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Abstract

In this thesis, I analyzed multiple databases of eICU data and formulated methods of
improving personnel response to the incidence of alerts in these environments. Mul-
tiple aspects of the eICU response workflow were considered such as the medications
provided by the healthcare providers following the triggering of an alert, the settings
selected by the personnel regarding the reactivation of the alerts, as well as specific
responses and their correlations to specific alert types. A new algorithm for predict-
ing the reactivation time of alerts has been developed, which takes into account the
severity and type of alert, as well as the patient status.
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Chapter 1

Introduction

Many individuals in the United States and abroad lack access to healthcare [59, 60].

Both the cost of service and geographical accessibility are barriers to the distribution

of health services. For example, most hospitals and trauma centers are located in ur-

ban areas, which then require those living in rural areas to travel significant distances

in order to receive the medical attention that they need. In rural areas, there is a

dearth of medical professionals, specialists, and modern medical technology. Rural

victims were over seven times more likely to die before arrival (relative risk = 7.4, 95

percent confidence interval 2.4-22.8) if the emergency medical services' response time

was more than 30 minutes [1]. Telemedicine is viewed as a potential solution that

allows healthcare to be more readily available to underserved and isolated communi-

ties.

Telemedicine is defined as the use of telecommunications and information technol-

ogy to provide healthcare to patients across significant distances. Though the exact

legal definition has changed since its emergence, telemedicine, in all of its forms in-

volves the use of remote communication or digital technologies to provide or enhance

the provision of health care. Telemedicine was utilized in 1929, where the Royal Flying

Doctors Service (RFDS) made use of two-way radios in order to provide healthcare

services to remote communities in Australia. In the modern era, changes in tech-

nology, such as advancements in patient monitoring technology and the widespread

availability of high-speed internet have allowed telemedicine initiatives to develop and
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proceed at a much faster pace than was possible before.

In a modern context, telemedicine is employed in a wide variety of services. The

proliferation of two-way video communication technology has enabled online com-

munication between doctor and patient as well as online consultations between care

providers. The availability of long-distance medical monitoring technology has en-

abled patients to receive diagnoses, treatments, as well as examinations, allowing for

healthcare providers to communicate with patients and handle their cases remotely.

1.1 eICU

One such implementation of telemedicine technology is the Tele-ICU, otherwise known

as an eICU [40], in which a team of nurses and physicians remotely monitor patients in

an Intensive Care Unit, 24/7, as a supplement to the bedside staff. The remote team

is provided with technology that tracks the patients' vital signs and medical records

in order to detect changes in the patients' conditions and use that information to

correct or prevent potential complications. When a patient's condition changes, an

alert is sent to the remote location, notifying the remote clinician (such as a nurse,

PA, doctor) who can then examine the situation via a bedside video camera and alert

the on-site care providers (doctors, nurses), if needed.

In this emerging field of telemedicine, there are many questions raised regard-

ing the quality of service and the benefits and shortcomings. Telemedicine, in an

effective implementation, offers the patient faster and longer distance care, which is

particularly necessary for underserved populations such as lower-income or rural com-

munities. At the same time, there valid concerns with the possible consequences of

telemedicine, such as the over-reliance on the technology and it being used improperly

as a replacement for face-to-face interactions, rather than as a supplement, as it is

intended to be [411. Difficulties in the adoption of telemedicine initiatives, especially

given the legal landscape of the United States in the medical domain, where different

states have different degrees of regulation, are also factors to consider.

Caregivers in an eICU environment are exposed to a constant stream of informa-
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tion and alerts from their patients. This situation can cause alert fatigue, which, in

some cases, has resulted in the monitoring professionals turning off some of the alerts.

1.2 Purpose

This thesis will examine the following hypothesis: It is possible to apply Systems

Engineering techniques to enhance the impact of telemedicine services in distributed

hospital networks.

Telemedicine purports to offer medical services in a faster and more effective man-

ner in environments with it than in environments without it. To test this hypothesis,

I have compared the quantity of alerts and the effectiveness of response to them by

the medical staff across a variety of hospitals, mainly those that have eICU. The in-

tent of this work is to analyze the actions taken by the medical staff after an alert is

generated, for a wide variety of alert situations, comparing moderate alerts to severe

alerts, as well as considering the alerts that are dismissed as compared to those that

are acted upon by the personnel. This includes the actions taken by the staff when

a high volume of alerts occur in a brief period of time, how the alerts are prioritized

or ignored in order to minimize alert fatigue, and how the alert systems can be made

more effective in the future.

Currently, we have access to a significant set of data from the Philips eICU software

system. Naturally, this data has been deidentified, that is, all Protected Health

Information of the patient (name, DOB, etc.) has been removed or replaced with

dummy identifiers. The Philips eICU software is used in many hospitals and hospital

chains across the country. The Philips Healthcare's IntelliSpace eCareManager health

care platform helps to enable triage assessments [3].

Data access agreements have been completed with multiple eICU locations, which

will enable us to use the relevant data in our analyses. With this data, we will carry

out various machine learning algorithms and methods in order to isolate the most

relevant factors and variables in these environments. Machine learning is a subfield

of computer science, in which new or existing algorithms are used in order to learn
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from a set of existing data and create generalizable models from the data. These

models would ideally offer useful predictions or determine important patterns from

the existing data. In this case, we would like to be able to predict such things as length

of stay and mortality for patients with a given condition or with certain biographical

information, such as age or sex.

Clinical decision support (CDS) systems have been installed in numerous prac-

tice settings since the development of these systems almost two decades ago. This

advanced form of information technology is characterized by a series of algorithms

derived from clinical best practices and applied to patient-specific situations using

real-time physiological data [4]. Developing such systems is and objective of this

study and other like it.
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Chapter 2

Previous Research

Prior to this project, several publications and papers have explored topics of telemedicine

and data usage, especially in an ICU environment and have expounded on many im-

portant aspects of data and algorithm usage in this field. The paper published in

IEEE by Johnson et al. describes various limitations inherent in the current medical

environment for the application of data science techniques and what would need to

change in order to move past these obstacles, as well as some viable applications of

data science in critical care analysis. Another paper, written by Awad et al. delin-

eates some examples of extrapolative algorithms in eICU environments and details

how measures such as LOS (length of stay) can be predicted

Prior studies have remarked that the eICU offers an unprecedented opportunity

to make use of data science in the medical field [22], but that the acquisition, analysis,

interpretation, and presentation of the relevant data in a clinically relevant and usable

format is the premier challenge of data analysis in critical care [9]. One aspect of this

challenge include the tendency of health organizations to compartmentalize patient

data, storing different bits of information in different locations, even for the same

patient, which means that integration between these different locations is tantamount.

Another difficulty is the corruption of data that is likely to occur in these environment;

sensor failures, changes due to interventions and incomplete measurements. In these

scenarios, being able to identify and remove these irregularities has been shown to have

a significant effect on the quality of the results from machine learning algorithms [7].
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Another challenge is the complexity of the systems involved; all analysis of medical

data is dependent on the specific characteristics of the patient and the patient's

condition and thus, relies on many variables that are not likely to be completely

represented in the collected data [351.

