
HYPERVOICE: GROUPWARE BY TELEPHONE

by

Paul Resnick

B.S. Mathematics, Univ. of Michigan (1985)

S.M. EECS, MIT (1988)

Submitted to the Department of

Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

IN COMPUTER SCIENCE

at the

Massachusetts Institute of Technology

September 1992

Massachusetts Institute of Technology 1992

All rights reserved

Signature redacted

Signature of Author
Department of EECS

September, 1992
Signature redacted

Thomas Malone
. er ssor of Information System

Sloan School of Management

by ~ Signature redacted-
41 looC i npbell L. Searle

Departmental Committee on Graduate Studies

ARCHIVES
MASSACHUSETTS INSTFTTE

OF TECHNOLOGY

CT 30 1992
LIBRARIES

Certified b

Accepted

y_

HYPERVOICE: GROUPWARE BY TELEPHONE

PAUL RESNICK

ABSTRACT

Many useful group communication and coordination applications appear to require large
investments in portable and desktop computers. Instead, why not leverage the huge
installed base of touch-tone telephones? This thesis presents user interface improvements
and software tools that enhance the viability of phone-based groupware.

Skip and Scan is a new user interface style for audio documents that gives listeners some
of the same control that readers gain from eye gaze shifts. In laboratory experiments,
subjects selected options from Skip and Scan menus faster than from other menus. More
generally, Skip and Scan begins the process of developing authoring and listening skills
that harness the power of random access audio, a process that is likely to continue long
after telephone sets in their current form become obsolete.

HyperVoice is an application generator for group communication and coordination
applications. It includes a high-level language based on abstractions that even non-
programmers can understand. From specifications in the high-level language, the
HyperVoice interpreter automatically generates user interfaces that conform to the Skip
and Scan guidelines. Field trials totaling more than 7000 phone calls demonstrate that
HyperVoice can generate group communication applications that are both usable and
useful.

Thesis Supervisor: Dr. Thomas W. Malone
Title: Patrick J. McGovern Professor of Information Systems, Sloan

School of Management

3

ACKNOWLEDGMENTS

Tom Malone, my thesis advisor, taught me to trust my intuitions, even when they differed
from his. He taught me the importance of presenting ideas in a clear and compelling way,
and tried to pass on his skill at doing so. Many of his ideas also found their way into the
thesis, including the value of semi-structured messages and the speculation that future
generations may not rely on written communication, even for complex ideas.

The other committee members, Hal Abelson, Randy Davis, and Chris Schmandt, all shaped
the research and its presentation, each in their own way and perhaps more than they realize.

Collaborators at GTE Labs contributed to the audio menu experiments and more. Bob Virzi
was the person I called first to get a reality check on any new idea about Skip and Scan or
the automatic generation of Skip and Scan interfaces. I only regret that I couldn't find him a
parking space at MIT. Don Ottens ran all the subjects for the experiments and also helped
with the data analysis. Sandra Teare and Kate Dobroth recorded prompts.

Mel King got me started on this project with his plans for a community information center.

Ben Shneiderman first suggested the hypertext analogy that led to the name HyperVoice.

Pamela Samuelson and Richard Stallman recorded arguments for the intellectual property
discussion and Jessica Balaban recorded prompts. Richard Mullins and Kim Johnson
helped design the Mandela applications and Elisa Hill recorded the prompts. Charlie Welch
administers and publicizes the Boston Peace and Justice Event Calendar. My mother,
Lauren Resnick, suggested the teachers' curriculum line and Vicki Bill, Mary Leer and
Leslie Clark made it happen. Gwendolyn Lee did all the fundraising and publicity for U-
TALK and Kathy Peck recorded the prompts. Thanks also to everyone who called,
especially Ron Newman.

Thanks to my colleagues at the Center for Coordination Science and elsewhere at MIT,
Barry Arons, Geoff Bock, Amy Bruckman, Erik Brynjolfsson, Kevin Crowston, Marc
Davis, Christopher Fry, Bob Halperin, Debby Hindus Troy Jordan, Kum-Yew Lai, Jintae
Lee, Wanda Orlikowski, Brian Pentland, Mike Plusch, Mike Travers, and Joanne Yates.
Jolene Galegher and Mark Ackerman deserve special mention for helping me to analyze the
results of the teachers' curriculum line study. Mark's daughter Rebecca provided comic
relief on trips to the Friendly Eating Place.

Outside MIT, Eric Aboaf, Deborah Servi, Dan Ellis, and Sabrina Birner contributed to the
presentation of the ideas in the thesis; thanks especially to Deborah, who helped with
crucial last minute editing. Mary McCartney constructed the 12x12 Latin square as a
mathematical diversion one rainy afternoon. Many others played important support roles,
especially Lydia Tuden, Jeffrey Alan (Charlie Brown Duke) Stock, Erik Ekwurzel, Pradeep
Dalal, all my music and soccer buddies, and the cooks and guests at Ben & Eve's.

My parents encouraged and advised me along the way and even thought I was doing
something interesting. While I was in graduate school, my big brother Jeremy did
neighborhood political organizing, wrote software, taught in a high school, married Pamina
Ewing, and fathered two beautiful daughters, Sarah and Aliza. Sarah can already write her
own name and read books.

Thanks to all of you. I couldn't have done it without you and wouldn't have wanted to.

4

TABLE OF CONTENTS
A bstract ... 3
Acknowledgm ents... 4
Table of Contents .. 5
1 Introduction .. 9

1 Sam ple Application: Event Calendar ... 10
2 M ethods.. 11
3 Sources of Power ... 11

3.1 Structured M essages .. 12
3.2 Closing the Abstraction Gaps .. 12

4 Results.. 13
4.1 Proof of Feasibility .. 13
4.2 Contextual Factors .. 13
4.3 'Skip and Scan' User Interface Style.................................... 14
4.4 'HyperVoice' Application Generator 15

5 Im plications... 16
6 Outline of the Thesis .. 17

2 Application Designs and Field Trials.. 19
1 Application Designs and Field Trials... 20

1.1 Joke Collector .. 21
1.2 Issue D iscussions ... 22
1.3 M andela Public Inform ation Line... 32
1.4 Mandela Event Planning Status Reports............................... 35
1.5 Event Calendars ... 37
1.6 Questions and Answers: Answer Garden 39
1.7 Teachers' Curriculum Line... 39
1.8 M atching ... 44
1.9 Task Tracking ... 46

2 Functional Requirem ents ... 48
2.1 Inform ation Arrangem ent .. 49
2.2 Inform ation Addition ... 49
2.3 M aintenance Operations ... 50

3 U ser Interface Insights...................................50
4 Success Factors .. 51

4.1 Green Flags.. 51
4.2 Red Flags .. 52

5 Related Research .. 53
6 Conclusion ... 54

3 Skip and Scan... 57
1 Desired Behaviors ... 58

1.1 Scanning .. 59
1.2 A ccom m odating Novice U sers ... 62
1.3 Tradeoffs... 63
1.4 Sum m ary... .63

2 The Elements of Style for Audio Documents .. 64
2.1 Hearing a Small Percentage of the Document......................65
2.2 Fast N avigation ... 67

3 Extension to Bulletin Boards .. 77
3.1 M ultiple Authors... 78
3.2 Finding New Information: Chronological Ordering.............81

4 Beyond the Telephone 81
4.1 Other Audio Documents............................... 81
4.2 Keyhole Interfaces .. 82

5

4.3 Browsing in Visual Hyperdocuments................................... 83
5 Summ ary .. 88
6 Conclusion ... 88

4 HyperVoice ... 91
1 Language Overview ... 93
2 Selecting and Arranging Application Data ... 97

2.1 Selecting and Ordering Objects ... 97
2.2 Selecting and Ordering Fields ... 98

3 Aids to Inform ation Entry .. 99
3.1 Selection of List(s) to add to.. 99
3.2 Initial values, picklists, and validity checks 99

4 Access Restrictions ... 100
5 User Interface Style... 101

5.1 Built-in style ... 102
5.2 Style Parameters ... 105
5.3 Conformity to Skip and Scan Document Properties............... 113

6 Limitations and Future Research .. 115
6.1 Ad Hoc Queries .. 115
6.2 Text Fields .. 115
6.3 Contributor-defined and Machine-generated

Segmentation .. 116
6.4 New Presentation M etaphors .. 116
6.5 Abstraction M echanism .. 117
6.6 M ixing Chronological and Content Access............................ 117

7 Related Research... 117
7.1 Telephone Toolkits ... 117
7.2 Application Layer Language .. 118
7.3 Automatic Generation of Screen Interfaces............................ 119

8 Conclusion .. 121
5 Audio M enu Styles.. 123

1 Predictions: Effects of Menu Style Familiarity and Menu Contents
Familiarity ... 124

2 Laboratory Experiments.. 127
2.1 Experiment 1: Select a Name from a List............................... 127
2.2 Experiment 2: W eather and News .. 134

3 Limitations: the Effects of Prompt Length ... 144
4 Future research: Contents Selection Styles... 144
5 Related W ork .. 145

5.1 Standard M enu Style Refinements ... 145
5.2 Other Telephone M enu Styles .. 145
5.3 Visual menus .. 147

6 Conclusion .. 148
6 Conclusion .. 151

1 Communication and Coordination Applications..................................... 151
2 User Interfaces .. 153

2.1 The End of Reading? 154
3 Software Tools 155
4 Answers and Questions... 157

A The HyperVoice Programm ing Language ... 159
1 The Language.. 159

1.1 The Object System .. 160
1.2 Login Procedures .. 163
1.3 Presentation Formats .. 166
1.4 Summary... 180

6

1.5 M acros .. 181
2 Conclusion .. 189

B The HyperVoice Interpreter ... 191
1 The Event Layer.. 191
2 The State-Machine Language and Interpreter... 192

2.1 K ernel ... 193
2.2 Variables ... 195
2.3 Conditional Actions .. 196
2.4 Call and return .. 197
2.5 Database Operations ... 201
2.6 Callbacks to the Application Layer .. 202
2.7 Related research.. 203

3 The Application Interpreter......................................205
3.1 Login Procedures 206
3.2 Lists: Generating an Initial Graph 208
3.3 Subdividing the Contents Nodes 211
3.4 Selection: Menus 214
3.5 Forms 215

C Sample Application Programs.......................... 223
1 Issue Discussions 223

1.1 U-TALK I................................... 223
1.2 U-TALK II.... 228

2 Teachers' Curriculum Line 230
2.1 Classes 231
2.2 Instances 231

3 Task Tracking oo 239
3.1 Classes................ 239
3.2 Project Member Instances............ 240
3.3 Project Leader Instances 249

D M enu Experiment Details....................... 0 253
1 The Menu Trees 253

1.1 News and Information Application......................253
1.2 Weather Application...255

2 The Tasks 257
3 Task Ordering ... 259

References261

7

1 INTRODUCTION

Groupware applications help people to share information, by collecting it from some of

them, then distributing it to others and arranging it in ways that they find useful. For

example, groupware applications can support distribution of announcements, issue

discussion, collection of commonly asked questions and distribution of answers,

matching (e.g., buyers and sellers), and project status reporting. Telephones have largely

been overlooked as a platform for groupware applications, but they offer several

attractive features:

Networking. A single network connects nearly all telephones worldwide. By

contrast, many groupware applications that run on workstations require all

of them to be on the same local area network. Users already know how to

dial telephone numbers to make telephone network connections. By

contrast, connecting computers through modems for the first time is often a

several hour ordeal.

Audio. Telephones do not require writing, typing, or reading skills. In addition,

spoken voice carries nuances that text cannot.

Huge installed base. Most offices and homes have touch-tone telephones.

Travelers can expect to find touch-tone telephones at all but the most

remote destinations, and many places en route, including hotel rooms,

airports, airplanes, street corners, and, with mobile phones, streets. For

many groups that span organizational boundaries, telephones and fax

machines may be the only shared communication devices. Telephones are

also the only available communication device commonly available in

residences.

This thesis addresses three interpretations of the question, "How can we build usable

telephone-based groupware applications?"

9

The first interpretation emphasizes the word 'usable'. Wait and wilt characterizes

the interface style in most existing applications: listeners wilt while waiting

through the recitation of long sequences of options. Research on ways to

improve usability led to the Skip and Scan interface style: by frequently

skipping, listeners can scan the contents of audio documents.

The second interpretation emphasizes the word 'groupware', asking how

multiple authors can contribute information in a format that lets a

computer program route it to the appropriate listeners and arrange it in

helpful ways. This led to the development of structured input techniques

that help callers to segment voice recordings and annotate them with

symbolic information such as typed-in dates.

The third interpretation emphasizes the word 'build', asking what software tools

can help application developers, who may be neither human factors experts

nor expert programmers, to build usable groupware applications. This led

to the development of an application generator, HyperVoice.

1 SAMPLE APPLICATION: EVENT CALENDAR

Consider a concrete example of a phone-based groupware application, the Boston Peace

and Justice event calendar. It allowed callers to listen to announcements of upcoming

events and to add new event announcements from any touch-tone phone. A menu asked

callers to select one of two categories, ongoing activities or upcoming events. Callers

could then press touch-tone buttons to interrupt and skip back and forth between

announcements in a category, or press a different button to add a new announcement.

Announcements were segmented into six fields to encourage people to include important

information about events, including a headline, the date and time, location, sponsoring

organization, contact telephone number, and details. All the information was recorded. A

moderator listened to all the new announcements and used cut and paste operations, also

by phone, to sort them by event date and erase them after they were no longer relevant.

10

CHAPTER 1: INTRODUCTION

Later implementations of event calendar applications included typed-in dates, so that

these sorting and filtering operations could be accomplished automatically.

The event calendar was first publicized, through flyers and word of mouth, during the

Gulf War (January-March, 1991). During the war, the service handled as many as eighty

calls per day. The emcee at a city-wide rally described it as the best source of up-to-date

information about events. It was even featured in a National Public Radio story about

how the student anti-war movement was well-organized, if not popular. As of January

1992, the system had handled well over 5000 calls, with more than 300 recorded

announcements from an estimated 40 different people.

2 METHODS

This project employed several research methods, including iterative design, field trials,

laboratory experiments, and analysis from first principles. Iterative design and pilot

testing of complete applications led to user interface improvements and evolution of the

HyperVoice application generator. Field trials confirmed the feasibility of phone-based

groupware and suggested context variables that will influence the adoption of particular

applications. Laboratory experiments, conducted in collaboration with Robert Virzi at

GTE Laboratories, compared the usability of three interface styles for telephone menus.

Analysis from first principles yielded a set of design guidelines for multi-author audio

documents that are consistent with the empirical results from the field trials and

laboratory experiments.

3 SOURCES OF POWER

This research draws on two sources of power. First, a little structure in voice messages

can go a long way. Second, the same high-level abstractions are helpful in the design,

programming and use of applications.

11

3.1 STRUCTURED MESSAGES

Structured messages can help contributors to add information, listeners to scan it, and the

computer to sort and arrange it. A structured message can include recorded fields (as in

the event calendar) and symbolic fields, such as dates, numbers, and pointers to other

objects. Field names remind contributors of important information to include and the

division of messages into segments allows them to correct mistakes without throwing

away long recordings. Listeners can skip through the fields at their own pace instead of

waiting through long recordings. Symbolic fields represent knowledge about the contents

of voice recordings in a format that a computer program can manipulate. For example, the

computer can automatically filter and sort recorded information based on the associated

date or numeric fields.

3.2 CLOSING THE ABSTRACTION GAPS

This thesis presents four building blocks for phone-based groupware applications:

" Lists present ordered sequences of information objects. The objects can contain
links to other lists, which callers can follow. Callers can also initiate the
addition of new objects from some lists.

. Menus are special cases of lists, where the information objects serve only as

prompts to inform callers of links to other lists.

" Forms allow contributors to fill in the contents of new objects that they are

adding.

* Login processes restrict access to applications, determine what information

callers will hear first, and determine what privileges they will have for

adding information.

Design, programming and use of applications all rely on these abstractions. They are easy

to understand, so that even non-programmers can participate in designing applications.

12

CHAPTER 1: INTRODUCTION

HyperVoice reifies the abstractions as programming language primitives. Listeners and

contributors treat lists, menus, and forms as metaphors to aid navigation and information

entry.

Moreover, reliance on the same abstractions allows designers, programmers, and users to

speak the same language. Designers can put themselves in users' shoes and hence

anticipate usability problems. Programmers can more faithfully implement designs. The

audio documents that programmers create consistently will match users' navigation

metaphors.

4 RESULTS

4.1 PROOF OF FEASIBILITY

The Boston Peace and Justice event hotline described above provides the strongest

evidence that it is possible to make phone-based applications that are both usable and

useful in supporting coordination activities. Several other field trials supported group

discussions, including an MIT-wide opinion forum that handled more than 1000 calls,

with more than 150 recorded comments over the course of two months. A group of

elementary school teachers used another application to hear sample lesson plans and to

record success stories and comments about a new math curriculum they were using.

These field trials validate the overall concept of supporting coordination with phone-

based communication applications.

4.2 CONTEXTUAL FACTORS

Some field trials were more successful than others. Contrasts between the applications

and user populations suggested a set of context variables that will influence the adoption

of particular applications. For example, phone-based groupware applications are more

likely to succeed when there is time-critical information, when the expressiveness of

13

voice is valuable, and when users have weak keyboarding or reading skills. Some of the

negative factors are a need for anonymous contributions of information, a poor

distribution of costs and benefits among users, and a need to remember large information

chunks.

4.3 'SKIP AND SCAN' USER INTERFACE STYLE

The user interface research in this project culminated in the articulation of the Skip and

Scan interface style. In a Skip and Scan interaction, callers listen to short fragments of

speech and then interrupt, pressing buttons to skip to other speech fragments. By

frequently skipping, callers hear only a small fraction of the contents of an audio

document without spending a lot of time deciding which buttons to press, just as frequent

eye gaze shifts allow readers to visually scan a printed page. The Skip and Scan slogan

led to the development of new audio menu styles and to a set of more general audio

document design guidelines.

4.3.1 Audio Menu Styles

Skip and Scan audio menus allow callers to skip at their own pace through hearing the

options in the menus, rather than waiting for the computer to automatically advance after

each option is recited. This additional user control can lead to faster selection times

because callers can often reject a menu option before the end of its recitation. Laboratory

experiments compared the current standard menu style with two menu styles that allow

callers to skip and scan. Overall, subjects preferred one of the Skip and Scan styles, called

the 3-button, and made selections faster with it after the first few trials.

4.3.2 Audio Document Design Guidelines

A set of design guidelines lists properties of audio documents that will help listeners to

scan. Properties such as short recordings and progressive disclosure help listeners to

14

CHAPTER 1: INTRODUCTION

know when it is safe to skip the rest of a speech segment. Regularities, orderings, and

metaphors help callers to predict what button presses are available and what their effects

will be without hearing prompts. The guidelines can help designers to evaluate alternative

designs without implementing them and conducting behavioral tests. They also identify

the properties that multi-author documents need to preserve as authors add new

information to them.

4.4 'HYPERVOICE' APPLICATION GENERATOR

While the Skip and Scan guidelines help designers to evaluate audio documents,

HyperVoice helps designers to generate audio documents that conform to the guidelines.

Previous software tools express phone-based applications in terms of state-machine

abstractions: programmers specify nodes that contain speech segments, and transitions

between segments labeled by the telephone buttons that initiate them. By contrast,

HyperVoice introduces a new abstraction layer, called the application layer, based on the

four primitives described above, login processes, lists, menus, and forms. Programmers

specify a few parameters that determine how information will be arranged in lists, initial

values for information entry, and user interface choices such as which menu style to use.

An interpreter then automatically generates a state-machine layer representation of the

application.

Automatic generation of state-machine layer programs offers three advantages over direct

specification of state-machine programs:

Faster development. Application layer programs are shorter and easier to debug.

Participatory design. Application-layer programs use the same abstractions that

are useful in informal descriptions of designs.

Consistent, good user interfaces In generating a state-machine layer program,

HyperVoice automatically determines dialogue sequencing and the text of

prompts. A state-machine programmer may accidentally write a prompt

15

that tells the caller to press the wrong button. With HyperVoice, automatic

generation and placement of prompts insure that they match the available

actions.

Naturally, HyperVoice cannot guarantee that all the document design guidelines will be

followed. For example, a contributor can still record a long, rambling message. Instead,

HyperVoice is a catalyst for collaboration among listeners, contributors, and application

developers. It provides convenient ways to elicit information from contributors and

format it for listeners, so that developers can create audio documents that expand

gracefully.

5 IMPLICATIONS

In the short-term, the Skip and Scan interface style, if widely adopted, could increase user

satisfaction with phone-based applications. Automatic generation of user interfaces from

high-level abstractions could speed up development of applications, reduce the

programming and human factors skills required of developers, and enhance the quality of

the interfaces. The addition of structure to voice messages could enhance the utility of

voice mail systems and integrate well with other technologies such as fax and email.

Finally, the field trials suggest that there is a large and largely untapped opportunity to

use telephones as a platform for many-to-many communication applications.

In the longer term, the skip and scan guidelines are a first attempt to define the elements

of style for audio documents. Digital storage and random access have ushered in a new

era in audio, but as a society, we do not yet have the authoring or listening skills relevant

to the new era. As people gain more experience authoring and listening to audio

documents, their utility will increase, but no one can predict yet by how much. Right

now, even the best audio document is much harder to scan than a well-designed visual

document, but visual document design has a several thousand year head start.

16

CHAPTER 1: INTRODUCTION

6 OUTLINE OF THE THESIS

Chapter 2 presents application designs and field trials of telephone bulletin-board

applications. The application designs identified functionality requirements for the

application generator. Pilot tests of the applications led to iterative improvement of the

user interfaces that HyperVoice generates. Results from the field trials, both positive and

negative, suggested a set of context variables that will influence the success or failure of

applications.

Chapter 3 takes the user interface insights gleaned from the field trials as inspiration for a

more general analysis of audio document user interfaces. It first sets out the interactions

that Skip and Scan audio documents should afford, based on an analogy to visual

scanning of paper documents. Then, it presents the properties of the documents that will

facilitate such interactions.

Chapter 4 presents the HyperVoice application generator. It describes the features of the

application layer language and interpreter that make it easy to specify the functionality

required for the application designs, and to generate user interfaces that satisfy the Skip

and Scan document properties. While Chapter 2 shows that lists, menus, forms, and login

procedures are good design abstractions and Chapter 3 shows that they are good

metaphors to help users scan audio documents, Chapter 4 treats those abstractions as

programming primitives. Appendices A through C present more technical details about

the application generator and sample programs written in the application layer language.

Finally, chapter 5 presents the results of the two laboratory experiments comparing user

performance with the three audio menu styles. Appendix D presents technical details of

the second experiment.

17

2 APPLICATION DESIGNS AND FIELD TRIALS

Telephone bulletin boards are audio documents that allow remote entry and selective

retrieval of recorded information. If configured appropriately, they can support a wide

range of communication and coordination activities, including discussion of issues,

publicity of announcements, answering commonly asked questions, matching, and status

reporting. This chapter describes prototype HyperVoice applications designed to support

these activities. Several of the prototypes have been implemented and tested in field

trials.

The application designs and field trials contributed to this research in five ways.

Proof of concept. Three successful field trials confirmed that telephone bulletin

boards can support cooperative work and play. Without prior training,
callers listened to and recorded messages. In all, the field trials included

more than 7000 calls, with more than 700 messages added.

Design abstractions. A few primitive components, lists, menus, forms, and login

procedures, are sufficient to describe all the application designs. Several

non-programmers understood the design abstractions well enough to

generate and evaluate alternative designs.

User interface refinement. Observation of people using the prototypes, during

pilot testing and field trials, led to many user interface improvements.

Software tool refinement. The HyperVoice application generator evolved to

handle all the variations in functionality required for the applications. The

software tools also evolved to incorporate the user interface refinements.

Success factors. The field trials identified variables that determine whether

telephone bulletin board applications will be effective in different contexts.

19

This chapter first describes each of the application designs and field trials. The designs

describe how the four primitives (lists, menus, forms, and login procedures) are

instantiated and combined. The field trial descriptions focus on the role non-programmers

played in the design processes, on user interface lessons and on factors that contributed to

the success or failure of the application. The next sections then summarize the functional

requirements of the application designs, the user interface insights, and the success

factors.

1 APPLICATION DESIGNS AND FIELD TRIALS

The field trials took place over the course of two and a half years, as summarized in

Figure 2.1. The text presents them chronologically, except for the MIT U-TALK issue

discussion, which directly follows the other two issue discussion applications even

though it occurred much later. This section also includes designs for several more generic

applications that have not yet been tested in field trials.

Application Name Participatory # of calls # of messages Start of Trial duration of
Design? added trial

Joke Collector No -40 ~10 January, 1990 1 day
Issue Discussion 1: No -20 -10 February, 1990 4 days
class discussion
Issue Discussion 2: No -150 3 April, 1990 3 days
Intellectual
property
Issue Discussion 3: No 1030+ 152+ April, 1992 2 months +
MIT U-TALK
Mandela Task Yes 1 0 June, 1990 7 days
Tracking
Mandela Events Yes 1378 more than 200 June, 1990 10 days
Calendar and
Volunteer signup
Peace and Justice No 4578+ more than 300 January, 1991 1 year +
Events Hotline
Teachers' Yes 72 by head 57 by head October, 1991 6 weeks
Curriculum Line teacher; teacher;

66 by others 10 by others

Figure 2.1 A summary of the usage statistics for the field trials. The Peace and Justice Event Hotline and MIT U-TALK
were still in operation as of June, 1992.

20

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

1.1 JOKE COLLECTOR

1.1.1 Application Design

The first and simplest application lets people share jokes. There is no login procedure.

Callers first select a category of jokes from a navigation menu. Any caller can add a joke

to any category, but only the system administrator can add new categories.

1.1.2 Field Trial

Visitors to an MIT AI Lab open house in January, 1990 tried out this application. A

number of people recorded jokes, some of them funny.

User Interface Results

While observing callers interact with the system, I identified three drawbacks in the user

interface for this application. First, it emphasized a metaphor of controlling a compact

disc jukebox, with each joke a track and some tracks containing links, that, if followed,

caused other discs to be loaded onto the player. This metaphor failed because people were

unfamiliar with the source domain: some had never experienced skipping between songs

on a CD player, and no one had ever used a jukebox with links between songs and other

discs (no such devices exist). The metaphor was abandoned in later user interfaces.

Second, time-dependent options did not accommodate individual differences. Like a CD

player, the system automatically advanced between tracks, but that meant that a link that

was available from one track was suddenly no longer available when the system

advanced to the next track. One six or seven year old child who tried the system did not

make decisions fast enough and got hopelessly lost. This lesson influenced the later

choice of which menu styles to experiment with, as described in Chapter 4, section 5.2.2.

21

Third, the application began with a tutorial that explained the discs and tracks metaphor

and let people practice moving around. People seemed not to like that: they wanted to get

right to the jokes. During the tutorial, one person said aloud, "So much text." Later

prototypes interspersed the tutorial with the application, introducing commands as they

were needed.

1.2 ISSUE DISCUSSIONS

Issue discussion applications allow callers to record comments and opinions. Other

callers can then listen to those comments and record responses or unrelated comments.

1.2.1 Application Design

A simplistic design for this application uses the joke collector as a model, except that

people record comments instead of jokes. Comments are grouped together into lists, one

for each topic. Each comment contains two fields, one for a headline, similar to the

subject line of an electronic mail message, and one for the contents. As with a radio talk

show, if callers want to indicate that a comment is responding to someone else's

comment, they use standard rhetorical tricks, such as summarizing the other comment.

A more sophisticated design uses pointers between objects to keep track of which

comments are responding to which other comments. The system creates a list of

responses each time a comment is added. Then, when listening to a comment, a caller can

press a button to go to the list of responses. There can even be responses to responses.

Thus, the tree of comments grows over time solely through operations performed by

telephone. Chapter 4 will discuss how HyperVoice plays back the headline fields of

comments in order to automatically generate meaningful descriptions of the response

lists.

22

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

Two features help moderators maintain order in issue discussion applications. First, each

new comment is added to a master list in addition to the current list of comments. This

linearizes the comments so that the moderator can hear all the new ones that have been

added without having to traverse the entire tree of comments. From the master list, the

moderator can follow a link from any comment to the list to which it was originally

added. Second, the moderator can move comments to more appropriate places or delete

them altogether, using cut and paste operations.

1.2.2 Field Trials

Three versions of this more sophisticated design were prototyped and tested in field trials.

The first was a discussion of the key issues in a business case study for a class at MIT.

The second was a forum on intellectual property rights for software user interfaces. The

last was an opinion forum for the MIT community, hereafter referred to as U-TALK,

which spells out the five-digit phone number people called to access the forum.

1.2.2.1 Class Discussion

The first field trial was an adjunct to a class discussion in a class for MBA students.

Following the regular format of the course, students were given a business case to read

and analyze, and a set of questions for which to prepare answers. Each of the questions,

however, was also recorded as a discussion topic in a HyperVoice application. Students

were invited to record comments in response to the questions and to respond to other

students' comments in the days leading up to the class during which the case was

discussed. Students were briefed on the concept a week beforehand, including a verbal

explanation of the interface style. A copy of Figure 2.2 was also handed out in class.

23

User Interface Results

The user interface for this application adopted a spatial metaphor. Four of the buttons on

the telephone keypad were assigned as arrow keys, as shown in Figure 2.2. Callers started

at the top left and moved down in order to hear the first question, then right to hear the

other questions. Each question had a list of comments that responded to it. From the

question, a caller could move down to hear the first comment, and then right to hear the

others, and back up to the question. Similarly, each comment had a list of response

comments below it. At the end of the comments at one level, the caller could move right

again in order to start recording a new comment.

Welcome to W i2D
Mishawaka
opinion forum

Question 1 Question 2 Question3 D EED
* !i!

Comment 1 a Comment 1 b 41Right to add a
.new comment.,

Comment la mment 1b1 A t to add amnew commen

Figure 2.2 The spatial layout of comments for the class discussion field trial.

Despite some technical and user interface difficulties, a majority of the class called and a

number of them recorded comments, including some responses to others' comments. One

interesting result was that callers recorded at very different volumes, with non-native

English speakers tending to speak more softly. Some spoke so softly that it was difficult

to comprehend, and it was frequently necessary to adjust the distance of the telephone

from one's ear while listening. In a normal telephone conversation, there would be ample

24

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

opportunity to ask a quiet speaker to speak louder, but the delayed feedback of

asynchronous communication eliminated that opportunity.

Following this field trial, I designed two possible technological fixes to the volume

inequality problem, but did not implement either. Both fixes are premised on setting a

desired average decibel level for the messages, but allowing variations in volume within a

message, to allow for emphasis. In one case, the system would merely notify callers if a

recording's average decibel level fell out of the desired range, on either the loud or the

soft side. The caller could then choose to re-record or ignore the request. In the other

case, the system would automatically normalize the average volume of the messages.

This method would probably have been effective, but would have been difficult to

implement with the hardware and software platform I used1 .

1.2.2.2 Intellectual Property

The second issue discussion was on the topic of whether intellectual property rights

should apply to software user interfaces. The application followed a similar structure to

the one just described, but responses were tagged as either agreeing or disagreeing with a

comment. The comments were then laid out spatially in two-sided lists, with agreeing

comments on the right side and disagreeing ones on the left (Figure 2.3). Thus, if a caller

went down to hear responses to a comment, the system would inform the caller of how

many agreeing and how many disagreeing responses there were, and the caller could then

go left or right to hear one set or the other.

1 The software supplied with the Watson card, from Natural Microsystems, used a proprietary compression

format.

25

1 2 3

'Welcome to
HyperVoice"

ontroversial clawm: user
interfaces should be protected

to04 he U1 nef its ag epitalism Mors nt
a response community e0e of argument e e are free a reeponse
that is against standard- riders. hat
Usar~ee . rotection ization

Figure 2.3 The CHI '90 opinion forum on intellectual property for software user interfaces.

The application was seeded with eight comments, four agreeing and four disagreeing with

the claim that intellectual property rights should be extended to software user interfaces.

These seed comments were prepared from an article on the topic that laid out both

opposing viewpoints [Samuelson 1989]. Richard Stallman, a well-known opponent of

intellectual property rights on user interfaces, also called in before the conference and

recorded several comments.

A telephone was set up at a booth at the Interactive Experience at the ACM CHI '90

conference on Human Factors in Computing Systems. A caller who walked up to the

booth found a standard telephone on the table, and an enlarged version of Figure 2.3 on

the display board. In addition, a one-page sheet described the system and the user

interface. Although I sometimes staffed the booth, I carefully avoided saying anything

about how to use the system until after people had tried it out.

26

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

Over the course of three days, perhaps several hundred people tried the system. A number

of them made verbal comments that I jotted down and many filled out paper response

surveys that were next to the phone. Unfortunately, the exact usage cannot be determined

because a system crash destroyed the on-line data logs.

User Interface Results

Again, difficulties with system crashes and the user interface limited the usability of the

system, but several important lessons emerged that influenced the course of this project.

First, many conference attendees were not patient enough to follow the user-interface

even as far as hearing one comment on the topic. It required at least three button presses,

down, down and then either right or left, just to hear the first comment on the topic. There

were many other distractions in the exhibit room, including some noisy exhibits that may

have interfered with people attending to the prompts. This underscored the importance of

a quick-start in telephone interfaces, especially when callers are unfamiliar with the

application.

Second, pauses are needed in telephone interfaces, both to give callers time to make

decisions, and to cue them that they should press buttons. While much of the Skip and

Scan interface style depends on callers interrupting frequently, callers are not used to

doing that initially, so judicious use of pauses is important. One user specifically said that

she could not tell when it was "my turn to press a button."

Third, many people did not immediately understand the spatial layout of arguments. In

particular, up and down for going to responses and returning from responses did not seem

to be a natural mapping. Because the network is tree-structured, going up and then down

does not return one to the same location. Even right and left, which have worked well in

other field trials, were confused in this one, because right meant "give me another

comment" if the caller was listening to agreeing responses, but meant "go back to the

27

previous comment" if the caller was listening to disagreeing responses. Hence, the layout

of right for agree and left for disagree gave the left and right cursor keys inconsistent

meanings. It was not used in later field trials.

Success Factors

Finally, even those callers who succeeded in navigating through the arguments were, for

the most part, unwilling to record comments. When I encouraged them to do so, many

said that the topic was too controversial and their opinions not well enough formed. The

lack of anonymity of recorded voice was an important factor limiting usage of other

applications as well.

1.2.2.3 U-TALK

A third issue discussion was on the topic of academic honesty at MIT, a topic of frequent

letters to the editor and editorials in the student newspaper during academic year 1991-

1992. The application design was similar to that for the class discussion described above,

but the spatial metaphor for moving up and down was abandoned. Instead, 2 moved to the

list of responses about a comment and *, acting as an escape key, exited the responses, as

shown in Figure 2.5 below. As well as keys for moving forward and backward by a

comment, the system provided a "smart fast forward" button, which skipped ahead to a

meaningful boundary in the playback of the current message (i.e., from the headline to

the contents, to the date the comment was added, and then through the prompts for what

commands were available).

New comments were added at the beginning of each list rather than at the end. That

meant that a repeat caller could hear the newest items in each list without wading through

all the older ones. One drawback of this design is that comments in a list appear in the

reverse order of their recording, which can be confusing if the comments refer to each

other. An alternative to this reverse ordering would be for the computer to keep track of

28

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

what comments each registered user has listened to, then begin playback of lists with the

first new comments. This has not been implemented in HyperVoice.

This application was publicized through advertisements around campus and in the largest

circulation student newspaper (Figure 2.4) that described the topic and suggested the

overall idea of the application, but did not provide any details on how to use the system.

Previous field trials suggested that such details are more confusing than helpful before

using an application. In addition, business-card sized flyers (see Figure 2.5) were

distributed in mailboxes in some of the dormitories on campus. The business cards did

contain a diagram of the telephone keypad layout.

Success Factors: Expressiveness and Anonymity

Before the official announcement of the service, several undergraduates expressed

trepidation about recording their opinions publicly. A total of 46 recordings did appear on

the system, however, over 10 days. Some of the callers attempted to disguise their voices.

About half of the recordings were serious or semi-serious arguments about the topic,

including the recitation of one poem extolling the virtues of trust. The other half used the

system as a means of self-expression unrelated to the topic. Most of the unrelated

messages were recorded on April 1 (April Fool's Day) including several musical

interludes, part of a Monty Python skit, heavy breathing, and one person criticizing the

others for not taking the system seriously. Callers clearly exploited the expressiveness of

voice and sound, though not in exactly the ways I had expected.

After two weeks, a new version was introduced. It solicited comments on several topics

simultaneously, and these topics were less serious than the first. Callers were asked to say

their best and worst experiences at MIT, their best and worst classes, the best and worst

books they had read, and so on. Over the following six weeks, more than 100 additional

messages were recorded. Many of the messages were of the fun variety rather than

29

I What do you think about cheating?
You Call, You Listen...

U-TALK
x8-8255

I Current topic:
I Academic honesty at MIT

Similar to the Lobby 7 flame sheets, U-TALK serves as a medium for
discussion of controversial issues. You will be able to listen to opinions
on a topic and record your own ideas. All recordings will be publicly J s
available for other callers to listen to. System usage will also be U -TALK : Just Call It!analyzed for research purposes. Future topic suggestions or comments
can be directed to Gwendolyn Lee at wendy@athena.mit.edu.

Sponsored by: Center for Coordination Science and
Center for Educational Computing Initiatives

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

You Call, You Listen...

U-TALK
x8-8255

Add Responses

ni: Prev

Esc
Figure 2.5 Both sides of the business cards that were distributed to student mailboxes in some don
fraternities.

Smart ff

Next

'Tr
mitories and

serious opinions. Some of the messages fell in between: in response to the question about

their worst experiences at MIT, two women shouted in unison, "Everything!" It is not

clear yet whether people will be willing to conduct more serious discussions via this

medium as it becomes more familiar.

User Interface Results

A couple of people mentioned that it was difficult to tell where the new comments were

when they called back. Despite the reverse chronological ordering within each list, in the

tree as a whole the new comments were mixed with the older comments. This is what

necessitated the linear master list for moderators of the opinion fora.

Several people recorded suggestions about the user interface for U-TALK in response to

a question that I recorded on the system. A couple of people suggested that the tree

structure of responses was confusing. One suggested using a threading mechanism that

would put all the comments on a topic in one list, but with additional connections

31

between comments when they were responding to each other. This would have the added

benefit of providing optional linear access so that frequent callers could find all the new

comments in one place, rather than wandering through the whole tree structure looking

for them. This has not yet been implemented in HyperVoice. Another caller suggested

capping the depth at two, so that there would be comments and responses, but no

responses to responses. On the other hand, the depth may be self-regulating, since if

people are unable to navigate to the lower depths, they will not add new comments there.

The response depth actually went to five layers in one place, indicating that some people

had no trouble with the hierarchical structure.

