")

117 print(" c--> using -an-operator- in-anincorrect -way-"

118 + " (eg .- using.'='-instead -of '=='_in-an_ if -statement")

119 print("d_>_nocolon-before-indented-block")

120 print ("e-->-colon -without -indented -block")

121 print ("g-->-mismatched- indentation ")

122 print ("h--> in fix - operator-with-1 -argument- instead -of-2"

123 print (" i-->missing-operator-between-operands"

124 print ("j -- >-used -wrong-keyword")

125 print ("k-->-missing-parens- (eg. around-print-args)")

126 print ("w_->_typo ")

127 print ("x-->-cause-of -error -is -not -in-student 's-code")

128 print("y->-cause-of-error-is-not-one-of-the-above"

129 print (" z -- >-unknown")

130 print("")

46

131 print (" type-the- character -matching-your-selection,"

132 + "then- press -enter . ")

133 print ("alternatively ,-enter.'undo'-to-undo-the- previous-selection ,"

134 + "or. 'quit '-to-exit -the- clas sifier -and-save-your-progress.")

135 print ("")

136

137

138 # so checker can undo if they mis-classify the previous example

139 PREV_FPATH = ""

140 def labelerror(ftext , fpath):

141 f """

142 provides main interface to ask user to classify a given file 's error

143 """

144 global PREVFPATH, LABELED_TH[NGS

145 # get Python error output

146 errorthings = parse_error things(ftext)

147 if errorthings is None:

148 return

149 (file _error , file-message , origmessage) = error things

150 # figure out the erroring line of code, and where it is

151 loc = parse_error line(ftext)

152 # get erroring code

153 code = json.loads(ftext)["code"J

154 # now ask user what the error was

155 # print UI

156 userinterface()

157 # add information about error

158 print (" additional -information: "

159 + "the -message-)accompanying-this -error -was:

160 if loc is not None:

161 print(loc)

162 print (orig _message)

163 print ("=" *100)

164 print ("")

165 print(code)

166 # ask for error

47

167 errorcode = input(" enter-error-code-here-->-")

168 if errorcode = "undo":

169 # handle undo by removing previous fpath from -dict

170 LABELED_THINGS. pop (PREVEFPATH, None)

171 print ("\033c")

172 return

173 if errorcode = "quit":

174 # handle quit by raising 'done error'

175 print ("\033c")

176 raise DoneError

177 error enum = ErrorKeyword(error_ code)

178 otherinfo = None

179 if errorenum = ErrorKeyword .IHER:

180 # handle other by requesting more info

181 otherinfo = input(" please-provide-more-information: ")

182 # store in dictinoary

183 LABELED_THINGS[fpath = (fileerror , filemessage

184 repr (error_ enum) , other _info)

185 # keep this filepath in case of undo

186 PREV_FPATH = fpath

187 # clear screen for next example

188 print ("\033c")

189

190

191 def recursewithmemo (fname, fns):

192 """

193 runs each function in fns on each file recursively found

194 starting at fname (which is assumed to be a directory)

195 " " "

196 subdirs = os. scandir (fname)

197 for item in subdirs:

198 if item. is _dir ()

199 recursewithmemo(item. path, fns)

200 elif item.isfile() and item.name.endswith(".json"):

201 if item.path not in LABELED_THINGS:

202 with open(item.path) as f:

48

203 ftext = f.read()

204 for fn in fns:

205 fn(ftext , item.path)

206

207

208 # without this , exiting would be an issue since we are working many

209 # levels deep in a recursive program.

210 class DoneError(Exception):

211 """

212 Raised when the user wants to stop classifying errors

213 Used so we can save the user 's progress (so they won 't have to

214 start over)

215

216 pass

217

218

219 # so we don 't ask about a given code sample twice

220 def load_ past data(fname, outputdict):

221 " " "

222 imports (assumed json) data from a 'save file ' into a working

223 dictionary used to load state saved from previous runs of

224 this checker

225 """

226 try:

227 with open(fname) as f:

228 outputdict. update(json. loads (f. read()))

229 except FileNotFoundError:

230 pass

231

232

233 # stores code samples with classification

234 # syntax of dictionary:

235 # key = filepath of erroring file

236 # value = (error type, error message, chosen error keyword, other info

237 # other info is None if error keyword is not ErrorKeyword.OTIER

238 LABELED_THINGS {}

49

239 OUTPUT_FNAME = "labeled _ data.json"

240 def main():

241 load _past_ data (OUPUT_FNAME LABELED THINGS)

242 print ("\033c")

243 print ("Welcome-to-the- error -checker! ")

244 print ("at-any-time-you-can:")

245 print (enter-the-string-\"undo\"-to-remove"

246 + "the-previous - entry.(if-you-make-a-mistake)")

247 print ("enter-the-string-\" quit\-to-exit-the-program-cleanly"

248 + (if-you'd- like-to-not-do-this-anymore)")

249 print ("hit -enter-to-begin!")