Others mention various applications of machine learning that have been able to

reduce the impact of the aforementioned challenges, or surmount them entirely [49].

Regression models in particular have proven to be rather effective in analyzing trends

in existing data. One such advancement is the utilization of multiple SVMs (Support

Vector Machines) that were combined in a regression step in order to classify and

predict patient mortality, yielding a minimum Se/PPV of 53.52 percent. Another

method used to predict patient mortality was a tree-based classifier that achieved a

score of 53.53 percent, meaning that it was capable of correctly predicting half of the

patients that would die in-hospital. The success of these regression-based methods

may be attributed to the greater time scales involved in the calculations, and more

complex methods have been shown to not be quite as useful.

In other studies [10], the authors mention how LOS (length of stay in the ICU) can

often be used as a proxy for other characteristics such as the severity of the patient

condition, especially in cases for which that information is unavailable. As with any

surrogate, it cannot be considered as a complete representation of the variable it is

replacing. LOS reveals information about certain non-obvious aspects of the eICU

experience, such as the utilization of resources and clinical quality, which is especially

important considering the high cost of ICU care on both the providers and patients.

Several machine learning methods have been applied to LOS data (and more),

with the intention of predicting patient mortality and patient length of stay above

a certain threshold. The study reveals that the most useful method used was the

Random Forest (RF), though Multiple Regression (MP), Decision Trees (DT), Arti-

ficial Neural Network (ANN) ensemble, and Support Vector Machines (SVM) were

also utilized [58]. Through these methods, various correlations were determined, such

as the positive correlation between age and LOS as well as a significant tendency for

patients with lung or respiratory disorders and high blood pressure.
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Additionally, they discuss the potential usefulness of having daily scores of patient

wellness, referencing APACHE (Acute Physiology and Chronic Health Evaluation) [59]

scores as one example. Techniques such as logistic regression have been used to predict

the risk of mortality and adverse events for patients admitted to the ICU, and the

predictions, though promising are not accurate enough to be used on patients [60].

Overall, it was determined that there was not a particular algorithm that surpassed

others in this way, but rather that the best algorithm is dependent on multiple factors.

The papers examined here were a significant inspiration for this thesis. Potential

applications of Machine Learning to the field of telemedicine will be examined. We

have noted that the eICU data that we have received is very large in terms of the

number of patients as well as the depth of information on each patient. With this,

we also needed to contend with the previously mentioned challenges of incomplete

data, or highly divided data. The opportunity to receive the data directly from

the healthcare providers offers a unique perspective on how the operations of these

organizations can be improved and areas in which the personnel can be partially

relieved of their burden.

Many of the data science techniques mentioned in this work will serve as the basis

for the experimental approach of this thesis.

19



20



Chapter 3

Vision

Some machine learning algorithms that will be used include Principal Component

Analysis, logistic regressions, and clustering. Principal Component Analysis is de-

fined as a multivariate technique that analyzes a data table in which observations

are described by several inter-correlated quantitative dependent variables. Its goal is

to extract the important information from the table and to represent it as a set of

new orthogonal variables called principal components, and to display the pattern of

similarity of the observations and of the variables as points in maps [4]. The goal of

logistic regression is to find the best fitting (yet biologically reasonable) model to de-

scribe the relationship between the dichotomous characteristic of interest (dependent

variable) and a set of independent variables [5]. Clustering will also be employed,

which involves dividing a population or set of data points into a number of groups

such that data points in the same group are more similar than data points in other

groups. That is, to segregate the groups with similar traits and assign them into

various clusters.

Another aspect of this project was the development of visualization tools for the

purpose of better understanding the data, as well as potentially serving as a useful

resource for the eICU professionals for which we are performing this study. The

purpose of this is twofold, one reason being that the size of the dataset may be a

limiting factor for gaining an intuitive grasp of the data, and so a visualization may

offer insights that were previously unnoticed.
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Furthermore, visualizations may offer evidence of correlations that the eICU pro-

fessionals can observe and analyze, which may positively influence their behavior. In

the following sections, I will expand on a few visualization tools that I developed.

As an overview of the topics of research, there are two main aspects of the eICU

workflow that are of particular interest.

One is the activation of alerts, which are intended to signal to the employees

observing them that some action ought to be taken, or at the very least, that the

patient should be observed in order to determine the cause of the alert. The alerts are

based primarily on certain biological measures, such as MAP (mean arterial pressure)

or 02/Sat (oxygen saturation), these measurements are taken from various devices

and monitoring equipment that are hooked up to the patient [37]. Typically alerts

will activate once one or more of these vital signs is outside of an accepted range. This

accepted range has a default value, but can be customized by the eICU intensivist,

which is often necessary due to the differences in patients and their conditions. There

are 6 types of alerts.

Another important aspect of the eICU process is the reactivation time. After an

eICU intensivist handles an alert, he or she can choose how long they wish for that

(particular type of) alert to be disabled until it can be triggered again. One can

imagine that there may different reasons for choosing a specific length of time for

specific situations. For example, in the case of an alert being triggered by a sensor

device falling off, the intensivist may wish to have the alert reactivate immediately,

knowing that the patient is otherwise fine. Whereas, if the alert is triggered by a

worsening of the patient's condition, he or she may elect to instead choose a longer

reactivation time, knowing that the patient will need more time to recover, and thus,

their vital signs will be abnormal for a significant period of time, and they do not

wish to receive extraneous alerts while this is the case [361.

For the purposes of this thesis, the relationship between these two elements of

the eICU experience has been explored in order to better understand how alerts are

responded to and how this process may be improved or standardized in some way

so as to improve patient outcome and prevent instances of phenomena such as alert
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fatigue. Apparently, a significant portion of the alerts that are generated are false

and thus, do not require any action [38].

3.1 Steps

The following are the steps that have been taken to appropriately test and confirm

the aforementioned hypothesis:

Interviews with caregivers and staff in an eICU environment have been conducted,

both the in-person team and the remote team, in order to have a better operational

understanding of how the system works and what the existing procedures are. These

interviews have been conducted with staff from a wide variety of hospitals, such as

Emory, UMass Worchester, and several others. This corresponds mainly with the

phase of capturing the needs and requirements of the system, as was covered in the

Systems Engineering process.

Following this, more data has been collected from these different environments in

order to have a more robust analysis. Administrative approvals were necessary in or-

der to access this data. Our next goals were to carry out some statistical and machine

learning analysis so that we can determine the main correlations and causations in

the system. This was needed in order to to determine the involvement and role of the

various medical personnel, such as the bedside physicians and nurses and the remote

physicians and nurses. With this, we defined the ideal positions and functions of the

medical professionals in terms of maximizing patient outcomes.

At the conclusion of this work, the expected contributions include a set of analy-

ses regarding clinician response in the eICU environment, as well as suggestions for

improvements on the existing system. This will provide a baseline for understanding

what is important in alerting and remote advice, with as much specificity as possible.