Another caller suggested that the system should play a recording of how many responses

there are at the beginning of each list. As it was, callers pressed 2 to select the responses

to a comment, then listened to a header for the response list before hearing the recording

of how many comments were in the list. This violated the more general principle of

progressive disclosure, that audio documents should place more important information

before less important information.

1.3 MANDELA PUBLIC INFORMATION LINE

1.3.1 Application Design

In June, 1990, a HyperVoice application provided information about Nelson Mandela's

visit to Boston and allowed people to leave messages to volunteer as workers at one of

the events he was attending. This application was designed in cooperation with a non-

programmer, the operations coordinator for the visit. I told him that our building blocks

were menus, lists and messages, with access restrictions on listening to and adding

messages to some lists. Most of our decisions revolved around message structure and

grouping messages into lists. It was clear from the start that only the event planners

32

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

would add messages to the public lists, while volunteer workers could leave private

messages for the event planners.

The final design had four public lists of messages, one for the schedule of events on the

day of the visit, one for requests for volunteers, one for media information such as how to

get press credentials, and one for information about legislation on sanctions against the

South African government. Normal callers did not have the privileges required to add

new messages to any of these lists. System administrators could enter special codes to

add new messages by phone and remove ones that were out of date.

While listening to any of the requests for volunteers, callers could add a message to sign

up. Originally we had planned a telephone form to request several pieces of information,

including name address, phone number, and social security number (requested by the

U.S. State Department for security checks!) I was not yet confident of the user interface

for telephone forms, however, so we opted for an unstructured, answering-machine style

message. It also would have been helpful to have a separate list of volunteer signups

associated with each message requesting volunteers. At that time, however, the

HyperVoice application generator did not yet have facilities for automatically creating a

response list each time a new request for volunteers was added (a special purpose hack

had been used in the issue discussion applications). As a result, a single list of volunteer

signups was kept, and callers were asked to indicate in their messages the tasks for which

they were available. System administrators could enter another special code to go to the

list of volunteer signups, in order to transcribe the messages.

1.3.2 Field Trial

Success Factors

The telephone number for the public information line appeared on approximately 15,000

flyers that were distributed on the streets seven to fifteen days before the visit. The

33

system was especially effective at handling last-minute changes to event plans. A couple

of times, I found that even people working at the volunteer headquarters office had

information that was less recent than the information on the telephone system, because

printed versions of updates were delayed and not always widely distributed. Another

advantage of the phone system was that each caller could access information about any of

the events without having to get information about all of the events. With mass

distribution of information on paper, everyone has to be given all of the information that

might interest anyone (e.g., the telephone book). The immediate publication and selective

access, then, made the phone application valuable relative to other available media.

When the telephone began ringing off the hook, a second telephone line was added,

which was also in constant use during the last week. Unfortunately, we did not have more

equipment available to handle more telephone lines. During the last ten days, the

computers answered nearly 1400 calls. Over 200 people who recorded their names and

addresses were contacted by mail to inform them of where and when to arrive as

volunteers.

User Interface Results and Improvements

One interesting user interface result of this field trial was the identification of the need for

pause and rewind buttons whenever messages will be transcribed. The people who

transcribed the names and addresses recorded by volunteers initially asked for automatic

transcription of the messages, which is beyond the state of the art of speech recognition

systems. The transcriptionists were still grateful, though, for the addition of a pause

button to the system midway through the field trial.

34

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

1.4 MANDELA EVENT PLANNING STATUS REPORTS

1.4.1 Application Design

A status reporting application helps a group of people to keep track of subtasks that are

involved in a larger joint project. One version of this application was developed for the

committee that handled the operational aspects of Nelson Mandela's visit. Again, the

application proceeded through several design iterations with a non-programmer, the head

of the committee, using the abstractions that form the core of the HyperVoice language:

menus, lists of structured messages, and access privileges.

The original design provided one list of status reports for each major task. Several design

iterations went into deciding what the major tasks were. Eventually, we converged on one

list for each event or other activity for which an identifiable person was responsible.

Committee members would then be responsible for posting status reports about their

events or tasks.

The next issue was who would have access to the status reports. Clearly, the overall

operations coordinator needed access to all the status reports, but what about the other

committee members? We decided that all of the status reports would be public to all of

the committee members. One reason was simplicity: login procedures could be avoided.

Another reason was that part of the purpose of the system was to help identify inter-

dependencies among the various events and tasks. Rather than relying on the overall

operations coordinator to track all those interdependencies, individual task coordinators

could listen to others' status reports and help to keep track of them.

The third area of frequent re-design was the menu structure for navigating to the

appropriate list of status reports. The eventual design had a top-level menu with five

35

Mandela Operations Information Clearinghouse

258-8115

I racal 2 Press a Puolic 4 -undraising 5 Telep
Menu announce- Information events activities listings

ments

Motor- 2 Comm- 3 Public Copley 2 Walkathon 3 Winnie 4 Licensed 5 Souvenir
ade unity rally: laza Mandela T-shirts booklet

rally Hatch eception reception
Shell

From Memo

reco t~pPaul Resnick and
A Richard Mullins

6/5/90

Form for adding
a now memo

Figure 2.6. The diagram describing the Mandela status reporting application that was handed out
to members of the operations committee.

options (see Figure 2.6). Two of those options led to second-level menus, which in turn

led to lists of status reports (memos in the terminology of the figure.)

1.4.2 Field Trial

Success Factors

This application was not successful. In fact, only one person other than the operations

coordinator called it even once. Follow-up telephone calls to the committee members

indicated several reasons. First, the system was ready too late in the process.

Communication and coordination structures, however inadequate, had already been

established. Second, the system was not properly introduced. It was mentioned during the

middle of a lengthy meeting, and committee members were asked to talk to the operations

coordinator after the meeting in order to pick up instructions. Several people could not

remember the system being introduced at all. Third, there was the classic incentive

36

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

distribution problem pointed out by Grudin [Grudin 1989]. The work required to post

status reports would have fallen on the event coordinators, while most of them perceived

that the benefits would all accrue to the overall operations coordinator. Finally, it

appeared to me that some of the event coordinators wanted to retain as much control over

their events as possible. As a result, they did not want to open their plans to others'

scrutiny.

1.5 EVENT CALENDARS

1.5.1 Application Design

The most successful long-term field trial has been an event calendar for political activists

in the Boston area. The version that was field tested provided two lists, one for long-term

announcements and one for upcoming events. A top-level menu asked callers to select

one of those two categories. Any caller could add a new announcement to either list.

Announcements were segmented into six fields to encourage people to include important

information about events, including a headline, the date and time, location, sponsoring

organization, contact telephone number, and details. All the information was recorded. A

moderator listened to all the new announcements and used cut and paste operations to

sort them by event date and erase them after they were no longer relevant.

A more sophisticated design requires callers to type in rather than record event dates, so

that the announcements can be sorted and filtered automatically. An event calendar that

used typed-in dates was included in the teachers' curriculum line, described later in this

chapter.

1.5.2 Field Trial

The Boston Peace and Justice Event Calendar was first publicized during the Gulf War,

by passing out flyers at political events around Boston and sending flyers to organizations

37

that were likely to sponsor events. Later, it was publicized mainly by word of mouth and

occasional publication in newsletters of political organizations.

1.52.1 Success Factors

During the Gulf War, the emcee at a city-wide rally described it as the best source of up-

to-date information about events. It was even featured in a National Public Radio story

about how the student anti-war movement was well-organized, if not popular. Most of the

feedback about the system has been positive, including many comments about how nice it

is to hear many different voices on the system. After the Gulf War, a local activist

installed the system in his home and continued to maintain and publicize it. As of

January, 1992 the system had handled well over 5000 calls.

1.52.2 User Interface Results

This field trial confirmed two important user interface assumptions underlying this

research. First, callers will learn how to interrupt and skip recordings. Analysis of the log

of key presses indicates that more than 90% of callers between February 1 and April 5,

1991 (1798 calls in all) interrupted at least one announcement. Second, people can fill in

telephone forms without any prior training. While a few people had trouble with the

concept of semi-structured input (they recorded the same information in several fields),

most of the announcements followed the intended structure quite well.

Despite the overall acceptability of the user interface to the peace events hotline,

observation of people trying to add event announcements led to later modifications in the

user interface for telephone forms. In particular, later prototypes have much longer pauses

between the navigation prompts. Without the pauses, callers never had a period of silence

in which to gather their thoughts before starting to record. Moreover, novice callers had

trouble getting an overview of what actions they could take in a telephone form, because

the actions were described too quickly and there were too many of them.

38

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

1.6 QUESTIONS AND ANSWERS: ANSWER GARDEN

1.6.1 Application Design

A question and answer application provides public access to the answers to frequently

asked questions [Ackerman and Malone 1990]. When the expertise needed to answer

questions is scarce and many requests are for similar information, this can be quite

helpful. A caller navigates through a tree of diagnostic questions in order to select the

topic on which he has a question. The caller then scans through the existing list of

answers on that topic. If he does not find the answer he needs, he records a new question,

which is routed to the expert responsible for that topic. When the expert next calls in, she

listens to the question and adds a new answer to the list for that topic.

This application requires several new functions. First, access controls are needed so that

each expert hears just the questions that are directed to her. Second, when a non-expert

caller listens to a topic and asks to add a new question, he adds it to a list other than the

one he is currently listening to. The new question is added to the private mailbox of the

expert who is responsible for that topic. Third, experts can restructure the tree of

diagnostic questions over the phone, if they find that callers are missing existing answers

because of misleading categorizations of answers into topics. This design has not been

field tested. A somewhat different design was field tested as part of the teachers'

curriculum line, described below.

1.7 TEACHERS' CURRICULUM LINE

The teachers' curriculum line combined elements of several of the applications described

above, including general discussion, an event calendar, and questions and answers. The

application was used for two months by a group of 38 elementary school teachers in the

Pittsburgh area who were implementing a new math curriculum in their classrooms. The

39

teachers were spread throughout the city, usually with two or three in each participating

school. The math curriculum was developed by one of the teachers, hereafter referred to

as the head teacher, in conjunction with researchers at the University of Pittsburgh. The

original goal for the application was to reduce the demands on the head teacher's time, by

broadcasting her answers to commonly asked questions, and by encouraging the teachers

to communicate with each other rather than only with her.

1.7.1 Application Design

The head teacher and a couple of the other researchers at the University of Pittsburgh,

none of them computer programmers, participated in designing the eventual application.

The design process began with a phone call to the event calendar application described in

section 2.5. This gave them a sense of the possibilities. I then described most of the

design choices by analogy to elements of that application.

First, I asked them to identify the structure of messages that would be recorded. I pointed

out that event announcements were the only kind of messages in the event calendar, and

said what the fields of event announcements were. The head teacher identified lesson

plans as the key message class, as she already prepared paper calendars with a few lines

of text suggesting a lesson plan for each school day in the coming month. In the initial

meeting she identified several fields that lesson plans should contain. Over the course of

three months, she and the other researchers on the project experimented with several

structures for lesson plan messages, and wrote out scripts for several lesson plans. One

problem was that some lesson plans needed to contain fields that were irrelevant in other

lesson plans. As a result, they planned to make fields that could contain one of two kinds

of information. Instead, I suggested that they make two separate fields, but leave out

irrelevant fields from any particular lesson plan. In all HyperVoice applications, field

names for empty fields are automatically omitted during playback of messages, so there is

no penalty to listeners for having additional fields that are rarely used.

40

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

The designers also identified several other message classes that the system should

accommodate, including questions, answers, success stories, and meeting

announcements. In addition, I requested that there be a space for people to make

comments or report bugs about the system, which necessitated a comment message class.

Next, the information objects had to be grouped into lists, with menus for navigating

among the lists. Initially, the head teacher suggested one list of lesson plans for

kindergarten and first grade and another for second and third grade. After experimenting

with a prototype implementation, she realized that there should be four separate lists, one

for each grade. Because different teachers were on slightly different schedules, the head

teacher asked that the questions be arranged by lesson plan rather than chronologically.

Each new lesson plan had an attached list of questions. In this way, a teacher who got to

lesson 35 a week later than the first teacher could still hear the first teacher's questions

about that lesson plan. In addition to the lesson plans and attached lists of questions, there

was one list of success stories, one list of meeting announcements sorted by meeting date,

and one list of comments and bug reports. These last three lists were shared among

teachers from all four grades. Figure 2.7 shows the final design.

First Grade Lessons
Lesson 25

Question 25a
Answer 25aI
Answer 25a2

Question 25b

Lesson 26

Second Grade Lessons
Third Grade Lessons
Fourth Grade Lessons
Success Stories
Meeting Announcements
Comments and Bug Reports

Figure 2.7. The final design of the teachers' curriculum line. Indentation shows hierarchical nesting. Thus, to hear the
questions about Lesson 25, a teacher would select first grade lessons, then select lesson 25.

41

Third, there were decisions about whether questions would be made public and about

who would be allowed to answer the questions and add new lesson plans. The question

and answer application described above keeps the questions private and only allows the

experts to add answers. The head teacher decided instead that both the questions and

answers should be public. Thus, each new lesson plan generated a list of questions and

each new question had its own list of answers. The head teacher agreed to answer every

question, but any teacher could also respond to any other teacher's question. On the other

hand, the head teacher decided that only she and the other researchers would add sample

lesson plans.

Since new questions might be attached to any of the lesson plans, and up to 40 lesson

plans might be active at a time, ten for each grade level, the head teacher expressed a

concern about how she would find the new questions. To help her, each new question was

added to both a master list and the list for a particular lesson plan. The head teacher could

access the master list while other teachers accessed questions from particular lesson

plans. The master list needed a different presentation format so that the head teacher

could find out which lesson plan each question was associated with. A field was added to

each question indicating the associated lesson plan. This field was played back in the

master list, but not when teachers accessed questions by selecting a lesson plan, as it

would have been redundant there.

Finally, we decided to include a login operation. This served several purposes. First, it

meant that only teachers participating in the curriculum project would have access to the

system. Second, the name of the person who recorded each question, answer, comment,

or meeting announcement was automatically attached to each recording. Third, it made it

possible for me to track usage of the system by each teacher. Teachers who did not want

their names attached to messages or who did not want their usage tracked were all told a

42

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

common user id, 1111, to be used for anonymous login. The head teacher was able to add

and remove eligible users over the phone.

This design process, then, illustrates the abstractions used in discussing alternative

designs. Discussions centered around questions of what the object types would be, how

those objects should be collected into lists, who should be given read and write access to

different lists, and whether or not to include a login procedure. These abstractions will

form the core of the HyperVoice programming language in chapter 4.

1.7.2 Field Trial

The actual usage differed quite a bit from the planned usage. Almost half the teachers

never called. Those who did call listened to the lesson plans that the head teacher posted

and listened to the meeting announcements. At least two teachers were observed using the

sample lesson plans in their classrooms. A few of them recorded success stories or

congratulations to other teachers on wedding plans, but only two questions were recorded

in two months. This application, then, gave the head teacher the additional task of

recording lesson plans without reducing the number of repeat questions that she handled.

After two months, she stopped recording new lesson plans.

1.72.1 Success Factors

A number of plausible explanations can be made of the usage patterns, and the truth

probably lies in some combination of them. First, the system was introduced six weeks

into the school year, after communication patterns were already set. While the 38 teachers

were distributed among many schools, there were usually two or three in each school, and

the whole group met for one day a month, so that they may not have felt the need for

greater communication. Second, teachers are not used to getting very much feedback

from peers, so that asking a question about teaching puts them in an unfamiliar and

vulnerable position. Thus, the lack of anonymity of recorded voice appeared to be an

43

important factor. Third, at approximately ten minutes each, the recorded lesson plans

were too long to remember without transcription, which would have been tedious. Not

only did this reduce the utility of the lesson plans, but it may have reduced the

willingness of teachers to ask questions. They may have been worried about asking

questions without listening to the whole lesson plan, for fear that the question was already

answered, but not interested in listening to a whole lesson plan. Finally, the head teacher

was initially uncomfortable recording the lesson plans, so she read them verbatim from a

prepared script. That reduced the expressiveness of her voice, thus squandering a

potential benefit of the medium.

1.7.2.2 User Interface Results

The field trial also uncovered two user interface problems. First, as already mentioned,

some of the recordings were too long. Second, the head teacher and other frequent callers

complained that they had to press too many buttons to get to some of the information.

This application used audio menus with positional selection. To select the fifth option in

the menu, callers had to advance five times and then press the select button. The head

teacher called every day and checked for new success stories and comments, the fifth and

seventh items in the main menu. Hence, she had to press the advance key a lot of times to

perform those routine operations. In addition, new success stories and comments were

added at the ends of those lists, so that the head teacher had to skip over all of the old

ones every day in order to check for new ones.

1.8 MATCHING

One generic coordination task is to match people or things based on information about

them. An example of such a process would be a dating service, where people are matched

based on both symbolic information that they provide (gender, age, sexual orientation)

and on unstructured information (recordings they make.) In fact, this is one commercial

44

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

application of telephone bulletin boards that has already taken off, usually in conjunction

with printed personal ads in newspapers.

Personal ads, however, are not the only matching services that a telephone bulletin board

can provide. They can be used for classified ads more generally, to match buyers and

sellers. Below I present a prototype application for matching conference attendees who

want to share a hotel room during the conference.

1.8.1 Application Design

A caller makes two menu selections, to indicate gender and whether or not the caller

smokes. It is assumed that callers who do not match on these characteristics will be

incompatible roommates, so that it will be better for them not even to hear listings that do

not match on these two characteristics. Suppose that the caller is a male non-smoker. The

caller then browses through a list of messages from other male non-smokers. If one or

more people seem compatible, the caller jots down their phone numbers or email

addresses and contacts them. If not, he adds a new message to the list, in the hopes that

some future caller will contact him.

Each listing includes separate fields for arrival and departure dates and hotel preference.

In addition, there is a field in which the caller can record any other information that he

thinks is relevant, such as how loudly he snores. Arrival and departure dates are typed in

over the phone rather than recorded. Typing in the dates makes it possible to sort the

listings in order of arrival date, which may help other callers to find appropriate listings

more quickly.

Once people have found matches, they will want to remove their listings. A sophisticated

version of this application would have callers enter a security code as part of the listing,

then enter the same code again to remove it. The HyperVoice application generator does

not yet allow specification of this functionality. A simpler design that HyperVoice can

45

implement requires a system administrator to remove listings at the request of callers,

after checking to make sure that the original voice sounds the same as that of the person

requesting its removal.

This application has not yet been field tested.

1.9 TASK TRACKING

The simple status reporting application that was developed for the Mandela operations

planning committee misses opportunities that an on-line database can provide. There are

a number of different ways that someone might want to access the status reports.

Sometimes, the status reports should be sorted by people responsible for completing

them. At other times, it may be helpful to get a list of tasks by their priority, or by their

due dates. Presentations of lists can provide pre-defined queries, so that the tasks and

status reports can be accessed in the way most appropriate to the task at hand. Ad hoc

queries could make this status reporting application even more valuable. The future

research section at the end of Chapter 4 discusses ideas for implementing ad hoc queries.

1.9.1 Application Design

This application includes one master list of status reports and one master list of tasks.

Project members only access the information about tasks for which they are responsible,

while project coordinators can access all of the information. More than one person can be

responsible for a particular task.

Consider a single project member, John Doe. After John logs in, the system presents him

with a menu of options. That menu includes hearing all tasks for which he is responsible,

sorted either 1) by date due or 2) by priority, 3) all status reports that he has recorded, or

4) all status reports for tasks for which he is responsible. If John selects either of the first

two options, he hears a list of tasks. If John then selects one of those tasks, he hears all of

46

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

the status reports associated with the task. This menu structure is summarized in Figure

2.8.

John can also add a new task. In that case, a new list of status reports for that task will

automatically be created. John will type in a due date and a priority value using touch-

tones. In addition, John will select the people responsible for the task from a menu (a

picklist) of all the people on the project. The selected person objects are linked in as

values to a field of the task object that keeps track of who is responsible for the task. The

date due, priority, and person responsible fields, containing symbolic information rather

than recordings, are what make possible the various sortings of the tasks and status

reports. The headline and description fields, on the other hand, contain informal

descriptions of exactly what the tasks are.

Once John has selected a task, he can also add a new status report. The system fills in a

John Doe's tasks sorted by date due
Task 1

Status report la (recorded by John)
Status report lb (recorded by someone else)

Task 2
Status report 2a (recorded by someone else)
Status report 2b (recorded by John)

Task 3
John Doe's tasks sorted by priority

Task 2
Status report 2a (recorded by someone else)
Status report 2b (recorded by John)

Task I
Status report la
Status report lb

Task 3
All Status reports recorded by John Doe

Status report Ja (recorded by John)
Status report 2b (recorded by John)
Status report x: (recorded by John about a task he is not responsible for)

All Status reports for tasks John Doe is responsible for
Status report Ja (recorded by John)
Status report lb (recorded by someone else)
Status report 2a (recorded by someone else)
Status report 2b (recorded by John)

Figure 2.8 The information network presented to John Doe. Indentation indicates hierarchical nesting, so that the top-
level menu consists of the four options in bold.

47

field with a pointer to the object representing John, in order to note that he is the one who

recorded the status report. That is what facilitates the top-level menu option of selecting

all the status reports that John has recorded. The system also fills in a pointer to the task

object to which this status report is attached. This facilitates the top-level menu option of

hearing all the status reports for tasks for which John is responsible: a filter can look at

each status report to find the associated task, then look in the task object to see if John is

one of the people responsible for it.

The project leader may choose to access the tasks and status reports by people responsible

or may choose to access them all together. The Project Leader has four initial options.

The first three are similar to the first three options seen by project members: tasks by date

or by priority, and status reports by author. The difference is that no filters are specified,

so that all tasks or status reports are selected rather than a subset being selected. The

project leader can also access information relevant to any one member of the project, by

selecting that person from a menu of all the people on the project. After selecting a

person, the project leader has all the same options that person has immediately after

logging in.

This application design has not been field tested.

2 FUNCTIONAL REQUIREMENTS

All of the application designs build on list, menu, form, and login procedure abstractions.

Reflecting different functional requirements for the applications, however, there is

considerable variability among instantiations of those abstractions. As described below,

instantiations can vary in the arrangement of information in lists, in who adds information

where, and in maintenance operations available to system administrators. Table 2.9

summarizes the functions needed in the most complicated applications described in this

chapter.

48

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

2.1 INFORMATION ARRANGEMENT

The objects in a list can be sorted based on the contents of the objects (e.g., the dates of

the events). The same objects can appear in different lists, sorted in different ways or with

different fields of each object played back.

2.2 INFORMATION ADDITION

Several features can help to structure the addition of information objects in ways that aid

future callers.

Restricted access. Only callers with high enough privileges may initiate addition
of new information from some lists. This can insure the quality of

information in those lists.

Addition to other lists. Sometimes, the new information object should be added

to other lists in addition to, or instead of the current one. This makes it

possible for callers to add information objects without knowing all of the

lists to which they should be added.

Creation of response lists. In some applications, the addition of a new

information object automatically generates a new, empty list. This creates a

location where future callers can add related information.

Needed Functions U-TALK Curriculum
Line

Answer
Garden

Generic task
tracker

Information Arrangement
Sort on contents of objects 4
Multiple presentations of same object 4

Adding Information Objects
to current list
to other lists 4 4 4 4
Automatic creation of response lists 4 4 4 4
Access controls 4 4 4 4

Maintenance Operations
Master list for moderator 4
Move, delete information 4
Add new menus and lists
Add new users

Table 2.9 The functions required in the more complex application designs.

4
4

4

4
4

49

2.3 MAINTENANCE OPERATIONS

A system administrator may need the following features that are not available to normal

callers:

* Access to master lists that arrange information objects chronologically.

* Moving and deleting information objects.

* Creating new menus and lists. As more information is added, the system

administrator may need to rearrange the information space.

* Registering new users. If there is a login procedure, the system administrator

may want to register new users over the phone.

3 USER INTERFACE INSIGHTS

The pilot tests and field trials identified a number of desirable user interface properties,

summarized below, often because their absence led to difficulties in particular field trials.

Chapter 3 presents a more complete analysis, from first principles, of the interaction

styles and audio document properties that will be best for users.

- Quick start

- No initial tutorial; navigation prompts in context.

- Pauses indicate when to press buttons.

- Prompts not too fast.

" Short recordings.

" Progressive disclosure.

- Normalized volumes.

" Pause and rewind buttons.

* Metaphor that predicts available actions

50

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

" Lists and forms are helpful. Keypad layout with next to the right of previous is

helpful.

" Two-sided list is confusing.

- CD jukebox is confusing.

" Hierarchy is helpful for some people, confusing to others. Keypad layout with go

to parent above go to child adds to the help or to the confusion.

" Available actions fixed until next button press.

" Few keystrokes to get to frequently accessed information.

* Find changes since last call quickly.

4 SUCCESSFACTORS

Previous research on CSCW applications and analysis of the differences between text and

voice suggest a number of context variables that will influence the value of HyperVoice

applications. Below I discuss both positive and negative factors, called 'green flags' and

'red flags' respectively. Observations from both the successful and unsuccessful field

trials are consistent with these success factors.

4.1 GREEN FLAGS

Time-critical information. Once entered over the phone, information is

immediately available to other callers. For applications with time-critical

information, HyperVoice will be more useful than communication systems

such as mass mailings that have longer delays to publication.

Need for access from home or while traveling. Applications that benefit from

entry or retrieval of information from remote sites will be more likely to

succeed, since competing technologies cannot match the telephone's

widespread accessibility.

Needfor expressiveness of voice. Voice is more expressive than text; through

tone, pitch, and speed, a speaker can convey much information not

51

conveyed by a text transcription. Studies of teleconferencing indicate that

voice is the single most important channel to include for collaborative tasks

[Ochsman and Chapanis 1974] and that voice is a better annotation medium

for the more complex, controversial, and social aspects of collaborative

tasks [Chalfonte, et al. 1991].

Users have weak composition, keyboarding, or reading skills. Unlike text-based

systems, phone-based systems do not require these skills. -

Opportunity to create a 'honeymoon period'. Most communication systems have

increasing returns to adoption: the utility of the system to each user

increases as the number of other users increases [Arthur 1987, Markus

1990]. To achieve critical mass, these systems need an initial honeymoon

period in which users adopt based on expectations of future value, when

others have adopted, rather than on the current utility of the system

[Fichman and Kemerer 1992]. Any opportunity to create a honeymoon

period, through sponsorship by a powerful person or through a big splash

introduction of the system, will improve its chances of success.

4.2 RED FLAGS

Well-entrenched communication patterns. Changes from existing patterns are

disruptive and people may not perceive the opportunity for better

communication patterns.

Poor distribution of costs and benefits. The distribution of incentives is a well-

known problem for CSCW systems [Grudin 1989]. While the benefits to

the group as a whole may outweigh the costs, the benefits may accrue to

some individuals and the costs to others, who may then refuse to

participate.

Needfor anonymity. A person's voice is more easily identified than a person's

writing style. Research indicates that the anonymity of bulletin boards can

improve participation from shy people [Chaiklin and Schrum 1990] and

that anonymous suggestions can enhance brainstorming sessions

[Nunamaker, et al. 1991]. Using digital signal processing algorithms, it is

possible to disguise voices, but only at the cost of losing the expressiveness

and some of the intelligibility.

52

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

Naturally textual information. If during a face to face meeting, when all media

are available, the information would be communicated as text or graphics,

then voice will be a poor medium to carry that information in a computer-

mediated communication system.

Need to scan large information chunks. If there is no way to break information

chunks into small pieces, then it will take longer to listen to a message than

for a good reader to read or scan a written version of it. If, on the other

hand, the information divides naturally into small, meaningful segments,

then a consistent set of telephone buttons may allow callers to accomplish

the fast changes of attention that eye gaze shifts accomplish in visual

scanning. This is the idea behind the Skip and Scan interface style, as

described in the next chapter.

Need to remember large information chunks. The presentation of information by

phone is ephemeral. If callers need to take information with them, they will

have to engage in the tedious process of transcription.

5 RELATED RESEARCH

The first published use of structured voice messages was the PhoneSlave project. The

PhoneSlave, acting as an answering machine, conducted conversations with callers to

elicit the several pieces of information it considered essential to good phone messages

[Schmandt and Arons 1984]. The system asked each caller a series of questions ("Who's

calling please", "What is this in reference to?", "At what number can he reach you?", etc.)

After playing a question, it recorded whatever the caller said, until a long pause was

detected, then went on to the next question. This thesis generalizes the structured message

idea to information objects other than personal phone messages and then exploits that

structure in the design of more complex applications.

The fundamental idea of supporting a range of cooperative work activities through clever

processing and presentation of semi-structured information objects is not new to this

thesis. It was best stated by Malone et al [Malone, et al. 1988]. That paper, discussing the

53

Information Lens system, presented designs for a number of applications based on

processing structured electronic mail messages. In the Object Lens and OVAL systems,

this idea was extended to include information objects other than messages [Lai, et al.

1988, Malone, et al. 1992], which enables data modeling of the kind found in the status

reporting application design. The application designs in this chapter apply the idea to a

new medium: phone-based applications. The field trials show that such designs can be

successfully implemented.

6 CONCLUSION

The most important result in this chapter is a validation that it is possible to create usable

and useful telephone bulletin boards. The set of application designs illustrate that

telephone bulletin boards can support five generic communication and coordination tasks,

summarized in Table 2.10. In field trials of issue discussion and announcement

applications, callers were able and willing to add structured messages and other callers

were interested in hearing what those callers had to say. One of the applications, the

Boston Peace and Justice Event hotline, was used beyond its initial trial phase, and is now

administered outside of MIT.

Communication or HyperVoice application
Coordination Task

Issue Discussion Class discussion
Intellectual Property opinion forum
U-TALK
Teachers' curriculum line

Matching Roommate finder
Announcements Mandela public

Peace and justice event hotline
Teachers' curriculum line

Questions and Answers Answer Garden
Teachers' curriculum line

Task Tracking Mandela event planning status reports
Generic status reporter

Table 2.10. Five generic communication and coordination tasks, and the application designs that supported them.

54

CHAPTER 2: APPLICATION DESIGNS AND FIELD TRIALS

The differential success rates of the field trials suggested a set of task and context

properties that will influence the success of telephone bulletin board applications.

Applications are more likely to be adopted when they contain information that is time-

critical, when users benefit from remote access, when the expressiveness of voice carries

valuable information, when users have weak writing and reading skills, and when there is

an opportunity to create a 'honeymoon period'. Applications are less likely to succeed

when there are well-entrenched communication patterns, costs and benefits are poorly

distributed, there is a need for anonymity, and there is a need to scan or remember large

information chunks.

The application designs confirm that expandable lists, menus, forms, and login

procedures are sufficient to describe a wide range of applications. The fact that non-

programmers participated in designing three of the applications indicates that these

abstractions are accessible to non-programmers. Taken together, the application designs

determine the functional requirements for the HyperVoice application generator of

Chapter 4.

Pilot tests and field trials led to iterative refinements in the user interfaces that the

HyperVoice application generator creates. They inspired the laboratory experiments with

different menu styles reported in Chapter 5. They also inspired a more general analysis

from first principles that identifies and categorizes interaction style properties and

document properties that make it easy to retrieve and add information in audio documents

and, more generally, hypermedia systems. The next chapter presents that more general

analysis.

55

3 SKIP AND SCAN

Text is linear, but many texts are not read in a linear manner. Instead, eye gaze shifts

rapidly on a single page and readers open documents to pages in the middle. Writing

styles and typographic conventions have developed in ways that facilitate non-linear

access. For example, headlines in newspapers allow readers to quickly find the

beginnings of stories and white space between paragraphs allows readers to quickly find

the beginnings of new topics. Good readers have years of practice in exploiting the

scanning abilities that these visual cues give.

Speech is also linear but with digital storage and random access, speech no longer needs

to be listened to in a linear manner. With playback controls, listeners can rapidly shift

attention between speech segments. Unfortunately, speaking and audio document styles

have not yet developed in ways that take full advantage of this non-linear access.

Moreover, no one has had much practice listening to audio documents with random

access.

Skip and Scan is a slogan around which audio document styles and listening skills can

develop. The ideal behavior is that a listener should frequently change what he hears

(skip), without spending a lot of time deciding what skips to make, and in that manner

scan through the contents of an audio document. By analogy, consider the slogan Direct

Manipulation [Hutchins, et al. 1986, Shneiderman 1983]. It presents an ideal for how

people should interact with information in screen-based interfaces. They should get the

feeling of directly manipulating information objects, even though those manipulations are

mediated by mouse operations. Similarly, Skip and Scan audio documents should give

listeners the feeling that they are scanning the documents' contents; they should not be

conscious of the computer that is mediating the interaction. To accommodate multiple

57

contributors, documents must include expandable structures that preserve a listener's

ability to scan even as contributors add new information.

While Skip and Scan describes ideal listener behavior, designers need to informally

evaluate designs for audio documents even before implementing them and conducting

tests with users. To aid them, a set of document properties serve as style guidelines;

documents that satisfy those properties will afford listeners the opportunity to skip and

scan.

Lists of structured objects that contain links to other lists are building blocks for audio

documents that satisfy the guidelines, but they are not the only good building blocks. The

guidelines in this chapter will prove useful in evaluating other potential building blocks

as well. Moreover, the guidelines apply far beyond telephone interfaces, to audio

documents controlled through speech recognition and to 'keyhole' interfaces such as

small LCDs. Even a large display can offer only a small keyhole on even larger

information spaces; the guidelines in the chapter will help design and evaluate large

hyperdocuments containing text, graphics, and video as well as audio.

1 DESIRED BEHAVIORS

The ideal audio document should support several types of behavior. An expert listener

should be able to scan it, either to find a particular piece of information, or to get an

overview of the document contents. At least in the near term, before listener skills and

familiarity with audio document genres develop, listeners will not be familiar with the

conventions of audio documents. A listener who does not know how to scan should still

be able to navigate through the document, although not as quickly or fluently as someone

who scans it. Moreover, while listening to a document, novices should naturally acquire

the skills necessary for expert performance.

58

CHAPTER 3: SKIP AND SCAN

1.1 SCANNING

Curiously, the verb scan has nearly reversed meanings in the last hundred years. It used

to mean analyzing and marking a text closely [Murray and Burchfield 1933]. More

recently, scanning a visual document has come to mean looking at it quickly in order to

find a particular item of interest or to get an overview of its contents and develop a

mental map of where to find the parts of it that are most interesting. Scanning is valuable

because different readers are interested in different parts of documents, or prefer to read

parts in different orders. If the goals and background knowledge of all readers were the

same and could be predicted in advance, then the reader control that scanning allows

would not be necessary: documents could present information linearly in exactly the

order that readers needed it.

Visual scanning is accomplished by peripheral vision, reading quickly, and rapid eye

gaze shifts, as summarized in the second column of Figure 3.1. In the audio realm, non-

speech audio cues [Gaver 1986] and presentation of multiple audio signals in a spatially

localized way [Wenzel 1991] may accomplish some of the effects that peripheral vision

gives. Digital signal processing algorithms can speed up the playback of recorded speech

to roughly twice the speed at which it was recorded, without harming intelligibility

significantly [Arons 1992]. The Skip and Scan slogan for audio documents focuses on the

last of the three capabilities that facilitate visual scanning, namely the rapid change of

focus of attention between parts of the document.

Effective scanning involves ignoring most of the text in a document without taking a long

time to execute the shifts of attention that make that possible. Rhetorical and

typographical conventions help readers to ignore irrelevant text. For example, the

typographical convention of white space between paragraphs together with the rhetorical

convention of topic sentences allows readers to read at most the topic sentence of any

59

Visual Audio Documents
Documents

Peripheral Awareness peripheral vision background non-speech cues;
of spatial layout spatially localized audio

Rapid Perception read quickly accelerated playback

Rapid Change in shift gaze Skip and Scan
Focus of Attention

Figure 3. 1 The capabilities that contribute to scanning.

irrelevant paragraph. Shifts of attention to different text on a page or screen display are

executed quickly through shifts in eye gaze. Shifts of attention between pages, however,

take much longer, and the time increases with the number of intervening pages. For this

reason, style guidelines usually suggest that figures be interspersed in the text of an

article rather than grouped at the end.

Effective scanning in audio documents requires an analogous interaction style. Listeners

should hear only a small percentage of the total sounds in a document without spending a

lot of time on the navigation operations that make it possible to hear just the right sounds.

1.1.1 Hear small percentage of document

Several interaction behaviors will contribute to reducing the amount of speech played

back. Callers should:

" avoid whole sections of the document that are irrelevant.

" not wait through the playback of uninteresting parts in order to get to

interesting parts.

60

CHAPTER 3: SKIP AND SCAN

- know when the rest of a recording will be uninteresting and skip it.

In short, listeners should avoid uninteresting recordings wherever possible. Barring that,

they should quickly identify them as uninteresting and interrupt them.

1.1.2 Fast Navigation

"Unconscious" navigation

Listeners' cognitive attention should be devoted primarily to the contents of what is

played back, and not to thinking about how to navigate through the document. Unlike

visual documents, where the output channel remains constant but eye gaze shifts, shifts

of attention in audio documents require a change in what sounds are played on the output

device. The tool for controlling those changes should be ready-to-hand (Heidegger as

discussed in [Dreyfus 1991]), in the sense that a skilled user should be conscious of the

tool only in special circumstances where normal use of the tool fails. By analogy,

consider skilled users of emacs, or any mouseless text editor. In normal operations of

editing a document, they are not conscious of what buttons they press. Only during non-

routine operations such as defining macros are they conscious of using the keyboard to

execute commands.

In audio documents, callers can navigate "unconsciously" when they:

* don't need to hear any navigation prompts.

- don't need to think long about the best next button to press.

Short keystroke sequences

With paper documents, shifts of attention between pages take much longer than shifts of

attention within a page. In audio documents, all shifts of attention come from button

presses. Shifts that require fewer button presses, then, will be executed more quickly.

61

1.2 ACCoMMODATING NOVICE USERS

At least in the early stages of the evolution of audio documents, they will have to

accommodate listeners who do not yet know how to scan them. Novice listeners will not

know what buttons to press and tend not to interrupt playback of sounds [Engelbeck and

Roberts 1990]. The interaction style for novices, then, needs to be more conversational:

" Document always suggests what buttons to press.

" Document occasionally pauses to wait for button presses.

Novice callers may need some time to think about which buttons to press. Therefore:

* Document suggests buttons slowly.

" A listener should take as long as necessary to make a choice without losing the

ability to accept or reject a suggested action. In particular, there should not

be time-dependent actions that are available only for a short period of time.

Recall that the joke collector application did not allow this kind of

interaction, because callers could follow a link from one "track" to another

"disc" only while that track was playing.

Novice listeners will also not have practiced audio navigation skills, and so will be

conscious of all of the navigation choices that they make. If the choices are too frequent,

the listeners may be unable to focus their attention on the contents of documents. This

suggests that:

* Listeners should not have to make too many navigation decisions.

1.2.1 Quick Start

It is important that a document reveal its contents early in the interaction, even to novices.