250 input()

251 # clear screen and begin!

252 print("\033c")

253 try:

254 recursewithmemo(".", [label_error])

255 except DoneError:

256 pass

257 except: # if we make a mistake, should still save all the data!

258 pass

259

260 # output our saved results to file

261 with open(OIJTPUT_FNAME, 'w') as f:

262 f . wr it e (json . dumps (LABELEDTHINGS))

263 # some nice stats to encourage the checker

264 print(" currently:", len(LABELMED_THINGS), "things-labeled !")

265

266 if __name__ "_-main-_ ":

267 main ()

50

Listing B.2: Description System Hand-Checking Script

1 """

2 Used to hand-verify the output of the error description system

3 Samantha Briasco-Stewart (erosolar@mit.edu)

4 """l,,

5 import os

6 import json

7 # a library that parses html into readable text (without tags)

8 import html2text

9 # the file that runs the error description system

10 import testingast

11

12 # state file for correctly-described examples

13 KNOWNCORRECTFILE = " parsoknown_ good _fpaths. json"

14 # state file for incorrectly-described examples

15 KNOWN_BADFILE = " parsoknown _bad_ fpaths. json "

16 # set to True to ignore past files and start over

17 # should be set when changes are made to the error description system

18 RETEST = False

19 # dictionaries to store state while checker is running

20 KNOWN_CDRRX = {}

21 KNOWNBAD = {}

22 # stats for checker - files checked, correct and incorrect counts

23 STATS = {

24 "correct": 0,

25 "incorrect": 0,

26 "totalfiles": 0

27 }

28

29

30 def recurse _with _memo (fname , fns):

31 """copy of this function from classifier script with stats added"""

32 global STATS

33 subdirs = os.scandir(fname)

34 for item in subdirs:

35 if item.is-dir():

51

36 recurse _with_ memo (item. path, fns)

37 elif item. is _ file () :

38 if item.name.endswith(" .json")

39 STATS["total_ files"1 += 1

40 with open(item.path) as f:

41 ftext f.read()

42 for fn in fns:

43 fn (ftext , item. path)

44

45

46 def automated _ check_ error (ftext , fpath):

47 """11i

48 handles automated checking:

49 -> if system returns no error where there is one, that 's bad

50 -> if system errors , that 's bad

51 -> if system returns an error where there isn't one, that 's bad

52 -> if system returns no error and there aren't any, that's good

53 -> otherwise , return error described for user checking

54 """

55 global KNOWN_C(RUICT, KNOWN_BAD, STATS

56 # skip files we 've already checked

57 if fpath in KNOWN_COREZCT or fpath in KNOWNBAD:

58 return

59 try:

60 ftextobj = json.loads(ftext)

61 except: # invalid ison is a thing (usually because it 's empty)

62 return

63 code = ftext_obj["code"]

64 # save code to temp file to run through description system

65 with open("temp.py", "w") as f:

66 f.write(code)

67 f.close ()

68 # run code through description system

69 try:

70 toolresult ,pos = testing_ ast . runtests ("temp. py" , "3.6")

71 start , end pos

52

72 except Exception as e:

73 # description system caused an error

74 # save that error as an incorrect file

75 KNOWN BAD[f path I = "ERROR:' + repr (e)

76 STATSI"incorrect "I += 1

77 return

78 nice _ text = html2text .html2text (ftext _ obj ["response"])

79 if tool _ result = "Code-Seems-Correct" and "Error" not in nice _text:

80 # probably we didn 't find an error where there was none

81 KNOWN_Q0RREXCT[fpath] = "Automated: -True"

82 STATS["correct "I += 1

83 return

84 if toolresult "Code-Seems-Correct":

85 # we didn 't find an error where there was one

86 e idx = nicetext .index("Error")

87 start = nice _text.rfind("\n", 0, e_idx) + 1

88 end = nice _ text .find ("\n" , eidx)

89 KNOWNBAD[fpathI = "Automated:-error=-" + nice-text [start:end]

90 STATS["incorrect"] += 1

91 return

92 # else , ask user to figure it out

93 user -checkerror (ftext , fpath , (code , tool_result , start , end))

94

95

96 def user_ check _error(ftext , fpath , automated-info)

97 """

98 handles user checking: displays error, and prompts user for yes/no

99 whether given error is correct. if no, asks for a reason.