Another contribution is the visualization tools that were developed for the statis-

tical analysis. This would serve the professionals in the eICUs and at Philips. Some

examples of visualizations are timelines of patient activity and caregiver response,

which would demonstrate the evolution of a particular patient's case.
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With the data and information acquired from our machine learning techniques as

well as from interviews with eICU professionals, a systems engineering analysis on the

eICU alert-response process was conducted in order to determine the best practices

for an eICU workflow and how such systems can be utilized most effectively in terms

of patient satisfaction, minimizing strain on personnel, and determining the optimal

conditions for collaboration between the central remote site and the bedside, where

the patients are located.

Systems Engineering is an interdisciplinary engineering discipline that is concerned

with the creation and development of a process that satisfies the needs of the stake-

holder and the consumer and is reliable, cost efficient, and high in quality. Stakehold-

ers in this endeavor would include the eICU personnel, hospital staff and patients, etc.

All systems contain needs and requirements, which define the goals and objectives

of the systems engineering endeavor. These expectations can be captured through a

variety of methods such as interviews and prototyping, which we will be conducting

in tandem with the eICU personnel involved. The requirements are then translated

into a functional description of the system or product in development. In this work,

functional descriptions of the eICU response process will be created and various visu-

alization tools will be developed in order to capture the differences between different

implementations as well as between the responses to different types of alerts. Func-

tional analysis and allocation allows for a better understanding of what the system

has to do, in what ways it can do it, and the priorities and conflicts associated with

lower-level functions [8].

3.2 Data Sources

The sources of data I used were from the MIMIC-III database, the eICU Collaborative

Research Database, as well as some data that was provided by specific hospital chains.

MIMIC-III (Medical Information Mart for Intensive Care III) is a freely available

database of deidentified (all protected health information such as the name, date

of stay, etc. are removed) health-related data associated with over forty thousand
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patients who stayed in critical care units of the Beth Israel Deaconess Medical Cen-

ter between 2001 and 2012 [131. The database contains information pertaining to

patient demographic, vital signs throughout the patient's stay, test results, imaging

procedures, notes, and mortality. This data has been made publicly available in or-

der to allow for studies such as this one to be performed, ideally so that the results

of such studies may be utilized for the benefit of the critical care unit providers.

Researchers that wish to utilize this data must complete a CITI (Collaborative Insti-

tutional Training Initiative) course to verify their knowledge of HIPAA protocols as

well as appropriate behavior with sensitive data of this nature. MIMIC-IlI is the third

iteration of the MIMIC initiative, and currently contains data from 53,423 distinct

hospital admissions for adult patients (aged 16 years or above).

For the purposes of my research, the data tables that pertained to patient demo-

graphics was heavily used, as well as those pertaining to chart events and diagnoses.

The eICU Collaborative Research Database is a database comprised of deidentified

patient information from the Philips eICU Research Institute database. The database

includes information such as demographics, vital sign measurements made at the

bedside, laboratory test results, procedures, and medications. As with the MIMIC-

III database, the data is freely available to researchers, so long as they complete the

CITI course. Currently the database holds about 200,000 patient entries [13].

For the purposes of my research, a significant subset of the eICU Collaborative

Research Database data was used, including the tables pertaining to drug infusion,

patient demographics, the hospitals that at which the patients were located, and alert

activation.

The hospital chain data was comprised of deidentified patient information from the

hospital chain's database. The database was comparable in size to the others used,

possessing nearly 500,000 patient entries. Though it was from a different source,

the data present in this database contained similar fields concerning patient demo-

graphics, and the triggering of alerts, which I made use of for the purposes of this

research.
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Chapter 4

Initial Analysis

4.1 Introduction

Reactivation time is an important consideration for the eICU specialists, as they must

decide how long they wish for an alarm to be inactive after addressing it. For example,

if a MAP (Mean Arterial Pressure) alert activates, and the intensivist answers the

alert, he or she may choose to deactivate the alarm for some amount of time, such

as 5 minutes, 10 minutes, an hour, or more, or no time at all, depending on their

selection. With this selection, no MAP alerts will activate for the chosen duration,

even if the biological requirements for the alerts activating are fulfilled [24]. This is all

the more important considering the nature of alert fatigue, a tendency of providers to

dismiss potentially useful alerts due to a high number of unhelpful false alarms [38].

Naturally, healthcare providers in these situations must balance the need to set the

reactivation time to be short enough so that they do not miss any important alerts

that may arise, and to be long enough to prevent repeated alerts from occupying the

attention of the eICU specialist, especially since the specialist would already be aware

of the issue that the alert was expressing [25]. In short, one potential area of study

is to determine methods to minimize the load on the eICU professionals and to free

up their time in order to focus on more relevant signals.

In order to properly understand the current state of eICU alert and response, I

compiled some initial statistics regarding the choice in reactivation time as correlated
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Table 4.1: Incidence of reactivation with respect to alert type for a dataset received
from a hospital collaborator.

Combined 02 RR Heart Rate Limit Mean Arterial Pressure Heart Rate Trend Mean Arterial Pressure Trend
Reactivate Now 759 689 1611 302 748
Reactivate in 5 minutes 156 70 159 28 69
Reactivate in 15 minutes 40 23 46 4 4
Reactivate in 30 minutes 5 3 2 2 0
Reactivate in 1 hour 1 4 2 2 0 0
Reactivate in 6 hours 0 0 1 0 0

Table 4.2: Incidence of reactivation with respect to alert type for a dataset received
from another hospital collaborator.

Combined 02, RR Heart Rate Limit Mean Arterial Pressure Heart Rate Trend Mean Arterial Pressure Trend
Reactivate Now 1068 449 978 300 782
Reactivate in 5 minutes 303 58 131 25 79
Reactivate in 15 minutes 139 18 66 4 26
Reactivate in 30 minutes 30 3 13 0 1
Reactivate in 1 hour 7 2 3 0 0
Reactivate in 6 hours 1 1 0 0 0

to alert type. The alert types examined were the Combined 02/Sat, Heart Rate

Limit and Mean Arterial Pressure.

4.2 Results

The program used to perform this task is based in Python, and makes use of various

packages such as numpy and pandas in order to store the data, as well as sklearn and

statmodels in order to perform the necessary statistical work and analysis. The data

the algorithm was tested on was acquired from collaborating hospitals.

4.3 Analysis

As can be observed from Table 4.1 and Table 4.2, the eICU professionals overwhelm-

ingly select to reactivate immediately across all alert types, which will often cause

the same alerts to trigger for a given patient. According to prior analyses involving

eICU professionals, this may be due to a desire to have a constant reminder of the

alert that is occurring, especially in a quickly evolving situation. Others claim that
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this may be a result of the Reactivate Now setting being the default value, so the

users select it out of convenience, or out of a desire to not make adjustments to the

settings of the program [37].
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Chapter 5

Post-Alert Follow-Up

5.1 Motivation

Another important aspect of eICU response is the follow-up action performed by the

eICU personnel as they respond to the triggered alert. The purpose of this research is

to optimize methods of personnel response to the alerts, which makes the immediate

actions performed after the alerts have been sounded all the more important [22].

The responses in question are the administration of medicine to the patient. The

following is a compilation of the most common alert responses and the amount of

time necessary to enact the response.