Some listeners will have made enough of a commitment to the technology or to the

document that they will endure a tutorial before getting to the document contents, but it is

62

CHAPTER 3: SKIP AND SCAN

better to teach callers to use buttons as part of navigating through the document. This is

especially true with telephone applications, where the caller may be unfamiliar with the

benefits of the application as well as unfamiliar with the technology. Any attempt to teach

the caller about how to navigate in the first few seconds of the call has to be subordinate

to selling the application concept.

1.2.2 Learning to Scan

There should also be a natural transition from novice to expert behavior. In the process of

listening to a document without scanning, then, a novice caller should:

" Learn the document structure.

. Practice pressing the buttons that are used in scanning.

1.3 TRADEOFFS

Note that there is a tradeoff between supporting non-scanning behavior and teaching

listeners how to scan. While a novice who just wants information from one document

may be best served by hearing the document without pressing buttons, practice at

pressing buttons will help novices to make the transition from novice to expert behavior.

There need not be a tradeoff, however, between supporting novices and experts. In any

speech segment, all of the recorded information relevant to novices can be placed after

the information that is of interest to all callers, novice and expert. The expert callers can

execute skip operations to other nodes before hearing the information that is only useful

to novices.

1.4 SUMMARY

Readers scan visual documents, in part, by quickly shifting their eye gaze. This allows

readers to ignore large portions of a document that are likely to be irrelevant to their

63

needs, without spending a lot of time deciding which parts to ignore. By analogy, audio

documents need to allow listeners to hear small percentages of documents without

spending a lot of time getting to the relevant parts. Since many listeners will not initially

know how to scan, audio documents should allow novices to hear some useful

information without scanning. Moreover, in the process of listening to documents,

novices should acquire the skills necessary to scan them.

2 THE ELEMENTS OF STYLE FOR AUDIO DOCUMENTS

This section translates the desirable interactions described above into desirable properties

of the documents themselves. It describes how to recognize an audio document that will

afford these interactions to typical listeners. The translation is valuable because it enables

evaluation of audio documents without conducting behavioral tests with users.

All of the desirable properties are stated in terms of a network, or state-machine

representation of audio documents. That is, a document is represented as a collection of

nodes, which contain speech segments (sound-bytes), and directional links, or transitions,

that can be followed from node to node. Each of the links is labeled by the button press

that causes the link to be followed. In addition, there can be timeout transitions between

nodes: a timeout transition is executed after playback of the entire contents of a node, if

no other button is pressed first.

The desired properties constrain the contents of the nodes and the topology of the

network, the links between nodes. The network representation is convenient both because

it allows a succinct statement of the desired properties, and because it is already widely

used to describe audio documents. For example, the HyperVoice application interpreter

automatically generates network representations and several commercial software toolkits

expect programmers to specify network representations directly.

64

CHAPTER 3: SKIP AND SCAN

2.1 HEARING A SMALL PERCENTAGE OF THE DOCUMENT

The organization of the nodes' contents will determine whether a listener can hear the

interesting information while avoiding the uninteresting information. Overall, listeners

will use the contents of some nodes to determine which other nodes to listen to, and the

beginnings of individual nodes to decide whether to listen to the later parts of those

nodes.

2.1.1 Small Nodes

The first desirable property is small nodes. A node is the unit of speech playback inside

which callers do not have any semantically meaningful skip actions available (timed fast-

forward and rewind actions may be available, though). If nodes contain long speech

segments, then scanning will be defeated. In particular, listeners who are interested in the

later portions of recordings will either have to listen to the beginning part of the

recording, or they will have to guess how far to move with timed fast-forward and rewind

buttons, which may take a long time. Consider, for example, how hard it is to find the

beginning of a particular scene on a videotape using a VCR's fast-forward and rewind

buttons.

2.1.2 One Topic per Node

Strunk and White advise writers to include just one topic per paragraph[Strunk and White

1979].

Ordinarily, however, a subject requires division into topics, each of which should be
dealt with in a paragraph. The object of treating each topic in a paragraph by itself is, of
course, to aid the reader. The beginning of each paragraph is a signal to him that a new
step in the development of the subject has been reached. (p. 16)

Analogously, each node in an audio document should deal with only one identifiable

topic. A listener may be interested in but one of two topics but will be unable to skip over

the other one if it appears after the first one in a node. In addition, if nodes have more

65

than one topic, listeners cannot know whether it is safe to skip the remainder of a node

after deciding that the first topic is irrelevant.

2.1.3 Progressive Disclosure

The contents of each node should follow the principle of progressive disclosure: the most

important information should come first. If this rule is violated and the most important

information comes later in the node, then listeners may have to wait through information

that does not interest them in order to hear the important part. This principle is analogous

to the admonition to writers to begin paragraphs with topic sentences. Perhaps it is even

more important for audio documents, because the penalty is greater when the first words

fail to summarize the rest of the contents: the listener may have to listen to the entire

node, while a reader can scan ahead visually.

Consider that answering machine and voice mail messages often fail to follow the rules

of one topic per node and progressive disclosure. Recipients of messages often keep

listening just to be sure that there is nothing important at the end of a message, or because

callers do not say their phone numbers until the ends of messages. Sometimes, the

beginning of the message will even announce that there are two unrelated points. But

when someone listens to the message, there is no way to skip ahead to the second point, if

the first is explained in too much detail. This suggests a hypothesis that frequent voice

mail users will learn the art of progressive disclosure in their messages and will develop

the habit of recording two separate messages for the same person when there are two

separate topics to discuss. This would be an interesting hypothesis to test empirically.

2.1.4 Summary Nodes

Some nodes should summarize the contents of collections of other nodes. Listeners can

hear summary nodes then skip entire collections that are not relevant. By analogy, in an

outline document, each header summarizes the contents that are indented below it.

66

CHAPTER 3: SKIP AND SCAN

Readers can skip over whole sections of the outline based on the contents of the top-level

headers.

2.1.5 Short paths

The desire for short keystroke sequences to accomplish navigation actions translates

directly into the graph property of short paths between nodes. Of course, this does not

require that there be a short path between every pair of nodes, but rather that there be a

short path from each node to every other node that is often accessed right after listening

to it. For example, there should be a short path between a summary node and a node that

gives details about that topic.

2.2 FAST NAVIGATION

Listeners can navigate when they know what transitions are available and where they go.

They can navigate quickly when they can predict the available transitions without hearing

prompts for them. Regularities, orderings, and metaphors make that possible.

2.2.1 Navigation Prompts

Navigation prompts help novices to navigate through a document. These prompts,

however, should not interfere with normal scanning. The solution is that each information

node in the document can have one or more attached navigation prompt nodes, as

illustrated in Figure 3.2 and described below

2.2.1.1 Pauses after navigation prompts

A brief silence should follow each navigation prompt. This serves two purposes. First, the

pauses indicates when to press buttons for those who are uncomfortable interrupting the

spoken voice. Second, they give listeners the chance to decide on an option before forcing

67

Information pJ " For .."

(silence)

"For
press 2."
(silence)

40, t

"To hear more 0
options, press
0 ." (silence)

"For ... ,
press 3.'
(silence)

40

"For ... ,
press 4."

Figure 3.2 The help prompts for an information node. The node has four links to other information nodes, labeled 1, 2,
3, and 4, which also work from the navigation prompt nodes. The links labeled t indicate timeout links.

them to think about the next one. In effect, the pauses slow down the recitation of the

prompts.

2.2.1.2 Separate node for each navigation prompt

Expert listeners, however, should not have to wait through the slow recitation of the

prompts in order to find particular commands. The prompts for each of the available

actions should be separate nodes. The silences should go at the ends of the nodes. Then,

listeners who know the button for advancing between navigation prompts (0 in the

diagram) can skip through them at their own pace, missing all of the pauses at the ends of

the nodes.

2.2.1.3 Automatic transitions between prompts

There should also be timeout links between navigation prompt nodes for actions that are

likely to be relevant to novices. That is, after playing one navigation prompt and then the

68

2

3
4

CHAPTER 3: SKIP AND SCAN

short silence, if the listener has not pressed any buttons, the document should

automatically transition to the next navigation prompt node. This will allow novices to

hear all of the navigation prompts without pressing any buttons. Without the timeout

links, they would have to learn how to skip between options before they could even hear

what the commands are for navigating between information nodes, which would interfere

with the goal of a quick start at listening to the contents of the document. In the tradeoff

between supporting novice listeners who do not skip and forcing them to learn how to

skip, this choice is in favor of supporting novices who have not yet learned to skip. The

information about how to navigate through the information nodes is too important to be

delayed while callers learn to skip through the navigation prompts.

2.2.1.4 Order prompts by utility for novices

The prompts should be recited in the order of their likely importance to novices. Experts

will be able to skip through the prompts, so the order is less important for them.

2.2.1.5 Hide prompts for options that novices rarely need

If there are many options to prompt, of which only a few are likely to be relevant to

novice callers, the timeout links should connect only the most relevant ones. In the

diagram, the first two commands were deemed relevant to novice callers. At the end of

the prompts for the commands more relevant for novices, there should be a prompt for the

button to press to hear the other options. In addition to relieving the cognitive burden on

novices by not reciting prompts for actions that are unlikely to be useful to them, this also

provides a way for novices to learn the button that skips through the help prompts.

2.2.2 Timeout links only between subnodes

To help people keep track of available commands, their availability should not be time-

dependent. This can be insured by restricting the use of timeout links, the links that

69

automatically transition if no buttons are pressed during the playback of a node. Define a

virtual node as an ordered set of nodes (Ai,...,An) where:

* Each node Ai may contain links to the node before it and after it in the

sequence.

. All other links are shared by all the nodes. That is, if there is a link labeled 3,

say, from Ai to node X, then there are also links labeled 3 from every other

node Aj to X.

Call the nodes (Ai,...,An) subnodes. It is OK to have timeout links between adjacent

subnodes. Otherwise, they should be avoided. With this restriction, the only button

presses whose meaning can change after a timeout link are those for moving forward and

back within the sequence of subnodes.

Consider, for example, the timeout links between navigation prompt nodes as suggested

in Figure 3.2. The entire figure represents a single virtual node. That is, pressing 1, 2, 3,

or 4 has the same effect from any of the nodes in the figure. The 0 transitions connect

adjacent subnodes, so they do not have to be shared by all the subnodes. Since they are

subnodes of a common virtual node, it is OK to have timeout links between the

information node and the first navigation prompt, and between the navigation prompts.

2.2.3 Orientation Cues

Strunk and White advise writers to provide explicit orientation cues:

As a rule, begin each paragraph either with a sentence that suggests the topic or with a
sentence that helps the transition. If a paragraph forms part of a larger composition, its
relation to what precedes, or its function as a part of the whole, may need to be expressed.
This can sometimes be done by a mere word or phrase (again; therefore;for the same
reason) in the first sentence. (p. 16)

Analogously, short phrases can orient listeners after transitions between nodes in an audio

document. Such cues take time to play, however, so they should only be used when

needed. For example, a node that recites the date of an event may be self-orienting if it is

70

CHAPTER 3: SKIP AND SCAN

the only date recited as part of an event announcement. If, on the other hand,

announcements include the event date and the last date to make reservations, the phrase

"Event date" should precede the recitation of the contents of that field.

2.2.4 Regularities, Orderings, and Metaphors

Navigation prompts can tell callers what transitions are available. Orientation cues can

prepare callers to understand the information after a transition. Both, however, take

listeners' time and cognitive attention away from the contents of the document. To

achieve fast navigation, listeners need to be able to predict, not just recognize:

" what transitions are available;

. what buttons initiate those transitions;

" what kind of information will be in the node at the destination of each

transition;

" how the information at the destination is related to the information in the

current node;

" which transition to take first in order to get to a particular piece of information.

Easily understood regularities, orderings, and metaphors can help listeners to make these

predictions. Regularities allow listeners to predict available transitions based on analogy

to other nodes already encountered in the document. Metaphors allow listeners to predict

available transitions based on analogy to some external structure. Metaphors may also

help listeners to understand the regularities in a document. Orderings allow listeners to

predict which transitions will move them toward a desired piece of information.

For example, if every event announcement node has available transitions to nodes for the

previous and next events in chronological order, listeners will learn to follow those

transitions without hearing the prompts and without needing orientation cues as to what is

71

being played after the transition. If prompts describe those transitions using the phrases

"next announcement" and "previous announcement", and the buttons for executing those

transitions are spatially arranged (e.g., 7 to the left of 9), listeners may start thinking

about navigation in terms of a list metaphor, which will make it even easier to predict

those transitions. If the announcements are sorted in order of event date and the caller is

looking for events on a particular date, then the date of the current announcement

determines whether to go forward or backward in the list.

Style guidelines that call for regularity and helpful metaphors carry about as much weight

as politicians' promises to "fight for the needs of the common man." Both are good ideas,

but without more specifics, they are vacuous. Clearly, for example, every node in an

audio document should not contain exactly the same information (the ultimate regularity),

and not every metaphor will help callers to navigate. This section adds another layer of

detail, cataloging the different kinds of regularities, the synergies between regularities

and metaphors, and how prompts can emphasize the metaphor.

2.2.4.1 Regularities

When regularities in the network topology reflect perceived regularities in the

information, listeners can predict available transitions and their destinations based on

what transitions were available from 'similar' nodes. The value of regularities, then,

depends on easily understood definitions of similarity. A set of nodes can be similar

because they all have links to the same destination node or they all contain similar kinds

of information. A set of transitions executed by the same button press can reflect an

underlying similarity in the relations between the contents of the source and destination

nodes. Sets of nodes and links can form structures with identifiable roles; the roles

identify similarities between nodes in different structures.

72

CHAPTER 3: SKIP AND SCAN

Same destinations for outside transitions: subcomponents

One form of regularity is when a set of nodes all have transitions, activated by the same

button press, with the same destination node. For example, separate nodes may present

the fields of an event announcement, but pressing 9 moves to the next announcement

from any of those nodes.

Consider the special case when all the transitions whose destination node is outside a

particular set are shared by all the nodes in the set. That is, if one node in the set has a

transition to a destination outside the set, then all of them have a transition, activated by

the same button press, to the same destination node. Call any such set a component, and

the nodes in the set subcomponents. The virtual nodes discussed above are special cases

of components that have limited connections between subcomponents. In the degenerate

case, any set consisting of just a single node fits the definition of a component. The other

degenerate case is that the set of all nodes in an audio document is a component, since it

has no transitions outside the set. The remainder of this section discusses components and

transitions between components rather than individual nodes, so that, for example, an

event announcement can be treated as a single component even though it may be

represented by several nodes.

Same kind of information in components

A set of components can all contain information that listeners recognize as the same type.

For example, a number of components may all contain event announcements.

Same relationships between components

A number of pairs of components may comprise a recognizable relation. For example,

there may be a set of components that all contain lesson plans and a set of lists of

questions, with a transition from each lesson plan to one of the lists of questions. All of

73

the transitions, then, can be thought of as going from a lesson to its list of related

questions.

Same roles across sets of components

There may also be similarities between sets of components. Components in these sets can

have roles, with predictable transitions between roles. Sets with identifiable roles are

called structures.

For example, two categories of event announcements both begin with components

playing the 'header' role. Both components playing the header role have transitions,

labeled by the same button press, to components playing the 'item' role. There can be

more than one component playing the 'item' role, and each has a transition to another

playing an 'item' role, except that the last 'item' component has a transition to a 'footer'

component. Notice that the available transitions between roles are not quite regular,

because not all components playing the 'item' role have transitions to components

playing the 'footer' role. This slight irregularity makes it hard, for example, to listen to all

of the announcements in a list without visiting the 'footer' component as well.

One of the requirements for a structure to be useful is that roles of components be easily

identifiable. This was the failing of the two-sided lists used in one of the issue discussion

applications. It was hard for listeners to remember whether they were in the positive or

negative comments and hence whether to go right or left for another comment. The use of

different voices (voice fonts) or auditory icons [Gaver 1986] might alert listeners to roles

unobtrusively.

Combinations

Combinations of these kinds of regularities are even more powerful. For example, a list

of lesson plans in the curriculum line draws on all four kinds of regularities. Each lesson

74

CHAPTER 3: SKIP AND SCAN

plan contains the same type of information, each plays the 'item' role, and each has a

transition to a list of questions about that lesson plan. Each lesson plan component has

subcomponents for the fields, all with the same transition to the next announcement.

Moreover, the subcomponents of each lesson plan are themselves a structure, with a

single 'field' role, so that a caller who has learned to skip through the fields of one lesson

plan can predict how to skip through the fields of another.

2.2.4.2 Ordering

If transitions between components are assigned based on an ordering of the components,

then listeners may be able to predict the correct first transition to follow in order to reach

a desired destination component. For example, a list of event announcements may be

sorted based on the date of the event. Then, given a desired date or range of dates to look

for an announcement, and given the date of the current announcement, the caller can

predict whether to go forward or back in the list. If, on the other hand, the announcements

are not sorted based on the factor currently of interest to the listener, (e.g., sponsoring

organization), then the listener may have to resort to exhaustive search.

The value of ordering is not limited to lists. For example, a hypercube may be ordered

independently along n dimensions. It is also not limited to total orders. For example a

partial order2 can provide significant guidance to the listener. Consider a tree

representation of an organization chart, with the president as the root and people with no

subordinates as leaves. From each node, transitions are available to go to the next sibling,

to the parent, or to the first child. From anywhere in the tree, the listener can quickly find

a particular employee, knowing only that employee's 'upline', the people he reports to

2 1n a partial order, not all pairs are related, but if a< b, and b < c, then a < c. A tree defines a partial order,

with a < b if, following parent links from a, one eventually reaches b.

75

directly or indirectly. The listener simply follows parent transitions until finding someone

on the desired employee's upline and then follows child and sibling links to descend the

tree while staying on the employee's upline. The listener need not know in advance all of

the people on the path from the current node to the nearest person on the upline, or even

the order of the people on the upline. If, on the other hand, the listener wanted to find the

person with the most seniority in the organization, this partial ordering would not be of

much use.

2.2.4.3 Metaphors

While regularities help listeners to make predictions based on previous experience with

an audio document, metaphors help callers to make predictions based on experiences with

some external concept. The two cardinal rules of any metaphor, then, are:

1) The external concept must be familiar to users.

2) The external concept must have predictive power in navigating the document.

The first rule may seem trivial, but designers often fail to heed it in practice. For example,

recall that the joke collector used the compact disc jukebox as an external concept. Many

people were not familiar with the skip forward and skip backward keys on a compact disc

player. Moreover, nobody had encountered a CD jukebox where songs on one disc were

linked to other discs, because no such jukeboxes exist.

There will always be limits to the predictive power of any metaphor, for the external

concept is by definition not the same as the target domain, but merely analogous in some

ways. In the case of audio documents, metaphors can help predict the types of transitions

available and some properties of the destination nodes. It is unlikely, however, that any

metaphor will predict the button presses that will execute those transitions, since there are

few uses of keypads like the telephone's.

76

CHAPTER 3: SKIP AND SCAN

Metaphors, then, will be most helpful in conjunction with regularities. Metaphors can

help callers to understand the roles in a structure, the similarities in sets of components

and sets of links, and the orderings of components. If the same metaphor is applicable in

many places in an audio document, listeners may learn the mappings between the

transitions that the metaphor predicts and the button presses that initiate those transitions.

Keypad layout matches external structure

If an external concept has a spatial layout, the keypad layout should match it. For

example, suppose that three nodes are laid out from left to right in the external concept (a

list, say). The button to move from the middle node to the right node should be on the

right side of the telephone keypad, and the node to move from the middle node to the left

node should be on the left side of the telephone keypad. This will make it easier for

listeners to remember the button presses associated with the transitions.

Document contents explicitly state the metaphor

The contents of the document should explicitly describe the metaphor that listeners can

use. For example, in the initial node for playing back a list of event announcements, a

prompt can state that it is a list of announcements. The navigation prompts, too, should

emphasize the external concept. For example, the node that plays back one event

announcement from a list can have an attached prompt of the form, "For the next

announcement, press 9."

3 EXTENSION TO BULLETIN BOARDS

Telephone bulletin boards add two new twists to the concept of audio documents. If a

bulletin board as a whole is considered as a document, then the document does not have a

single author and it changes over time. Even as the contents change, the document should

be scannable. In addition, callers should have the same degree of control over the process

77

of adding new information to telephone bulletin boards as scanning gives them when

listening to information.

3.1 MULTIPLE AUTHORS

Any addition of new nodes and links to a document, then, should retain all the desirable

document properties described above. The new nodes should contain short recordings and

follow the progressive disclosure principle. Some of the added nodes should contain

summary information that helps in selecting other nodes to hear. The nodes should

include orientation cues and prompts for navigation. After the addition of new nodes, the

document should still have regularities, orderings, and metaphors that help listeners

predict the available transitions from nodes.

3.1.1 Aids for Adding

Contributors to a document, however, are not typically human factors experts. Audio

documents can help contributors preserve the desirable properties in four ways, as

described below.

Expandable Structures with Independent Components

To accommodate addition of information by contributors who do not collaborate with

each other, the structures in the document should consist of self-contained components,

such as event announcements. The metaphors for navigating those structures must be

'expandable.' That is, they must have roles with indefinite numbers of instantiations. For

example, lists have an indefinite number of items and trees have indefinite depth.

While navigation metaphors help listeners predict how to navigate, metaphors for

addition should help contributors to add information in such a way that the navigation

metaphors still work. In particular the navigation metaphors should provide predictive

power about where to go to make particular kinds of additions. For example, contributors

78

CHAPTER 3: SKIP AND SCAN

might go to the list header to add a new item to that list, or to an item to add a question

about it.

Input Format Divides Components into Meaningful Segments

To encourage short nodes, the input format should subdivide each independent

component into meaningful segments. Three techniques can accomplish this, each

placing successively more responsibility on the contributor:

Automatic analysis of acoustic structure. The contributor makes a single long

recording. Through analysis of that recording, a computer divides it at

places that appear to be beginnings of new phrases [Hindus and Schmandt

1992].

Predefinedfields. The contributor makes a separate recording for each field.

Author-defined segmentation. Authors explicitly press a button whenever they

think they have completed an idea and are about to begin a new one

[Degen, et al. 1992].

Input Format Encourages Inclusion of Important Information

Unsophisticated contributors may not be aware of information that will help future

listeners to understand their contributions or help the computer to arrange them. Four

features can encourage and aid contributors in this regard:

Reminder prompts. Before recording, the computer can remind contributors to

include certain information. Most people record such a reminder as the

outgoing message on their answering machines. Field names can serve the

same purpose in segmented input.

Initial values. The computer can automatically fill in default values for some

fields, such as the date and time of recording.

Picklists. When only a few alternatives make sense, contributors can select one

from a menu.

79

Validity checks. The computer can reject invalid entries of typed-in values such

as dates and quantities.

Computer Fills in Transitions and Navigation Prompts

The computer can automatically integrate the new component into the existing structures.

Based on the location from which the contributor initiated adding the component, and on

symbolic fields such as typed-in dates, the computer chooses one or more existing

structures and locations to add it, and creates the necessary transitions between the new

component and existing ones. For example, a new event announcement gets added to the

current list, in appropriate position to maintain an ordering by event date, and is also

added to the beginning of a master list of announcements, thus preserving its reverse

chronological ordering by recording time.

In addition, the computer should automatically provide navigation prompts for the

transitions from the component. It can do this by reusing existing prompts for similar

components. For example, the computer might reuse the prompt, "For the next

announcement, press 9."

3.1.2 User Control During Input

The same level of control that scanning provides to listeners should also be available to

contributors during the process of adding new information. First, they should press

buttons to initiate recording. By contrast, most answering machines and voice mail

systems begin recording when the machine is ready, not when the caller is ready. This

often leads to garbled beginnings of messages. Second, contributors should have the

chance to review, re-record, and save or throw away recordings, and control the timing of

all these actions as well.

80

CHAPTER 3: SKIP AND SCAN

3.2 FINDING NEW INFORMATION: CHRONOLOGICAL ORDERING

In a telephone bulletin board, listening and recording are interspersed. The same listener

may call repeatedly, to check for new information. To accommodate such callers, the

document should separate new nodes from old nodes. That is, there should be paths that

connect all the new nodes without going through nodes that have already been heard.

This can be accomplished through chronological ordering. Note that the same

information may appear in several places in a document, so that chronological ordering

can be provided in addition to other arrangements of the information that may intersperse

new and old recordings.

4 BEYOND THE TELEPHONE

4.1 OTHER AUDIO DOCUMENTS

Two projects [Arons 1991b, Muller and Daniel 1990] have explored a network model for

audio documents in which actions are initiated by speech recognition of spoken

utterances rather than by button presses. Muller and Daniel first proposed the concept of a

voice-only hyperdocument with speech navigation. Arons implemented a medium-sized

document (80 nodes, approximately 700 links) and refined some of the user interface

features of it.

When considering the possible value of speech input, command-line interfaces, such as

UNIX and DOS, are a useful analogy. Assume speaker-independent, continuous word

recognition with accuracy and speed at the levels now achieved for recognition of touch-

tones. This would allow hands-free input of text faster than the fastest typists, but

otherwise would have the same characteristics as a command-line interface.

Novice listeners will find it easier to guess phrases than to guess the button presses that

initiate transitions in the document, especially if many synonyms initiate the same links

81

[Furnas 1985, Wixon, et al. 1983]. Still, the document will have to include navigation

prompts that list the available phrases for situations where callers are unable to guess.

Metaphors for thinking about the structure of audio documents will still be helpful.

Instead of having the keypad layout match the spatial aspects of the metaphor, however,

the text strings should draw on the metaphor, for example using the string "more details"

to label a link between a summary node and a node that gives more details. Overall, the

text labels should make it easier for novice listeners to get started and for them to learn

the commands that will let them scan through an audio document. The use of speech

input does not, however, fundamentally alter the interactions that a document should

afford or the document properties that will facilitate such interactions.

For experts, the actual scanning can be accomplished more quickly with button presses

than with spoken input. It takes longer to say, "more details" than it does to press a

button, even assuming a perfect text-to-speech recognizer. Thus, for speed of scanning,

buttons will be better than speech input. Other input devices, such as eye trackers or

direct neural connections, might be even faster.

4.2 KEYHOLE INTERFACES

The central limitation of audio documents is the inability to present several things in

parallel and let the user shift attention without computer aid, as is possible with the

printed page or computer screens. Audio interfaces are not the only ones that suffer from

this limitation. For example, many electronic organizers have LCD screens as small as

two lines by fifteen characters. The use of very large fonts on a full size screen, to aid the

visually impaired [Ladner, et al. 1987] creates the same limitation. Any of these can be

thought of as keyhole interfaces. A small window (a keyhole) moves around over an

otherwise opaque document. A good design strategy for keyhole interfaces is to give

users a lot of control over when and where the keyhole moves and to structure the

document in such a way that readers can predict the available movements and their effect.

82

CHAPTER 3: SKIP AND SCAN

All of the properties described in this chapter as desirable for audio documents are

equally desirable for any keyhole interface.

4.3 BROWSING IN VISUAL HYPERDOCUMENTS

Since audio provides only an ephemeral display, the research reported in this thesis had to

confront the fundamental problem of how to organize information so that users naturally

maintain orientation as they navigate through it. While the availability of large displays

partially obscures this fundamental problem, especially for the fairly small information

spaces used with most current hypermedia systems, the problem is still present. In effect,

any size display can be a keyhole relative to a much larger information space. Many of

the guidelines for information organization derived for audio hyperdocuments apply more

generally to any information space that is much larger than the size of the display used to

browse it.

Larger displays, however, do change the analysis in two ways. First, readers can shift

their eye gaze between information chunks that are displayed simultaneously, reducing

the need for fine-grained computer assisted skips. Second, part of the screen can show

available transitions that will change what is displayed. Much research has gone into

exploiting these two sources of power. Still, however, if the information space is much

larger than will fit in a few displays, readers may get lost in hyperspace [Conklin 1987],

losing a sense of orientation after following a few links [Utting and Yankelovich 1989].

4.3.1 Displaying Lots of Information at Once

With a large display, readers can use eye gaze shifts as well as machine-mediated

changes of attention. To exploit the eye gaze shifts, a hypermedia document can display a

number of related pieces of information simultaneously. This is the idea behind tabletop

cards [Trigg 1988] in the Notecards system. The basic unit of information is the card,

which can be any size, but is usually much smaller than the screen. A tabletop card is a

83

set of cards placed on the screen in particular locations, effectively making the size of a

tabletop card the whole screen. When a tabletop link is followed, the new set of cards is

displayed, and the reader can use eye gaze shifts to scan the contents of the new set of

cards.

Even with a very large display, mechanically mediated (as opposed to eye gaze mediated)

shifts of attention may be needed, for two reasons. First, the information space may be

too large to fit on a single display. Second, the mechanically mediated shifts are not

spatially constrained. While modem typographic conventions convey a lot of information

about relationships among parts of documents through spatial proximity, the number of

relationships may swamp the limitations of space. For example, there is no way to draw

five regions on a page in a way that all of them are contiguous with all four of the others

[Bollobas 1979].

4.3.2 Displaying Memory Aids and Orientation Cues

In audio documents, listeners rely on memory and cognitive processing to know what

links are available, what is in the current node, and what nodes have been visited recently.

A less ephemeral display, such as a screen, can provide visual cues that allow readers to

use perception instead of memory for some of the tasks. Much research has gone into

such visual cues, both to show the context of nodes that have already been visited, and to

show some information about the nodes that are nearby.

Context mechanisms

The first type of memory aid displays the temporal context of which nodes have been

visited and which links traversed. Researchers have explored variants on list displays

[Foss 1988, Utting and Yankelovich 1989, Walker 1987] and tree displays [Foss 1988].

84

CHAPTER 3: SKIP AND SCAN

Visual Maps

Many variants of map displays have been used to alert readers to what links are available

and where they lead. A global graph browser displays all of the nodes in a document and

how they are related [Halasz July 1988, Utting and Yankelovich 1989]. If the nodes are

highly connected, these graphs are not very helpful as the lines connecting nodes cross

too frequently. Several others use 'fish-eye' displays that make the current node the

center of attention [Collier 1987, Furnas 1986, Travers 1989].

For graphs that are purely hierarchical (i.e., trees) a global graph browser can be more

effective, since none of the lines representing links need cross. One alternative display

method for hierarchies is an outline, where the children of a node are listed below that

node, and indented a couple of spaces [Remde, et al. 1987, Walker 1987, Weyer and

Borning 1985]. Another method is spatial inclusion, where the box displaying a node

contains smaller boxes for each of its child nodes [diSessa and Abelson 1986, Feiner

1988, Travers 1989].

Domain-specific maps can also help readers. For example, a display of a cell, a physical

device and its substructure, or a timeline can have embedded buttons [Landow 1989,

Shneiderman 1987]. Readers can keep returning to the domain-specific map to select

links, rather than following links between nodes.

Orientation Cues

Some of the available display space can present explicit orientation cues. Landow

proposed a set of rhetorical rules for authors of visual hypertexts [Landow 1987, Landow

1989] that included the provision of orientation cues at the source and destination nodes

of every link. Since one node may be the destination of several links, however, and the

different links may require different orientation cues at the destination, this can be

difficult to achieve in practice. In addition, as the number of available links grows, an

85

increasing portion of the available display is taken up with orientation cues rather than

information.

4.3.3 The Elements of Style for Visual Hyperdocuments

While these mechanical aids are of some use, they do not address the primary reason for

orientation problems, which is that readers are unable to predict what links will be

available and where they go. The greatest strength of hypertext links is their ability to

connect nodes that are not spatially near each other, but this means that they have the

potential to connect conceptually unrelated nodes. Just as with audio documents, the real

solution to the problems of orientation in hypermedia systems lies in organizing the

information: making the document topology reflect regularities and orderings in the

information space and providing external metaphors to help readers understand the

topology.

Preferred paths

One way to impose organization on the document is for the document designer to suggest

a subset of links that are worth following. This can be accomplished through procedural

path descriptions [Zellweger 1988, Zellweger 1989], through graphical displays of the

subset [Trigg 1988], or through a Petri Net formalism that restricts the availability of

links in different contexts [Furuta and Stotts 1989, Stotts and Furuta 1989]. All of these

methods attempt to aid reader orientation by reducing the number of choices available to

just those that the author thinks will be most valuable to readers. Thus, these approaches

are analogous to the audio document style guideline of hiding prompts for transitions that

novices rarely need.

86

CHAPTER 3: SKIP AND SCAN

Regularities, orderings, and metaphors

This chapter has catalogued the kinds of regularity, ordering, and metaphor that will help

listeners to predict the available links. In visual documents, prediction is less important,

since visual cues can allow readers to recognize available links, perhaps as fast or faster

than they would be able to predict them. Still, the same regularities, orderings, and

metaphors will allow readers to recognize the meaning of the visual cues.

Several researchers have proposed structures that impose regularities on hyperdocuments,

especially lists and hierarchies [Akscyn, et al. 1988, Garzotto, et al. 1991], as well as

metaphors such as stacks [Harvey 1988] and books [Shneiderman, et al. 1991]. This

chapter suggested that even links between structures can and should mirror regularities in

the information space.

Consider how these guidelines might apply to a virtual reality system for browsing the

scientific literature. It could draw on a bookshelf metaphor to present lists of articles.

Several identifiable relations might define a set of links available from each article to a

shelf of other articles that:

. the current one cites (ordered by frequency that other articles cite them);

" cite the current one;

" appear in the same book, journal, or conference proceedings;

" match the current one on keywords or some full-text similarity measure

[Creecy, et al. 1992, Dumais, et al. 1988].

The familiar bookshelf metaphor and the regularities in available links to other

bookshelves will allow readers to focus on the contents of the articles rather than the

navigation mechanisms.

87

5 SUMMARY

Skip and Scan is a slogan for audio documents. Listeners should hear short speech

segments and then press buttons to skip to the beginnings of other speech segments. If the

document is well organized, this behavior can have the same effect as visual scanning of

paper and screen-based documents. That is, listeners can select a small fraction of the

document to listen to, without spending a lot of time selecting the right parts. Audio

documents should also support novice listeners, letting them get a quick start and telling

them what buttons to press while gradually building their skills at navigation so that they,

too, can skip and scan. Finally, in collectively authored audio documents, the document

should help contributors to add information in ways that others will be able to scan, and

contributors should get the same degree of control during the recording process that they

get while listening.

To aid designers of audio documents, this chapter not only identified these desirable

interaction styles, but also identified properties of audio documents that will make such

user behavior possible. Table 3.3 summarizes that translation.

The next chapter presents programming constructs that make it easy to create audio

documents with these properties. Those tools use the form metaphor for addition to help

contributors add information that can be navigated using list metaphors. Other metaphors

are possible, however, such as grids or calendars. The desirable document properties,

then, serve not only to validate the programming tools in the next chapter, but also to

guide the design of any future programming tools for audio documents.

6 CONCLUSION

Digital storage and random access have ushered in a new era in audio. But as a society,

we do not yet have the authoring or listening skills relevant to the new era. These

88

CHAPTER 3: SKIP AND SCAN

Desien Constraint
Small relative
keyhole size

S
Desired Behavior Document ProDerties
Scanning

Hear a small Summary nodes
percentage of Short paths
document
Fast navigation Orientation Cues

Regularities
Same destination nodes for outside transitions
Same kind of information in components
Same relationships between components
Same roles across sets of components

Ordering
Metaphor

Choose a known external concept
External concept highlights the regularities and ordering
Kevad layout matches spatial layout in external concept

Small absolute Fine-grained
keyhole size scanning

Hear a small Small nodes
percentage of One topic per node
document Progressive disclosure

Novice users Quick start; Navigation prompts
Learn to scan Timeout links only between subnodes

Document contents explicitly state the metaphor
multiple independent Add information Expandable structures with independent components
authors without disturbing Input format divides components into meaningful segments

desirable document Input format encourages inclusion of important
properties information

Computer fills in transitions and navigation prompts
authorship over
time; repeat listeners

Find new
information fast

Chronological ordering

Table 3.3 A summary of how design constraints
desirable properties of the documents.

translate into desired listener and author behaviors and then into

guidelines are a first attempt to define the elements of style for audio documents. As

people gain more experience authoring and listening to audio documents, the guidelines

will evolve. Right now, even the best audio document is much harder to scan than a well-

designed visual document. But visual document design has a several thousand year head

start.

Educated people have had years of formal and informal training on how to scan visual

documents but little in scanning audio documents: as a result, it is hard for us even to

have good intuitions about how good audio documents could be, relative to visual

89

documents. It might even be that well-designed random access audio documents will be

more effective communication tools than visual documents. After all, people learn spoken

language at an early age, without formal instruction, while reading and writing require

formal instruction. The guidelines in this chapter represent the first step on a path toward

improving the scanability of audio documents. The end of that path is impossible to

predict with confidence. Perhaps the spoken word will even replace the written word as a

medium for communication of complex ideas.

90

4 HYPERVOICE

Chapter 2 showed that login processes, menus, and lists are helpful abstractions for

designing and describing multi-author audio documents. Chapter 3 argued that menus,

lists, and forms are helpful metaphors for using multi-author audio documents. This

chapter shows that those abstractions are also helpful for programming multi-author

audio documents.

Previous software toolkits for building phone-based applications utilize a state-machine

abstraction. Programmers specify graph nodes, whose contents are application data and

navigation prompts, as well as the allowable transitions between nodes. During a

telephone call, a state-machine interpreter keeps track of the current node and plays the

sounds associated with it, halting playback and transitioning to a new node whenever it

detects a touch-tone. This abstraction layer should already be familiar from Chapter 3: the

Skip and Scan audio document properties were all described as properties of state-

machine representations of documents.

HyperVoice introduces a new, higher-level abstraction layer, called the application layer.

This layer separates data from presentation formats, allowing both to be reused in

modular fashion. A single information object or list of objects can be presented in

multiple ways, using different presentation formats. A single presentation format can

apply to several information objects or lists, and to new objects as contributors add them

over the phone.

The application layer primitives are login procedures, lists (including menus), and forms.

An interpreter generates state-machine layer specifications from application layer

specifications, based on parameters of the primitives that specify:

91

* the selection and ordering of application data;

" aids to entry of application data;

" access restrictions;

" user interface style, including what commands will be available for navigation

and how navigation prompts will be generated.

Automatic generation of state-machine layer programs offers three advantages over direct

specification of state-machine programs:

Faster development. The specification of a particular list, for example, does not

include any of the features that are common to state machine

representations of all lists. This makes programs shorter and reduces

opportunities to introduce errors that will need to be debugged.

Participatory design. Programs are easier for non-programmers to understand

because they use the same abstractions that are useful in informal

descriptions of designs.

Consistent, good user interfaces. Automatic determination of dialogue

sequencing and prompts insures a consistent user interface. Part of the

interface style is built in and style parameters help application

programmers to specify other aspects of the interface style in a way that is

consistent with the Skip and Scan document properties. By contrast, a

program specified directly at the state-machine layer may lack regularities

or mappings to external metaphors. Even worse, a programmer can

accidentally write a prompt that tells the caller to press the wrong button.

With HyperVoice, automatic generation and placement of prompts insures

that they match the available actions.