100

101 code , toolresult , start , end ='automated info

102 # format code to give line numbers

103 formatcode = '\n'. join (["{0:3d}_{1:s}".format(x, y)

104 for x, y in enumerate(code. split ("\n"))])

105 # display code -- message to the user, ask for verification

106 print ("=" * 100)

107 print ("")

53

108 print (" _ 5 10- 15- 20--25--30- 35-40--45 -501)

109 print (format _code)

110 print ("")

111 print ("="*100)

112 print (" parso-result tool_ result)

113 print ("parso- start=", start , "end=" , end)

114 classification = input("is-this-correct?_(Y/n)")

115 if (classification -- "" or

116 classification ="y" or

117 classification "Y"): # ways to say yes

118 KNOWN_CIREUCT[f p at h T rue

119 STATS[" correct"I += 1

120 else: # assume user said no

121 actualerror = input("what-did-parso-get-wrong?")

122 STATS["incorrect"J += 1

123 KNOWN_BAD[fpath] actualerror

124

125

126 def main(:

127 # hack to make sure file handling works correctly

128 os.chdir("../ verification/")

129 if not RETEST: # load old data

130 try:

131 with open(KNOWNCORRCT_FILE) as f:

132 fulltext = f.read()

133 KNOWN_CORRCIupdate(jsono. loads(fulltext))

134 correct = len (KNOWN_CRRECT)

135 except FileNotFoundError:

136 pass

137 try:

138 with open (KNOWNBADFILE) as f:

139 fulltext = f.read()

140 KNOWN_BAD. update (json . loads (fulltext))

141 incorrect = len (KNOXVN_BAD)

142 except FileNotFoundError:

143 pass

54

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

55

hack to make sure file handling works correctly

os.chdir("../../6S080 _labeled _data/")

try:

recurse _with_ memo("6s080" , [automated _ check _error J)
except KeyboardInterrupt as e:

so we error out nicely (saving progress)

pass

hack to make sure file handling works correctly

os. chdir (" .. /idle/verification/")

save data to files

with open (KNOWNCORRECTFILE, 'w') as f:

. f. write (json .dumps(KNOWN_OLRECT, sort keys=True, indent=4))

with open(KNOWNBADFILE, 'w') as f:

f. write (j son . dumps(KNOWN_BAD, sort _ keys=True, indent=4))

print("total-files-examined:j", STATS["total _ files "])

print("correctly-identified:-", STATS["correct"J)

print ("incorrectly-identified :', STATS["incorrect"])

56

Bibliography

[1] David Beazley. Ply (python lex-yacc). http: //dabeaz. com/ply, February 2018.

[2] Python Software Foundation. Idle. https: //docs. python. org/3.6/library/
idle.html, March 2018.

[3] Philip Guo. Python is now the most popular introductory teaching language at
top us universities. BLOGO CA CM, July, page 47, 2014.

[4] Dave Halter. Parso - a python parser. https://parso.readthedocs.io/en/
latest/, April 2018.

[5] Bj6rn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R Klemmer. What
would other programmers do: suggesting solutions to error messages. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 1019-1028. ACM, 2010.

[6] Adam John Hartz. Cat-soop: A tool for automatic collection and assessment
of homework exercises. Master's thesis, Massachusetts Institute of Technology,
2012.

[7] Jeremy Daniel Kaplan. An interpreter for a novice-oriented programming lan-
guage with runtime macros. Master's thesis, Massachusetts Institute of Technol-
ogy, 2017.

[8] Andrew Ko and Brad Myers. Debugging reinvented. In Software Engineering,
2008. ICSE'08. ACM/IEEE 80th International Conference on, pages 301-310.
IEEE, 2008.

[9] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Jdrvinen. A study of the
difficulties of novice programmers. In Acm Sigcse Bulletin, volume 37.3, pages
14-18. ACM, 2005.

[10] Michael J Lee and Andrew J Ko. Personifying programming tool feedback im-
proves novice programmers' learning. In Proceedings of the seventh international
workshop on Computing education research, pages 109-116. ACM, 2011.

[11] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. Measuring the
effectiveness of error messages designed for novice programmers. In Proceedings

57

of the 42nd ACM technical symposium on Computer science education, pages
499-504. ACM, 2011.

[121 Marie-Helene Nienaltowski, Michela Pedroni, and Bertrand Meyer. Compiler
error messages: What can help novices? In ACM SIGCSE Bulletin, volume
40.1, pages 168-172. ACM, 2008.

[131 Roy D Pea. Language-independent conceptual "bugs" in novice programming.
Journal of Educational Computing Research, 2(1):25-36, 1986.

[141 David Pritchard. Frequency distribution of error messages. In Proceedings of
the 6th Workshop on Evaluation and Usability of Programming Languages and
Tools, pages 1-8. ACM, 2015.

58