5.2 Method

The program used to perform this task is based in Python, and makes use of various

packages such as numpy and pandas in order to store the data. The data was combed

to find the timestamps of alert and medicine administration occurrences for a given

patient. I searched for alerts that were directly followed by instances of medicine

being administered and isolated those cases, seeing those as the likeliest scenarios

in which a medication was administered due to the occurrence of an alert, and thus

the closest representation of the behavior of eICU personnel after an alert has been

sounded.
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The occurrences of these follow-up actions were then sorted and classified based

on the type of the alert that was triggered and the specific medical response. It is

important to note that the following statistics describe the most commonly ordered

medications immediately after an alert is activated and that they do not suggest a

causative relationship between the alert and the medication, merely that these were

the next medications ordered, and thus may only represent a coincidental relationship.

Table 5.1: Most common follow-up actions after activation of Heart Rate Trend alert.
Compiled for the purposes of this research.

Medication Prevalence
Fentanyl 5.5539216000000002E-2
Vasopressin 2.8968190000000001E-2
Norepinephrine 2.706093E-2
Midazolam 1.9599938000000001E-2
Insulin 1.33694771523828E-2

Table 5.2: Most common follow-up actions after activation of Mean Arterial Pressure
Trend alert.

Medication Prevalence

Metoprolol 5.9336800000000002E-2
Vancomycin 3.9997199999999997E-2
Atorvastatin 8.1374500000000002E-2
Midazolam 8.0528000000000006E-3
Lisinopril 7.2963999999999998E-3

Table 5.3: Most common follow-up actions after activation of Combined 02/RR alert.
M 'P

Oxygen Therapy (> 60%) 9.7873000000000002E-2
Amiodarone 5.3872999999999997E-2
Dexmedetomidine 3.8398000000000002E-2
Lisinopril 2.0133000000000002E-2

Norepinephrine 1.1109000000000001E-2
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Table 5.4: Most common follow-up actions after activation of Heart Rate Limit alert.
Medication Prevalence
Atorvastatin 6.1875242422241197E-2
Carvedilo 4.9517674397843499E-2
Dexmedetomidine 4.8537408581969199E-2
Insulin 2.8272052291139001E-2
Lisinopril 2.74199409874392E-2

Table 5.5: Most common follow-up actions after activation of Mean
Limit alert.

Medication Prevalence

Vasopressin 9.8340628556184806E-2
Dexmedetomidine 3.9015637282951703E-2
Insulin 2.0749854287568901E-2
Midazolam 1.8772854077133399E-2

Norepinephrine 1.6533592386900001E-2

Arterial Pressure

5.3 Analysis

Table 5.1 contains information regarding the soonest ordering of medicine after the

time of the alert. In this case, the five most common responses are shown for each

alert type, as well as the average amount of time between the activation of the alert

and the time of the medication being administered. It is important to note that

more than 95 percent of alerts did not have any appreciable action that followed their

occurrence, and this should be taken into consideration in future studies of this issue.
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Chapter 6

Reactivation Prediction

6.1 Introduction

In order to minimize the load on the eICU professionals, a decision support algorithm

has been developed that predicts the reactivation time that will be chosen based on

the alert that has been activated. To do so, regression techniques will be used.

Linear regression is a technique in statistics and machine learning designed to

determine whether there is a linear relationship between a dependent variable and

one or more independent variables. As is often the case in the evaluation of treat-

ment modalities, there exists multiple outcomes of interest. Utilizing a multivariate

statistical tool facilitates the examination of the effect of a specific intervention on

multiple variables and tests hypotheses of correlation between the variables.

Regression analysis of the data is performed to test the validity of the hypothesized

model and specifically determine the effect of the independent (predictor) variables on

the dependent (response) variables [4]. To examine the stated theoretical associations,

path analysis is implemented to examine the causal relationships among the variables

of interest [5]. Additionally, error terms suggesting lack of model fit are identified and

revisions to the model are made accordingly. For the purpose of this work, I intended

to determine significant correlations between the different types of alerts and the

responses on the part of the attending professionals. As mentioned before, there are

six different alert types, and I sought to determine the most correlated events for each
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of them.

According to past studies , linear regression has been used in eICU contexts in

the past in order to determine the correlations between specific aspects of the eICU

workflow and patient outcomes, including mortality and readmission. Although ICU

telemedicine adoption resulted in a small relative overall mortality reduction, there

was heterogeneity in effect across adopting hospitals, with large-volume urban hospi-

tals experiencing the greatest mortality reductions [40, 49]. This, however, would be

the first instance of using linear regression in this particular fashion.

6.2 Method

Linear regression is a basic and commonly used type of predictive analysis. The overall

idea of regression is to examine two things: (1) does a set of predictor variab les do

a good job in predicting an outcome (dependent) variable? (2) Which variables in

particular are significant predictors of the outcome variable, and in what way do they,

as indicated by the magnitude and sign of the beta estimates, impact the outcome

variable? [17]

For such methods, the data is typically split into test and training sets. The

training set is used in order to form the model of the data and then the model is

tested on the test set, which determines the degree of error and accuracy of the model;

if the data is split evenly, then a good performance on both sets is then indicative of

a model that is robust and is not a victim of overfitting.

This is often due to an overly complex model (i.e. too many features/variables

compared to the number of observations). As a result, this model will be ill-equipped

to handle data that is different from the training set. It is because this model is not

generalized, meaning that inferences cannot be made on other data, an undesirable

outcome.

The tool used to perform the linear regression was the sklearn linear model package

in Python, which has various linear regression functions. I also made use of sklearn

cross validation package, which allowed me to split the data into test and training
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sets in order to verify my conclusions.

Logistic regression is most useful for predictions in which the dependent variable

is binary in nature. Like all regression analyses, the logistic regression is a predictive

analysis. Logistic regression is used to describe data and to explain the relationship

between one dependent binary variable and one or more nominal, ordinal, interval or

ratio-level independent variables [6].

The program used to do so, is based in Python, and makes use of various packages

such as numpy and pandas in order to store the data, as well as sklearn and statmodels

in order to perform the necessary statistical work and analysis. The program makes

use of logistic regression in order to form its predictions. Logistic regression makes

use of past records in order to predict classifications for a set of data, usually in a

binary fashion, though in this case, I made use of a multi-class version, in which the

past records were the alert events, and the classifications being predicted were the

reactivation times that were selected by the professional. The data the algorithm was

tested on was acquired from a collaborating hospital. The data was split into training

and testing sets, with the regression trained on the training set.

Another highly relevant aspect of the algorithm is how it is intended to combat

the issue of repeated alerts in a short period of time. One issue that often arises in

the case of eICU monitoring is the issue of alert fatigue in the context of receiving

multiple unactionable alerts. Naturally, receiving many instances of the same alert

in a short period of time is not likely to be particularly helpful for the professional

answering these alerts, as they would already be aware of situation that resulted in

the earlier alerts. In response, the algorithm has included an analysis of the degree of

change in the status of the patient. In order to measure this, the prediction algorithm

accounts for several possible changes that can occur, namely:

o A change in the severity of the alert type, that is, between the 'Moderate' and

'Severe' settings.

o A change in the alert type. As mentioned before, there are 6 different alert

types (MAP, HR, etc.).
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Table 6.1: General Linear Regression Results

Response R squared
Reactivate Now .84346472456
Reactivate in 5 minutes 0.55427067017700005
Reactivate in 15 minutes 0.119918237565
Reactivate in 6 hours 4.7662893354299997E-3

* A change in the DRS score. As previously stated, the DRS score is a composite

of a variety of physiological signals [331. Early studies of the DRS score show a

high NPV (negative predictive value), suggesting that they may be well suited

to determining low risk patients that can be safely transferred out of the eICU

[16].