Any higher-level language makes some programs easier to express while making other

harder or even impossible to express. HyperVoice cannot implement programs based on

other abstractions, such as matrices or, more generally, hypercubes. The parameters of the

list presentations do not even allow all possible presentations based on a list metaphor:

92

CHAPTER 4: HYPERVOICE

for example, the later items in the list cannot be reordered dynamically based on how

long the caller spends listening to earlier items.

On the user interface side, HyperVoice can not generate all the documents that can be

expressed at the state-machine layer. As argued above, this may be beneficial, since it

guides the generation of documents that conform to the Skip and Scan guidelines. But

HyperVoice cannot even generate all the documents that conform to those guidelines. For

example, it can generate the prompt: "For the next announcement, press 9," but not the

prompt, "To hear another announcement, press 9."

The appropriate question, then, is whether HyperVoice is expressive enough to

accommodate the functionality and user interfaces needed for its target domain of

applications. HyperVoice can generate the functionality required for all the applications

in Chapter 2, as summarized in Table 2.9, through parameters that exploit the structure

of information objects, especially non-voice fields. HyperVoice also provides enough

flexibility to specify user interfaces, both dialogue sequencing and prompts, that are

tailored to those applications.

This chapter begins with an overview of the HyperVoice application layer language. It

also includes one section each on the language features that determine the selection and

arrangement of information, aids to entry of information, access restrictions, and the user

interface style. Appendix A is a programmer's manual for the HyperVoice language. It

systematically describes the parameters of each of the language primitives and their

intended semantics.

1 LANGUAGE OVERVIEW

HyperVoice assumes the following dialogue structure for all applications:

* A login procedure determines the initial list presentation for each caller.

93

" The caller navigates through the items in a list and selects one in order to jump

to a related list.

" From some locations in some lists, the caller can initiate the addition of a new

object, which the caller edits using a telephone form.

" Callers with enough privileges can initiate special commands, such as cutting

and pasting items between lists.

Table 4.1 and Figure 4.2 provide overviews of the primitives that are used to specify

HyperVoice programs. The table summarizes the function of each of the primitives while

the diagram emphasizes the relations between them. The arrows in the diagram indicate

when an instance of one primitive can contain a pointer to an instance of another

primitive.

A HyperVoice program begins with a Login primitive. It determines the initial greeting

that callers will hear and whether or not they have to login in order to access the system.

Primitive Description
Login Process Specifies the login procedure necessary to access an application.
User Has fields for a recorded name, an id number, a password, and the 'privileges'

that should be accorded to a particular user.
List Jump Specifies special digit sequence a caller with appropriate privileges can press

to jump to a particular list.

List Presentation Pairs a List with a List Format to specify the presentation of one list of
objects.

List A list of objects.
List Format Specifies how to play back the contents of a list, including how to filter and

sort it, and how new objects can be added.
Filter Selects a subset of a list to be presented.
Validity Check A predicate on the contents of a field. Used in Filters and Field Edit Formats.
Sort Ordering Specifies the order in which to present objects from a List.
Item Format Specifies which fields of one object to play and in what order.
Field Format Specifies how to play back one field.
Select Action Used as part of an Item Format to specify what action to take when an object

is selected from a list.
List Action Specifies how new items can be added.
Extension Format Specifies what kind of object will be added and where it will be added.
Edit Format As part of an Extension Format, specifies a telephone form for editing a new

object.
Field Edit Format Specifies how to present one field in a telephone form.

Table 4.1 The primitives of the HyperVoice language.

94

CHAPTER 4: HYPERVOICE

It also determines the root List Presentation and initial privileges, plus any List Jumps

that will be available through special commands.

A List Presentation pairs a List with a List Format, which separates the application data

(a List) from the presentation format (the List Format). Much as skilled procedural

Login

List
Jump

User -

Lst 0 Lst

Field
- Order

Format

- Filter Validit

List
FormatFil

List Extension Edit Edit
Action Format Format Format

SField
Format

Format
Select
Action

Figure 4.2 The relations between language primitives.

95

programmers create reusable procedures, a skilled HyperVoice programmer finds ways to

reuse Lists and their component objects, as well as List Formats and their component

presentation formats. Reuse of a List, for example, by selecting different subsets or

ordering them differently, makes it easy to add an object to the list and have the change

affect several list presentations. Reuse of List Formats allows callers to create new lists

without creating new List Formats, which would be tedious to do by phone.

Menus are special cases of List Presentations. The List Format primitive includes a

parameter that indicates whether selections can be made. When selection is permitted, the

List Presentation becomes a menu. In the typical case of navigation menus, the selected

object determines the next List Presentation. Below I will also discuss picklist menus,

which return the selected object as a value.

A List Format can include one or more List Actions that specify when callers can initiate

addition of new objects. A List Action contains an Extension Format that determines the

type of the new object and the lists to which it will be added. An Extension Format in

turn contains an Edit Format that specifies features of the telephone form for editing the

new object.

When presenting any list of objects, HyperVoice provides cut and paste operations. The

cut operation removes the current object from the current list. The paste operation adds

the last cut object to the current location in the current list. This can be used, for example,

to manually sort a list or to throw out objects that are no longer relevant. Access to the cut

and paste operations may be restricted through access privileges, as will be discussed in

the section below on access restriction.

The HyperVoice language uses an object-oriented data model for application data. Object

classes determine the fields of which messages are composed. The database handles five

data types: recording, text, date, integer, and pointer to another object. Programmers can

96

CHAPTER 4: HYPERVOICE

create new object classes that reflect the natural structure of the messages to be posted in

particular applications. For example, the Event Announcement object class has eight

fields: headline, event date, time, location, contact number, details, date added, and

category.

All of the HyperVoice primitives are implemented as instances of pre-defined classes in

the same object system that is used to store application data. In addition to

implementation convenience, this allows some kinds of maintenance programming

operations to be performed by telephone, using the same features used to input and edit

application data. Currently, developers fill out forms in the OVAL system [Lai, et al.

1988] to specify applications. These objects are then written to a database and loaded into

HyperVoice. In some future version of HyperVoice, it may even be possible to specify

applications completely by phone.

2 SELECTING AND ARRANGING APPLICATION DATA

The breakup of recorded messages into several separate fields provides hooks for

specifying different selections and arrangements of information. List Formats use the

contents of non-voice fields of the objects to specify the selection and order of objects in

a list presentation. Item Formats and Edit Formats select and order the playback of fields

from individual objects.

2.1 SELECTING AND ORDERING OBJECTS

A Filter, as part of a List Format, determines a predicate on objects. When presenting a

List, only objects that satisfy the predicate are presented. For example, a filter on a typed-

in 'event date' field can filter out announcements of events that have already passed.

Filters can express predicates that are boolean combinations of restrictions on the values

in single fields. Thus, a filter can restrict the values in two different fields independently,

but cannot restrict the value in one field to be less than the value in another field.

97

Filters on fields that contain pointers to other objects can be especially valuable in

expressing complex selection operations. For example, in the project management

application described in chapter 2, someone could hear all of the status reports related to

tasks for which he was responsible. To accomplish this, status reports, tasks, and people

are three separate object classes. Each status report object contains a field with a pointer

to a task object. Each task object has a field that contains pointers to one or more person

objects. The apparently complex filter, then, can simply follow those pointers to

determine if a particular status report is about a task for which a particular person is

responsible. Without explicit modeling of the relationships between the three types of

information objects, through pointers between the objects, this kind of filter would not be

possible.

Field Order Formats, as part of a List Format, determine the order in which to present the

selected objects. Each Field Order Format specifies a field of the objects to compare, and

whether the objects should be sorted in ascending or descending order. For example, the

specification ['event date' ascending] would cause an announcement of tomorrow's

event to precede an announcement of next week's event. When more than one Field

Order Format is specified, the second breaks ties in the ordering specified by the first, the

third breaks ties in the ordering specified by the first two, and so on.

2.2 SELECTING AND ORDERING FIELDS

Item Formats include parameters that specify which fields of objects to play back, and in

which order. This allows different fields and different field orderings in different

contexts. For example, in the teachers' curriculum line application, question objects

included a field for the lesson plan with which they were associated. This field was only

of interest to the head teacher, who accessed all the questions through a single master list.

When other teachers accessed questions by selecting a particular lesson plan, the 'Lesson

Plan' field was not played back.

98

CHAPTER 4: HYPERVOICE

Similarly, it may be appropriate to hide some fields in forms. This is especially helpful

when an initial value generator (discussed below) fills in a value automatically that will

be needed for filtering or sorting purposes, but which callers need not edit or even know

about. Field Edit Formats have a parameter for whether to include fields in the form.

3 AIDS TO INFORMATION ENTRY

The operations for selecting and sorting objects work only when the objects have been

added to the appropriate lists and when they have non-voice fields with correct values

filled in. The programmer can structure the information entry process to facilitate that.

3.1 SELECTION OF LIST(S) TO ADD TO

Two parameters of the Extension Format specify which lists new objects will be added to.

Typically, new objects are added to the current list, but they can be added to other lists

instead. New objects can even be added automatically to more than one list. This is how,

for example, new questions in the teachers' curriculum line are added to both the list of

questions for the current lesson and to the master list of questions that the head teacher

accesses.

3.2 INITIAL VALUES, PICKLISTS, AND VALIDITY CHECKS

Three language features help contributors to fill in meaningful values in fields that will

later be used for sorting and filtering operations. First, Field Edit Format primitives can

specify initial values for the contents of particular fields. These can either be actual

values, or specifications of how to generate values at run time. There are specifications

for filling in today's date, for filling in a pointer to the User object for the person who

logged in at the beginning of the call, and for filling in a pointer to the current list of

objects. In addition, the initial value can be specified by an Extension Format primitive

99

that creates a new object to link into the field and fills in some of the linked object's

fields.

One advantage of treating the language primitives as objects is that an existing List

Format can be specified as the initial value for a new List Presentation. For example, the

creation of a new event category is accomplished by adding a new List Presentation to the

menu of categories. The initial value specifier for its 'list' field causes a new List to be

created. The initial value for the 'list format' field specifies an existing List Format to

use.

Validity checks restrict the values that will be accepted into a field. For example, in an

event calendar application, a validity check on the 'event date' field would reject values

that cannot be interpreted as dates and reject dates that have already passed.

A picklist allows callers to set a field to contain a pointer to another object, selected from

a predetermined lists of objects. A picklist is just a List Presentation that has two

important characteristics. First, the List Format indicates that selections are allowed from

the list. Second, the Item Format primitives that specify how to play back particular

objects from the list contain a parameter that indicates what action to take when the

object is selected. For picklists, the appropriate action is to return the object as a value.

The value returned from a picklist selection is then added to the field that is being edited.

4 ACCESS RESTRICTIONS

Several language constructs allow the programmer to restrict access to certain actions and

List Presentations. During a registration procedure, a caller enters a user id and a

password that pick out a User object from a predetermined list. That User object

determines an initial privilege level (none, regular, or super), and an initial List

Presentation. If no login is required, all callers get the same initial privilege level.

100

CHAPTER 4: HYPERVOICE

Some actions, such as the List Actions that add new objects and the List Jumps described

below, require a minimum privilege level. Callers who know a special code can enter it

during a call to increase the initial privilege level (analogous to becoming a super user on

a UNIX system).

The initial List Presentation determines what other List Presentations will be accessible.

Some callers can start places that have access paths to fewer List Presentations. A second

way to restrict access to some List Presentations is to make them accessible only through

List Jumps. While most navigation during a phone call involves a move from hearing one

information object to hearing a related list of objects, the List Jumps determine jumps to

unrelated lists that will be available from anywhere in the information space. Thus, while

most of HyperVoice adopts a navigation metaphor, List Jumps introduce a form of direct

addressing, with users entering an unprompted code that determines the address. If the

programmer sets a high minimum privilege level for a List Jump, this will restrict access

to the destination List Presentation.

Note that the initial privilege level and List Presentation assigned to each user can be

changed by phone, since they are just fields of the User object. It is even possible to add

or remove new User objects over the phone. The teachers' curriculum line used this

facility.

5 USER INTERFACE STYLE

In generating state-machine specifications from application layer specifications, the

HyperVoice application interpreter determines many user interface details. These include

the commands available for navigation, the mapping of those commands to buttons, and

the text of orientation and navigation prompts. Some of these decisions are built into the

application interpreter; others are under programmer control. This section begins with the

built-in features of the mappings from List Presentations and Edit Formats to state-

101

machine programs, then proceeds to describe the effects of various interface style

parameters on those mappings.

5.1 BUILT-IN STYLE

5.1.1 List Presentations

A single List Presentation object generates a whole structure at the state-machine layer.

To a first approximation, there is one component for each object that passes the filter

specified in the List Format, plus a header component and a footer component. The caller

begins by hearing the list header, and then uses forward and backward buttons to move

between objects in the list. Figure 4.3 illustrates this first approximation of how a list of

three event announcements would be presented.

In Figure 4.3 and others that follow, words rather than numbers label the transitions

between components. As will be described below, the interpreter looks up the mapping of

word labels to telephone buttons in a table. In all of the field trials of prototypes, the next

object and previous object commands were mapped to 9 and 7. Boxes in the diagrams

inherit links from the outside in; the inner boxes are subcomponents. That is, any link

return

escape

Very special n o Lecture by 0 Earth Day no Community n 0 That's
events. 3 Jesse concert... discussion - the end
announcement Jackson... on crime of the
are in the list... Po po po Po list.

add

execute [New Announcement]

Figure 4.3 The initial expansion of a List Presentation object into a state-machine program. no = next object; po =
previous object.

102

CHAPTER 4: HYPERVOICE

emanating from an enclosing box is available from any of the nodes inside it. For

example, the caller can press escape from anywhere in the list to return to the previous

list that was presented, or press add from anywhere in the list to start the addition of a

new announcement.

5.1.2 Object Substructure and Navigation Help

Figure 4.3 is just a first-order

approximation of the actual state-

machine graph that is generated.

Actually, the component for each

object is subdivided into one node for

each field. As described above, the

Item Format determines which fields

to include, and in what order. In

addition, each component, including

the header node, has attached one or

more prompt nodes that indicate the

available commands from that

component.

Figure 4.4 illustrates the subdivision

of one of the event announcement

components from the previous figure.

There are several transitions available

between subnodes. The next field

and previous field commands skip

back and forth between fields. The

commands command goes to the

"Earth "For the next

cDay announcement,
concert" press...

pf nf, sff, t c, sff, t

* April 7, For the
1991 previous

announcement,
press..."

pf nf, sff, t c, sff, t

"10:00 AM to "To add a new
5:00 PM" announcement,

press..."

pf n f, sff, t c, smf t

1 Location" c "If you're done

"The Hatch with this list of

Shell." t announcements,
"|s f press..."

pf nf, sff, t

"Contact pf
number:"
876-5432

pf nf, sff, tI

"Details:"

L---------------------

Figure 4.4 The substructure of one event announcement. nf = next
field; pf = previous field; c = commands; t = timeout; sff = smart
fast forward.

103

.- tsave - _tscape
"This is a form
for adding a new
announcement."

pe ne

"Headline" add value

del valu

pe ne

"Dates" add value

del valu

pe ne

"Time" add value

del valu

pe ne

"Location:" add alu

del valu

pe ne

nountcet. add value

number:"
del valu

pe ne

add value
"Details:"

del valu

pe ne

"That the end
of the
form..."

Figure 4.5 A telephone form graph for a new
event announcement. pe = previous entry
blank; ne = next entry blank.

prompts for available commands and then skips

through them. In addition, smart fast forward and

timeout transitions skip through all of the nodes in

linear sequence. Thus, if a caller simply waits, all of

the fields will be played back in order, followed by

all of the command prompts.

5.1.3 Telephone Forms

While listening to the announcements, a caller can

press add to initiate execution of an List Action. The

interpreter creates a new object of type Event

Announcement and uses the Field Edit Formats to

determine any initial values for fields. Then, it

creates a telephone form, which is a subgraph for

editing the object, and calls that subgraph. The

subgraph has one component for each field of the

object that the Field Edit Formats say to include in

the form, plus a header and a footer, as shown in

Figure 4.5. Of course, the components in the

diagram have substructure analogous to the

substructure given for list nodes above in Figure 4.4,

with prompt nodes attached to each of the entry

blank nodes.

104

CHAPTER 4: HYPERVOICE

5.2 STYLE PARAMETERS

A number of characteristics of the graphs generated are under programmer control. These

include the mapping of commands to buttons, the advancement and selection mechanisms

for menus, the generation of orientation cues and the generation of navigation prompts.

5.2.1 Command Mapping

As mentioned above, a global lookup table defines the mapping between commands and

prompts. HyperVoice uses this table both to determine the buttons with which to label

transitions between nodes and to determine the text of prompts for those transitions, thus

ensuring consistency between the two. Table 4.6 shows a typical mapping. Notice that

Command name
Global

rewind
pause
smart fast forward
commands
escape

enter special commands

In Lists
next object
previous object
next field
previous field
select

add object
In Forms

next entry blank
previous entry blank
delete value
add/replace value
append value

save form
cancel form

Miscellaneous
confirm
delimiter

Button Description of command

5
8

0
*

00

9
7
6
4
2

1

6
4
3
1
2

9
*

1

Rewind by 5 seconds.
Stop playing (any button restarts).
Immediately execute the next timeout transition.
Go to the prompts for available commands.
Cancel data entry, go back to previous list presentation, hangup

from top level.
Begin entry of special commands for List Jumps, cut, paste. 00

means press 0 twice with less than a half second between
presses.

Go to the beginning of the next object in the list.
Go to the beginning of the previous object in the list.
Go to the next field of the current object.
Go to the previous field of the current object.
Either return the current object as a value (in picklists) or go to

the list presentation associated with the current object.
Add a new object, usually to the current list.

Go to the next entry blank in the form.
Go back to the previous entry blank in the form.
Delete the last value entered in the current entry blank.
Replace all the values entered in the current entry blank.
Add a new value or append to the recording in the current entry

blank.
Save the contents of the entry blanks and exit the form.
Throw away the contents of the entry blanks and exit the form.

Confirm a save form, cancel form, or hangup operation.
End keypad input of variable length data.

Table 4.6 A typical mapping of commands to buttons.

105

previous object maps to 7, which is to the left of 9, the button that next object maps to.

This keypad layout emphasizes the spatial metaphor of a list. Also notice that the table

makes it easy to identify commands that share the same button. For example, the next

field and next entry blank commands both map to the same button. The programmer can

disable commands by assigning them to negative number buttons.

5.2.2 Menu Styles

List Formats include two parameters that determine the menu style. All menu styles allow

callers to hear prompts for a number of options and select one of them. The styles differ

in how callers advance through hearing the prompts, and in how they select options.

There are three mechanisms for advancing through the prompts: waiting, pressing buttons

(skipping), or both. There are also two mechanisms for making selections: numeric and

positional. These two independent dimensions define a two-by-three matrix of potential

menu styles, shown in Figure 4.7.

For example, the standard numbered menu style requires callers to wait through the

recitation of prompts early in the menu in order to hear the prompts later in the menu.

How to Select

How to
advance

Figure 4.7 A matrix of menu styles. The bottom two rows are Skip and Scan styles since they
permit callers to skip through the options at their own pace.

106

Numeric Positional

Wait Standard Timed 1-button

Skip Stepped numeric 3-button

Both Combined Timed 3-button

CHAPTER 4: HYPERVOICE

/ 1 2
Select Select
prmdtio equipment

purchasing
or leasing

3

Select
technical
support

Figure 4.8 The standard menu style, with timeouts to advance and numeric selection.

Standard menus employ numeric selection: a caller can select an option by pressing the

number associated with it, even if that option is not currently playing. Figure 4.8 shows a

state-machine representation of this menu style.

The combined menu style allows but does not require callers to wait through the

recitation of the prompts. They also have the option of pressing the smart fast forward

button to skip through the options more quickly. Figure 4.9 shows a state-machine

representation of this menu style.

Welcome to the If you want For equipment
ABC Corp's product purchasing and
automated information, press S lessing, press 2. s
assistant. You 1.To skip to the t t
can intterupt and next option at any
skip any time, press pound.
prompt...

0(1
Select
product
information

2

Select
equipment
purchasing
or leasing

3

Select
technical
support

Figure 4.9 The combined menu style, with both timeouts and smart fast forward to advance between
objects, and numeric selection.

107

Welcome to the If you want For equipment
ABC Corp's product purchasing and
automated information, lessing, press 2.
assistant. press 1.

Welcome to the Product Equipment
ABC Corp's information. To purchasing or
automated select this leasing. To
assistant. To option, press 1. select this 00
hear the first For the next option, press 1.
option, press 3. option, press 3. For the previous

option...

selec Select select Select
roduct equipment

information purchasing
or leasing

Figure 4.10 The 3-button menu style, with buttons to move between prompts and positional selection.

The 3-button menu style follows the structure of Figures 4.3 and 4.4, but switches to

positional selection. Positional selection lets callers select only the current option, in

contrast to numeric selection which allows callers to select any option while listening to

any other option. This style also requires callers to press buttons to advance through the

prompts, by pressing next object; no timeout transitions are available.

In addition to the three styles shown above, HyperVoice will generate the stepped

numeric style, which requires button presses to advance but still uses numeric selection. It

removes the timeout transitions from Figure 4.9.

HyperVoice does not generate the two other positional selection styles because they

introduce timing problems that will make them confusing to use. For example, the timed

1-button style has callers wait until they hear the option that interests them, then press

select. It offers the simplicity of using only one button. If, however, a caller makes a

selection right around the time that the system finishes playing one option and transitions

to playing the next option, the caller may expect to select one option but the system may

misinterpret it as a selection of the other. Any setting of the boundary between options

will be arbitrary and sometimes result in mistaken selections. These styles violate the

108

CHAPTER 4: HYPERVOICE

Skip and Scan guideline of timeout transitions only between subnodes discussed in

Chapter 3, Section 2.2.2.

Of the four styles that HyperVoice generates, different ones may be appropriate

depending on the experience levels of callers, the size of the application, and the length of

the prompts. Chapter 5 discusses the relative merits of the menu styles in detail, and

presents results from laboratory experiments comparing the standard, 3-button, and

combined styles.

5.2.3 Orientation Cues

As discussed in the previous chapter, orientation cues help callers keep track of their

locations in documents, but take time away from listening to the contents of the

documents. Because there is no general solution to this tradeoff, HyperVoice includes

some parameters that allow programmers to choose whether to include orientation cues in

particular situations.

Field Names

Field names are one optional orientation cue in presenting the contents of an object. An

Item Format includes Field Formats that specify which fields to include and in which

order. Each Field Format also includes a parameter that specifies whether to play the

field's name before playing its contents. The programmer can skip the field names for

fields, either because the restricted ways they can be accessed naturally prepare listeners

for the contents (e.g., the headline of an event announcement is almost always heard

directly after the caller executes the next object command, so callers will expect to hear a

headline) or because the contents are self-orienting (the date field of an event

announcement).

109

Item count

Each list header includes an optional statement of how many items are in the list. The

programmer specifies whether to include this information through a parameter of the List

Format.

Return from list

When a caller returns from a list (by executing the escape command), the system can

either return to the beginning of the last list, or to the last object visited in that list. In the

latter case, the caller first hears an orientation node that says the current position in the

list (e.g., "returning to item <n> in") and then the header prompt for the list. The

programmer specifies as a parameter of the Select Action for the object whether to return

to the beginning of the list or to the current item.

5.2.4 Prompt generation

The programmer can tailor many of the prompts for commands to reflect the contents of

the information being presented. Some of the tailoring requires entry of whole sentences,

while in other cases the programmer specifies a single word that a pre-processor uses to

generate complete instructions.

List navigation prompts

The List Format includes a parameter 'Name for Items' that generates several prompts for

navigating through a list. Suppose that the programmer sets this parameter to the text,

"announcement". One prompt becomes, "For the next announcement, press 9." Another

becomes, "For the previous announcement, press 7." "To go back to the last

announcement, press 7," plays after the list footer. A fourth becomes, "To add a new

announcement, press 1." Note how these phrases encourage callers to think in terms of

110

CHAPTER 4: HYPERVOICE

actions on a list of event announcements, the external metaphor, rather than in terms of

state-machine layer actions.

In the List Format for a 3-button style navigation menu, the 'Name for Items' would be,

"option". This would generate navigation prompts like, "For the next option, press 9"

and "For the previous option, press 7." Again, notice how these prompts encourage

callers to think in terms of the metaphor of a menu of options.

Selection prompts

There are three kinds of selectable lists, requiring different prompts for selection. One

kind is the picklist, used in telephone forms, which treats any list of objects as a set to

select from. The second is the navigation menu, a list of List Presentations, which allows

a caller to choose which List Presentation to visit next. The selection prompt for both

these types of menus is, "To select this <Name for items>, press <n>" In the case of

navigation menus, for example, where the 'Name for items' field is set to, "option", the

prompt would be, "To select this option, press <n>" The number <n> is also determined

automatically. With positional selection, it is the button for the select command. With

numeric selection, it is the position of the option in the list.

The final kind of selectable list occurs with objects whose fields contain pointers to other,

related List Presentations. Selection of an object causes navigation to its linked List

Presentation. For example, in the teachers' curriculum line application, each lesson plan

contained a pointer to a List Presentation for questions about the lesson. This kind of

selection benefits from a prompt that explains the nature of the relationship between the

selected object and the destination List Presentation. In the curriculum line example, it

would be, "For questions about this lesson plan, press <select>." To generate this

selection prompt, the programmer enters the phrase, "questions about" as a parameter in

the Select Action object.

ill

List header prompt

Each List Presentation includes 'title' and 'description' prompts. These are used to

generate the contents of the header node. Response lists, however, are created

automatically without asking a caller to record the 'title' and 'description' prompts. In

that case, HyperVoice generates the contents of the header node from the 'Response

List?' parameter of the List Format. In the list header node, the interpreter includes the

text from the 'Response List?' field, followed by the contents of a headline field from the

object that the list contains responses to. For example, in the opinion forum applications,

when a caller selects the responses to a comment, the header says, "Responses to" and

then plays the headline of the original comment.

Form header prompt

The header node for a form begins with the prompt, "This is a form for adding a new

<type name>. Think of it like a paper form, but instead of writing the information in entry

blanks, you'll record it or enter it using the buttons on your telephone." In this prompt,

the name of the object type being edited is substituted for <type name>. After this initial

prompt, the form header plays an optional prompt that the programmer specifies in full as

part of the Edit Format.

Field names and descriptions informs

Each entry blank in a form begins by playing the field name, which is programmer

specified. If the field is currently empty, then the entry blank node also contains an

optional 'field description' prompt that the programmer specifies as part of a Field Edit

Format. Pilot testing of different field description prompts suggests that a descriptive

prompt is better than a prescriptive one. For example, a good descriptive prompt would

be, "This field should contain a typed-in date indicating when the event will occur." A

prescriptive prompt might be, "Please type in the date on which the event will occur."

112

CHAPTER 4: HYPERVOICE

The apparent trouble with the prescriptive style is that it suggests that entry of a date is

required and that the caller can begin to type in the date right away. In fact, the caller has

to press the append value button first to indicate that he or she wishes to enter the date

rather than skipping over that entry blank.

5.3 CONFORMITY TO SKIP AND SCAN DOCUMENT PROPERTIES

Generation of a Skip and Scan audio document is a partnership between HyperVoice, the

application programmer, and the contributors who enter information over the phone. The

HyperVoice interpreter generates network topologies that automatically satisfy many of

the Skip and Scan requirements. Other topology and node properties require the

programmer to make wise choices. Both the system and the application programmer

make it easier for callers to add information in ways that conform to the Skip and Scan

document properties, but some responsibility still rests on the information contributor.

Below I review the document properties and the distribution of responsibility for

satisfying each.

5.3.1 Hearing a Small Portion

One topic per node. HyperVoice automatically creates one node for each field

during playback. It is up to the programmer to design object types that

contain just one topic per field, and up to contributors to follow fill in fields

with the appropriate information.

Summary nodes. The list header nodes summarize what the caller can expect to

hear in the list. Typically, the prompts for list headers are either written by

the application designer, or generated automatically based on the

'Response List?' parameter of the List Format. It is also the responsibility

of the application programmer to include a field in each object type that

will contain enough summary information to allow listeners to decide

whether to hear the rest of the object.

113

Orientation cues. Because of the network topologies that HyperVoice generates,

some of the nodes will be self-orienting, such as the beginning of a new

event announcement. The application programmer can also specify several

parameters, as described above, that determine whether to include certain

orientation cues, and how to generate the orientation prompt in the form

header.

Progressive Disclosure. Contributors are entirely responsible for ensuring

progressive disclosure within each recording that they make.

5.3.2 Fast Navigation

Regularities, Metaphors and Orderings. HyperVoice always generates list and

form structures that have identifiable roles (e.g., header, item, footer).

HyperVoice provides high level primitives that make it easy for the

programmer to express orderings. The programmer is responsible for some

aspects of the prompts and for choosing a mapping of commands to buttons

that emphasizes the spatial aspects of the list and form metaphors.

Short paths to frequently accessed nodes. The application programmer is

responsible for arranging objects into list presentations, with appropriate

links from objects to other list presentations, so that there will be short

paths to frequently accessed nodes.

Timeout transitions only between subnodes. HyperVoice generates timeout

transitions in only two places, and both satisfy the rule of using them only

between subnodes of a virtual node. Timeout links advance between nodes

for the fields of an object, but these are subnodes in the sense defined in the

previous chapter: the available commands do not change between fields.

Similarly, timeout links advance between the navigation prompt nodes, but

these, too, are subnodes of the overall information node.

Adding Information. HyperVoice regenerates state-machine representations

when contributors add new information. It automatically fills in links and

reuses navigation prompts from the list presentation to which a new object

is added. Programmers specify where to add new objects based on the

contributors' locations when they initiated entry.

114

CHAPTER 4: HYPERVOICE

Explicit actions to record, review, and save. The form graphs that the

HyperVoice interpreter generates all satisfy this property. Callers can press

next object to skip over any entry blank that they do not wish to fill in.

Adding new values, and in particular recording, are never initiated with

timeout links.

New nodes separatedfrom old nodes. The application developer specifies where

new nodes will be added. Unfortunately, HyperVoice does not give the

programmer much to work with, providing metaphors that either allow

chronological access to data, or access data by semantic relationships such

as response links, but not a mixture of both.

6 LIMITATIONS AND FUTURE RESEARCH

While the HyperVoice language is expressive enough to implement a wide range of

cooperative work applications, several limitations have become apparent, both in the

functionality it provides and the interfaces it generates.

6.1 AD HOC QUERIES

While the sorting, filtering, and item presentation formats can generate multiple

presentations of a set of information objects, the presentation formats have to be pre-

defined. It would be nice to allow a caller to specify at run-time ad hoc queries and ad

hoc arrangements of the information in lists. Telephone forms may provide a good

starting point for exploration of how callers can specify those queries.

6.2 TEXT FIELDS

HyperVoice does not include text as a data type. Although they are cumbersome, there

are several techniques for entering text over the phone [Detweiler, et al. 1990, Fast and

Ballantine 1988, Marics 1990]. A text-to-speech synthesizer could play back the contents

to other callers.

115

6.3 CONTRIBUTOR-DEFINED AND MACHINE-GENERATED

SEGMENTATION

HyperVoice developers always pre-define the structure of information objects.

Contributors cannot add additional structure that listeners can then use as a basis for

navigation. Often, however, this facility would be useful, since contributors may be able

to structure messages even when designers were unable to predict that structure in

advance. One simple approach that researchers are already experimenting with is to

provide segment markers that contributors can insert by pressing a button while recording

[Degen, et al. 1992]. Computer analysis of a long recording may also yield useful

segmentation automatically, based on pauses or on changes of speaker [Hindus and

Schmandt 1992]. Then, listeners can press buttons to jump between contributor-defined

segments instead of between pre-defined fields of objects.

6.4 NEW PRESENTATION METAPHORS

The List Format is good at presenting information as lists of objects with links between

some objects and other lists. While this metaphor is flexible enough to accommodate

what would visually be presented as lists, as calendars, and as networks, there is at least

one other presentation metaphor that would be useful, and probably others. The obvious

one is the matrix, or grid. To use a grid metaphor, the underlying data may be a grid, or it

may be a list with a crosstab function defining the rows and columns of the matrix. That

is, the row values are all the different values that appear in one of the fields of the objects,

and the column values are all the different values that appear in another of the fields. For

example, in a meeting scheduling application, there might be a list of responses that

various people made to several suggested meeting times. In a matrix presentation of these

objects, there would be one row for each person who had responded to any suggested

116

CHAPTER 4: HYPERVOICE

time, and one column for each suggested time that anyone responded to. Each cell would

present one person's response to one time suggestion.

6.5 ABSTRACTION MECHANISM

The HyperVoice language needs an abstraction mechanism. After writing several

programs I found it convenient to define two macros, for menus and for creating response

lists, which are presented in Appendix A. There is currently no way to create new macros

in the language without revising the interpreter.

6.6 MIXING CHRONOLOGICAL AND CONTENT ACCESS

As described above, HyperVoice does not provide the application programmer much

assistance in separating the new nodes from the old ones. Master lists that allow system

administrators to have chronological access to the information objects may be the seed of

a more general solution. This general solution would allow all callers to easily switch

back and forth between chronological access and more content-related access.

7 RELATED RESEARCH

7.1 TELEPHONE TOOLKITS

Previous researchers have used variants of the state-machine abstraction layer to specify

telephone-based interfaces. None of these systems, however, attempted to generate state-

machine programs from higher-level specifications.

The first published toolkit for telephone applications that uses a graph representation

[Richards, et al. 1986] was developed at IBM as part of the Olympic Messaging System

project [Gould, et al. 1987]. Several commercial toolkits (TFLEX [Magnum 1990] and

PhonePRO for the MAC, TRT and others for the PC) take the graph language as their

basis, though they all use slightly different terminology. Some of the toolkits take

117

advantage of visual representations of graphs and provide direct manipulation tools for

modifying them (TFLEX and PhonePRO).

One research project has explored the use of grid-based spatial conventions in addition to

explicit lines between graph nodes in visual representations of programs [Repenning and

Sumner 1992, Sumner, et al. 1991]. For example, if the boxes for two graph nodes are

arranged horizontally and share an edge, there is an implicit timeout link from the left

node to the right node. Similarly if the boxes for several nodes are arranged vertically,

they are the possible destinations of the links from another graph node. These

conventions make the two-dimensional representations of state-machine programs easier

to understand visually.

7.2 APPLICATION LAYER LANGUAGE

Other researchers have identified semi-structured objects and presentation formats as

useful abstractions for specifying visual information sharing applications. The OVAL

system [Lai, et al. 1988, Malone, et al. 1988, Malone, et al. 1992] includes screen-based

tools that allow end-users to specify applications in terms of these abstractions. For

example, end-users can request that a list of objects be presented in a tabular view and

can make menu selections that specify how to sort them and which fields of each object

to display.

HyperVoice makes several improvements on the specification language used for OVAL

applications. First, OVAL has only two data types, pointers and strings, with a limited

ability to interpret strings as dates. HyperVoice includes dates and numbers as data types,

which allows sorting and filtering operations to use comparison operators that are

appropriate for those data types (for numbers, 2 < 10, but for strings, "2" > "10").

Second, OVAL does not reify presentation formats as separate objects. Thus, two lists of

objects cannot share the same presentation format nor can one list use more than one

118

CHAPTER 4: HYPERVOICE

presentation format at a time. Finally, OVAL specifications for editing new objects do

not include validity checks on new values and are much more limited in their

specification of initial values. For example, OVAL tools do not allow the automatic

creation of embedded objects, objects that point to other newly created objects.

In addition, OVAL specifies filtering operations more flexibly but less elegantly than

HyperVoice. OVAL does not include filters in specifications of presentation formats:

instead, agents perform filtering operations to generate new lists of data that are subsets

of existing lists. This adds additional flexibility. For example, two agents can add subsets

of several lists to a single destination list. When the additional flexibility is not needed,

however, it adds unnecessary complications. It may be difficult to tell that an agent is

performing a simple filter operation rather than some more complex operation, which

makes programs more difficult to understand and to debug.

7.3 AUTOMATIC GENERATION OF SCREEN INTERFACES

The OVAL system automatically generates several kinds of screen presentations of lists

of information objects, including forms, tables, matrices, networks, and calendars. In all

these cases, users specify only a few parameters, such as which fields to include. The

system automatically chooses the widgets to use in presenting the information and how to

lay out those widgets on the screen. For example, consider the 'form' view of a single

object. OVAL places the field names on the left-hand side of a window and places the

fields' contents on the right-hand side. When a field has a list of alternative values,

OVAL automatically attaches to the field name text a pull-down menu containing those

values. All of the widget selection and layout decisions are made at run time to

accommodate changing data objects and to allow users to dynamically specify the way

they want to view information.

119

Several other recent systems also automatically translate semi-structured application data

into interactive screen displays [de Baar, et al. 1992, Hayes, et al. 1985, Johnson 1992,

Kim and Foley 1990, Olsen 1989, Olsen, et al. 1992, Szekely 1990, Szekely, et al. 1992,

Vander Zanden and Myers 1990, Wiecha and Boies 1990]. All these systems assume that

a separate application program will specify which data to present at which time. In

particular, they do not include constructs that filter and sort lists, set privileges for who

can add to lists, set initial values and provide validity checks for fields of objects. Their

application layer abstractions, then, are not particularly interesting.

Instead, these systems are interesting because their automatic user interface generation

tools encode style guidelines explicitly as rules of translation from information objects to

widget instances. The action of the translator is determined by a set of explicit style rules,

analogous to the style parameters in HyperVoice presentation formats. For example, ITS

[Wiecha, et al. 1989] and DON [Kim and Foley 1990] style rules can decide how to

organize a large set of options into a hierarchical menu, based on such properties as

which objects the options act on. ITS and Humanoid [Szekely 1990] separate the

generation of a widget tree from determining the graphical layout of the widgets, and do

not parameterize the graphical layout procedures in terms of style rules. DON extends the

rule-based system to make decisions about the graphical layout as well.

By contrast, HyperVoice provides fewer parameters that encode different interface styles.

The two most important two style parameters are the advancement mechanism and the

selection mechanism for menus. A few other style parameters determine orientation cues

and the generation of prompts.

Different sets of rules can encode different interface styles. Humanoid can even

determine the appropriate set of style rules to apply, based on attributes of the object

being presented. For example, it might apply a different set of style rules to menus

depending on whether the menu allows single or multiple selections. This would be

120

CHAPTER 4: HYPERVOICE

analogous to HyperVoice automatically choosing the audio menu style from among the

four it can generate; in fact, HyperVoice requires the application programmer to set the

style explicitly for each menu.

HyperVoice, on the other hand, addresses two issues that the other systems do not. First,

HyperVoice presents information via sound rather than sight. As emphasized in chapter 3,

good audio interfaces provide actions for the fine-grained changes of attention that can be

accomplished in visual interfaces with eye gaze shifts. The biggest difficulty in automatic

generation of visual interfaces is graphical layout that is aesthetic and maximizes the

value of eye gaze shifts. The biggest difficulty in audio interfaces, on the other hand, is

the provision of a predictable set of fine-grained navigation actions that accomplish the

same changes of attention.