Considering all of these changes, the algorithm will make a prediction of the reacti-

vation time so that the next alert to be sounded will demonstrate a change in one of

these three factors.

6.3 Results

Table 6.1 contains information regarding the correlation of response types with the

occurrence of an alert. In it, we can see that the shorter response times are more

highly correlated with the incidence of an alert, meaning that the shorter times are

more often chosen by the professionals, indeed, in a predicable fashion.

Figure 6-1 depicts the correlation between the 02/Sat alert type and the 6 hour

reactivation time. We can see that the R-squared value is .001, very low, which is an

indicator of the infrequency of the 6 hour alert time being chosen for the reactivation.

However, the F-statistic in this case is .993, which indicates that the reactivation

time variable is highly significant to any predictions made about the alerts, which

demonstrates that the other reactivation values are more highly correlated. Compare

this with figure 6-2, which depicts the correlation between the 02/Sat alert type and

the 15 minute reactivation time, in which the R-squared value is 4 times as high,
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OLS Regression Results

Dep. Variable: alertNameCombined 02 Sat/RR R-squared: 0.001
Model: OLS Adj. R-squared: -0.000
Method: Least Squares F-statistic: 0.9334
Date: Sat, 31 Mar 2818 Prob (F-statistic): 0.334
Time: 18:29:04 Log-Likelihood: -654.26
No. Observations: 1000 AIC: 1313.
Of Residuals: 998 BIC: 1322.
Of Model: I
Covariance Type: nonrobust

coef std err t P>It1 [95.0 Conf. Int.]

const 0.3186 0.015 21.604 0.000 0.290 0.348
responseReactivate in 6 hours -0.3186 0.330 -0.966 0.334 -0.966 0.329

Omnibus: 81.561 Durbin-Watson: 1.639
Prob((mnibus): 0.000 Jarque-Bera (JB): 181.798
Skew: 0.779 Prob(.JB): 3.34e-40
Kurtosis: 1.609 Cond. No. 22.4

Figure 6-1: Linear regression results for 02/Sat alert correlated with 6 hour reacti-

vation time

showing the greater degree of correlation that exists in that case. The rest of the

correlations are similar in nature, and so I have opted to not include them for the

sake of readability. A similar trend is notable among the other alert types and the

other possible selections for the reactivation time.

The overall results of the classification are as can be seen in Tables 6.1 and 6.2,

where the measures of the specificity, sensitivity, f-score, overall accuracy, positive

predictive value and negative predictive value are encapsulated. In brief, the columns

represent the classifications being made by the program and the numerical values are

different measures of accuracy in relation to that particular prediction made by the

logistic classifier. To summarize the terms:

" TP is the True Positive Value, which represents the proportion of positives

that are correctly identified as such (e.g. the percentage of sick people who are

correctly identified as having the condition) [9]. Naturally, in this case, this

relates to the ability of the classifier to predict the reactivation time correctly

with the actual value.

" TN is the True Negative Value, which represents the proportion of negatives

that are correctly identified as such (e.g. the percentage of healthy people who

are correctly identified as not having the condition)
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Table 6.2: Logistic Regression Results

Reactivate Now I Reactivate in 5 min

TP 0.6 0.1
TN 0.77778 1
PPV 0.230769 1
NPV 0.9459 0.81632
FPR 0.222222 0
FNR 0.4 0.9
FDR 0.769231 0
ACC 0.76 0.82
F1 0.333332 0.18181800

Table 6.3: Logistic Regression Results p.2
Reactivate in 60 min I Reactivate in 6 hours

TP 1 1
TN 0.89189200000000002 1
PPV 0.764706 - 1
NPV 1 1
FPR 0.108108 0
FNR 0 0
FDR 0.235294 0
ACC 0.92 1
F1 0.86666699999999997 1
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OLS Regression Results

Dep. Variable:
Model:
Method:
Date:
Time:
No. Observations:
Of Residuals:
Of Model:

alertNameCombined 02 Sat/RR
OLS

Least Squares
Sat, 31 Mar 2018

18:44:10
1000
998

R-squared:
Adj. R-squared:
F-statistic:
Prob (F-statistic):
Log-Likelihood:
AIC:
BIC:

0.006
0.005
6.063

0.0140
-651.70

1307.
1317.

Covariance Type: nonrobust

coef std err t P Itl [95.9% Conf. Int.]

const
responseReactivate in 15 minutes

8.3899 0.015 26.572 8.00
0.1693 0.069 2.462 8.014

0.280 0.339
0.034 0.394

Omnibus: 63678.561 Durbin-Watson: 1.632
Prob(Omnibus): 0.000 Jarque-Bera (JB): 178.616
Skew: 0.778 Prob(JB): 1.64e-39
Kurtosis: 1.635 Cond. No. 4.69

Figure 6-2: Linear regression results for 02/Sat alert correlated with 15 min reacti-
vation time

" PPV is the Positive Predictive Value, which represents the proportion of posi-

tively classified results that are true positives, that is, correctly identified.

* NPV is the Negative Predictive Value, which represents the proportion of neg-

atively classified results that are true negatives, that is, correctly identified.

" FPR is the False Positive Rate, which represents the proportion of incorrectly

classified results among the positives.

" FNR is the False Negative Rate, which represents the proportion of incorrectly

classified results among the negatives.

" FDR is the False Discovery Rate, which represents the is the expected propor-

tion of type I errors, that is, false positives.

* ACC is Accuracy which is the proportion of true positives and negatives to the

whole population, that is, the proportion of correct classifications.

" F1 is the Fl-score, a measure of the harmonic mean of the precision and recall

of the experimental classifier.

In Figure 6-4, one can see the general results for the logistic regression analysis,

containing information relating to the coefficients, standard errors, and confidence

41



Dep. Variable:
Model:
Method:
Date:
Time:
converged:

Logit Regression Results

response No. Observations:
Logit Df Residuals:
MLE Of Model:

Wed, 23 May 2018 Pseudo R-squ.:
10:11 28 Log-Likelihood:

True LL-Null:
LLR p-value:

209
196
3

0.1037
-124.25
-138.63

2.523e-06

coef std err z P>IzI [95.ft Conf. Int.]

alertName_Combined 02 Sat/RR -2.689 0.569 -3.636 8.000 -3.183 -0.953
alertNamejHeart Rate Limit -1.0877 0.589 -1.876 0.861 -2.224 0.049
alertNameMean Arterial Pressure Limit -0.2543 0.286 -0.889 0.374 -0.815 0.396
severity 2.3442 0.541 4.334 8.000 1.284 3.404

Figure 6-3: Logistic regression results for reactivation time and alert type.

intervals of the experimental classifier. The p-values for the severity and the Combined

02 Sat variable are smaller than 0.05, therefore, they are significant to the model.

We can consider these to significantly explain the variance in the dependent variable,

that is, the response to the alert in the form of reactivation time. Additionally, each

estimated coefficient is the expected change in the independent variable as compared

to the dependent variable, and so they describe the relationship between the two

aspects of the analysis.

In Figure 6-5, a heatmap describing the relationship between different elements is

shown. A heatmap is a two-dimensional representation of a dataset in which different

elements of the data are colored differently. It provides an immediate summary of a set

of data, especially one in which it is important to note repeating values. A heatmap of

the smartAlert data can be found in Figure 6-3. This heatmap was intended to map

the different alert types to the different reactivation responses, namely to reactivate

immediately, or after some period of time, such as 5 or 10 minutes. This was intended

to offer further understanding into the behaviors of the eICU clinicians as they were

presented with the different situations that arose in the eICU environment. They are

very useful plots for visualizing the measurements for a subset of rows over all the

samples.

In the future, plots such as this may be utilized in the effort to convert the existing

data regarding eICU responses to more visually understandable forms.

From this, we can form some conclusions as to how these alerts are generally

responded to. For example, we can see that the Heart Rate Limit Alert is most
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Figure 6-4: Graph showing a heatmap corresponding to the incidence of alert events.

correlated with the Reactivate Now option, the Heart Rate Trend is most correlated

with the Reactivate in 5 Minutes option. Additionally, one may note that in the

case of the Mean Arterial Pressure Limit and Mean Arterial Pressure Trend, that

the Reactivate Now and the Reactivate in 5 Minutes are the most heavily correlated

with the occurrences of these particular alert types. It may also be seen that in the

case of the 02 Sat that the most commonly correlated alert types are those related

to the Reactivate in 5 minutes and the Reactivate in 15 minutes options. It is also

noteworthy that the alert with the highest reactivation time correlation would be the

alert for sepsis, which is the Reactivate in 72 hours option. Naturally, this may be

due to unique clinical challenges pertinent to dealing with sepsis [62].

The program needed to create the graph was written in Python, and made use of
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Table 6.4: A table depicting the most highly correlated reactivation type for each
alert as well as the coefficient of correlation for it.
Alert Type Most Correlated Reactivation Coefficient of Correlation
Heart Rate Limit Reactivate Now .13
Heart Rate Trend Reactivate in 5 Minutes .04
Mean Arterial Pressure Limit Reactivate Now .07
Mean Arterial Pressure Trend Reactivate Now .057
02/Sat Limit Reactivate in 15 Minutes .078
Sepsis Reactivate in 72 Hours .71

the seaborn and numpy libraries in order to collect the data, and the matplotlib.pyplot

package in order to plot the resulting graph.

The confusion matrix gives the number/proportion of instances between the pre-

dicted and actual class. A confusion matrix consists of an n by n matrix, where n is

the number of possible classes in the data. Each row or column of the matrix rep-

resents one of the classes that the classifier can select. In the case of this particular

classifier, the values represent 0, 5, 10, 30, and 60 minutes respectively. Thus entry

(ij) in the matrix represents the number of items of class i predicted as a member of

class j by the classifier. In this case, one can see that the diagonal of the matrix is of

particular importance, because it represents the number of items that are correctly

identified as a member of their own class. The selection of the elements in the matrix

feeds the corresponding instances into the output signal. This way, one can observe

which specific instances were misclassified and how. Recall can be defined as the

ratio of the total number of correctly classified positive examples divide to the total

number of positive examples. Recall indicates the class is correctly recognized (small

number of false negatives). To get the value of precision we divide the total num-

ber of correctly classified positive examples by the total number of predicted positive

examples. High precision indicates an example labeled as positive is indeed positive

(small number of false positives) [63].

One can see the summary for the confusion matrix as applied to a subset of 50

items in the following table, which contains information pertaining to the precision

and recall of the data. In this case, it is of particular note that the classes represent-

ing longer reactivation times namely thirty and sixty minutes are able to avoid any

44



alertNameCAmbined 02 SaViRR

alertName_Creatinine Ckewance Unit

aleriNameHesrt Rate Limit

aleilName_I-art Rate Trend

dertNamwHemoglobiW

alertNameMean Arterial Pressure imit

alertNameMean Artbiil Presure Trend

dertNameSepsis

aeriNameSerum Potassimn

rnepans_Re-aseess in 72 hro or if clinical status worsens

reepane _Reacivate Nne

rnmpwnaeReactivata in 15 minutm

responseReactivate in 5minutes

responseReecnivate in 6 hours

U.

I
C"
0

.1a

I
C I

ae

0

I
II

I
'Ue

I
*1

j
I
C

I
.3e

x
U

I-

II

II

'Ue

I
.3

I
I

it
I
'Ua

I
I
.6

'C
N

C

I
U

Figure 6-5: Graph showing a heatmap corresponding to the
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incidence of a small

instances of false positives and false negatives, which implies that there these longer

time durations are only selected in very specific situations. As a result, the classifier

can predict these situations with a high accuracy. Naturally, the lower durations of

time are not as easy to accurately predict, which suggests that they are often em-

ployed in a wide variety of situations, which corroborates the previous statements

made with respect to their usage. A concern of setting longer reactivation times may

be that if they silence the alarms for longer periods of time, the eICU clinicians lose

the ability to identify noteworthy trends earlier.

In this work, a method for predicting the choices of the eICU responders has also

been determined, which suggests that one can develop decision support tools that can

have a default reactivation time value based on the available parameters of the alert
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Figure 6-6: Graphic depicting confusion matrix pertaining to results of reactivation
analysis.

incidence and will select the appropriate response based on the actions previously

performed by the doctors in similar situations as well as based on the prescribed

medicine and amount of time typically required to see relevant changes in the patient

given their condition.

Figure 6-7 depicts the receiver operation characteristic (ROC) for the analysis

as well as the AUC (area under the curve) for it, which shows that the classifier

performs at a better than average rate. ROC curves are frequently used to show in a

graphical way the connection/trade-off between clinical sensitivity and specificity for

every possible cut-off for a test or a combination of tests. In addition the area under
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Table 6.5: A summary of the confusion matrix statistics, namely the precision and

the recall.
Reactivation Type Precision Recall

Reactivate Now 40% 40%
Reactivate in 5 minutes 11.111% 50%
Reactivate in 10 minutes 71.429% 71.429%
Reactivate in 30 minutes 100% 70%
Reactivate in 60 minutes 100% 100%

Table 6.6: Area under the curve for the receiver operating characteristic for each alert

type.
Reactivation Type AUC
Reactivate Now .58
Reactivate in 5 Minutes .59
Reactivate in 15 Minutes .64

Reactivate in 30 Minutes .72
Reactivate in 60 Minutes .54

the ROC curve gives an idea about the benefit of using the classifier in question.