The second unique feature of HyperVoice is that it generates interfaces that are

completely self-explanatory. All of the other systems assume a minimal level of user

familiarity with using a mouse to make menu selections and navigate in dialog boxes.

HyperVoice, on the other hand, automatically generates the text of prompts that tell

callers how to make selections from menus and how to fill out forms.

8 CONCLUSION

HyperVoice lets designers, programmers, and users speak the same language. Lists,

menus, forms, and login procedures are useful abstractions for design, as denonstrated by

the participation of non-programmers in the design of some of the applications described

in Chapter 2. HyperVoice reifies these abstractions as primitives of a programming

language. The HyperVoice interpreter then generates state-machine graphs and

navigation prompts that encourage callers to use those abstractions as metaphors for

navigation and data entry. This helps developers to specify applications that collect,

route, distribute, and arrange information.

121

It helps developers to route and to arrange information in ways that benefit listeners.

Login procedures can start callers on different initial List Presentations. The same

objects can be presented in several different ways within an application, using different

List Formats and Item Formats.

HyperVoice also helps applications developers to elicit information from contributors in a

format that enables these selections and arrangements. The developer uses the location

from which a contributor initiates addition of information to determine the type of object

to add and which lists to add it to. To help contributors enter the symbolic fields needed

for sorting and filtering, developers specify initial values, picklists, and validity checks.

Developers can encourage shorter recordings by breaking messages into separate fields.

Overall, then, HyperVoice contributes to a partnership among developers, contributors,

and listeners. Developers specify audio document structures that accommodate additions

from contributors, who annotate recordings with just enough symbolic information to

enable HyperVoice to arrange the information for easy scanning by listeners.

122

5 AUDIO MENU STYLES

Audio menus are used frequently in HyperVoice applications and in commercial

interactive voice response (IVR) applications. As described in Chapter 4, Section 5.2,

HyperVoice can generate four menu styles. They vary along two dimensions, the method

of selecting an option and the method of advancing through the prompts for options, as

shown in Figure 5.1. The Skip and Scan guidelines suggest that callers will make

selections more quickly if they can skip through the options at their own pace. Callers

who are not yet familiar with how to skip, however, will find automatic advance helpful.

The guidelines also suggest that there is a tradeoff between the short paths to frequently

selected options that numeric selection allows and the predictable selection button that

positional selection provides.

This chapter compares user performance with three styles of audio menus. The standard

style pairs automatic advance with numeric selection. The other two styles both allow

skipping. The Combined style combines skipping with automatic advance and numeric

selection. The 3-button style does not include automatic advance; it pairs skipping with

How to Select

How to
advance

Figure 5.1 The matrix of menu styles. Asterisks mark hose tested in the experiments.

123

Numeric Positional

Wait Standard* Timed 1-button

Skip Stepped numeric 3-button*

Both Combined* Timed 3-button

positional selection. The fourth style that HyperVoice generates, Stepped Numeric, was

omitted because of its similarity to the combined style, but may be worth including in

future studies.

Two laboratory experiments confirm that the optimal menu style depends on callers' level

of experience with the menu style and with the contents of particular menus. For the first

few trials, subjects made selections from standard menus more quickly than with the two

skipping styles. Soon, however, performance with the skipping styles equaled or

surpassed the standard style. If skipping menu styles were widely adopted, even first-time

callers to applications will be able to skip effectively. It is not yet clear, however, which

skipping style should be adopted.

1 PREDICTIONS: EFFECTS OF MENU STYLE FAMILIARITY

AND MENU CONTENTS FAMILIARITY

This section hypothesizes the effects of three variables on selection time, as summarized

in Figure 5.2. The columns divide users into those who know how to skip between

options and those who do not yet know how. Each row indicates a level of familiarity

with the contents of the menus. Callers may be so unfamiliar with the menu contents as to

not even recognize the correct option immediately upon hearing it. For example, the first

time someone calls an audiotex application, he may need to listen all the way through a

category name and then think about it for a few seconds before deciding whether it is the

right option to choose. The second familiarity level is when callers can quickly accept or

reject any particular option, but cannot recall the position in the menu of the desired

option. This will be typical of occasional users of audiotex systems. It may also apply to

first-time callers if the menu options are unambiguous (e.g., north, south, east, and west)

or the caller is looking for an exact match with a known target (e.g., a name in a directory

listing). At the third familiarity level, callers know the positions of desired options in

124

CHAPTER 5: AUDIO MENU STYLES

Style Familiarity

Don't know how to skip Know how to skip

- No Standard > combined > 3-button 3-button > combined = standard
.9 immediate

recognition

Standard > combined > 3-button 3-button > combined > standard
*& Recognition

but not recall Advantage of 3-button and
combined over standard
increases with target position

C
Recall standard = combined > 3-button standard = combined > 3-button

Figure 5.2 A matrix of familiarity levels. Hypotheses about the relative performance of the different menu styles appear
in the cells for the different familiarity levels. Standard > combined indicates better performance (faster selection) with
standard menu.

menus. This will be true of very frequent users of a system, or of users who consult

written documentation to make selections.

First consider the left column, where callers do not know how to skip. In the top cell, they

have to think about each option before accepting or rejecting it. Callers in this cell will

take longer to listen to the options in a menu with the combined style than with standard

menus, because of the extra prompts that tell callers how to skip. The 3-button style will

fare even worse, because callers will have to listen to prompts for how to hear the next

option and then execute those actions, which will be unfamiliar to them. The same

reasoning applies even if callers can quickly recognize desirable options, as in the second

cell in the column. The hypothesis varies slightly in the bottom cell, where callers know

the positions in the menus of the desired options. Again, 3-button menus will fare worse

than standard menus: because of positional selection, callers will still need to advance

through the options, which will require learning the navigation buttons. Here, however,

callers should make selections from combined menus about as quickly as with standard

menus, because they can enter numeric selections without listening to any of the prompts.

125

The top right cell is for callers who are familiar with skipping menu styles, but are calling

a new application whose menu options cannot be accepted or rejected without some

thought. The very existence of this cell is a hypothesis: it assumes that once people have

learned how to skip in one telephone application, they will be able to transfer that skill to

another application. This assumption was tested in the second experiment.

In the top right cell, callers will need to listen all the way through most menu options in

order to make judgments about whether they are appropriate, so there will be little or no

advantage to skipping. On the other hand, there should be little or no penalty from the

prompts that tell people how to skip, because callers know how to press buttons that skip

over the prompts. Positional selection should have a slight advantage over numeric

selection, because of its simplicity: positional selection avoids the cognitive load of

keeping track of the numbers associated with menu options. Hence, the 3-button style

should allow slightly faster selection than the other two.

The middle cell of the right column represents situations where callers can quickly accept

or reject menu options and they already know how to skip. Here the advantages of

skipping are large, so both skipping styles should lead to better performance than the

standard style. Again, the simplicity of positional selection should favor 3-button over

combined menus. Moreover, the advantages of the skipping styles should increase the

more items there are in the menu and the longer the prompt for each item is.

Finally, in the bottom right cell, callers know the positions of target options in the menus.

Numeric selection can bypass listening to the prompts altogether, thus negating the

advantage of being able to skip through the options. Hence, standard menus should do as

well as combined menus. Both should do better than 3-button menus, which will require

many more keypresses because of positional selection. Anecdotal evidence from the

teachers' curriculum line supports this hypothesis. That application used 3-button menus.

The top-level menu had seven options, the last of which contained a general list of

126

CHAPTER 5: AUDIO MENU STYLES

comments. The head teacher checked that list for new comments every day. After a few

weeks she asked why she couldn't just press a number to select the general list of

comments. In discussing potential redesigns of the system after the initial field trial, she

insisted on numeric selection even when I argued for the advantages of positional

selection.

2 LABORATORY EXPERIMENTS

Two laboratory experiments validate some of the hypotheses described above. Both

studies were conducted in collaboration with Robert Virzi and Don Ottens at GTE

Laboratories. The first study compared standard and 3-button menus on a task that fits in

the 'recognize but not recall' row. Results were reported in [Resnick and Virzi 1992]. The

second study included combined menus as well, and varied the menu contents familiarity.

Some of the results were reported in [Virzi, et al. 1992].

2.1 EXPERIMENT 1: SELECT A NAME FROM A LIST

The experiment compared 3-button menus to standard menus in a within-subjects design.

Each subject selected target names from lists of between three and twelve names. Both

younger (college-age) and older (near retirement age) subjects were run. Selection times

and error rates were measured. After subjects had used both styles, they were asked

which menu style they preferred.

The overall result was that, after an initial learning period of a few menus, subjects made

selections faster with 3-button menus than with regular menus, and preferred 3-button

menus overall. Error rates were low and not significantly different between the two

styles.

127

2.1.1 Methods

Subjects

Two groups of subjects were run in this experiment. The first group was composed of 12

subjects recruited from a local university (mean age 23). A second group of 6 subjects

was drawn from an older population (mean age 62). We chose this older population

because past experience has indicated that older users tend to be resistant to new

technology and to have greater difficulty using telephone-based interfaces.

Stimuli

A list of 100 names was randomly drawn from the telephone directory of a large

corporation. Each name was presented as a first name followed by a last name exactly as

it had appeared in the directory.

A total of 72 trials were prepared. Each trial consisted of a target name and from 2 to 11

distractor names, leading to list lengths of 3 through 12 names. The position of the target

name in the list was a more important variable than the length of the list, as it turned out,

because subjects made selections as soon as they heard the target names. The target name

appeared in each of the 12 serial positions 6 times.

A random order was drawn for presenting the stimuli, and this same random order was

used for both conditions and for all subjects. In other words, each subject performed the

same set of 72 tasks using both menu styles. Half the subjects used 3-button menus first

while the other half used standard menus first, which allowed us to check that subjects

were not remembering the tasks when they switched to the new menu style.

A telephone interface was constructed that implemented each of the menu techniques.

One female voice was used for all system prompts and a second female voice was used to

128

CHAPTER 5: AUDIO MENU STYLES

present each of the names composing the lists. Users interacted with the systems from a

telephone by pressing the touch-tone generating keys.

Procedures

Subjects were seated before a standard desk set telephone. The general experimental

procedures were explained but they were given absolutely no instruction on how they

were to interact with the system. Instead they were told that they were to imagine that

they had called a company with an automated directory service. They were told to follow

the directions given by the system and to select the target name. Half the subjects in each

group were presented the standard method first, the other half of the subjects interacted

with the skip and scan method first. Between conditions they were warned that the

method of selection had changed, and that they should attend to the instructions presented

by the system.

Prior to the start of each trial, users listened to a name repeated over the telephone

handset. This was the target name for the trial and it also appeared on a printed card next

to the telephone as a memory aid. Users were told to press any key on the keypad when

they were ready to begin the trial. Timing started when this key was pressed. In the skip

and scan method, subjects started on the header node, which contained a set of

instructions 3. No instructions were required for the standard method as the prompt

completely contained the information required to complete the task. After each trial, users

were told whether or not they had selected the correct name on the previous trial and then

the next target name was announced.

3 The instructions, if not interrupted, took 15 seconds to recite. The exact text was as follows: "<n> names

are in the list. Scan through the names using 9 to skip ahead and 7 to skip backward. It's OK to interrupt the

spoken voice at any time. Select a name by pressing 1. For the first name, press 9."

129

After exposure to both systems, an overall preference question was asked, followed by an

open-ended interview regarding the good and bad points of the two methods.

2.1.2 Results

Results are first presented for the group of 12 younger subjects, followed by the results

for the 6 older subjects.

Younger Group

In Figure 5.3 the mean correct reaction times for the two conditions are shown as a

function of target position. The best-fitting regression lines are superimposed. An

Analysis of Variance (ANOVA) was calculated with the factors of Condition (standard

menu method vs. skip and scan) and Target Position. The ANOVA confirms what the

figure reveals. Overall, subjects were faster with the skip and scan method (F(1,11) =

83.417, p<.001) and were faster when the target name was earlier in the list (F(l 1,121) =

140.572, p<.001). Moreover, the interaction term was significant (F(1 1,121) = 14.685,

30

20

H0

1 2 3 4 5 6 7 8 9
Target Position

10 11 12

Figure 5.3. Mean correct selection time is shown as a function of
target position for the younger subject population. The regression
equations appear next to each menu style.

130

I I I I I I I I I I I I

Standard Menus '
y=2.Ix + 1.7 /

A . Skip & Scan Menus
y=1.3x + 1.8

I I I I I I I I I I I I

CHAPTER 5: AUDIO MENU STYLES

p<.001) showing that the advantage for the skip and scan method is greater as the target

name appears later in the list. This is not surprising as in the standard method subjects

had to wait for the target item while in the skip and scan method users could jump

forward in the list based on a match with the first name.

We were interested in learning effects as well as overall performance. The trials were

matched (i.e., each subject performed the same set of 72 trials in both conditions and the

nth trial in both conditions contained identical target names and lists of distractor names).

As a result, we were able to calculate on a per subject basis two statistics that measure the

learning effect. One statistic, the crossover point, was defined as the first trial on which

the user was faster with the skip and scan interface. The other statistic, the divergence

point, was defined as the beginning of the first run of five trials on which the user was

faster on each trial with the skip and scan interface. The first statistic, the crossover point,

had a mean value of 4.7 trials, a median of 3.0 trials, and a range of between 2 and 12

trials. The second statistic, the divergence point, had a mean value of 10.1 trials, a median

of 6.0 trials, and a range of between 2 and 38 trials. Taken together, these results suggest

that performance with the skip and scan menus surpassed performance with the skip and

menus fairly rapidly.

Error rates were low. In the skip and scan condition, errors were made on fewer than 1%

of all trials. For the standard method, errors occurred on just over 2% of the trials. Most

of these errors occurred on trials in which the user had to press two keys to make a

selection (e.g., item number 10) when the second key was not pressed before the timeout

so that the system interpreted the selection as item number 1.

When asked which system they preferred overall, all 12 subjects expressed a strong

preference for the skip and scan method over the standard method (p<.001 by sign test).

When probed as to why they preferred it, users stated that they thought it was faster, more

efficient, and put them more in control.

131

Older Group

In Figure 5.4 the mean correct reaction times for the two conditions are shown as a

function of target position with the regression lines superimposed. An ANOVA was

performed with the factors of Condition (standard menu method vs. skip and scan) and

Target Position. Unlike the younger subjects, the difference between the two methods

was not reliable (F(1,5) = 1.526, p>. 10). However, they were faster when the target name

was earlier in the list (F(1 1,55) = 59.492, p<.001) and the interaction term was significant

(F(1 1,55) = 4.374, p<.00 1). For this older population, the skip and scan method was

slower when the target name was early in the list, but there was a small advantage when it

was later in the list.

In general, the learning effect for this population was much more dramatic. As with the

younger subjects, two statistics were calculated for each subject. The mean crossover

point for the older subjects was 7.5 trials, the median was 12.5 trials, with a range of

between 1 and 15 trials. The mean divergence point was at 21.0 trials, with a median of

30

Standard Menus
y=2.Ox + 2.2

20-J

Skip & Scan Menus
10- A y=1.3x + 4.6

1 2 3 4 5 6 7 8 9 10 11 12
Target Position

Figure 5.4 Mean correct reaction time is shown as a function of
target position for the older subject population. The regression
equations appear next to each menu style.

132

CHAPTER 5: AUDIO MENU STYLES

13.5 trials, and a range of between 5 and 56 trials. When compared to the younger

population, the older group clearly took longer to learn the new technique, primarily

because of their resistance to interrupting the prompts.

Older subjects made considerably more errors than the younger subjects, with 9.6% and

10.4% errors for the skip and scan and standard methods, respectively. One common

error in the standard menu condition was not pressing two digit numbers fast enough, so

that the system selected item 1 instead of item 12. Another common error, especially in

early trials, was to press the number associated with the name before the target. This

occurred because some subjects associated the numbers with the names following them

rather than the names preceding them. This could be rectified with longer pauses between

names, although this would increase the menu selection time.

When asked which system they preferred, 5 of the 6 older subjects stated a preference for

the skip and scan method (p<.10 by sign test). When asked for the reasons behind their

preferences, all six indicated that they preferred the one that seemed to be fastest.

2.1.3 Discussion

The entire experiment corresponds to the menu familiarity level where callers can

recognize but not recall target positions. That is, they can quickly accept or reject an

option (a name) because they are searching for an exact match with a target, but they

cannot predict the correct target position, because each trial consists of a different set of

names. This corresponds to the second line of the hypothesis table. The early trials

correspond to callers who do not know how to skip, and confirms that standard menus

lead to faster selections than 3-button menus. The later trials fit in the right column of the

hypothesis table, where callers have learned how to skip. The results confirm the

hypothesis that 3-button menus yield faster selection times than standard menus, and that

the advantage increases with higher target positions.

133

Style Familiarity

Don't know how to skip Know how to skip

-g No
.U immediate

recognition
Standard > 3-button 3-button > standard

U, Recognition
but not recall Advantage of 3-button over

= standard increases with target
position

Recall

Figure 5.5 A summary of the results from the first experiment.

This experiment also provided a rough measure of how long it takes subjects to learn to

skip. For the younger subjects, surprisingly few trials were required. In retrospect the list

header prompt used with the 3-button menus in this style was probably not optimal.

Additional fine-tuning of the prompts in the 3-button style might shorten the learning

period even further.

This experiment also included a measure of user preference. Reduced selection times

might not lead to user satisfaction, after all. The subjective preference measure, however,

confirmed that preferences were related to selection times, as users preferred the 3-button

menus in all but one case, and even in that case, the subject indicated that she preferred

the style that she thought was faster.

2.2 EXPERIMENT 2: WEATHER AND NEWS

The second experiment considered menu selection as part of a more complex task, varied

menu contents familiarity as well as style familiarity, and tested the combined menu style

in addition to 3-button and standard menu styles. It also tested the hypothesis that the

skill of skipping through menu options will transfer to a new application.

134

CHAPTER 5: AUDIO MENU STYLES

Overall, 3-button menus yielded selection times as fast or faster than the others in all but

the first few trials. Surprisingly, this result held even after callers had enough practice to

learn the target positions of desired options. The transfer of skill to new applications was

confirmed.

2.2.1 Methods

Stimuli

Two IVR systems were built for this experiment. One allowed users to determine the

weather in over 60 cities around the globe. The second application provided news reports

and general information. The tree structures of the two menu systems were identical,

although, of course, the labels describing the options were different. The mean number of

options per menu was 4.8 with a low of 3 options and a single menu with 12 options.

Appendix B lists the complete menu tree for both applications.

Subjects were asked to find the weather in particular cities and to find news on particular

topics. Each task required making two or three menu selections.

Pilot testing of the two applications was performed to ensure that the prompts were

understandable and that users would make few errors on the tasks. Some refinement of

the specific prompts for each technique was required. In particular, the original prompts

for the combined menu style included prompts for the skip button only in the menu

headers. Several pilot subjects learned to skip the menu headers but never tried to skip

menu items. The revised design includes a prompt for skipping after the first item in each

menu as well as after the menu header.

135

Subjects

A total of thirty-six subjects, in three groups of twelve, completed sets of tasks. Subjects

were recruited at colleges in Waltham, MA. One group was assigned to standard menus,

one to 3-button menus, and one to the combined menu style.

Procedures

Twelve tasks were created that required subjects to traverse the menu hierarchy to reach a

terminal node (a city in the weather application or a topic in the news application). The

sets of twelve tasks for the two applications were structurally identical. Only the names of

the menu options were changed. The mean number of menu choices subjects had to make

to reach the terminal nodes was 2.75, with a minimum of 2 and a maximum of 3 choices

required. The mean path length (the sum, over all menus required for a given task, of the

target positions of the correct options) for the 12 tasks used in each application was 8.75

with a minimum length of 4 and a maximum length of 13.

All subjects in the experiment completed 36 trials. For each subject, the first 12 trials

were conducted using the Weather application, with the remaining 24 trials conducted

using the News application. In the Weather application, the twelve tasks were assigned to

each of the twelve subjects using a 12x12 Latin square4 , thus ensuring that each task was

4 A Latin square is an nxn matrix with the following properties:

a) the numbers 1 through n appear in each row.

b) the numbers 1 through n appear in each column.

c) For every pair of numbers (k, 1), 1 is in the cell directly to the right of k exactly once in the matrix.

136

CHAPTER 5: AUDIO MENU STYLES

completed once in each sequential trial position. The same is true for the first 12 trials of

the News application. The last 12 trials of the news application consisted of a repeating

block of 3 trials. Again, the set of 3 trials repeated in this block varied across subjects so

that, over subjects, each of the 12 unique tasks appears equally often in each sequential

trial position

Design and analysis

Twelve subjects used each of the menu styles, making this a between-subjects factor. We

chose not to use a within-subjects design for the Menu Style factor because we wanted to

examine learning over trials, and once a subject had learned to skip using either the 3-

Button or Combined menu style, we felt that this behavior might be carried forward to the

other, contaminating the learning effect. We selected three-trial subsets of the data, as

described below, to represent particular classes of user experience. This Trial Block

factor is within-subjects.

Performance over all 36 trials of the experiment was examined for each menu style to

show the pattern of learning that occurred. These results are presented graphically.

The primary statistical analysis in the experiment was a 3x5 ANOVA, with Menu Style a

between-subjects factor and Trial Block a within-subjects factor. Five discrete blocks of

trials were examined in the ANOVA: (1) the first three trials of the weather application in

which subjects are learning the menu technique and have low familiarity with the

The use of a Latin Square to assign tasks to subjects insures a) that each subject (row) completes all n trials

and that b) in each trial position (column) every task is performed by some subject. Moreover, in case there

are learning effects from a subject completing one trial directly after the other, c) each trial directly follows

each other trial exactly once, for some subject. A 12x12 Latin square is included in Appendix B.

137

application content; (2) trials 10 through 12, in which subjects have gained some

familiarity with the technique and the Weather application; (3) the first three trials of the

second application in which subjects were already familiar with the menu technique, but

were not familiar with the application content; (4) trials 10 through 12 of the second

application, in which subjects were proficient with the technique and were also familiar

with the News application; and (5) the last three trials of the experiment, for which

subjects were experienced with the menu style, the application content, and the particular

target, simulating expert use.

2.2.2 Predictions

The five trial blocks roughly correspond to cells in the hypothesis matrix, and hence the

hypotheses should predict the relative performance of the three menu styles on these trial

blocks. The relevant predictions from that matrix are repeated in figure 5.6.

The first block, trials 1-3, corresponds to the top left cell of the matrix. Subjects have not

yet learned how to skip. The menu options require thought about whether options fit into

categories rather than merely recognition of exact matches. For example, if asked to find

Style Familiarity

Don't know how to skip Know how to skip

-t No Standard > combined > 3-button 3-button > combined = standard
.5 immediate (block 1) (block 3)

recognition

;&0 3-button > combined > standard
Recognition (blocks 2 and 4)
but not recall

Recall standard = combined > 3-button
(block 5)

Figure 5.6 Predictions about the second experiment.

138

CHAIyrER 5: AUDIO MENU STYLES

the weather in Barcelona, it may take a little thought to decide whether to accept or reject

"Asian cities" as a menu option. Standard menus should outperform 3-button menus, with

combined menus in the middle. This ordering is determined by how little time is spent

prompting listening to prompts for how to skip through the options.

By the second block, trials 10-12, callers should have learned how to skip and also should

be familiar enough with the menus to quickly accept or reject options. Some of the callers

may learn the positions of the options in the top menu, since this menu is repeated.

Hence, this is a combination of the bottom two cells in the right column, but

predominantly the middle cell, since only some of the subjects will have memorized the

top menu options, and no one will have memorized the others. 3-button should

outperform combined menus because of the simplicity of positional selection and both

should outperform standard menus because of skipping.

In the third block, the first three trials with the news application, callers will again be

unable to accept or reject options quickly. This block tests the hypothesis that the skill of

skipping through options will transfer from the previous application. The predictions

from the top right cell apply: 3-button menus should be somewhat better than the other

two, because of the simplicity of positional selection.

The fourth block tests the same condition as the second block. 3-button menus should

outperform standard menus, with combined in the middle.

The fifth block, trials 34-36, tests performance after subjects have practiced repeated

trials. These trials are the fifth repetitions of each of three tasks. Subjects should have

learned the target positions for most of the menus by this point, which places this block in

the bottom right cell. Standard and combined menus should fare better than 3-button

menus, because of numeric selection.

139

S0 w 3-Button
E \Style

Standard

0 --. Menu Style

E
0

.9 Combined --
Styl

Fast I I I I I I I I I I I I
3 6 9 12 15 18 21 24 27 30 33 36

Weather News & Info Repeated Trials
Sequential Trial Order

Figure 5.7 Predicted Results.

2.2.3 Results

Figure 5.8 shows the mean task completion times for the three menu styles as a function

of sequential trials. Tasks were assigned to sequential positions using a Latin square.

Across subjects, then, the same set of 12 tasks contributes to each trial position, except

that trials not completed correctly were excluded from the analysis (compare to the

predicted results shown in Figure 5.7).

A subset of the data was subjected to an ANOVA. Factors entering into the ANOVA

were: Menu Style (between-subjects) and Block, as described above (within-subjects).

The main effect of Menu Style was not significant (F(2,33) = 0.30; p > .05). The Block

effect (F(4,132) = 121.47; p < .0005) reached significance. More importantly, a

significant interaction between Menu Style and Block (F(8,132) = 7.10; p < .0005)

obtained. This is shown in Figure 5.9.

The differences between the means in the first block were all reliable, with Standard

menus producing fastest times and the 3-Button style producing the slowest times. By the

140

CHAPTER 5: AUDIO MENU STYLES

100

-. 3-Button
0 90 Style
E
'- 70 -

60- %
- - Combined

0.E5 0 -. Sye ,-

40 Standard .

- 30 Menu Style 's. ..

10
10
0 1 4 8 12 16 20 24 28 32 36

Weather Application News Application Repetition Trials

Sequential Trial Order
Figure 5.8 Results by trial for the three menu styles

second block of trials, however, the 3-Button style was leading to significantly faster

times than the other two. In block 3, where a new application was introduced, the three

styles produced equivalent times. In block 4, the speed advantage for the 3-button style

relative to the Standard style reemerged. Finally, there were no differences among the

techniques evident in block 5, in which subjects had extended practice with the specific

tasks.

Error rates in the three conditions were low, and did not suggest a speed/accuracy

tradeoff. They were 6.94%, 9.49%, and 5.79% for Standard, Combined, and 3-Button

menus, respectively. An ANOVA with the single factor of Menu Style indicated that

there were no significant differences among the means (F(2,33) = 1.575; p > .05).

141

0 680

*I~

o 6 0

0
0.
Eo40

:20

Blocki Block2 Block3

Figure 5.9 Summary of results by trial block.

Block4 Block5

2.2.4 Discussion

The results confirmed some hypotheses but contained one major surprise. The first

confirmation is that standard menus fared better than 3-button before callers had learned

to skip. The second confirmation is that 3-button menus fared better than standard menus

when callers knew how to skip and were somewhat familiar with the menu contents.

Style Familiarity

Don't know how to skip Know how to skip

No Standard > combined > 3-button 3-button = combined = standard
._ immediate (block 1) (block 3)

recognition
cc

3-button > standard
Recognition (blocks 2 and 4)
but not recall

Recall standard = combined = 3-button
(block 5)

Figure 5.10 Summary of results by familiarity level for experiment two.

142

E3 Standard Menu Style
[:Combined Menu Style
103-Button Menu Style

I...A

I

CHAPTER 5: AUDIO MENU STYLES

Combined menus fell somewhere in between but were not significantly different than

standard menus. Third, skill at skipping did transfer from the weather application to the

news application. Surprisingly, however, this led to performance that only equaled rather

than surpassing that of standard menus in block 3. This suggests that the simplicity of

positional selection confers only a small advantage, if any.

The most surprising result occurred in block 5, where all three menu styles performed

about equally well. The prediction was that the positional selection of 3-button menus

would be a handicap in this cell. There are several possible explanations for this result.

First, perhaps some subjects had not practiced enough to know the positions of target

positions, so that this block is really a hybrid of the bottom two cells in the right column.

Analysis of the detailed keystroke logs, however, indicates that the trial block is much

closer to the bottom cell than the middle. Across the three trials, 32 out of the 36

selections from top-level menus in the standard menu style were typed ahead before the

subjects heard the associated options. Even from the bottom menus, whose contents were

less familiar to subjects, 27 of the 36 selections were made without hearing the prompt

for that option.

A second explanation is that it may have taken a long time to recall the appropriate menu

option. Analysis of the keystroke logs indicates that type-ahead selection times from

single menus in the last three trials averaged more than 2 seconds in the combined style

and more than 3 seconds in the standard menu style. One would expect these numbers to

decrease with additional practice. This, however, is an insufficient explanation of the

result, since the typed-ahead numeric selections took only about half as long as the

average selection times in the 3-button style.

The real explanation may be a combination of the two factors just discussed. Numeric

selection may yield only a couple of second advantage over the 3-button style, even when

callers can type-ahead, but the time penalty in standard menus for callers who cannot

143

remember the correct number to press may be more than a couple of seconds. This

analysis would suggest that even more practice would eventually yield faster selection

times with the standard style than with the 3-button style. The interesting result here is

that the amount of practice in this experiment (four previous selections of the same target)

was not sufficient. Many practical applications are unlikely to get even that amount of

concentrated practice from callers.

3 LIMITATIONS: THE EFFECTS OF PROMPT LENGTH

The experiments reported here did not vary the lengths of prompts. Pilot testing before

the second experiment indicated that prompt length may affect which menu style will

yield optimal performance. This makes sense because the value of skipping increases

with the amount skipped. In fact, the greatest impact of skipping menu styles may be to

allow longer, clearer prompts for menu options, without penalizing listeners who can

quickly accept or reject the option. Any definitive guidelines on audio menu styles will

have to take into account prompt length as a variable.

4 FUTURE RESEARCH: CONTENTS SELECTION STYLES

Contents selection generalizes the idea of numeric selection to that of entering a value

that picks out an option from the list. The difference is that the value may describe the

contents of the option, as opposed to numeric selection which merely describes the

position of the option in the list. For example, the caller might enter in a date or the first

few characters of a name. This selection style will have much in common with numeric

selection, but callers will sometimes be able to make contents selections without hearing

the options even the first time they encounter the menu, effectively increasing the number

of callers in the bottom row of the hypothesis matrix. Contents selection has not been

explored further in this thesis.

144

CHAPTER 5: AUDIO MENU STYLES

5 RELATED WORK

Previous research of three kinds is relevant here. First, a number of studies have refined

the standard menu style. Second, a couple of studies have investigated alternative menu

styles. Third, there have been a number of studies of screen-based menu styles.

5.1 STANDARD MENU STYLE REFINEMENTS

Two variables have been considered in research that attempts to refine the use of standard

menus. One is whether prompts should be presented in key-action order ("Press 1 for X")

or in action-key order ("For X, press 1"). Early papers argued for the first style [Gould

and Boies 1983] while the more recent consensus favors the action-key order [Engelbeck

and Roberts 1990, Halstead-Nussloch 1989, VMUIF 1990]. The second variable is the

number of items per menu. The common wisdom is that three or four is the optimal

number, and a laboratory study backs that up [Engelbeck and Roberts 1990]. Such

advice is frequently ignored, however, since the categories that seem most natural often

contain more than four items. I will return to this theme in the section on visual menus.

5.2 OTHER TELEPHONE MENU STYLES

Rosson and Mellen [Rosson and Mellen 1985] created a hierarchical graph in which each

interior node contained a recording of a category name (e.g. entertainment, restaurants, or

hotels.) Subjects were provided four buttons, two to move back and forth between

categories, one to select the current category, and one to move back up the hierarchy.

Effectively, this was a 3-button menu style, with selection mapped onto a spatial

movement downward. Unfortunately, the mapping of information to the graph structure

was not considered a variable in the study. Its novel features were not discussed, nor was

it compared to the more conventional style of providing prompts for all of the categories

in one node ("For entertainment, press 1; for restaurants, press 2; for hotels, press 3;...")

145

Roberts and Engelbeck [Roberts and Engelbeck 1989] explored a grid metaphor for

making selections. Operations to configure advanced telephone functions such as call

routing were laid out in the cells of a grid. The commands to navigate between nodes

were spatially mapped to the telephone keypad (i.e., 2 up; 8 down; 4 left; 6 right.) They

compared the grid interface to a hierarchical menu interface to the same set of options,

but found no significant differences in time required to perform tasks, or in subjective

preferences.

Another menuing metaphor is conversational. Callers answer a series of yes-no questions.

Callers can interrupt questions by pressing the buttons for yes and no, which are

consistent throughout the interface. Questions always begin with an interrogative phrase,

such as "do you want..." These phrases can get repetitive, so the yes-no systems often ask

a series of related questions, "Personal banking options. Do you want account balances?

check update? transfers?" If the caller answers no to the question about account balances,

it doesn't play the interrogative phrase again, but instead plays just the phrase, "check

update?"

While the metaphor is quite different from traversing a list of options, asking a series of

related questions makes this style quite similar to the 3-button style. 'Yes' is the select

button and 'no' moves to the next option. The third button, to go back to a previous

option, is omitted. The "Personal banking options. Do you want..." phrase serves the

same role as the menu header in the 3-button interface style. It orients callers to the

sequence of choices that are about to be offered. One obvious advantage of the 3-button

style over yes-no menus is that the menu header is not attached to the first option. Thus, it

is possible to skip the menu header without skipping the first option, which is not

possible with the yes-no style. It would be interesting, however, to compare these two

styles in empirical tests.

146

CHAPTER 5: AUDIO MENU STYLES

5.3 VISUAL MENUS

A number of studies have explored characteristics of visual menus [Kiger 1984, Landauer

and Nachbar 1985, Laverson, et al. 1987, Lee and MacGregor 1985, MacGregor, et al.

1986, Mehlenbacher, et al. 1989, Miller 1981, Paap and Roske-Hofstrand 1986,

Shneiderman 1986, Sisson, et al. 1986]. Some of these characteristics, such as visual

grouping of items, and the use of pie versus linear menus [Callahan, et al. 1988] are

clearly not relevant to audio menus. Other results, such as the effects of describing

categories with examples [Dumais and Landauer 1983, Dumais and Landauer 1984],

probably carry over without modification.

One interesting controversy began with the identification of a depth versus breadth

tradeoff in hierarchical menus. That is, given a set of options, how should a hierarchical

menu structure be set up? Should there be more options on each menu (breadth) or more

levels of menu (depth). Several studies compared alternative menu structures for

particular sets of data. Researchers developed mathematical models of selection time,

some based on selection time from individual panels taking time linear in the number of

options, and others assuming it was log-linear. Whichever happens to hold for visual

menus, selection time is clearly linear in the number of options in an audio menu, unless

callers type ahead numeric selections.

The entire depth versus breadth controversy, however, hinges on treating the menu

structure as an independent variable, and assumes that it will have no effect on the

ambiguity of labels for categories. Many of the studies cited above used artificial sets of

targets, such as the integers from 1 to n, in which case the options can be divided into sets

of any size without making unnatural categories. In practical applications, however, there

will be only a few menu structures that yield natural category labels. The optimal menu

147

structure, then, may be influenced far more by the natural categories for the options than

by any considerations of the optimal breadth or depth of trees.

6 CONCLUSION

Audio menu styles differ in their advancement mechanisms and their selection

mechanisms. The system can automatically advance between options, it can require users

to skip between options, or it can provide both capabilities. Callers can make selections

by pressing a number associated with the option, or using a single select button to select

the option currently being played back.

Three of the most promising styles were compared in two laboratory experiments, whose

results are summarized in Figure 5.11. Standard menus yielded the fastest selection times

initially, before callers had learned how to skip. Once callers had learned to skip,

however, 3-button menus yielded performance at least as good as standard menus, and

better performance when callers were somewhat familiar with the menus but had not yet

memorized their contents. Even after twenty-four trials on the same application, including

four repetitions of a block of three trials, subjects were not any faster with standard

Style Familiarity

Don't know how to skip Know how to skip

-a No Standard > combined > 3-button 3-button = combined = standard
.c immediate (2) (2)
'g recognition

Standard > 3-button 3-button > standard
Recognition (1) (1,2)
but not recall Advantage of 3-button and

combined over standard
increases with target position

Recall standard = combined = 3-button
(2)

Figure 5.11 Summary of the results from both experiments.

148

CHAPTER 5: AUDIO MENU STYLES

menus than with 3-button menus.

Once callers learned to skip, both of the Skip and Scan styles, 3-button and Combined,

performed at least as well as standard menus. The experiments were inconclusive about

the importance of numeric selection for callers who are very practiced in using the same

set of menus.

The industry should standardize on some Skip and Scan menu style: even first-time

callers to an application would then be able to transfer their skipping skills from other

applications. It is not yet clear, however, which Skip and Scan style on which to

standardize: 3-buttons, yes-no as described in the related research section, combined, or

stepped numeric. One hopes that future research can decide this before the standard menu

style becomes too entrenched.

149

6 CONCLUSION

A practical problem can drive applied research by providing a concrete goal against

which to measure progress. The practical problem, however, is only a means to the end of

accumulating knowledge that is general, communicable, and useful. The solution to the

practical problem, or part of the solution, may apply to other interesting problems. Or, the

process of finding a solution may guide the process of solving other interesting problems.

In this thesis project, the development of phone-based applications to support issue

discussions, announcements, and question answering drove the research. Each required

iterative refinement of both the functionality and the user interface, culminating in

implementation and field trial of the application.

The development of particular phone-based applications led to more general results in

three areas. First, the functionality required in those applications can also support other

communication and coordination tasks. The field trials suggested variables that influence

which tasks are good candidates. Second, the Skip and Scan interaction style and

document properties generalize the user interface results from the field trials. The Skip

and Scan guidelines apply beyond phone-based interfaces to all audio documents and to

'keyhole' interfaces more generally. Third, the HyperVoice application generator

demonstrates techniques for generating audio interfaces from high-level abstractions that

can be applied widely. Those techniques can be extended to include other high-level

abstractions.

1 COMMUNICATION AND COORDINATION APPLICATIONS

Three characteristics distinguish phone-based applications:

* Recorded voice as the medium of communication;

151

* Remote access to information;

. Use of telephone buttons to navigate through the information.

Telephone bulletin boards are already used commercially for classified ads, mostly

personal ads to match single people. The field trials described in chapter 2 demonstrated

that more complex phone-based applications can also support publicity of announcements

and issue discussions.

These applications are instances of a much larger class. For example, chapter 2 also

presented designs for applications that support status reporting and gathering answers to

commonly asked questions. More generally, most of the group communication and

coordination applications that are currently being developed for networked computers,

such as workflow [Carasik and Grantham 1988, Winograd 1988], sales lead tracking, and

scheduling [Beard, et al. 1990, Greif and Sarin 1987], are reasonable candidates for

telephone applications.