The area under the curve measures discrimination, that is, the ability of the test to

correctly classify the test data. The receiver operation characteristic randomly picks

two data points; one from the positive group and one from the negative group and

test the classifier on both.The area under the curve is the percentage of randomly

drawn pairs for which this is true (that is, the test correctly classifies the two data

points in the random pair). As a result, every point on the ROC curve represents

a chosen cut-off or a trade-off between sensitivity and specificity. It is a plot of the

True Positive Rate (on the y-axis) versus the False Positive Rate (on the x-axis) for

every possible classification threshold.

In this case of the ROC curve, they are most often used to describe the behavior of

a binary classifier. As mentioned earlier, the classifier being analyzed here is intended

to classify across multiple classes. As a result, the ROC and AUC have been calculated

for each of the possible classifications that can be made, and the data has been placed

in a binarized format such that the correct value for a particular test is a 1 and all

of the other possible classifications is a 0. The AUC is depicted for each possible

classification in the following table.
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Figure 6-7: Receiver operating characteristic for logistic response analysis. This par-
ticular curve encompasses all of the classification options

From the table available, one can clearly see that all of the prediction values that

correspond to the AUC are over .5, which suggests that the classifier is viable across

all alert types.

6.4 Conclusions

The results from the linear regression continue to support our hypothesis that the

selections for the reactivation time are shorter than necessary, especially given the

results of Chapter 5, which imply that the most significant actions do not occur until

a significant amount of time (more than 30 minutes) after the alert has been triggered,

and so the choices of the reactivation time are excessively short, which may well act

to the detriment of the healthcare provider, who may be overwhelmed with the alerts

and suffer from alert fatigue, as has been mentioned before.
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Figure 6-8: Receiver operating characteristic for logistic response analysis. This graph
measures the effectiveness of predicting a 0 minute reactivation time.

While useful, linear regression may not be ideal for some aspects of this analysis,

as it presumes linearity in the data, and is not well suited to variables that have

a limited number of possible values, that is, categorical variables. Since categorical

variables were widely used in the data we were provided, another technique, logistic

regression will be used.

Logistic regression was also used in the development of the reactivation prediction

algorithm. Rather than choosing parameters that minimize the sum of squared errors

(like in ordinary regression), estimation in logistic regression chooses parameters that

maximize the likelihood of observing the sample values.

The results of this examination point to the conclusion that the current actions

being taken by the eICU professionals can be predicted rather accurately with an

algorithm that takes in prior data regarding their responses. More important is the

fact that these results, especially the low PPV and FPR, imply that the actions of the
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Figure 6-9: Receiver operating characteristic for logistic response analysis. This graph
measures the effectiveness of predicting a 30 minute reactivation time.

personnel are incorrect in that they should delay the reactivation of their alerts for

longer periods of time. In this vein, there now exist further statistical evidence that

the reactivation times ought to be increased, especially in the wake of information

regarding the effects of alert fatigue [38], and the repeated detriments that it has on

performance in medical environments.

As mentioned earlier, the results of the logistic regression offer more detail and

insight then those of the linear regression on account of the multimodal environment

in which the alerts are deployed. Naturally, healthcare providers in these situations

must balance the need to set the reactivation time to be short enough so that they

do not miss any important alerts that may arise, and to be long enough to prevent

repeated alerts from occupying the attention of the eICU specialist, especially since

the specialist would already be aware of the issue that the alert was expressing. In

order to minimize the load on the eICU professionals, a decision support algorithm
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has been developed that predicts the reactivation time that will be chosen based on

the alert that has been activated.
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Chapter 7

Contributions and Future Work

7.1 Contributions

7.1.1 Care Provider Response Analysis

An important result from this thesis is the determination of the most common follow-

up medications and the time necessary to administer them after an alert is sounded

as can be seen in Figure 5-1. This result has been determined for the 5 most common

types of alerts and the relative incidence of the different medications and the average

amount of time for the medication to be administered afterwards. With this, one can

imagine a guide to alert response and treat this guide as a potential back-up to assist

the professionals in the eICU environments in unusual cases, or as a beginning guide

to assist those who may be starting out in their careers in the eICU.

In this work, a method for predicting the choices of the eICU responders has

also been determined, which suggests that one can develop decision support tools

that can have a default reactivation time value based on the available parameters

of the alert. A wide variety of correlation analyses was also performed on the data

regarding the follow-up of eICU care providers. For example, the correlations between

the reactivation time and alert type has been quantified in a variety of manners. From

the heatmap, it could be seen that the Reactivate Now and the Reactivate in 5 Minutes

were the most highly correlated with most of the alert types, with the exception of
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the 02 Sat.

7.1.2 Reactivation Prediction

As can be seen in the Conclusions sections of the prior chapters, a primary cause of

the difficulties encountered by the eICU personnel in terms of the volume of alerts

can be found in their choice of reactivation time, often setting it to the lowest option,

even when the more immediate actions that would need to be taken often occur much

later. In this period of dead time, in which the responder is aware of the alert and

before the administration of the medication to the patient, a high volume of repeat

alerts is often received by the eICU personnel.

Some possible reasons for this reticence to choose a longer reactivation time may

include a fear of the possibility of missing an important alert, even if it is repeated

[35]. Indeed, many healthcare providers may feel that even if they receive thousands

of false or unactionable alerts [541, that the one or two actionable alerts that they

do receive may be worth the extra effort. Additionally, there is a concern for the

potential legal ramifications in the case of a patient that has a poor outcome under

these circumstances, the responders feeling that there may be a potential liability in

the case of a patient that may have had a relevant alert occur in the reactivation

period, but did not due to the choice in reactivation time. Furthermore, there is

the issue of inertia, and the tendency of humans to select the most readily available

option, which is the Reactivate Now option [42]. As a result, the convenience of

choosing the first option that is seen may be culprit for the less than optimal choice

in alert reactivation time.

In this work, a method for predicting the choices of the eICU responders has also

been determined, which suggests that one can develop decision support tools that can

have a default reactivation time value based on the available parameters of the alert

incidence and will select the appropriate response based on the actions previously

performed by the doctors in similar situations as well as based on the prescribed

medicine and amount of time typically required to see relevant changes in the patient

given their condition.
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Decision support tools of this nature may serve to hasten the process of responding

to alerts and ensure that the actions of the care providers are all the more efficient,

and reduce alarm fatigue. This is especially prescient considering that alarm fatigue

is a widely reported problem in the literature [2, 38, 42, 541, and it is reasonable

to expect that the telemedicine systems will generate the highest volume alarms for

the most deadly illnesses, and thus, will be likelier to cause mistakes and errors on

the part of the providers due to the effects of alarm fatigue. As mentioned earlier,

some studies state that more than 60 percent of clinical alarms are false, which makes

the work of the responding personnel rather difficult, in terms of sorting through the

alerts [53].

The completed work took DRS information into account, predicting the incidence

of alerts that coincided with a significant change in patient status. This change

is an improvement upon the previous development system that had alerts activate

blindly, that is, with no consideration of new developments on the part of the patient,

resulting in repetitive alerts, which are well known to result in fatigue. Additionally,

the algorithm took into account potential change in the severity and type of the alert,

predicting when a different type of alert would be activated.