The source of power in supporting these more complex applications is the addition of

structure to message objects. The structure enables the provision of fine-grain navigation

commands that decrease the time necessary to find relevant information. Automatic

sorting and filtering operations act on fields that contain symbolic information and

pointers to other objects. Overall, the structured messages make it possible for people to

browse larger collections of information than would otherwise be possible.

A number of factors will influence the success or failure of applications in particular

settings, as reported in Chapter 2 and summarized below.

Green Flags
Time-critical information
Need for access from home or while traveling
Need for expressiveness of voice
Users have weak composition, keyboarding, or reading skills
Opportunity to create a 'honeymoon period'

152

CHAPTER 6: CONCLUSION

Red Flags
Well-entrenched communication patterns
Poor distribution of costs and benefits
Need for anonymity
Naturally textual information
Need to scan large information chunks
Need to remember large information chunks

2 USERINTERFACES

Skip and Scan is a slogan that describes the ideal style of interaction callers should have

with telephone bulletin boards. They should listen to short segments and then interrupt,

skipping ahead to other short segments. Repeated skips should give the effect of

scanning.

Two laboratory experiments confirmed the value of the Skip and Scan interaction style

for audio menus. After the first few menu selections, when subjects were learning how to

interrupt and skip, they made selections more quickly with Skip and Scan menu styles

than with the standard menu style. If Skip and Scan menu styles were used widely, then

there would no longer be an initial learning period, and Skip and Scan menus would be

clearly superior.

The source of power that enables Skip and Scan interactions is making the implicit

structure of recorded information explicit and available for fine-grained navigation. For

example, in audio menus, Skip and Scan styles make explicit the implicit structure of

audio menus as lists of prompts for different options, and give callers a button to press to

skip through the prompts at their own pace. Similarly, the explicit breakup of message

objects into separate fields allows for a 'smart' fast-forward button that skips ahead to the

next field of an object.

To extend the Skip and Scan style to other information structures, such as grids, one need

only exploit this source of power further. The document designer can find the implicit

153

structure of the collection of information and map it to a regular set of fine-grained

navigation links.

2.1 THE END OF READING?

The Skip and Scan interface style applies more generally to audio documents. The

playback of the documents may be controlled by buttons on a remote device such as a

telephone, a local device such as a desktop computer or a digital tape recorder, or by

spoken words or phrases that a speech-to-text program recognizes. Audio documents are

likely to gain in importance relative to text documents in the next decades as authoring

and listening skills improve.

The printed word, from its invention, has always had more permanence than the spoken

word and given readers more control over the process of absorbing information. Five

centuries ago, technological innovations in printing radically improved its portability and

replicability. In the last 120 years, telecommunication technologies have improved the

timeliness of the written word. In the last sixty years, computing has provided searching

techniques based on string matching. These technological innovations propelled the

cultural ascendancy of the printed word. Countries now measure their social

'development' in part by their literacy rates.

Technological advances in other media, however, are threatening the cultural ascendancy

of words, both written and spoken, as the medium of communication. Hundreds of

millions, perhaps billions, of people participate in a worldwide culture through music and

video images, without understanding the English words that accompany them. Neil

Postman, in Amusing Ourselves to Death, laments this shift because sounds and images,

unlike words, do not convey propositional content [Postman 1985]:

One must begin, I think, by pointing to the obvious fact that the written word, and an
oratory based upon it, has a content: a semantic, paraphraseable, propositional content.
This may sound odd, but since I shall be arguing soon enough that much of our discourse
today has only a marginal propositional content, I must stress the point here. Whenever

154

CHAPTER 6: CONCLUSION

language is the principal medium of communication-especially language controlled by
the rigors of print-,an idea, a fact, a claim is the inevitable result. The idea may be banal,
the fact irrelevant, the claim false, but there is no escape from meaning when language is
the instrument guiding one's thought. Though one may accomplish it from time to time, it
is very hard to say nothing when employing a written English sentence. (p. 49-50)

Even for communication with words, technological changes are increasing the value of

speech relative to writing. In the electronic age, the spoken word can now be stored,

transported, and duplicated. Postman will likely decry this shift as well if it occurs, for

the written word will always be more abstract than the spoken word. If all other things

were equal, however, speech would be preferable to text precisely because of its

concreteness, its expressiveness. In fact, some researchers are even trying to add

expressiveness to machine-generated speech [Cahn 1990].

There are differences between comprehending information visually and aurally that have

to do with biological rather than cultural traits. But in predicting the limits of audio

documents, it is virtually impossible for an observer within our culture to separate the

biological from the cultural traits. Skip and Scan is a first attempt to develop authoring

and listening styles that take advantage of random access audio. Other researchers are

exploring how sound localization and fast forward and reverse playback can aid listeners

[Arons 1991a, Arons 1992]. Right now it appears that reading is far superior to listening,

but it is not clear whether this superiority would remain after decades of improvements to

audio document styles and after a generation of people grew up practicing their

hyperdocument listening skills every day.

3 SOFTWARE TOOLS

The HyperVoice software tools make it easy to implement telephone bulletin boards that

are customized to particular communication applications. Development takes less time

and the resulting programs are less likely to contain bugs. The language is simple enough

that non-programmers can participate in a rapid prototyping process. Moreover,

155

HyperVoice automatically generates user interfaces that conform to the Skip and Scan

guidelines.

The source of power in HyperVoice is that it narrows the abstraction gaps between

design, programming, and use. Lists, menus, forms, and login procedures are helpful

abstractions for all three activities. Chapter 2 uses these abstractions to describe a number

of applications and non-programmers used them to discuss alternative designs. Lists,

menus, forms, and login procedures are also the basic building blocks of the HyperVoice

application layer language. Finally, they are the metaphors which help callers to

understand the operation of an application.

The development of the HyperVoice application generator is a case study in how to

develop application and interface generators for specialized domains. The key is to find a

higher-level set of abstractions that capture the commonalities of programs in the domain

and parameterize the differences. The search begins with the construction of designs and

possibly tests of a few applications in the domain, using lower-level abstractions. Three

techniques may then help to identify a higher-level set of abstractions:

" Notice the abstractions that are useful for describing the sample application to

designers or users. Those abstractions may also be useful as programming

constructs.

. Identify the pieces of low-level code that were copied and edited in building the

sample applications. The sections that were copied may perform easily

described functions that can be named as higher-level abstractions. Within

each such section of code, the parts that were edited are candidate

parameters of the new abstraction.

* Separate one sample program into conceptually distinct pieces. Find

abstractions that specify one conceptual piece and try to automatically

generate the other part. In the case of HyperVoice, the application layer

abstractions came from separating application functionality from the user

interface and trying to automatically generate the latter.

156

CHAPTER 6: CONCLUSION

4 ANSWERS AND QUESTIONS

Can phone-based applications support complex group communication and coordination

tasks? And if so, how? The answers in this thesis are: Yes, use HyperVoice to generate

Skip and Scan interfaces.

Perhaps more important than questions answered are questions raised. If the previous

conceptions of the limits of telephone-based applications were too narrow, what are the

true limits? If the conception of audio as a serial medium is misleading in the age of

random access, then could speaking and listening someday supplant writing and reading?

What are the techniques for developing application generators for new domains? This

thesis begins the process of answering these larger questions.

157

A THE HYPERVOICE PROGRAMMING
LANGUAGE

Chapter 4 described the novel and important features of the HyperVoice language. This

appendix presents the details of the language more systematically. It serves as a

programmer's manual for the HyperVoice language. It presents the language syntax and

an informal description of its semantics. Then, it presents macros for two common

programming clichds. Throughout, examples from Chapter 2 ground the discussion of the

language semantics and justify the need for some of the programming constructs.

Appendix B presents the pre-processor and interpreter, which give a more detailed

semantics for the language.

1 THELANGUAGE

The HyperVoice programming language is unusual in two ways. First, programs are

networks of data objects rather than linear texts. For example, the presentation format for

a list of objects contains a pointer to an Item Format object that specifies how each item

should be presented and another pointer to a List Action object that specifies how new

items will be added. These linked specifications may be reused in specifying the

presentation of other lists.

Second, HyperVoice programs are declarative rather than procedural. They specify how

data are to be organized for presentation to callers, but they do not directly specify the

flow of control in executing programs. The language interpreter automatically determines

the flow of control and other user interface details.

159

1.1 THE OBJECT SYSTEM

The messages on a HyperVoice bulletin board are stored in an object-oriented database.

Object classes determine the fields of which messages are composed. For example, the

Event Announcement object class has eight fields: headline, date, time, location, contact

number, details, date added, and category.

The database handles five data types: recording, text, date, integer, and pointer to another

object. The fields, however, are not typed. Any field can contain zero or more values of

any type, although fields may be more or less meaningful depending on whether they

contain the right types of data. A programmer can create new object classes that reflect

the natural structure of the messages to be posted in a particular application.

Object instances (messages) are grouped into ordered sequences, called lists. An object

may appear in more than one list. For example, in an events calendar application, there is

one list for each event category, plus an overall list of all announcements. Each

announcement appears twice, once in the overall list and once in a category-specific list.

It might at first appear that lists introduce an unnecessary indirection, since the fields of

objects can contain multiple values. Anywhere that a field contains a pointer to a list of

objects, one might instead put pointers to all of the objects in the list. The indirection is

helpful, however, when the contents of the list change. With lists as objects in their own

right, several objects can contain pointers to a list. Then, when the contents of the list

change, all of the objects will automatically have access. to the updated list.

Lists are implemented as a class in the object system, as illustrated in the table below. A

word about notation is in order here, since tables of this sort pepper the remainder of the

appendix. The top line in the table indicates that a class is defined and gives its name:

List. The leftmost column gives the names of the fields of the class. The middle column

160

APPENDIX A: THE HYPERVOICE PROGRAMMING LANGUAGE

indicates the types of values that are expected in the field, in order for the class to be

meaningfully interpreted. The rightmost column gives a short English description of the

expected contents of the field or what the contents will be used for. In the case of the

class List, there is a single field, called 'Contents'. It expects zero or more values that are

pointers to other objects. The star (*) notation indicates that zero or more values of the

indicated type are expected, and the square brackets indicate a pointer to another object.

Class: List
Field Name Alternative Values Description
Contents *[1 Zero or more pointers to objects, of any class

All of the language primitives are implemented as objects in this object system. The

OVAL system [Lai, et al. 1988] provides a screen-based interface for entry of objects.

Chapter 4 drew analogies between presentation formats in OVAL and HyperVoice. Thus,

Primitive Description
Login Process Specifies the login procedure necessary to access an application.
User Has fields for a recorded name, an id number, a password, and the 'privileges'

that should be accorded to a particular user.
List Jump Specifies special digit sequence a caller with appropriate privileges can press

to jump to a particular list.
List Presentation Pairs a List with a List Format to specify the presentation of one list of

objects.
List A list of objects.
List Format Specifies how to play back the contents of a list, including how to filter and

sort it, and how new objects can be added.
Filter Selects a subset of a list to be presented.
Validity Check A predicate on the contents of a field. Used in Filters and Field Edit Formats.
Sort Ordering Specifies the order in which to present objects from a List.
Item Format Specifies which fields of one object to play and in what order.
Field Format Specifies how to play back one field.
Select Action Used as part of an Item Format to specify what action to take when an object

is selected from a list.
List Action Specifies how new items can be added.
Extension Format Specifies what kind of object will be added and where it will be added.
Edit Format As part of an Extension Format, specifies a telephone form for editing a new

object.
Field Edit Format Specifies how to present one field in a telephone form.
Table A.1 The object classes that the application interpreter recognizes.

161

Login

List
Jump

Usaer-

List List
Preseinresentation

Field
-hWP Order

Format

Validity Field
4F ~ - Filter -0 Check 4- Edit

Format
List

Format

t List Extension Edit
to Action Format ie Format

Field
Format

F o r m a t S e l e c t
Action

Figure A.2 The primitives for specifying presentation and editing formats. An arrow indicates
that an instance of one primitive may contain a link to an instance of another.

OVAL was a source of ideas for HyperVoice. Here, OVAL is also used as a software

tool, a front end for writing HyperVoice programs. It provides screen-based forms for

editing objects and an easy way to create pointers between objects. While a production

version of HyperVoice would require a front end that does more to guide programmers

162

APPENDIX A: THE HYPERVOICE PROGRAMMING LANGUAGE

through the process of specifying an application, the current OVAL front end has made it

possible to specify new applications in a matter of hours.

Table A.1 and Figure A.2 provide overviews of the primitives that are used to specify

HyperVoice programs. They are repeated from chapter 4.

1.2 LOGIN PROCEDURES

Before any lists or menus are presented, a phone call can begins with a welcome message

and sometimes a registration procedure in which the caller enters an id number and a

password. The login procedure performs several important tasks. First, it can restrict

access to only users who know an id number (and password, if desired.) Second, it sets

the privileges for the rest of the call. Callers without certain privileges may not be

allowed to add new objects to certain lists. Third, it sets the currentuser variable to be an

object that represents the user. When the caller adds a new message the system can

automatically set a field of the message to be a pointer to that object. Finally, the

application can be customized to each user's needs. In particular, the login process can

determine for each user a different root list of objects that will be presented.

Login

List
Jump

User

List List
Presentation

Figure A.3 The classes relevant to login procedures.

163

Class: Login

Field Name Alternative Values Description
Greeting Prompt The first thing a caller hears
Register? TRUE, FALSE If FALSE, there is no login process at all. Callers go

straight to the initial List Presentation.
User Id Length Integer When Register? is TRUE, this determines how many

digits are in a user id.
Password? TRUE, FALSE If FALSE, users do not need to enter a password.
Password Length Integer If Password? is TRUE, this determines how many digits

are in the password.
Users List [List] A list of objects of type User, which determines the

eligible users.
Start List [List Presentation] What to present after the login process is complete.
Special List Jumps [List Jump]* A list of objects of type List Jump. These determine

codes that can be entered throughout the application to
jump to special lists.

The first thing a caller will hear is a recording of the 'Greeting' prompt. The prompt data

type indicates that the programmer types in the text of a prompt that will be recorded

later, during a prompt recording session. In a pre-processing step, the system will gather

into a script all of the prompts that need to be recorded, both those that the programmer

typed in explicitly and those that were generated by the system.

If 'Register?' is TRUE, the caller will be prompted to enter a user id, a string of digits

whose length is determined by the 'User Id Length' field. If 'Password?' is also TRUE,

the caller will be prompted to enter another string of digits as a password. If 'Register?' is

FALSE, the system goes directly to presenting the List Presentation object in the 'Start

List' field. There are three privilege levels in the system, NONE, ADDING, and

EDITING, which are used to restrict access to certain operations. If there is no

registration process by which to determine individual privilege levels, all callers are given

ADDING privileges. System administrators can still enter special codes over the phone to

upgrade to EDITING privileges.-

164

APPENDIX A: THE HYPERVOICE PROGRAMMING LANGUAGE

Class: User
Field Name Alternative Values Description
Name Recorded voice
User Id Digit string
Password Digit string_
Privileges NONE, ADDING, Privilege levels determine what operations will be

EDITING available during the phone call
Start List [List Presentation] The starting point in the application, if different from

I the default specified in the Login Process

When 'Register?' is TRUE and a caller successfully enters an id and a password, that

picks out an instance of class User from the list in the 'Users List' field. The User object

determines the initial privilege level a caller will have. The User object also determines

the root List Presentation to present as the starting point for the caller's navigation

through the information. In the extreme case, different users might access completely

different applications that happen to share the same telephone number.

Class: List Jump

Field Name] Alternative Values Description

Code Digit String The special code to initiate this List Jump
To Jump To [List Presentation] Which List to present
Privileges Required NONE, ADDING, The privilege level the caller needs to have in order to

I EDITING initiate this List Jump

With or without a registration procedure, the 'Special List Jumps' field of the Login

object can contain pointers to List Jump objects. These objects determine jumps that a

caller will be able to make any time during the call. While most navigation during a

phone call involves a move from hearing one information object to hearing a related list

of objects, the List Jumps determine jumps to unrelated lists that will be available from

anywhere in the information space. The caller will press a button to initiate entry of a

special command, then enter the string of digits specified in the 'Code' field. If the caller

has the required privileges, then the system will present the list specified in the 'To Jump

To' field. Thus, while most of HyperVoice adopts a navigation metaphor, the List Jumps

introduce a form of direct addressing, with the code field determining the address.

165

1.3 PRESENTATION FORMATS

Presentation Formats determine how information will be selected and arranged for

presentation and how new information objects can be added. Selection and arrangement

operations can be applied both to lists of objects and to the fields of individual objects.

Subsets of the objects in a list can be selected by setting a filter on the contents of one or

more fields of the objects. The objects in a list can also be sorted by specifying a

comparator on the contents of a field. A subset of the fields of each object can also be

selected, and those fields can be presented in any order.

Presentation formats also contain links to editing formats, which determine how new

objects will be added. Editing formats include specifications of the locations in the

information space where actions will be available to add new objects, what privileges are

required to execute those actions, and what lists the new objects will be added to. Editing

formats also specify the contents of a telephone form for adding the new object, including

initial values and validity checks for the contents of some fields.

Class: List Presentation

Field Name Alternative Values Description

List [List] Which list of items will be presented
Format [List Format] Specifies how each item will be presented, in what

order, and how new items can be added.
Menu Prompt Prompt Played when this object is an option in a menu.
Title Prompt Played in the list header, and when returning to the list

after visiting somewhere else.
Description Prompt Played in the list header.

The root object for specifying the presentation of a list of objects is an instance of class

List Presentation, which contains a pointer to a List and a pointer to a List Format. When

a menu contains the option of going to this List Presentation, the system plays the 'Menu

Prompt' recording to tell the caller about the option. For example, if the List Presentation

is the news reports in an audiotex system, the 'Menu Prompt' might be, "For news..."

The prompt text does not include, "Press 2" because the interpreter will automatically

166

APPENDIX A: THE HYPERVOICE PROGRAMMING LANGUAGE

_List 0, List
Presentation

List
Format

Figure A.4 A List Presentation object contains pointers to a List and a List
Format.

determine the number associated with the menu option and will concatenate the

appropriate prompts.

When a list is presented, items are laid out sequentially and the caller will have actions

available to move forward and back in the list. The caller always begins on a list header,

which precedes the first item in the list. The contents of the list header begin with the

'Title' prompt and include the 'Description' prompt . The 'Title' prompt is also used

separately. When a caller returns to a list after visiting another one, the system tells her

the current location (e.g., "item 3 in") and then plays the 'Title' prompt. To continue the

example, the 'Title' might be, "The news desk." The 'Description' might be, "Headlines

and story summaries from the Wall Street Journal, the New York Times, and the National

Enquirer."

1.3.1 List Formats

List Formats specify all the details about how to arrange the information in a list for

presentation, and how to prompt callers to navigate through the list. In addition, List

167

Field
Order
Format

->Filter -#Validit

List _
Formatort

Action

SField

Item F Format

Format~

SSelect
Li ActionI

Figure A.5 The classes used to specify the presentation format for a
list of objects.

Formats contain pointers to List Action objects that determine how new objects can be

created, edited, and then added to lists.

Not every item in a list need be presented: the 'Filter' field determines which ones will.

Each Filter object determines a predicate on items in the list, and there may be more than

one Filter. An item is selected if all the predicates are true of that item, so the Filter

objects are implicitly ANDed together.

If the 'Sort Order' field is empty, the selected items are presented in the order in which

they are stored in the list. If included, Field Order Format objects determine the order in

which to present the items. Each Field Order Format determines a comparison operator

on pairs of objects, which is all that is needed to run reasonably efficient algorithms such

as quicksort [Cormen, et al. 1990] to determine the total order. If there is more than one

Field Order Format, the second breaks ties between pairs of objects that the first

168

APPENDIX A: THE HYPERVOICE PROGRAMMING LANGUAGE

Class: List Format

Field Name Alternative Values Description
Filter [Filter]* Predicates that items have to satisfy in order to be

presented
Sort Order [Field Order Format]* The order in which list items will be presented.
Advancement WAIT 11 SKIP 11 BOTH How to move from play back of one item to playback of
Mechanism the next item.
Selection NUMERIC II How to select an item from the list.
Mechanism POSITIONAL 11

NONE
Name For Objects Text A word or phrase, such as "announcement." Used in

generating prompts such as "For the next
announcement" and "For the previous announcement."

Response List? NO 11 Is this a list of responses to some other object?
Prompt 'Field'

Say Item Count? YES 11 NO In the list header, determines whether to play a
recording of the number of items in the list.

Item Formats [Item Format]* Specifies how to play back each item in the list.
List Actions [List Action]* Actions that can be taken to add new information

I_ __ -objects.

comparison determines are equal, the third breaks ties when both of the first two

determine that a pair of objects is equal, and so on.

The Advancement Mechanism determines how a caller can advance to the next item:

either by waiting until the current one is completed (WAIT) or by pressing a button

(SKIP), or a combination of the two (BOTH). The Selection Mechanism lets any list of

items be treated as a menu. With NUMERIC selection, the caller presses 1 to select the

first object, 2 to select the second, and so on. With POSITIONAL selection, a single

select button selects the object currently being played back. If the 'Selection Mechanism'

field contains the value NONE, then selection is not permitted at all. Recall that these two

parameters, advancement mechanism and selection mechanism, define the space of menu

styles that was explored in Chapter 4 and 5.

The Name for Objects field is used in generating the text of prompts that will tell the

caller how to navigate through the list. For example, if the word "question" is filled in for

that parameter, a number of prompts will be generated, such as, "For the next question,

press 9," and, "For the previous question, press 7." The programmer need not write out all

169

of these prompts, nor even be aware of all the prompts that use the word "question." As

long as the programmer is happy with how the word sounds substituted into the phrase,

"For the next <Name for Objects>, press 9," the programmer can be confident that the

other prompts will also sound natural.

Along with the 'Title' and 'Description' fields of the List Presentation, the 'Response

List?' parameter of the List Format determines what recordings will be played back in the

header of the list. If the field has the value NO, then just the 'Tide' and 'Description'

fields are played back. Often, however, lists are automatically created to accommodate

responses to some other message. When the lists are created automatically, no 'Title' and

'Description' recordings are made. This 'Response List?' field specifies how a

meaningful header prompt can be generated automatically. The first value in the

'Response List?' field is a prompt fragment that is shared by all lists that use this List

Format. The second value is a field name, which selects a field of the object to which this

a list of responses. If the field selected contains a short recording, then the header prompt

for the response list can be quite useful. For example, in the teachers' curriculum line

application, the original object is a lesson plan, one of whose fields is 'Lesson Number.'

Each time a new lesson plan object is added, a response list is created to accommodate

questions about that lesson plan. The 'Response List?' field for the List Format is,

"Questions about lesson" 'Lesson Number'. The list header for the questions about lesson

number 35, then, states, "Questions about lesson 35."

The 'Say Item Count?' field also helps determine what will be played in the header for

the list. After the title recording, and after any recordings generated from the 'Response

List?' field, the system may inform the caller of how many items are in the list. If the

'Say Item Count?' field has the value YES, then the system will play something of the

form, "Five questions are in the list." Here, five is determined by the number of items that

passed the Filter, and the word question is taken from the 'Name for Objects' field.

170

APPENDIX A: THE HYPERVOICE PROGRAMMING LANGUAGE

The Item Formats determine which fields of the objects will be played back, in what

order, and whether the contents of the fields will be preceded by recordings of the field

names. If selection is allowed from this list, then the Item Format also determines what

action will be taken if the item is selected. One Item Format is included for each of the

object types that can appear in the list. If there is no Item Format for a class of object that

appears in the list, the system uses a default Item Format for the class.

One feature of lists that is not parameterized, since it is available with every list, is

maintenance operations. Anyone with editing privileges has access to a cut operation that

removes the object being listened to from the current list and sets a clipboard variable to

point to it. Subsequently, a paste operation inserts the object into a list, just before the

object that is currently being played.

1.3.2 Filtering

Class: Filter

Field Name Alternative Values Description

Or Filters [Filter]* Filter is satisfied if any of the specified filters is
satisfied

And Filters [Filter]* Filter is satisfied if all of the specified filters is satisfied

Not? TRUE 11 FALSE If TRUE, accepts only those objects that do not pass the
filter.

Class Required [Class]* Object must be of one of the specified class

Field Filters (Field] [Validity Specified fields must pass the respective validity checks
Check])*

A Filter object determines a predicate on other objects. The predicate is either a boolean

combination of other predicates, or specifies the allowable classes and the allowable

values of particular fields of the objects. If several Classes are linked into the 'Class

Required' field, an object passes the predicate if it is a member of one of the classes, and

it passes the predicate defined by the 'Field Filters.' The 'Field Filters' field specifies

pairs consisting of a field name and a validity check. The field name determines the field

of the object from which to select a value and the validity check determines whether the

171

value is acceptable. If the field contains several values, at least one of the values has to

pass the validity check. If more than one pair is specified, an object satisfies the predicate

if it satisfies all of the validity checks on the values in its fields. The validity checks are

instances of one of the four classes below. In other words, a validity check is applied to

each of the values in a specified field, and the results are ORed together. This is done for

each field and validity check specified, and the results are ANDed together. Finally, this

result is ANDed with the result of checking that the object is an instance of one of the

acceptable classes. If the final result is positive, then the object satisfies the predicate.

Class: Date Validity Check

Field Name Alternative Values Description

Min Value Relative An integer. The earliest acceptable date, computed from the current
to Today date when the validity check is run.
Min Value A date. The earliest acceptable date.
Absolute
Max Value Relative An integer. The last acceptable date, computed from the current
to Today date when the validity check is run.
Max Value A date. The last acceptable date.
Absolute I

In order to satisfy a Date Validity Check, a value first of all has to be of type date. If 'Min

Value Relative to Today' is specified, it is added to the date on which the validity check

is evaluated: the value must be the same as or later than that. If an absolute minimum date

is specified, then the value has to be the same as or later than that. Similarly with the

maxima, the value has to be the same as or smaller than the specified values. If more than

one of the fields is filled in, a value has to satisfy the constraints determined by all of the

field in order to pass the validity check.

Class: Object Validity Check

Field Name Alternative Values Description
Equals [Object] Value in field must be a link to the specified object.
Member of [Objectl* Value in field must be a link to one of the specified

objects.
Filter [Filter] Value in field must pass the specified Filter.

In order to satisfy an Object Validity Check, a value has to be a pointer to an object. The

first field specifies a particular object as the destination of the pointer. The second

172

APPENDIX A: THE HYPERVOICE PROGRAMMING LANGUAGE

provides more flexibility, accepting pointers to any of the specified objects. The last field

allows specification of a recursive filter. A pointer to any object passes this validity

check, so long as the linked object satisfies the predicate specified by the object the

'Filter' field points to.

Class: String Validity Check

Field Name Alternative Values Description

Min Value A string Smallest acceptable value, with string< as the
comparator that defines relative sizes of strings.

Max Value A string Largest acceptable value, with string< as the

a_ . comparator that defines relative sizes of strings.
Min Length An integer An integer: smallest acceptable string length.
Max Length An integer An integer: largest acceptable string length.

A String Validity Check accepts only values that are digit strings. The first two fields can

specify minimum and maximum values for the string. In comparing two strings, string

comparison is used rather than numeric, so "20" is less than "3". The last two fields

specify minimum and maximum acceptable lengths. Again, the value has to satisfy the

constraints specified by all of the fields that are filled in.

Class: Number Validity Check

Field Name Alternative Values Description

Min Value A number Smallest acceptable value.
Max Value A number Largest acceptable value.

Number Validity Checks requires values that are numbers. The two fields can reject

values that are too low or too high. Here, numeric comparison is used, so that 3 is less

than 20. Again, the value has to satisfy the constraints of both fields if values are filled in

for both.

173

1.3.3 Sorting

Class: Field Order Format
Field Name Alternative Values Description

Field [ield] Which field to use for sorting
Direction ASCENDING 11 For ascending order, smallest values go first.

DESCENDING

Field Order Formats are used to sort objects. They specify fields from which to extract

values for comparison and a direction for sorting. Only the first value in the field is used

for sorting. For date, string, or number values of the same type, the comparison is made

using the comparison operator for those values. If a pair of text values, prompts, or a pair

of pointer values are compared, they are declared equal. Finally, if values of different

types are compared, the result is determined by an ordering of the types, regardless of the

values. The type ordering places dates first, then numbers, digit strings, text, prompts, and

finally links. These details assure that the sort ordering is well defined, but are rarely

relevant. In all of the application prototypes presented in this thesis, the values in the

specified fields are always of the same type, either dates or numbers.

1.3.4 Item Formats

Class: Item Format

Field Name Alternative Values Description

Object Class [Class] The class of object for which this specification is

_I Iintended.
Field Formats [Field Format]* Which fields to play in which order
Select Action [Select Action]* What to do if the item is selected

Item Formats determine how the information from individual objects will be arranged for

playback, and what action to take if the object is selected as a menu option. Each Field

Format picks out one field of the object that should be played back. By ordering the Field

Formats, the programmer can specify different ways to play back the information

contained in objects. By leaving some fields out, the programmer can omit information

that might be redundant or inappropriate to hear in a particular context.

174

APPENDIX A: THE HYPERVOICE PROGRAMMING LANGUAGE

Class: Field Format

Field Name Alternative Values Description
Field [Field] The field from which to extract values for playback
Field Name YES 11 NO Whether to recite the name of the field before playing
Spoken? its contents
Linked Item Format [Item Format] If the contents of the field is a link to another object, an

_ item format that specifies how to play back that item.

The 'Field Name Spoken?' parameter determines whether or not a recording of the field

name will be played before the contents of the field. In some situations, playing the field

name will orient callers to the kind of information that is about to be played. In other

situations, the caller is already oriented and the field name would just get in the way. The

programmer can specify independently for each field whether or not to play the field

name. The 'Linked Item Format' is used when a field contains a pointer to another object.

The Item Format determines which fields of that object to play back.

Class: Select Action

Field Name Alternative Values Description
Action Type GOTO OBJECT 11 If this object is a List Presentation, then GOTO

GOTO FIELD 'Field' 11 OBJECT will cause it to be presented.
RETURN ME 11 GOTO FIELD will cause the List Presentation in the

specified field to be presented.
RETURN ME will cause the selected object to be
returned as a value.

Action After RESET 11 When you return from the excursion to that List
Returning STAY AT CURRENT Presentation, should you reset to the beginning of the

ITEM current list, or stay on the current item? Used only in
conjunction with GOTO OBJECT and GOTO FIELD
action types.

Relationship text Used to generate the prompt for selecting the item.

A Select Action object is also linked into the Item Format. Its 'Action Type' field

determines what will happen if the item is selected from the list. The GOTO OBJECT

value is used only when the Item Format is for a List Presentation object. Then, if the

object is selected, the system will go to presenting that object. That is how navigation

menus are usually implemented. For other types of objects, the GOTO FIELD 'Field'

picks out a field of the object that should contain a link to a List Presentation object. For

example, a lesson plan object has a field, 'Questions', that contains a pointer to a List

175

Presentation object for questions about the lesson plan. In that case, the first field of the

Select Action would have the value GOTO FIELD 'Questions'. Finally, if the value is

RETURN ME, then the current object is returned as a value. This is useful in picklists for

selecting an object to link into a field of a telephone form, as will be discussed under

Field Edit Formats below.

The 'Action After Returning' field is only relevant when the first field has the value

GOTO OBJECT or GOTO FIELD. In those cases, the caller will go to another list and be

able to return to the current list after finishing with the new one. This field determines

where in the current list the caller will return to. If the value is RESET, the caller will

return to the beginning, the list header for the current list. With a value of STAY AT

CURRENT ITEM, the caller will return to the item that was selected.

When the 'Action type' is GOTO FIELD, the 'Relationship' parameters provides text to

generate the prompt for select objects of this type. It indicates the relationship between

the current object and the linked List Presentation. For example, in the teachers'

curriculum line, the phrase, "Questions about" for this parameter generated the prompt,

"For questions about this lesson plan, press..."

Note that it is possible for an Item Format to contain more than one Select Action. This

makes it possible to branch to more than one other List Presentation from each item in a

list. All of the prototype applications presented in this thesis, however, use only a single

Select Action for each Item Format.

1.3.5 Adding Objects

A List Action specifies how a caller can add new objects. Note that a List Format may

include more than one List Action, so that callers have options about the kinds of objects

to add or where the objects will be added. Of the prototype applications presented in

Chapter 2, only the Question and Answer program utilizes this feature. In that case, it

176

APPENDIX A: THE HYPERVOICE PROGRAMMING LANGUAGE

Validity Field
Check Edit

List Exttension Edit
Action Format Format

Figure A.6 The classes that specify the addition of new objects

allows system administrators to create an information tree over the phone, by adding

either interior nodes or leaf nodes anywhere in an existing tree.

Class: List Action

Field Name Alternative Values Description

Privileges Required NONE, ADDING, Determines what privileges are required in order to
EDITING execute this action

Button Location HEADER, FOOTER, From where in the list can this action be initiated
ITEMS, ALL

Extension Format [Extension Format] What kind of object will be added and how it will be
I edited.

The first parameter of a List Action object determines who will be able to add new

objects. As described above under Login procedures, each caller is assigned a privilege

level. If the caller's privilege level is lower than that required, then the caller will not be

able to execute this List Action. Typically, a caller can initiate entry of a new object from

anywhere in the list, but the Button Location parameter can be used to restrict that action

to just the header of the list, just the footer, or just the list items.

The List Action specification also includes an Extension Format specification, which

determines what kind of object will be created, how it will be edited, and where it will be

added. The current list being presented is an implicit variable that the Extension Format

makes use of. When the caller finishes editing the new object, if the 'Add to Current

List?' field is set to YES, then the object will be added to whatever list is currently being

presented. There may be reason to add the new object to other lists in addition to or

177

Class: Extension Format______________________
Field Name Alternative Values Description

Class of Object to [Class]
Add
Edit Format [Edit Format] A collection of Field Edit Format that specify which

fields will appear in form, initial values, validity
checks, etc.

Add to Current YES, NO Whether the new object will be added to the list
List? currently being presented to the caller
Other Lists to Add [List]*
To
Location to Add END, BEGINNING Add the new object at the end or the beginning of the

I I_ list(s) to which it will be added.

instead of the current one, hence the 'Other Lists to Add to' field. The 'Location to Add'

field determines whether the new object will be added at the ends or at the beginnings of

the lists to which it is added.

Class: Edit Format

Field Name Alternative Values Description

Field Formats [Field Edit Format]* Linked objects that determine the entry blanks of the

I telephone form.
'Header Prompt' Prompt Used in the header that describes the telephone form to

the caller.

The Edit Format contains pointers to Field Edit Formats, one for each field of the object,

which determine initial values for the fields and various other details of how the field will

appear in the telephone form for editing the object. The form will present a sequence of

entry blanks, one for each field that can be edited. Callers will navigate between the entry

blanks and enter or change values in the fields. Callers will begin on a header node that

explains that this is a telephone form for editing a particular kind of object. As part of the

form header, the 'Header prompt' is also played.

The 'Initial Value' can either be a value, or a specification of how to generate a value at

run time. * TODAY fills in the current date. * CURRENT USER fills in a link to the

User object that was selected during the login process. * PARENT LIST fills in a link to

the List Presentation object that is currently being presented. * PARENT OBJECT fills in

a link to the object that was selected in order to make the current list be presented, if there

178

APPENDIX A: THE HYPERVOICE PROGRAMMING LANGUAGE

Class: Field Edit Format
Field Name Alternative Values Description

Field [Field]
Initial Value * TODAY 11 The initial value for the contents of the field. Either a

* CURRENTUSER 11 value, or (if value is preceded by *) the specification of
* PARENTLIST I a value to be created at runtime.
* PARENTOBJECT 11
* NEW LIST 1I
* [Extension Format] I
a value

Include in Form? YES, NO Whether the contents of the field are editable by the
user.

Data Type VOICE 11 The type of data that a caller can add to this field
LINK 11
DIGIT STRING 11
DATE 11
NUMBER

Accept Multiple YES 11 NO Accept entry of more than one value, or just one?
Values?
Picklist [List Presentation] For POINTER data type, a list of alternatives from

which to make a selection.
Max Length An integer Maximum number of seconds for a recording, if

VOICE is the data type, or maximum number of digits
to collect, if DIGIT STRING is the data type.

Validity Check [Validity Check] Predicate that checks whether a value that the caller
inputs is valid.

Field Description Text In the entry blank for the field, this prompt will be

L__ _played if no value has been filled in yet.

was one; typically, this is an object to which the current list contains responses. *

followed by a pointer to an Extension Format object causes sets the field to be pointer to

a new object that is created and filled in according to the Extension Format. In this way,

embedded data structures can be generated automatically.

The 'Include in Form?' field determines whether or not an entry blank will appear in the

telephone form for editing the current field. If a field has an initial value and does not

appear in the form, that becomes the final value. If the field appears in the form, then the

caller will have a chance to edit it. The rest of the fields are relevant only if this one gets

the value YES.

The 'Data Type' determines what kind of values will be entered into the field. If voice

data is accepted, the caller will record. Digit strings, dates and numbers will be typed in

179

using the telephone keypad. Pointers are selected from a list of objects specified in the

'Picklist' field.

The 'Picklist' field points to a List Presentation object, which should be a list that allows

selection, and the Item Format of the selected item should have the 'Select Action' field

value RETURN ME. In short, the caller can select an object from the list specified in the

List Presentation object. A pointer to that object will be returned and added as a value to

the field of the object being edited.

The 'Max Length' field determines the maximum length of typed-in input. It is relevant

only for numbers and digit strings.

The 'Validity Check' field restricts the values that will be accepted as inputs into the

field. For example, dates might be restricted to be no more than one year from the date of

entry. After a value is entered, it is compared against the linked Validity Check object. If

it does not pass the check, the system notifies the caller that the value has been discarded

and allows him or her to try again.

Finally, the 'Field Description' parameter contains a prompt that is played as part of the

entry blank, if the field has no values. It tells the caller what kind of value is expected in

the entry blank, and, in some cases, what the value will be used for. If the field already

has one or more values filled in, the field description is omitted and the system instead

plays the contents of the field.

1.4 SUMMARY

The List Presentation is the fundamental unit in a HyperVoice program. It specifies the

presentation of some or all of the object in a list. Callers can navigate forward and back

through the objects in a list and can follow links to other List Presentations. They can

180

APPENDIX A: THE HYPERVOICE PROGRAMMING LANGUAGE

also create new objects and add them, either to the list currently being presented, or to

other lists.

This concludes the presentation of the HyperVoice language primitives. These primitives

can be roughly divided into three categories. First, the Login, User and List Jump classes

determine what, if any, registration procedures will be used at the start of each call, what

privileges different users will have, and any special jumps that will be available

throughout the application. Second, list presentation formats for lists determine the

selection and ordering of information to be presented. Third, editing formats, including

the List Action, Extension Format, Edit Format, and Field Edit Format classes, determine

how new objects will be added over the phone. All of the primitives are implemented as

classes in the same object system used for storing the messages that callers add over the

phone.

1.5 MACROS

In implementing the programs described in Chapter 2, some standard programming

clichds have become apparent. Rather than always copy and edit large code fragments, I

have added two macros to the programming language. These macros hide the similarities

among the code fragments and parameterize the differences. One macro expands into a

List Presentation and related objects that acts as a navigation menu, to which new options

can be added by phone. The second macro expands into a Field Edit Format that creates a

response list and links it into a field. Both macros are presented below, along with the

code fragments that they expand into.

1.5.1 Extensible Navigation Menu

The first macro is a navigation menu for choosing which list to go to. The destination lists

can themselves be navigation menus, or just lists of information objects. A system

administrator can add additional destination lists as options in the menu. For example, in

181

an events calendar, callers would select from a menu of event categories and system

administrators could create new categories by phone.

Class: Menu Macro ______________________

Field Name Alternative Values Description
Title Prompt Played in the list header, and when returning to the list

I_ I after visiting somewhere else.
Description Prompt Played in the list header.
Menu Prompt Prompt Played when this object is an option in a menu.
Contents [List Presentation]* Initial items in the menu
Name for Objects Text Used in generating prompts
Privileges Required NONE II ADDING 11 The privilege level required to add a new option to the
for Adding EDITING menu.
Form Header Prompt Part of what will be played in the header of the
Prompt telephone form for editing the new menu option.
List Format for [List Format] What the List Format will be for the new List
New Menu Options Presentation.

The same notation used for object classes also applies to macros. Unlike the object

classes described above, however, instances of class Menu are not interpreted directly,

but are instead "expanded" (just as a macro in Lisp can be thought of as involving textual

substitution) into collections of instances of the built-in classes. The easiest way to

understand the working of the Menu Macro is to follow an expansion of the sample

instance above, which specifies an initially empty menu of event categories. In the

expansion below, all of the instance-specific information is highlighted in bold. From the

relative scarcity of bold text, it is easy to see why the Menu Macro contributes to more

compact programs.

182

Menu Macro: Sample Menu

Field Name Value
Title Event categories
Description Please select a category
Menu Prompt For event listings
Contents --

Name for Objects Category
Privileges Required for EDITING
Adding_
Form Header Prompt There are entry blanks, the title,

description, and menu prompts
for the new event category

List Format for New [Events List Format]
Menu Options __

APPENDIX A: THE HYPERVOICE PROGRAMMING LANGUAGE

List Presentation:
Field Name Value
List [List 1]
Filter --

Format [List Format 1]
Title Event categories
Description Please select a category
Menu Prompt For event listings

Three prompts are

Format are created

taken directly from fields of the macro. A new list and a new List

List: List I

Field Name Value
Contents --

The list has as its initial contents specified in the macro. In this case, the menu will start

without any options in it.

List Format: List Format 1

Field Name Value
Sort Order --

Filter --

Item Formats [Default Menu Item Format]
Advancement SKIP
Mechanism
Selection Mechanism POSITIONAL
List Actions [List Action 1]
Name for Objects Category
Response List? NO
Say Item Count? NO

All the items in the list will be presented (no filter) in the order in which they are stored

(no sort order). The Item Format is specified below. Callers will press buttons to skip

through hearing the categories (SKIP advancement) and will have a single select button

to select the category they are hearing (POSITIONAL) selection). The prompts for

navigating through the menu will use the word "category", as specified in the macro.

183

Item Format: Default Menu Item Formal

Field Name Value

Object Class [List Presentation]
Field Formats [Play Menu Prompt]
Select Action [Goto Item]

Each option in the menu will be a List Presentation, the presentation of a category of

event announcements.

Field Format: Play Menu Prompt

Field Name Value
Field 'Menu Prompt'
Field Name Spoken? NO
Linked Item Format --

The system will play only the 'Menu Prompt' field of each option in the menu.

Select Action: Goto Item

Field Name Value
Action Type GOTO OBJECT
Action After Returning RESET

When the caller selects an option, the system will go to that List Presentation. When the

caller returns to this menu, the system will reset to the beginning.

List Action: List Action 1

Field Name Value
Privileges Required EDITING
Button Location ALL
Extension Format [Extension Format 1]

Callers with editing privileges can add new options from anywhere in the menu. The

privileges required are specified in the macro.

184

APPENDIX A: THE HYPERVOICE PROGRAMMING LANGUAGE

Extension Format: Extension Format I

Field Name Value
Add to Current List? YES
Other Lists to Add to --

Location to Add END
Class of Object to Add [List Presentation]
Edit Format [Edit Format 1]

Each event category is an object of type List Presentation. Thus, to create a new event

category, a new [List Presentation] object is created. After it is edited, it will be added to

the end of the current list. That is, it will become the last option in the menu.

Edit Format: Edit Format I
Field Name Value
Field Formats [Record Title]

[Record Description]
[Record Menu Prompt]
[Make New List]
[Edit Field Format 1]

Form Header Prompt There are entry blanks the
title, description, and menu
prompts for the new event
category

The caller will record three prompts for the new category, as specified in the first three

Field Edit Formats below. The system will automatically create a new list, to hold the

event announcements for the new category. The system also automatically fills in the List

Format. The List Format to use was specified in the menu macro.

Field Name Value
Field [Title]
Initial Value --

Include in Form? YES
Data Type VOICE
Max Length 30
Picklist --
Validity Check --

Field Description --

Field Header Prompt --

185

Field Edit Format: Recr Tite

Field Edit Format: Record Description

Field Name Value
Field [Description]
Initial Value --

Include in Form? YES
Data Type VOICE
Max Length 60
Picklist --
Validity Check --

Field Description --

Field Header Prompt --

Field Edit Format: Record Menu Prompt

Field Name Value
Field [Menu Prompt]
Initial Value --

Include in Form? YES
Data Type VOICE
Max Length 30
Picklist --
Validity Check --

Field Description --

Field Header Prompt --

Field Edit Format: Make New List

Field Name Value
Field [List]
Initial Value * NEW LIST
Include in Form? NO
Data Type LINK TO OBJECT
Max Length --

Picklist --

Validity Check --

Field Description --

Field Header Prompt --

Field Edit Format: Field Edit Format 1
Field Name Value
Field [List Format]
Initial Value [Events List Format]
Include in Form? NO
Data Type LINK TO OBJECT
Max Length --

Picklist --

Validity Check --

Field Description --

Field Header Prompt --

Overall, then, the expansion of the menu macro fills in the details of how the menu will

be presented to callers (e.g., automatic advance and positional selection) and generates

186

APPENDIX A: THE HYPERVOICE PROGRAMMING LANGUAGE

the extension and editing formats for adding new event categories to the menu. It

provides a compact way to specify a List Presentation of a particular kind, and can be

used anywhere that a List Presentation object would be used.

1.5.2 Make Response List

The second macro is for filling in a field with a response list. For example, whenever

someone adds a new comment to an issue discussion application, the system will create a

new List Presentation, a place for other callers to add responses to the comment. The new

list presentation needs a new list as one of its fields and will use a List Format specified

in the macro. Again, a sample macro instance is presented along with the expansion of

that instance into a program fragment.

Field Name Alternative Values Description
Field [Field] The field into which the new response list will be

linked.

Response List [List Format] The List Format that should be used for presenting the
Format new list of responses.

Make Response List: Sample Instance

Field Name Value
Field 'Responses'
Response List Format [Sample List Format]

Field Edit Format:

Field Name Value
Field 'Responses'
Initial Value * [Extension Format 21
Include in Form? NO
Data Type LINK TO OBJECT
Max Length --

Picklist --

Validity Check --

Field Description --

Field Header Prompt --

The initial value for the 'Responses' field will be a pointer to an object that is generated

at run-time from the specification in the object below.

187

Extension Format: Extension Format 2

Field Name Value
Add to Cuffent List? --

Other Lists to Add to -
Location to Add --

Class of Object to Add [List Presentation]
Edit Format [Edit Format 21

The linked object will be a [List Presentation] and will not be added to any lists.

Edit Format: Edit Format 2

Field Name Value
Field Formats [Make New List]

[Set Response List Format]

Field Edit Format: Make New List

Field Name Value
Field 'List'
Initial Value * NEW LIST
Include in Form? NO
Data Type POINTER

One field of the new object will contain a pointer to a new List.

Field Edit Format: Set Response List Format

Field Name Value
Field 'List Format'
Initial Value [Sample List Format]
Include in Form? NO
Data Type POINTER

The other field contains a pointer to the List Format specified in the macro.

Overall, the Make Response List macro provides a compact way of specifying that a field

of an object should be filled in automatically with a new List Presentation object

containing a new List and a List Format specified in the macro. It can be used anywhere

that a Field Edit Format would be used.

188

APPENDIX A: THE HYPERVOICE PROGRAMMING LANGUAGE

2 CONCLUSION

This appendix has served as a programmer's manual for the HyperVoice language,

describing the primitives and means of combination of the language primitives, and an

informal description of their semantics. For listings of sample programs written in the

HyperVoice language, see Appendix C. Appendix B discusses the pre-processor and

interpreter for the language, which provide more details of the language semantics.

189

B THE HYPERVOICE INTERPRETER

While appendix A served as a programmer's manual for HyperVoice users, this appendix

is an implementor's manual for those who wish to replicate some or all of the features of

the HyperVoice application generator. It describes in detail the two lower abstraction

levels, the event and state machine layers. Then it shows how application layer program

fragments are translated into state-machine layer programs.

1 THE EVENT LAYER

The event layer consists of procedure calls play file, stop_playing, recordjile,

stoprecording, beep, stopbeeps ,and silence. These procedures are part of a library that

is provided by the manufacturer of the hardware add-on card that digitizes speech and

interfaces to a telephone line5 . The event layer has a background process that enqueues

tokens when certain events occur. These events include the end of playback of a file

(either because it is finished or because the stop_playing command was issued), the end

of beeps, and the beginnings and ends of touch-tones.

Programs can be written directly at this abstraction layer, but they will be long and

complex. The programs will constantly monitor for and respond to low-level events such

as files finishing playing or touch-tones interrupting the dialogue. The state-machine

abstraction defines a uniform way of handling those low-level events and isolates that

handling in an interpreter that is shared among all state-machine programs.

5The hardware card is Watson from Natural Microsystems and they call the software library the VAR

Interface Driver.

191

2 THE STATE-MACHINE LANGUAGE AND INTERPRETER

As mentioned in the body of the thesis, the state-machine abstraction conceives of a

telephone dialogue as a caller navigating through a graph of sounds. State-machine

programs have nodes and actions, which either transition between nodes or modify the

state-machine program in some way. The state-machine layer presented here is novel in

its use of variables for the contents of soundbytes and its use of subgraphs as

subroutines. These features enable the creation of more modular, understandable

programs.

The state-machine interpreter keeps track of a current state, namely a graph node and how

much of it has been played so far. In the absence of button presses from the caller, the

graph interpreter asks the event layer to play the recordings associated with the current

node. If the event interpreter enqueues a button press, the state-machine interpreter first

cancels any ongoing operation, then looks up the appropriate action to execute.

The remainder of this section describes the state machine language and interpreter in

more detail. A kernel set of node contents and actions are introduced and then several

extensions are made to the kernel. The first extension is that contents of nodes can be

determined dynamically from variables and additional actions can set the contents of the

variables. Second, conditional actions can act differently depending on the values of

variables. Third, a call and return mechanism allows subgraphs to be treated as

subroutines. Fourth, operations are introduced to read and write values from a database.

Finally, several additional actions provide hooks for integration with the application

layer.

192

APPENDIX B: THE HYPERVOICE INTERPRETER

<action> :=
Rewind(int) //
Repeat/
Requeue-digit H
Record(filename) H
Hangup //
Goto(Graph-node) H
(<action>*)

Set-variable(variable-name, <var expr>) H
Clear-variable H

If(<predexpr>, <action>, <action>) //

Call _subgraph(Graph-node) H
Return(<var_epxr>) /f

Add-field-value ([Object], 'Field', <var _expr>)
Delete-field-value ([Object], 'Field', <var expr>) |
Clear-field([Object], 'Field')!|

Expand([List Presentation])
Begin-form([Extension Format])
Save-form
Cut-item
Paste-item

Figure B.1 Summary of the syntax of all state-machine language actions.
subsections in which the actions are described.

Kernel

Variables

Conditional Actions

Subroutines

Database Operations

Application Layer
Actions

The right hand column indicates the

2.1 KERNEL

There are two kinds of primitives in the graph programming language, graph nodes and

actions. Each node consists of one or more sounds to be played, hereafter referred to as

soundbytes, a transition table, indicating what action to take on each of the twelve

possible button presses, and a timeout action, to be taken if all of the sound-bytes are

played without a button being pressed. A sound-byte can be a recording, a number, a

string of digits, a date, a time, or a text string. When played back, dates, times, monetary

values, numbers, and digit strings are "expanded" into sequences of voice recordings. For

example, the date "062192" is expanded to the following recordings, "June," "twenty,"

"one," "inineteen," "ninety," "two." A text string would be played back through a text-to-

193

speech synthesizer, though I have not hooked one up in the current implementation of

HyperVoice.

There are two means of combination in the graph programming language, the Goto action

and the multiaction. The goto action combines two nodes: callers can press a button to

follow a link from one node to another. The multiaction combines two or more other

actions, in much the same way that PROGN does in LISP or BEGIN...END blocks do in

PASCAL: the component actions are executed sequentially, not in parallel. State machine

programs shown in this chapter follow the C language notation for multiactions, simply

enclosing the component actions in (curly braces).

In addition to the two means of combination, there are five additional actions: rewind,

repeat, requeue-digit, record, and hangup. Rewind goes back a specified number of

seconds in the playback of the current node's sounds. Repeat restarts at the beginning of

the current node's sounds. Requeuedigit puts the button press that initiated this action

back on the beginning of the digit queue. Requeue-digit is usually used as the first action

in a multiaction, in order to execute the other actions without consuming a digit from the

queue. Record initiates recording of whatever sounds next come over the phone, into a

specified file. Hangup exits the graph, causing the current phone call to be terminated: no

further input from the caller is accepted after the hangup action is executed.

Variable name Values Description
boardstatus IDLE, PLAYING, What, if any, operation is

RECORDING, BEEPING, ongoing
SILENCE

buttondepressed? TRUE, FALSE Has a touch-tone started but not
finished yet?

digiLqueue Touch-tones that have been
detected, but not yet processed.

frameposition How many frames of the current
sound byte have been played?

Table B.2 Variables used by the state machine interpreter to keep track of the event layer state of the dialogue.

194

APPENDIX B: THE HYPERVOICE INTERPRETER

In order to execute a graph program, the graph interpreter keeps track of the current graph

node, the current sound-byte from that node, and the state variables that are described in

Table B.2. When the graph interpreter asks the events layer to play or record, it sets the

boardstate variable to PLAYING or RECORDING, then waits while the events layer

processes incoming board-level events. If the beginning of a touch-tone is detected, the

state-machine interpreter sets the button-depressed? variable to TRUE, cancels any

ongoing operation, and executes the appropriate action for that touch-tone. The rewind

and repeat actions involve changing the current sound-byte and position within the

current node, while links involve changing the current node. Before resuming play, the

state machine interpreter waits until the end of the tone is detected. 6

2.2 VARIABLES

<action> :=
Set-variable(variable-name, <var expr>) |
Clear-variable

The kernel graph language treats all button presses as navigation actions that cause

transitions to different graph states. In many telephone dialogues, however, callers use

touch-tones to enter values, such as zip codes or dates. To accommodate that, I introduce

the notion of variables that hold values of any of the types that make acceptable

soundbytes (a file containing a voice recording, a number, a string of digits, a date, or a

text string.)

6 Note the analogy between beginning and end tone events and mouse down and up events in window

systems. Here, the separation into two separate events improves efficiency: by the time the caller has

finished the touch-tone press, the system has already processed the tone and is ready to start playing at the

new location.

195

Two additional actions are added to the language, clearvariable and setvariable. The

clearvariable action makes the specified variable unbound, while setvariable sets a

variable to the result of a variable expression.

Soundbytes for a graph node can be variable expressions rather than just constant

values. The syntax for variable expressions is given in Figure B.3. Variable expressions

can be constant values, direct lookups of variable values, or constructed from functions

that return values can be used in variable expressions. Strlen is one such function. It

returns the number of digits in a variable that is represented as a string. Append digit

returns the result of adding a digit to the end of another string value. Section B.2.5 will

introduce the function calls countvalues, getithvalue and get matchingvalue that

retrieve values from a database. Section B.2.4 will introduce the function callsubgraph,

which passes control to a subgraph that is expected to return a value.

Conceptually, variable expressions are re-evaluated continuously: whenever a variable's

value changes, all variable expressions that depend on it are re-evaluated. For

implementation efficiency, variable expressions are re-evaluated just before they are

used.

<var expr> := constant | variable name | <function call>

<function call> :=
strlen(<var expr>) H
append digit(<var expr>) /|
countvalues([Object], 'Field')!H database operations
get ith-value([Object], 'Field', <var expr>) |
getmatchingvalue([Object], 'Field', <var expr>, 'Field')
call subgraph(<graph node>) subroutines

Figure B.3 The syntax of variable expressions. The right column indicates the sections where the functions are
described.

2.3 CONDITIONAL ACTIONS

<action> :=
If(<pred expr>, <action>, <action>)!!

196

APPENDIX B: THE HYPERVOICE INTERPRETER

The state-machine language includes a conditional construct. Suppose a caller is asked to

type in a date, which will be stored in a variable, but is given the option of canceling

entry of the date. The program should act differently depending on whether a complete

date is entered. The if construct provides that facility. It takes three parameters, the

predicate expression to check, the action to take if the predicate expression is satisfied,

and an alternative action to take if it is not satisfied.

Predicate expressions examine the contents of one or more variables. The syntax of the

legal predicates is specified by the equations in Figure B.4. Intuitively, a predicate

expression compares two values, which can be constants, variables, or function calls.

The semantics of the predicates follow the obvious intuitions. The predicate symbols are

overloaded: the symbol < is interpreted differently when the two values being compared

are dates than when they are numbers.

<pred expr> :=
(<pred expr> AND <pred expr>) H
(<pred expr> OR <pred expr>) H
<var expr> <pred sym> <var expr>

<pred sym> := <| H<=1 H==II >= H >
Figure B.4 The syntax of predicate expressions.

2.4 CALL AND RETURN

<action> :=
Call subgraph(Graph-node) H
Return(<var_epxr>)

<function call> :=
Call subgraph(<graph node>)

The graph language and interpreter presented thus far are useful, but do not facilitate the

construction of modular programs because they do not allow the creation of sub-routines.

It is not possible, for example, to create a single pause node that can be accessed from

every other node in the system, because once the graph interpreter transitions to the pause

node, it will not remember where to continue at the conclusion of the pause. Similarly, it

197

is not possible to create a subgraph that collects and returns a date, then use that subgraph

anywhere that it is appropriate. In this section, I present extensions to the graph language

to accommodate a call and return mechanism that treats subgraphs as subroutines,

complete with parameter passing and returned values.

Two new actions are included in the language: call_subgraph and return. The

callsubgraph action transitions to the destination node, and passes parameters, but keeps

a marker, so that when a subsequent return action is performed, there will be a transition

back to the current node, whence processing can resume. The return action, as well as

returning to the last marker, can pass back a value, so that call-subgraph can be used as a

function call in any variable expression.

To illustrate the advantages of a call and return mechanism, suppose that touch-tone

button 8 is the pause button throughout an application. When a caller presses 8, the

system should say, "Paused," and then should wait until the callers presses 8 again to

continue. Other button presses should end the pause and initiate whatever action is

associated with that button in the transition table of the current graph node. One pause

node containing two sound-bytes implements this functionality (see Figure B.5). The first

sound-byte is the recording, "Paused," and the second is a very long period of silence.

Button 8 in the pause node's transition table is a return action, with no returned value.

Other button presses cause a return from the pause node without consuming the button

press. All of the regular graph nodes have button 8 set to a call-subgraph action, with the

pause node as the destination. Thus, for example, when 8 is pressed from node X, there is

a transition to the pause node. If 8 is pressed again, it returns to node X and continues

playing. If some other button, say 9, is pressed, then it returns to node X and executes the

action associated with 9 in node X.

198

APPENDIX B: THE HYPERVOICE INTERPRETER

1. "Paused" 8, t
2. (silence 15 seconds) r

others
{requeue-digit, return)

Figure B.5 A subgraph to pause for up to 15 seconds.

The advantages of parameter passing and returned values are best illustrated by a

subgraph that collects a string of digits from the caller. This subgraph takes several

parameters, including the number of digits to be collected, as shown in Figure B.6.

Because of the input parameters, this subgraph can be used in many different data

collection situations. For example, by specifying a different prompt, the caller can be

informed of what kind of value to enter and what it will be used for. The timeout length

can be varied to give callers more or less time between button presses before assuming

that the caller is not going to enter any more digits. An initial value can be passed, if the

caller is supposed to append digits to an existing value. Finally, a caller need not enter a

delimiter to end data entry: data entry is terminated automatically after the maximum

number of digits have been collected.

The returned value makes it possible to call this subgraph as a function inside any

variable expression. Thus, it is possible, for example, to create an addfieldvalue action

that adds the value returned from a call to this subgraph. It is also possible to call this

subgraph inside a multiaction. For example, an action might first set a variable to be the

result of calling the subgraph in Figure B.6. The next action in the multiaction could

then do a conditional branch on the value of the variable. In fact, in section B.3.5 below,

on telephone forms, just such a multiaction is used to collect values: if an acceptable

value is collected, it is then written into the database.

199

Parameters:
collection-prompt (voice)
max~digits,_to-collect (integer)
initiaLdigits (digit string)
initiaLpause (integer)
timeoutjlength (integer)

Initial action:
(set_variable(collectedvalue, initial-digits),
conditional-action(

strlen(collected_value) >= max.digitsjtoscollect,
return,

1. silence(initial.pause) t, #
2. collection DromDt return collected value

*
return NULL

(setvariable(collectedvalue, append-digit(collectedvalue)),
conditional action(

strlen(collected-value) >= maxdigitstosollect,
return collected-value,

Figure B.6 A subgraph that collects digits. The value collected is returned from the subgraph.

To accommodate the new language primitives, the graph interpreter has to be changed.

Rather than keeping track of a single current graph node, it keeps a stack of graph frames.

Each stack frame contains a graph node, a continuation action, and a place for a returned

value. The node in the top frame on the stack is treated as the current node, and its

contents are played. To execute a goto action, the interpreter replaces the graph node in

the top stack frame. To execute a callsubgraph action, it sets a continuation action for

the current stack frame and pushes the destination node onto to the stack. The

continuation action is necessary because the call-subgraph action may come in the

middle of a sequence of actions or be used as a function call. In either case, processing

should continue where it left off after a return from the subgraph. To execute a return

200

3. silence (timeoutlength)

APPENDIX B: THE HYPERVOICE INTERPRETER

action, the state machine interpreter pops the current frame off the stack, sets the returned

value of the next frame and executes the continuation action of the next frame.

2.5 DATABASE OPERATIONS

<action> :=
Add-field-value ([Object] , [Field], <varexpr>) //
Delete-field-value ([Object], [Field], <var expr>) //
Clear-field([Object], [Field])

<function call> :=
countvalues([Object], 'Field') HI
get_ith_value([Object], 'Field', <var expr>) H
getmatching_value([Object], 'Field', <var expr>, 'Field')

Several functions and actions read and write values from a database. The database is

object-oriented as described in Chapter 4. Briefly, a class specifies a set of fields that

each instance will contain. An instance (also called an object) has zero or more values of

any supported data type in each of the fields. The supported data types are recording, text,

date, integer, and pointer to another object.

Three new functions are provided for reading values from fields. Countvalues returns a

count of the number of values currently stored in a specified field. Getithvalue retrieves

the ith value from a field, where i is a parameter. Get matchingvalue is available only

when the values of a field are pointers to other objects. It takes as parameters an object,

the field from which to retrieve a value, a variable expression that is used as the key for

the search, and a field of the linked objects to compare against the key.

Getmatching-value returns the first object whose specified field has a value that

matches the key value. All of these functions can be used in any variable expression.

Three actions change the values of fields of objects. Addfield value evaluates a variable

expression and adds the resulting value in the ith position in the list of values of a

specified field. To add a value at the end of the list, the parameter i can be computed as

201

countvalues on the field. Delete field value removes the ith value from the list of values

for a specified field. Clearfield removes all the values for a specified field.

As an example, consider a graph node that plays back the closing stock price of the

ACME shoe repair and financial services Corporation ("one-stop shopping for the

investor who does his own legwork."). Assume that the object ACME in the database has

a field called 'closing price' that is always updated by some outside source to contain a

single value, the most recent closing price. The graph node contains two sound-bytes.

The first is a recording of the company name, "ACME Hardware." The second

sound-byte is the variable expression, getith value(ACME, 'closing price', 1), which

retrieves the first value from the 'closing price' field of the object ACME. This example

illustrates how some useful changes to the space of possible dialogues can be

accommodated by setting sound-bytes of graph nodes to be retrieved values from a

database.

2.6 CALLBACKS TO THE APPLICATION LAYER

The state-machine layer includes few actions that involve application layer constructs. All

of these actions change the state-machine program, and change the state of the state-

machine interpreter. Expand converts a List Presentation object into a state-machine

subgraph for browsing through the information in a list of objects. Cut-item and Paste-

item are used to cut and paste objects in lists, then to regenerate the graph for browsing

through the contents of the list. Begin-form generates a telephone form subgraph for

editing a new object, process-validity-check checks a value entered against a Validity

Check object, reset-field-graph regenerates part of the form graph after the contents of a

field of the object have been changed, and save-form saves the new object that has been

edited and exits from the telephone form subgraph. These actions are the subject of

section B.3.

202

APPENDIX B: THE HYPERVOICE INTERPRETER

2.7 RELATED RESEARCH

Chapter 4 already discussed audio interface toolkits that are based on the state-machine

layer. Visual hypermedia systems such as HyperCard are also based on a variant of this

model, though graph nodes consist of text or graphics to display rather than sounds to

play back. While some of these systems provide a richer set of functions and actions in

their scripting languages, including iterative constructs, none treat subgraphs as

subroutines with parameters and returned values.

2.7.1 Visual hypermedia

Visual hypertext systems have explored more of the space of possible graph models.

HyperCard is the best known entry in this category [Goodman 1990]. Cards in

HyperCard serve the dual role of graph node and database record. For example, an action

can set the value of a variable (or the field of another card) to be the contents of a

particular field of a card. The current contents of a card can also be displayed on the

screen. HyperCard does not, however, allow cards to automatically get their values from

a variable or another card. HyperCard programmers can accomplish a subgraph call by

pushing the current card on a system-provided stack and then branching to the subgraph.

The calling and called cards can communicate through global variables, but there is no

provision for parameter passing or returned values.

KMS [Akscyn, et al. 1988] and the Symbolics Document Examiner [Walker 1987]

separate the underlying database from the graph nodes. Graph nodes can automatically

look up their contents in an underlying database.

Often, visual hypermedia systems present more than one graph node simultaneously, in

tiled or overlapping windows. For example, Trigg includes the notion of a Tabletop Card

[Trigg 1988]: when it is opened, a whole set of nodes are opened at once. In that case, the

203

state machine model breaks down somewhat, since the user can interact with a window of

her own choosing. Two papers presented a formalism to handle this situation [Hill 1987,

Wellner 1989] by keeping multiple active state machines.

Zellweger adds a full procedural programming language to a hyperdocument system

[Zellweger 1989]. The language is not concerned with the contents of nodes, however,

but only the sequencing of them. It does not allow the contents of nodes to be variables

from programs or values retrieved from a database.

2.7.2 Window and Mouse Systems

State-machine abstractions are one popular substrate for screen-based User Interface

Management Systems [Green 1986]. When screen-based systems switched from

command-line to window and mouse interfaces, however, the popularity of the state-

machine model declined. One difficulty is that many icons are typically available on the

screen. Interactions with some of the icons are local, in that they will not affect other

portions of the screen. One solution to this problem is to allow several state machines to

run concurrently [Hill 1987, Wellner 1989].

Another problem with state-machine specifications of direct manipulation interfaces is

that state-changes from even low-level events such as mouse-down and mouse-up require

behavior that depends on application-level constructs. For example, clicking on an icon

may cause the representation of an information object somewhere else on the screen to be

highlighted, in a manner that depends on the current contents of the object. Hence, the

state-machine abstraction does not accomplish the goal of separating the user interface

specification from the application specification. To some extent, this problem carries over

to the use of state-machine representations of telephone dialogues: the state-machine

representation intermingles information about the application (what information is being

presented and whether it can be modified) with information about how callers execute

204

APPENDIX B: THE HYPERVOICE INTERPRETER

actions. This is one advantage of automatically generating the state-machine

representations from application-layer specifications that exclude information about how

callers will execute actions, as will be discussed in the next section.

3 THE APPLICATION INTERPRETER

With the state-machine abstractions as background, this section turns to a description of

the application layer interpreter. It includes both static and dynamic components. The

static pre-processor generates the text of prompts that need to be recorded before any

telephone calls can be handled. The dynamic component interprets HyperVoice programs

at run-time. It runs as a two-step process: first a part of the program is translated into a

state-machine program, then the state-machine interpreter runs the translated program.

When callers add new data objects by phone, parts of the state-machine layer program are

regenerated.

The remainder of this section presents the translation of application program fragments

into state machine programs. Throughout, nodes include recordings whose texts were

generated by the pre-processor. The method of generating those prompts is noted

whenever the prompts are used. Thus, the descriptions mix the actions of the pre-

processor and the interpreter.

Since the complete state-machine program for even a simple graph-layer program would

be difficult to fit on a single page, I present the translation in modular pieces. I begin with

login procedures. Then, I proceed to lists, where each object in the list is assigned to a

single graph node. Next, the graph node for a single object is expanded into a group of

nodes, one for each field of the object, plus one help node for each possible command

that is available. Then, I show how menus are implemented. Finally, I show how editing

formats are used to generate telephone form graphs.

205

3.1 LOGIN PROCEDURES

An application with no access controls, such as the Boston Peace and Justice Events

calendar, begins directly with the presentation of a menu or other list of information

objects. This is specified by a Login object whose 'Register?' field is set to TRUE. If, on

the other hand, registration is required, then a state-machine program like that in Figure

B.7 is generated. Consider the Login specification from the teachers' curriculum line

application, shown below. The complete program listing for that application is shown in

Appendix C.

Login: Curriculum Line
Field Name Value
Register? TRUE
User Id Length 4
Users List [All Teachers]
Password? FALSE
Greeting Hello, welcome to the Math-

cubed curriculum line.
Start Item [The Main Menu]
Special List Jumps [Goto all questions]

The initial graph node contains a recording of the prompt from the 'Greeting' field. After

playing that prompt, the subgraph from Figure B.6 is called, to collect 4 digits. When the

subgraph has finished collecting the four digits, they are returned as a string and the

variable userid is bound to that string. Next, a database operation searches in the list [All

Teachers] for a User object that has a value in the 'User Id' field that matches the string

that was collected. If one is found, the user-object variable is bound to it. The next state-

machine action that is executed is a conditional on whether a matching User object was

found. If none was found, then it goes to an error message node, called Sorry, and then

begins the process again by collecting a four-digit string.

If a User object was found that matched the four digits entered, then the system sets the

currentuser variable and sets the privileges variable to be the value in the 'privileges'

206

APPENDIX B: THE HYPERVOICE INTERPRETER

field of the User object. Then, the state-machine interpreter transitions to a node that

confirms a successful login. From that node, it initiates the translation of the List

Presentation object contained in the 'start item' field of the User Object.

"Hello. Welcome to any requeue digit,
the peace and justice st a
hotline." Rgsrto cin

Registration action
(userid = call-subgraph(Figure B.6, "Please enter your user id", 4, --, 5)
user-object = get-matching.value(usersjlist, 'Contents', user-id, 'User Id')
if(user-object == NULL,

goto(Sorry)
(set.variable(current user, user object),
setvariable(privileges, get-ith value(1, current-user, 'privileges')),
goto(Thank You)
}

)
} Sorry

"Sorry, that wasn't a valid id.
Thank You Please feel free to try again."

"Thank you. You registered as" | any
getjith value(1, user object, 'name')

any (requeue-digit,
Registration action)

{requeue-digit
call-subgraph(
expand(getjith-value, 1, current-user, 'start item')))

Figure B.7 The graph with which a caller interacts in order to register at the beginning of a call.

There are three interesting things to note about this state-machine graph. First, the expert

caller can immediately start typing in her user id without waiting to listen to the initial

greeting: the digit that interrupts the greeting will be requeued and used as the first digit

of the user id that is collected. The ability to type-ahead at any time is an important

feature of the interface style that is built into the application interpreter. Second, the

generic subgraph for collecting a string of digits facilitates modularity. Third, the

207

database operations also facilitate modularity. For example, the user's name to play in the

Thank You node and the initial list to present can be looked up. Without that, it would be

necessary to generate separate login confirmation graph nodes for each potential user.

If the 'Password?' field were set to TRUE, then the caller would also be asked to enter a

password. That would be just another call to the collect-digits subgraph. Then, both the

id and password would have to match the user object in order to complete a successful

login.

3.2 LISTS: GENERATING AN INITIAL GRAPH

With or without individual caller registration, the login procedures culminate in the

identification of an initial list of objects to present. Typically, the initial list will be a

menu, but consider a hypothetical application with just a single list of event

announcements, shown below.

List Presentation: Sample Event Category

Field Name Value
List [Some Announcements]
Format [Events List Format]
Title "Very Special Events"
Description "Don't miss these."
Menu Prompt "For very special events"

The presentation of a list of objects follows a navigation metaphor, where the caller starts

at the beginning of the list, and presses buttons to move forward and back between

objects. I present the translation of a List Presentation object in two stages. This

subsection shows the coarse structure of the state-machine program, in which each object

is presented in one graph node. The following section then shows a finer structure, where

the node for each object is split into one node per field of the object, plus one node to

prompt for each possible action to take.

208

APPENDIX B: THE HYPERVOICE INTERPRETER

In the diagrams that follow, words rather than numbers label the transitions between

nodes. This emphasizes how callers are expected to think about what the transition does.

It de-emphasizes the particular mapping of the word labels to buttons on the telephone

keypad. The interpreter looks up the mapping of word labels to telephone buttons in a

table, as described in Chapter 4.

List Presentation: Sample Event Category
Field Name Value
List [Some Announcements]
Format [Events List Format]
Title "Very Special Events"
Description "Don't miss these."
Menu Prompt "For very special events"

List Format: Events List Format
Field Name Value
Sort Order ['Event Date' ASCENDING]
Filter [Next 90 days]
Item Formats [Event Item Format]
Advancement SKIP
Mechanism
Selection Mechanism NONE
List Actions [Add Announcement]
Name for Objects Announcement
Response List? NO
Say Item Count? YES

List Action: Add Announcement
Field Name Value
Privileges Required ADDING
Button Location ALL
Extension Format [New Announcement]

The List Format specifies a filter that selects events in the next 90 days. Assume that

three objects are selected. They are sorted with earlier events first. Five graph nodes are

created, one for each selected object, plus one for a header for the list, and one for a

footer. The graph nodes are laid out in sequence with the node for each object connected

only to its neighbors, as shown in Figure B.8, repeated from Chapter 4.

209

The 'advancement mechanism' field of the List Format determines how the nodes in a list

will be linked. If it is set to SKIP, then the caller will use actions next object (no) and

previous object (po) to move forward and back in the list. If it is set to AUTO, then

callers advance to the next item by waiting until the current item is finished playing. In

state-machine terms, the links from Figure B.8 labeled po would be eliminated and the

ones labeled no would be relabeled t (for timeout). If the field is set to BOTH, then

either waiting or pressing buttons will work. The po links would remain, and the links

labeled no would be labeled with both no and t.

For convenience of notation, boxes in the diagrams inherit links from the outside in. That

is, any link emanating from an enclosing box is available from any of the nodes inside it.

For example, the caller can press escape from anywhere in the list to return to the

previous list that was presented, or press add from anywhere in the list to start the

addition of a new announcement. By the way, the fact that add is available anywhere,

rather than just attached to the header of the list, or to the nodes for the objects, is

determined by the 'Button Location' field of the List Action object above.

The contents of the list header are generated by piecing together several soundbytes. The

first sound-byte is the contents of the 'Title' field of the List Presentation. If 'Say Item

return

tescape
Very special no Lecture by 0 Earth Day no Community n 0 That's
events. 3 A Jesse concert... discussion 0 theend
announcements 4- Jackson... on crime of the
are in the list... Po p o p o p o list.

add

execute [New Announcement]
Figure B.8 The initial expansion of the event announcements into a graph. There is one node for each of the event
announcements, plus one each for the list header and list footer nodes.

210

APPENDIX B: THE HYPERVOICE INTERPRETER

Count?' is set to TRUE, as it is in the example, then the next sound-bytes are a numeric

value for the count of how many announcements passed the filter, and the prompt,

"announcements are in the list." The pre-processor generated the latter text by combining

the word "announcement," taken from the field 'Name for Items' in the List Format, with

the phrase, "are in the list." That soundbyte is followed by the contents of the

'Description' field of the List Presentation. Finally, there is the prompt, "A hint for

getting through these announcements quickly: interrupt the spoken voice at any time.

<next object> skips ahead to the next announcement, and <commands> will tell you

about other helpful commands." <next object> and <commands> in this text stand for

the button numbers to which the two actions are mapped. Again, the pre-processor

generates the text of this prompt, using the word "announcement" from the 'Name for

Items' field.

If the field 'Response List?' were set to TRUE instead of FALSE, two additional

soundbytes would be inserted in the list header, just after the 'Title' recording. The first

would be the text of the prompt in the 'Response List?' field. The second would be the

contents of the field specified, taken from the last object that was visited before the

current list was presented. For example, this feature is used in the opinion forum

applications, where each comment has a pointer to a List Presentation for responses. A

caller listens to the comment, then follows the link to the responses. That List

Presentation has no 'Title' recording, but the list is well described by playing, "responses

to:" and the then the headline of the original comment.

3.3 SUBDIVIDING THE CONTENTS NODES

Thus far, the contents of the nodes for each object have been treated as black boxes. In

fact, a caller can navigate can skip back and forth between hearing the contents of the

fields of an object as well as skipping back and forth between objects. In addition, no

mention has been made thus far of navigation prompts that inform callers of what actions

211

are available. These are also attached

to the node for each object and callers

can skip through them as well.

The contents of the node for the Earth

Day concert from Figure B.8 are

determined by the Item Format object,

which selects some of the fields, orders

them, and specifies whether the field

names will be played back before the

contents. Figure B.9 shows the internal

structure of the node for that event

announcement, with one subnode for

each field that is played back, and one

subnode to prompt for each action that

is available. Note that if a field's

contents were empty, the subnode for

it would be omitted.