7.2 Future Work

7.2.1 Care Provider Response Analysis

In prior chapters, a compilation was made of the types of responses the care providers

made to the different types of alerts that occur in a Tele-ICU environment. In this

case, the response was measured by the medications requested by the care providers

at the point in time following an alert. Naturally, medication is not the only way that

medical personnel can respond to an alert, and future examinations of this field can

consider various softer approaches such as communication from eICU to bedside or

verbal communication to patients as other forms of response that can be performed

as the result of an alert activation.
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Naturally, such an analysis may require data that is not necessarily logged in the

default software.

Another contribution could be the development of visualization tools relating to

eICU workflow. This would serve the professionals in the eICUs and at Philips. Some

examples of visualizations may include timelines of patient activity and caregiver re-

sponse, which would demonstrate the evolution of a particular patient?s case. Another

visualization may be one that displays the workflow for the various personnel in the

eICU, showing the contribution and collaboration present between the members of

an eICU team in their response to an alert and how they work toward their common

goal.

In the work of this thesis, actions taken by the bedside professionals was not ac-

counted for. The bedside receives alerts that are more immediate in nature, often

referencing a particular physiological signal falling below a set value. For example, a

patient may suffer from an oxygen saturation below the set alarm. in contrast, the

eICU alarms intended to reference the evolution of the biological parameter the last

10 minutes. Prior research has suggested that practicing bedside nurses that work in

telemedicine environments are optimistic about the benefits of the technology, how-

ever, they are concerned about the lack of familiarity and privacy that may be present

in such a configuration [64,73, 891. As a result, possible future innovations can take

the bedside into account, especially where the determination of the best practices of

the combination of bedside and remote monitoring in the eICU is concerned. Differ-

ent hospitals have different configurations for their eICUs and it may be fruitful to

examine these on a case-by-case basis in order to find the best methods available for

having the two forces work in tandem.

Innovations in these fields may have particular relevance to the unique situations

encountered by rural hospitals, in which the resources made available by telemedicine

may serve well to allow certain rarer medical specialties to be accessed by those who

do not have such personnel on-site, especially in remote areas [76, 86]. As a result,

improvements in the workflow between the personnel located in person and at eiCUs

may serve to shore up any gaps in the availability in healthcare, especially in critical
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care situations.

7.2.2 Reactivation Prediction

In the work previously discussed, an alert system was described that takes into account

the patient status in the form of the DRS score, using it to predict the next alert

occurrence that corresponds with a change in patient status. In future iterations of

this algorithm, other measures can be included in the determination of patient status,

such as change in measured vital signs, and consideration of past patterns of alerts

in order to refine this calculation.

One significant possibility for the future of analytics in this domain is the usage

of patterns of alert to act as a diagnostic tool. In this case, an algorithm can take

into account a particular sequence of alerts occurring and use that information to

predict a diagnosis based on prior knowledge as well as an understanding of previous

instances of this type of occurrence. For example, if a patient's heart rate instantly

falls to zero, and there is no notable change in the other measures such as blood

pressure, one may assume that the lead that measures the blood pressure has fallen

off. Similar technology has been utilized in the prediction of sepsis in patients [551,

in which the measured biological signals from the patients are used to synthesize a

real-time assessment of a patient's vulnerability to sepsis. It is possible that a similar

method can be carried out for other specific diseases or issues in the critical care

environment. Sepsis is the most expensive disease to treat in hospital [56], and other

costly medical issues can be the basis for future advancements, such as osteoarthritis

(listed as 2nd most expensive), or complication of device, implant or graft (listed as

4th most expensive).

Sepsis in particular is responsible for costs over 20 billion dollars each year in

treatment, making it the most expensive diagnosis for hospitals and it carries with it

an average mortality rate of 45 percent [92]. Other eICU collaboratives have made

efforts to combat the occurrences of sepsis in hospitals. One project in particular was

intended to decrease mortality rates for septic patients from 41.2 to 18.8 percent [93].

The method relied on technological as well as organization innovation, focusing on
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the methods in which an interdisciplinary team can best work in tandem in order to

realize their goals. Furthermore, the Clinical Nurse Leader at this particular hospital

was expected to act as a liaison between members of the health care team, and to

ensure effective communication with a bedside response team consisting of nurses,

physicians, pharmacists and laboratory personnel in order to manage necessary early

treatment in this vulnerable patient population.

One may imagine that similar efforts may be undertaken in the future to combat

the most lethal and costly diseases and complications that may occur in an eICU

environment. Developing a set of best practices for preventing the occurrence of

these types of maladies may be a fruitful endeavor.

Additionally, further examination can be made in the field of eICU as it related

to increasing access to healthcare, especially in rural and underserved communities

around the world. Most ICU Units are staffed by only one consultant, who cannot be

expected to be responsible for the unit at all hours of the day. Night cover duty doctors

are also present but many lack adequate expertise in the necessary specialities [791.

This lack of personnel is all the more prescient in emergency situations. In another

effort to improve eICU outcomes, a hospital conducted an analysis of the difference in

patient outcomes in a CCU (coronary care unit), before and after a remote monitoring

implementation was added [941. In this case, in the six months before the installation

of the eICU, there were 18 out of 90 fatalities of patients that had entered due to

myocardial infarction, as opposed to 4 of 92 in the six months following the addition

of the eICU. In this case, the severity of the patient cases and the mean patient ages

were mainly the same. As a result, when availability to healthcare is limited by a lack

of expert manpower the EICU can potentially shore up this gap and provide support

in order to minimize casualties.

Another possible future application in the field of telemedicine may be the in-

clusion of decision support algorithms in the remote monitoring process. Naturally,

one can imagine the technology and data present in the eICU used in a capacity to

assist the making of critical decisions regarding patient care, both to improve the

quality of care as received by the patient and to ensure that the resources available
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in the hospital are being utilized in as efficient a manner as possible. APACHE based

patient acuity predictions have already been employed to great effect, seeing a reduc-

tion in the usage of invasive procedures performed on patient as well as a decrease in

length of stay, critical care complications and mortality [95]. Additional progress can

be made in the utilization of the various alerts and physiological signals in order to

determine the best course of actions for the care of the patient. Other publications

have made mention of big data and how it can be used in the process of responding

to patient needs [96].

An innovation that would make use of the data available would be the implemen-

tation of a natural language processor for the purpose of developing notes that the

eICU clinicians (as well as perhaps the bedside professionals) could make use of in or-

der to efficiently change shifts. Improving handoff between shifts has been addressed

before. In one such endeavor, a patient admitted to the hospital experienced severe

hypoglycemia having received an insulin dose that was greater than the prescribed

amount [99]. Had the insulin syringe and the dosage been checked, this critical error

in care would have likely been averted. Research has been conducted with regarding

to standardizing handoff and correcting errors in the system [100], though a univer-

sally standardized protocol has not yet been determined. Structured tools, however,

have been designed for the purposes of transferring patients in a postoperative fash-

ion, and one can imagine that similar tools can be designed for the purposes of shift

change in the eICU [101]. Furthermore, such a development would be useful in the

case of transfers between different departments within a hospital. In order further

elaborate on the development of a standardized handoff tool, interviews with relevant

professionals must be conducted so that the ideal characteristics of handoff can be

distilled.
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