Note several important things. First, if

the caller does not press any buttons,

the system will play the contents of the

sub-nodes, one after the other, and then

play all of the help prompts, one after

the other. After completing playback

of the help nodes, the timeout arrow

back to the headline indicates that it

will start replaying the whole event

Item Format: Event Item Format

Field Name Value
Object Class [Event Announcement]
Field Formats ['Headline' NO]

['Dates' YES]
['Time' YES]
['Location' YES]
['Sponsoring Organization' YES]
['Contact Number' YES]
['Details' YES]

Select Action -

..- . .- - . .- - .-

"Earth
Day
concert'

P f nf, sff, t

April 7,
1991

I I

"10:00 AM to
5:00 PM"

I I

I I

* C
"Location:" -
"The Hatch

S t
Shell... :sf

pf nf, s ff, t

"Contact
number:"
876-5432

P f nf, s ff, t

S"Details:"

. - - -.. - - - .--

"For the next
announcement,
press...

c, sff, t

"For the
previous
announcement,
press...

C, sff, t

"To add a new
announcement,
press...

C, sff, t

"If you're done
with this list of
announcements,
press...

lpf

Figure B.9 The substructure of one event announcement.

212

-- - - -

APPENDIX B: THE HYPERVOICE INTERPRETER

announcement. Second, the pre-processor generates the prompts for navigation, using the

word "announcement" taken from the List Format specification, and using the mapping

of commands to telephone buttons. For example, if the next object command is mapped

to 9 on the telephone keypad, then the first navigation prompt would be, "For the next

announcement, press 9." This ensures a uniform style for the prompts, and because it

ensures that the prompts suggest the button presses that actually execute the actions.

Third, there are no prompt that tell callers about the next field, previous field, and

commands actions.

This last point is an example of a more general phenomenon, that if an action can be

accomplished by timeouts or by explicit command, then prompting people to use the

explicit commands will interrupt the flow that the automatic advance with timeouts

attempts to create. Suppose, for example, that the 'Advancement Mechanism' field of the

List Format were set to BOTH. Then, there would be automatic advance from one event

announcement to the next, and prompting for the next object and previous object

commands would interrupt the flow. In cases where skipping operations between nodes

are optional, either the flow has to be interrupted, or callers need to be taught the skipping

operations separately rather than prompting for them whenever they are available.

This was an important consideration in Chapter 3, on the Skip and Scan interface style,

which argued that there is a fundamental tradeoff between how quickly callers will learn

to use skipping actions and the additional costs that are incurred before they have learned

to skip. Chapter 3 also argued that with navigation prompts is better err on the side of

reduced initial costs. The navigation prompts generated by the application interpreter

conform to this guideline: there is both automatic advance and skipping between

navigation prompts.

213

3.4 SELECTION: MENUS

The List Format above does not allow for selection, but others do. This section describes

how menus, which are lists with selection, are generated. HyperVoice accommodates two

selection mechanisms, positional and numeric. Chapter 5 addressed the relative merits of

these mechanisms. With positional selection, a single select button selects whatever

object the caller is positioned on. Figure B.10 shows the translation of a menu with

positional selection. The select action for each object is attached to the graph node for

that object: to select an object, the caller goes to the node for that object and then presses

the select button. Whether the action returns the object as a value or expands another List

Presentation object is determined by the Select Action object, and is not important here.

Header Object 1 - Object 2 now Object n Footer

select select select

Select Select Select
Object 1 Object 2 Object n

Figure B. 10 A menu with positional selection.

With numeric selection, the caller enters a number to make a selection. One selection

action is still created for each object in the list, but callers need not be listening to the

node for the selected object when they enter numeric selections. Figure B. 11 illustrates a

numeric selection menu. Note that a box is drawn around the whole list, to indicate that

the action to initiate entering a number is available throughout the list. This will only

work if the next object and previous object actions are mapped to *, 0, or #, since 1

through 9 are used to begin entry of numeric selections.

The generic digit string collection subgraph is used again, this time to collect enough

digits to make a selection. If there are fewer than ten objects, then one digit is sufficient,

214

APPENDIX B: THE HYPERVOICE INTERPRETER

and the digit will be returned immediately from the subgraph. When collecting more than

one digit, as in Figure B. 11, no collection prompt is given and collection is terminated

after a short timeout (1 second). This has the drawback that people have to type fast to

make two digit selections, but the alternative of ending single digit selections with a

delimiter such as # is even less palatable. The digit collection subgraph returns a string of

digits that is used to pick out one of the actions from a nested if statement. If the number

entered is larger than the number of objects to select from, it calls a standard error

subgraph (not shown) to notify the caller that no selection was made.

Header] Object 1 Object 2]4-- 4-* Object n 4 Footer

1-9

{number = callsubgraph(Figure B.6, "", 2, --, 0, 1)
if(number == "1", Select Object 1,

if (number == "2", Select Object 2,

if (number == "n", Select Object n)
calL subgraph(invalid-action(number))...)}

Figure B.1 1 A menu with numeric selection from a list of 10-99 options.

3.5 FORMS

Consider again the events calendar example used to illustrate the translation of a List

Presentation object. While listening to the announcements, a caller can press add to

initiate execution of the [New Announcement] Extension Format. The interpreter creates

a new object of type Event Announcement and uses the Field Edit Formats to determine

any initial values for fields. Then, it creates a telephone form, which is a subgraph for

editing the object, and calls that subgraph. The subgraph has one major node for each

field of the object that some Field Edit Format says to include in the form, plus a header

215

node and a footer node, as shown in Figure B. 12. It also sets a local variable new-object,

so that actions in the form subgraph can edit the fields of the new announcement object.

Field Name Value
Add to Current List? YES
Other Lists to Add to [All Announcements]
Location to Add END
Class of Object to Add [Event Announcement]
Edit Format [Edit New Announcement]

Edit Format: Edit New Announcement

Field Name Value
Field Formats [Record Headline]

[Enter Event Date]
[Record Time]
[Record Location]
[Record Sponsoring

Organization]
[Record Contact Number]
[Record Details]
[Fill in Category]

Header Prompt "You'll be asked to record a
headline, enter the date, and
record several other important
pieces of information. Feel free
to skip any entry blanks that are
irrelevant to your announcement,
but please be sure to include a
contact phone number."

In Figure B.12, the commands next entry blank (ne) and previous entry blank (pe)

initiate movement between entry blanks. In all of the field trials described in this thesis,

next entry blank and next object have been mapped to the same key, 9. Thus, a caller

who has learned to skip through the objects in a list can use the same buttons to skip

through the entry blanks in a form. Perhaps a better mapping, though, would map next

entry blank and next field to the same key, so that the same button would advance

between fields during recording and playback.

216

Extension Format: New Announcement

APPENDIX B: THE HYPERVOICE INTERPRETER

The nodes in the diagram have substructure

analogous to the substructure given for list nodes

above in Figure B.9. In a telephone form, however,

the node for each entry blank contains only one

subnode for the contents of the field. The remainder

of the subnodes are for prompts as to commands

that are available, including saving or canceling the

form, adding and deleting values from the field, and

moving between entry blanks. Diagrams of the node

substructures are omitted, but the exact texts of the

node contents and the action prompts follow.

The text of the header node begins with the prompt,

"This is a form for adding a new event

announcement. It works just like a paper form, but

instead of writing the information, you'll be asked

to record it or enter it using the buttons on your

telephone." The pre-processor generates this text by

splicing the phrase "event announcement", which is

the name of the object class, into the rest of the text,

which is shared among all telephone forms. The

next sound-byte is a recording of the 'Header

prompt'. The programmer is responsible for writing

the text of that prompt.

Three actions are available from the form header,

and hence three help prompt subnodes are

generated. The first help prompt states, "To go to

... tave escape
"This is a form
for adding a new
announcement."

pe ne

"Headline" A add value

del valuf,

Pe ne

"Daes" B add value

del valu

pe +4ne

"Time" C add value

del valu

pe ne

"Location:" D add value

del valu

pe ne

"Contact E add value
number:"

del valu

pe ne

F add value
"Details:"

del valu

pe ne

"That the end
of the
form..."

Figure B.12 A telephone form graph for a
new event announcement.

217

the first entry blank, press <next entry blank>." As before, the notation <next entry

blank> indicates that the prompt actually ends with the word nine, or whatever button

next entry blank maps to. The second help subnode states, "To cancel this event

announcement, and throw away anything that you recorded, press <escape>." The last is,

"To save this event announcement, press <save>."

The playback of an entry blank begins with the field name. Then, if the field has no

values filled in, the 'Field Description' from the Field Edit Format is played. In the case

of the 'headline' field, the text is, "Think of this like a newspaper headline, to entice

listeners to hear the rest of your announcement." If the field has one or more values filled

in, then the 'Field Description' prompt is omitted and the contents of the field are played

instead.

In addition to the three action prompts for the header node, entry blanks can have several

additional prompts. Entry blanks after the first one in the form include the prompt, "For

the previous entry blank, press <previous entry blank>." If the entry blank expects a

recording and there is no existing recording, one help subnode states, "To begin

recording, press <add value>, then wait for the beep. Press any button when finished

recording." If there is one present already, then two help prompts state, "To erase the

existing recording, press <delete value>" and, "To append to the end of the existing

recording, press <add value>, then wait for the beep. Press any button when finished

recording." Similarly, for an entry blank that expects dates, the equivalent prompts

would be, "To enter a date, press <add value>", "To enter an additional date, press <add

value>", and, "To erase the last date entered, press <delete value>".

218

APPENDIX B: THE HYPERVOICE INTERPRETER

3.5.1 Data Entry Subgraphs

Field Edit Format: Record Headline
Field Name Value
Field 'Headline'
Initial Value --

Include in Form? YES
Data Type VOICE
Max Length 15
Picklist --
Validity Check --

Field Description "Think of this like a newspaper
headline, to entice listeners to
hear the rest of your
announcement."

Field Header Prompt --

(newjrecording = callsubgraph(Record Subgraph, 15)
addfieldvalue(new-object, 'Headline', newrecording)
reset-field-graph(A)
goto(A') RacordA Quuhar'ii0ih

g p
Parameter: maxsecs
Local variable: voicefile

goto A

__p.e.
A'

"To review the
recording you
just made..."

n.e., t

goto B

Figure B.13 The data entry subgraph for recording the headline.
and 'dates' fields, as shown in Figure B.12.

.anyN. return(voicejfile)

Nodes A and B are the entry blanks for the 'headline'

When a caller initiates recording from the entry blank for the headline field, the system

makes a call to the Record Subgraph. That subgraph beeps and then starts recording into

a empty voice file, for up to 15 seconds, the maximum length of recording specified in

the Field Edit Format above. If the caller presses any button before the 15 seconds expire,

219

)

Beep
record(
voice-file,
max-length)

that also will terminate recording, as will a couple of seconds of silence. The recording is

returned from the subgraph, and is added as a value to the 'Headline' field. Since the

entry blank node was generated from the old contents of the 'Headline' field, its contents

are now incorrect. The reset-field-graph action regenerates that node, using the rules

described above to determine the node's contents and the editing actions that are

available. For example, the erase value action may be prompted for now that there is a

recording for the field.

Then the system transitions to graph node A'. A' can be viewed as a node between the

entry blank for the headline and the entry blank for the dates (node B). From A', a caller

can skip ahead to the 'dates' entry blank, or go back to review the recording he just made.

If the caller does nothing, the system will automatically go ahead to the 'dates' entry

blank.

To elicit a date, the interpreter first makes a call to the generic digit string collection

subgraph. The system expects dates in a particular format, so the following

Field Edit Format: Enter Event Date

Field Name Value
Field 'Event Date'
Initial Value --

Include in Form? YES
Data Type DATE
Max Length 6
Picklist --

Validity Check [0- 90 days]
Field Description One or more typed-in dates for

this event.
Field Header Prompt --

Date Validity Check: 0- 90 days
Field Name Value
Min Value Relative to 0
Today
Min Value Absolute --

Max Value Relative to 90
Today
Max Value Absolute --

220

APPENDIX B: THE HYPERVOICE INTERPRETER

(new-date = call-subgraph(Figure B.6, date-entry-prompt, -- , 2, 5)
if(new-date,

if (process validity-check(new date, [0-90 days])
(addfield-value(new-object, 'Dates', new-date)
reset-field-graph(B)
goto(B')

}gotoB
goto(B)

goto(B) jip.e.
) B'

"To review the
date you just
entered..."

goto C

Figure B.14 The subgraph for entering a new date in the 'dates' field.

dateentry-prompt is passed to the collection subgraph, "Type in digits at any time. Dates

are entered in the format month, day, year. For example, March 25, 1991 would be

entered as zero-three, two-five, nine-one. To cancel entry of this date, press <escape>."

This prompt is only played back when the caller pauses for more than 2 seconds between

digits, so that a caller who does not need the prompt can type the entire date without

hearing the prompt.

If the caller presses escape during entry of the date, no value is returned. The

if(new date...) conditional action takes the second branch, which is a transition back to

the entry blank for entering dates. If a date is entered, then it checks the value against the

Validity Check object, [0 - 90 days]. If the value is valid, then the validity check returns

TRUE, the value is added to the 'Dates' field, and the interpreter transitions to node B'. If

the value is not valid, then the system transitions to an error node (not shown) before

returning from the validity check operation. The error node will state that the value is not

a date and explain the format expected for dates, or it will state that the date is too early

or too late, and say what the earliest or latest acceptable date is. If the caller presses a

221

button to interrupt the error message node, the button press is requeued and the interpreter

returns from the error graph. In this case, that would mean returning to the 'Dates' entry

blank (B) and then executing the action associated with the button press.

Event announcements do not require typed-in entry of numbers, strings, or pointers to

other objects. When such values are needed, subroutines for entry of these data types are

implemented analogously to that for dates. The interpreter makes a call to a subgraph that

collects a candidate value from the caller. For numbers and strings, the digit string

collection subgraph would be used. For pointers, the data entry subgraph would be a

menu that is configured to return objects when they are selected (a parameter of the

Select Action object does this configuration). The value returned from the subgraph is

checked for validity and then added to the appropriate field. This same scheme would

also handle the input of additional primitive data types, such as times or monetary values,

if they were to be integrated into HyperVoice.

3.5.2 Saving and Canceling Forms

Before saving or canceling a form, the system transitions to a confirmation subgraph, to

ensure that these operations are not executed accidentally. The same button that initiates

the save or cancel operation also confirms it, while any other button returns the caller to

the telephone form graph. If the caller cancels the form, then the system just returns from

the telephone form subgraph without adding the edited object to any lists. If the caller

saves the form, then the save-form action is initiated, which looks in the Extension

Format to determine the lists to which the new object should be added, and the locations

in those lists. If the object is added to the current list, then the state-machine program for

presenting that list will no longer be current. Hence, the system regenerates the graph for

the current List Presentation, and positions the caller at the same location in the list from

which he initiated the addition of the new event announcement.

222

C SAMPLE APPLICATION PROGRAMS

This appendix lists HyperVoice program code for three of the most complex application

prototypes presented in chapter 2.

1 ISSUE DISCUSSIONS

Two versions of U-TALK, the MIT issue discussion application, are shown below. The

first presented a single topic for discussion, so that the first list of objects presented to

callers was the top-level comments. The second version presented several topics in the

top-level list. Only the system administrator could add new topics. Both version are

presented below.

1.1 U-TALK I

1.1.1 Classes
Class Name Fields

Comment 'Date Added'
'Headline'
'Contents'
'Responses'

1.1.2 Instances
Login: UTALK-1

Field Name Value
Register? FALSE
Greeting Hello, welcome to U-TALK,

where you can make your voice
heard.

Start Item [Academic Honesty]
Special List Jumps --

Ask for Last Date? FALSE

The opinion forum accepts comments from anyone, so no registration procedure is

required. At the beginning of each phone call, the system will play the greeting, then

present the top-level list, [Academic Honesty].

223

List Presentation: Academic Honesty

Field Name Value

List [Top-Level Comments List]
Format [Top-Level Comments List

Format]
Title "Academic honesty at MIT."

Description "Is cheating rampant? What
should be done about it? Are
professors making the rules
clear? What about course
bibles?"

Menu Prompt --

As in the jokes application, no menu prompt is needed since this is the top-level menu.

List : Top-Level Comments List

Field Name Value
Contents _-

The top-level comments list is initially empty. Callers will add to it.

List Format: Top-level Comments List Format

Field Name Value
Sort Order --

Filter --

Item Formats [Comment Item Format]
Advancement SKIP
Mechanism
Selection Mechanism POSITIONAL
List Actions [Add Comment]
Name for Objects Comment
Response List? NO
Say Item Count? YES

Comments are not filtered or sorted. Callers have to press a button to skip through

hearing the top-level comments. A single selection button is provided for positional

selection. As the [Comment Item Format] will specify, selection takes a caller to the

response list for a comment.

Since this list is not treated as a response list, the header prompt is generated by

concatenating the title and description prompts from the List Presentation object. This is

what a caller will hear immediately after the greeting above. Then, the number of

comments in the list is recited.

224

APPENDIX C: PROGRAM LISTINGS

List Format: Comments Response List Format

Field Name Value
Sort Order --

Filter --

Item Formats [Comment Item Format]
Advancement SKIP
Mechanism
Selection Mechanism POSITIONAL
List Actions [Add Comment]
Name for Objects Comment
Response List? Comments in Response to

[Headline]
Say Item Count? YES

The difference between this and the previous List Format is in the 'Response List?'

parameter. In this case, the list of comments are responses to another one. Hence, the

header prompt at the beginning of playback of the list is a concatenation of a recording of

the phrase "Comments in response to" and the headline of the comment it is in response

to. This points another advantage of the headlines. While it would be cumbersome to play

back the entire original comment, its headline serves as a good place holder to help

callers keep track of what the current comments are responses to.

Field Name Value
Object Class [Comment]
Field Formats ['Headline' NO --I

['Contents' NO --I
['Date Added' YES --I

Select Action [Goto Responses]

The 'headline', 'contents', and 'date added' fields of each comment are played back, in

that order. Only the field name "Date added" is played back prior to playing the field's

contents.

225

Item Format: Comment Item Format

Select Action: Goto Responses

Field Name Value
Action Type GOTO FIELD [Responses]
Action After Returning STAY AT CURRENT ITEM
Relationship Responses to

When a comment is selected, this determines that the system will present the contents of

the field 'Responses'. That field should contain a link to a List Presentation object; the

editing formats below will ensure that. After a caller is finished listening to the responses,

she will be able to return to this list, and will then hear the current comment again, as

specified by the value, STAY AT CURRENT ITEM.

List Action: Add Comment

Field Name Value
Privileges Required ADDING
Button Location ALL
Extension Format [New Comment]

From anywhere in the list of comments, anyone with ADDING privileges can initiate

addition of a new comment.

Extension Format: New Comment

Field Name Value
Add to Current List? YES
Other Lists to Add to --

Location to Add BEGINNING
Class of Object to Add [Comment]
Edit Format [Edit New Comment]

If the caller saves the comment, it will be added at the beginning of the current list. This

means that comments will be in reverse chronological order, which will help repeat

callers to find new comments without having to skip through all of the ones they've

already heard. On the other hand, it means that the list of comments do not flow

coherently in response to each other, but that is what response lists are for. To respond to

a comment, one adds to its response list, not to the list it is in.

226

APPENDIX C: PROGRAM LISTINGS

Edit Format: Edit New Comment

Field Name Value
Field Formats [Record Headline]

[Record Contents]
[Fill in Date Added]
[Create Response List

Presentation] (expand macro)

Field Edit Format: Record Headline

Field Name Value
Field 'Headline'
Initial Value --

Include in Form? YES
Data Type VOICE
Max Length 15
Picklist --
Validity Check --

Field Description --

Field Header Prompt --

The headline recording is restricted to 15 seconds.

Field Edit Format: Record Contents

Field Name Value
Field 'Contents'
Initial Value --

Include in Form? YES
Data Type VOICE
Max Length 300
Picklist --
Validity Check --

Field Description --

Field Header Prompt --

The contents field accepts a longer recording, of up to 300 seconds.

227

Field Edit Format: Fill in Date Added

Field Name Value

Field 'Date Added'
Initial Value * TODAY
Include in Form? NO
Data Type DATE
Max Length --

Picklist --

Validity Check --

Field Description --

Field Header Prompt --

The 'date added' field is filled in automatically,

prevent accidental editing of it.

Make Response List: Create Response List Presentation

Field Name Value
Field 'Responses'
Response List Format [Comments Response List

Format]

and is not included in the form, to

This macro does all the complicated work of automatically adding a new list of responses

each time a new comment is added. It creates a new List Presentation object and a new,

empty list to hold the responses. It sets the list format for the new List Presentation to be

the [Comments Response List Format], specified above.

1.2 U-TALK II

The second version of this opinion forum functions nearly identically to the first, but

allows discussion on several topics, with each topic presented as a question to which

callers are invited to respond. Only the changed portions of the program are shown here.

228

APPENDIX C: PROGRAM LISTINGS

Login: UTALK-HI

Field Name Value
Register? FALSE
Greeting Hello, welcome to U-TALK,

where you can make your voice
heard.

Start Item [Random Topics]
Special List Jumps --

Ask for Last Date? FALSE

List Presentation: Academic Honesty
Field Name Value
List [Topics List]
Format [Topics List Format]
Title "Random topics."
Description "Find a question that interests

you, listen to other people's
responses to it, then YOU TALK.
Suggestions for new topics can
be added in response to the last
question. Have fun!

Menu Prompt --

The 'Title' and 'Description' fields for the initial list have changed, to reflect the fact that

the system now handles several topics at once.

List Format: Topics List Format

Field Name Value
Sort Order --

Filter --

Item Formats [Comment Item Format]
Advancement SKIP
Mechanism
Selection Mechanism POSITIONAL
List Actions [Add Topic]
Name for Objects Question
Response List? NO
Say Item Count? YES

Topics are just comments, so the [Comment Item Format] still specifies how to present

them. In this case, however, the prompts call them questions rather than comments. Thus,

the navigation prompts will be of the form, "For the next question, press 9" instead of,

"For the next comment, press 9."

229

List Action: Add Topic

Field Name Value
Privileges Required EDITING
Button Location ALL
Extension Format [New Comment]

The only other change is that EDITING privileges are required to add a new topic. This

gives the system administrator some control over the topics, which are the first things that

new callers will hear. By seeding the topics list appropriately, the system administrator

may influence the tone of discussions that will ensue, although that influence will be

limited.

2 TEACHERS' CURRICULUM LINE

This program incorporates aspects of issue discussion, an event calendar, and questions

and answers. The issue discussion component consists of two lists of comments, neither

of which include response lists. The question and answer portions are attached to lesson

plans. Unlike the question and answer application listed above, questions here are made

public in addition to being added the expert's mailbox (in this case there is only one

expert, the head teacher).

230

APPENDIX C: PROGRAM LISTINGS

2.1 CLASSES

2.2 INSTANCES

Login: Curriculum Line

Field Name Value
Register? TRUE
User Id Length 4
Users List [All Teachers]
Password? FALSE
Greeting Hello, welcome to the Math-

cubed curriculum line.
Start Item [The Main Menu]
Special List Jumps [Goto all questions]

231

Class Name J Fields
Lesson Plan 'Lesson Number'

'Objectives'
'Materials'
'Dilemma'
'Alternate Forms'
'Projections'
'Related Research'
'Lab'
'Drill'
'Homework'
'Home Projects'
'Questions'

Comment 'Date Added'
'Added By'
'Headline'
'Contents'

Meeting Announcement 'Headline
'Dates'
'Details'

Question 'Date Added'
'Added By'
'Headline'
'Contents'
'Answers'
'Linked Lesson'

Answer 'Date Added'
'Added By'
'Headline'
'Contents'

Success Story 'Date Added'
'Added By'
'Headline'
'Contents'

Head Teacher's Access to All Questions

List Jump: Goto All Events

Field Name Value
To Jump To [Head Teacher's Question List

Presentation]
Code 9999
Privileges Required EDITING

The head teacher, who will have editing privileges, can jump to the presentation of all of

the questions. This is her private mailbox.

List Presentation: Head Teacher's Question List
Presentation

Field Name Value
List [All Questions]
Format [Moderator's Question List

Format]
Title "All questions"
Description --

Menu Prompt --

List Format: Moderator's Question List Format

Field Name Value
Sort Order ['Date Added'

DESCENDING]
Filter --

Item Formats [Moderator's Question Item
Format]

Advancement SKIP
Mechanism
Selection Mechanism NONE
List Actions --

Name for Objects Question
Response List? NO
Say Item Count? YES

The questions are sorted with newest ones coming first in the list.

232

APPENDIX C: PROGRAM LISTINGS

Item Format: Moderator's Question Item Format

Field Name Value
Object Class [Event Announcement]
Field Formats ['Headline' NO --I

['Contents' YES --I
['Added by' YES --I
['Date Added' YES --I
['Linked Lesson' YES

Play Lesson Plan Headline]]
Select Action [Goto Responses]

Item Format: Play Lesson Plan Headline

Field Name Value
Object Class [Lesson Plan]
Field Formats ['Lesson number' YES --]

I ['Objectives' YES --]
Select Action --

The lesson number and objectives of the lesson plan that this question is about are played.

Note that these are not played back to the other teachers, since they access questions by

selecting a lesson plan.

Select Action: Goto Responses

Field Name Value
Action Type GOTO FIELD [Responses]
Action After Returning STAY AT CURRENT ITEM
Relationship Responses to

When listening to a question, the head teacher can select it in order to go to the list of

responses to it. The teacher can add an answer to the question, and then return to the

current item in the list of all questions.

233

The Main Menu

Field Name Value
List [Main menu options]
Format [Menu Format]
Title "The main menu"
Description Please choose an option
Menu Prompt --

List: Main menu options

Field Name Value
Contents [Kindergarten Lessons]

[First Grade Lessons]
[Second Grade Lessons]
[Third Grade Lessons]
[Success Stories]
[Meeting Announcements]
[Comments and Bug Reports]

The main menu provides seven options: four lists of lesson plans, one for each grade; a

list of success stories; an events calendar; and a list of general comments.

List Format: Menu Format

Field Name Value
Sort Order --

Filter --

Item Formats [Default Menu Item Format]
Advancement SKIP
Mechanism
Selection Mechanism POSITIONAL
List Actions --

Name for Objects Option
Response List? NO
Say Item Count? YES

Presenting a Lessons List

List Presentation: Kindergarten Lessons

Field Name Value
List [K Lesson Objects]
Format [Lessons List Format]
Title "Kindergarten Lesson Plans"
Description
Menu Prompt "Kindergarten Lessons"

234

List Presentation: Head Teacher's Question List
Preseintatin

APPENDIX C: PROGRAM LISTINGS

The List Presentations for the four grade levels are similar, so only one is presented. The

prompt in the main menu is given in the last field. After the object is selected, the 'Title'

prompt is played as part of the list header.

List Format: Lessons List Format

Field Name Value
Sort Order ['Lesson Number'

ASCENDING]
Filter --

Item Formats [Lesson Plan Item Format]
Advancement SKIP
Mechanism
Selection Mechanism NONE
List Actions [New Lesson Plan]
Name for Objects Lesson Plan
Response List? NO
Say Item Count? YES

Item Format: Lesson Plan Item Format

Field Name Value
Object Class [Event Announcement]
Field Formats ['Lesson Number' YES --I

['Objectives' YES --]
['Materials' YES --]
['Dilemma' YES --]
['Alternate Forms' YES --I
['Projections' YES --]
['Related Research' YES --1
['Lab' YES --I
['Drill' YES --I
['Homework' YES --I

SelectAction_['Home Projects' YES --1
Select Action [Goto Questions]

Select Action: Goto Questions

Field Name Value
Action Type GOTO FIELD 'Questions'
Action After Returning STAY AT CURRENT ITEM
Relationship Questions about

When a teacher selects a lesson plan, the system goes to the questions associated with the

lesson plan.

235

Adding New Lesson Plans

List Action: Add Lesson Plan

Field Name Value

Privileges Required EDITING
Button Location ALL
Extension Format [New Lesson Plan]

The head teacher, who has EDITING privileges, can add a new lesson plan.

Extension Format: New Lesson Plan

Field Name Value

Add to Current List? YES
Other Lists to Add to --

Location to Add END
Class of Object to Add [Lesson Plan]
Edit Format [Edit New Lesson Plan]

The new lesson plan will be added at the end of the

Edit Format: Edit New Lesson Plan

Field Name Value
Field Formats [Enter Lesson Number]

[Record Objectives]
[Record Materials]
[Record Dilemma]
[Record Alternate Forms]
[Record Projections]
[Record Related Research]
[Record Lab]
[Record Drill]
[Record Homework]
[Record Home Projects]
[Create Questions List]

current list.

Most of the fields are filled in with recordings: the Field Edit Formats specifying them

are omitted here. Only the first and last Field Edit Formats are shown here.

Field Edit Format: Enter Lesson Number

Field Name Value
Field 'Lesson Number'
Initial Value --

Include in Form? YES
Data Type NUMBER
Max Length 3
Picklist --
Validity Check --

Field Description --

Field Header Prompt --

236

APPENDIX C: PROGRAM LISTINGS

Up to a three-digit number will be accepted as a value for the 'Lesson Number' field.

Make Response List: Make)uestions List

Field Name Value
Field 'Questions'
Response List Format [Questions List Format]

The macro defined in Appendix A comes in handy for specifying that each new lesson

plan should have a new list of responses to it. That response list should be presented

using the [Questions List Format].

Presenting a Questions List

List Format: Questions List Format

Field Name Value
Sort Order --

Filter --

Item Formats [Questions Item Format]
Advancement SKIP
Mechanism
Selection Mechanism POSITIONAL
List Actions [Add Comment]
Name for Objects Question
Response List? Questions about Lesson 'Lesson

Number'
Say Item Count? YES

Item Format: Questions Item Format

Field Name Value
Object Class [Question]
Field Formats ['Headline' NO --I

['Contents' NO --I
['Added By' YES --I

Select Action [Goto Responses]

The 'headline', 'contents', and 'added by' fields of each question are played back, in that

order. Note that the 'Date added' and 'Linked lesson' fields are not played back, although

those fields are played back when the head teacher accesses them, as specified in the

[Moderator's Question Item Format] above. The [Goto Responses] Select Action object

is reused here.

237

List Action: Add Question

Field Name Value
Privileges Required ADDING
Button Location ALL
Extension Format [New Question]

From anywhere in the list of comments, anyone can initiate addition of a new question.

Extension Format: New Question

Field Name Value

Add to Current List? YES
Other Lists to Add to [All Questions]
Location to Add BEGINNING
Class of Object to Add [Question]
Edit Format [Edit New Question]

New questions are added to the [All Questions] list, as well as to the current list.

Edit Format: Edit New Question

Field Name Value
Field Formats [Fill in Date Added]

[Fill in Author]
[Record Headline]
[Record Contents]
[Create Answer List]
[Fill in Lesson Plan]

Field Edit Format: Fill in Author

Field Name Value

Field 'Added By'
Initial Value * CURRENT USER
Include in Form? NO
Data Type LINK

Make Response List: Create Answer List

Field Name Value
Field 'Answers'
Response List Format [Answers List Format]

The 'Answers' field will contain a link to a new List Presentation that uses the [Answers

List Format].

238

APPENDIX C: PROGRAM LISTINGS

Field Edit Format: Fill in Lesson Plan

Field Name Value
Field 'Linked Lesson'
Initial Value * PARENT OBJECT
Include in Form? NO
Data Type LINK

The 'Lesson' field is set to the parent object, which is the lesson plan that the current list

of questions is responding to.

The [Answers List Format] is omitted from this program listing, since it is so similar to

many of the List Formats from earlier programs. It allows anyone to add new answers,

and those answers do not have response lists attached to them.

3 TASK TRACKING

Three object types are required for this application. Each person on the project is

represented by a User object. The class User as presented in chapter 4 is specialized to

include additional fields, including phone number, email and fax address. Tasks and

Status Reports are two new object classes.

3.1 CLASSES

239

Class Name Fields

Person 'Name'
'User Id'
'Password'
'Privileges'
'Start Object'
'Phone Number'
'Fax Number'
'Email address'
'US mail address'

Task 'Persons Responsible'
'Date due'
'Priority'
'Description'

Status Report 'Date added'
'Added by'
'Task'
'Status'
'Details'

There is one master List of status reports, [All status reports] and one master List of

Tasks [All tasks]. Project members only accesses the information about tasks for which

they are responsible, while project coordinators can access all of the information. In the

remainder of this section, the specifications required for one project member are

described, and then the specifications for a project coordinator.

3.2 PROJECT MEMBER INSTANCES

Consider a single project member, John Doe. After John logs in, the system presents him

with a menu of four options. That menu includes hearing all tasks for which he is

responsible, sorted either by date due or by priority, all status reports that he has recorded,

or all status reports for tasks for which he is responsible.

Person: John Doe

Field Name Value
Name Recorded
User Id 9999
Password 0000
Privileges ADDING
Start Object [John Doe's Choices]
Phone Number 1234567
Fax Number 7654321
Email Address Recorded
US mail address Recorded

List Presentation: John Doe's choices

Field Name Value
List [John Doe's choice list]
Filter --

Format [Menu Format]
Title "John Doe's options"
Description
Menu Prompt "John Doe"

240

APPENDIX C: PROGRAM LISTINGS

List Format: Menu Format

Field Name Value
Sort Order --

Item Formats [Default Menu Item Format]
Advancement SKIP
Mechanism
Selection Mechanism POSITIONAL
List Actions --

Name for Objects Option
Response List? NO
Say Item Count? NO

List: John Doe's choice list

Field Name Value
Contents [JD tasks by date due]

[JD tasks by priority]
[JD's status reports]
[JD's tasks' status reports]

List Presentation: JD tasks by date due

Field Name Value
List [All tasks]
Format [Sort JD tasks by date first]
Title "John Doe's tasks sorted by date"
Description
Menu Prompt "Tasks sorted by date"

The first option: all of the tasks for John Doe is responsible, sorted by date due, with

priority used as a tie breaker for tasks due on the same date.

List Format: Sort JD's tasks by date first

Field Name Value
Sort Order ['Date Due' ASCENDING]

['Priority' DESCENDING]
Filter [JD Responsible]
Item Formats [Default Task Format]
Advancement DEFAULT
Mechanism
Selection Mechanism DEFAULT
List Actions [Add Task]
Name for Objects Option
Response List? NO
Say Item Count? NO

241

Filter: JD responsible

Field Name Value
Or Filters --

And Filters --

Class required [Task]
Field Filters 'Persons Responsible' [=JD]

Object Validity Check: =JD

Field Name Value
Field Cannot be Empty? --
Equals [John Doe]
Member of --

Filter --

The selected tasks are those that pass the filter: only tasks which have [John Doe] linked

into the 'Persons Responsible' field are selected.

Item Format: Default Task Format

Field Name Value

Oblect Class [Task]
Field Formats ['Description' NO --I

['Date Due' YES --I
['Priority' YES --]
['People responsible' YES --]

Select Action [Go to Status Reports]

Four fields of each selected task are played back.

Select Action: Go to Status Reports

Field Name Value
Action Type GOTO FIELD 'Status Reports'
Action After Returning STAY AT CURRENT ITEM
Relationship I Status reports about

John Doe can select any of the tasks in order to hear all of the status reports associated

with the task.

List Action: Add Task

Field Name Value
Privileges Required ADDING
Button Location ALL
Extension Format [New Task]

242

APPENDIX C: PROGRAM LISTINGS

Extension Format: New Comment

Field Name Value
Add to Current List? YES
Other Lists to Add to --

Location to Add BEGINNING
Class of Object to Add [Task]
Edit Format [Edit New Task]

New tasks are added to the list of all tasks, which is the current list.

Edit Format: Edit New Comment I

The first two Field Edit Formats are omitted, since they are similar to previous

specifications of fields that accept recordings. Likewise, the third Field Edit Format is

similar to previous specifications that set a field to be a link to the current User object but

do exclude the field from the telephone form so that the field is not editable by the caller.

Field Edit Format: Enter Date Due I

Field Name Value
Field 'Date Due
Initial Value --

Include in Form? YES
Data Type DATE
Max Length 6
Picklist --

Validity Check --

Field Description The date by which this task needs
to be completed.

Field Header Prompt --

243

Field Name Value
Field Formats [Record Headline]

[Record Description]
[Fill in Author]
[Enter Date Due]
[Enter Priority]
[Enter Persons Responsible]
[Create Status Reports Response
List]

Any valid date will be accepted for the 'Date Due' field, even dates that have already

passed!

Field Edit Format: Enter Priority

Field Name Value
Field 'Priority'
Initial Value --

Include in Form? YES
Data Type NUMBER
Max Length 1
Picklist --

Validity Check --

Field Description The priority of the task on a scale
of one to nine.

Field Header Prompt --

The caller will enter a single digit for the priority.

Field Edit Format: Enter Persons Responsible

Field Name Value
Field 'Persons Responsible'
Initial Value --

Include in Form? YES
Data Type LINK
Max Length --

Picklist [Pick a user]
Validity Check --

Field Description Links to one or more persons
responsible for this task

Field Header Prompt --

The caller can select user objects for the 'Persons

user] selection menu below.

List Presentation: Pick a user

Field Name Value
List [All Users]
Format [Users Picklist Format]
Title "People"
Description
Menu Prompt --

Responsible' field, using the [Pick a

244

APPENDIX C: PROGRAM LISTINGS

List Format: Users Picklist Format

Field Name Value
Sort Order --

Filter --

Item Formats [Say User Name; return]
Advancement SKIP
Mechanism
Selection Mechanism POSITIONAL
List Actions --

Name for Objects Person
Response List? NO
Say Item Count? YES

Item Format: Say User Name; return

Field Name Value
Object Class [User]
Field Formats ['Name' NO --1
Select Action [Return]

Select Action: Return

Field Name Value
Action Type RETURN ME
Action After Returning --

The menu options are the names of the users. When a selection is made from the menu,

the User object is returned as a value, which is then linked into the 'Persons Responsible'

field of the new task object.

Make Response List: Create Status Reports Response
List

Field Name Value
Field 'Status Reports'
Response List Format [Status Reports List Format]

This macro does all the complicated work of automatically adding a new list of status

reports each time a new task is added. It creates a new List Presentation object and links it

into the 'Status Reports' field. It sets the list format for the new List Presentation to be

the [Status Reports List Format], specified below, and creates a new list to hold the status

reports.

245

List Format: Status Reports List Format

Field Name Value
Sort Order --

Filter --

Item Formats [Default Status Report Item
Format]

Advancement SKIP
Mechanism
Selection Mechanism NONE
List Actions [Add Status Report]
Name for Objects Status Report
Response List? Status reports about 'Headline'
Say Item Count? YES

Since this is a response list, the header prompt for a list of status reports states that these

are status reports about a particular task, which is identified by playing the 'Headline'

field of the Task object. The [Default Status Report Item Format] just plays the contents

of the 'Status', 'Date Added', and 'Added By' fields: the program listing is omitted here.

The [Add Status Report] List Action is also similar to previous List Action specifications

and is omitted here. It allows the caller to add a new status report to both the current list

and to the list of [All Status Reports]. The 'Task' field is filled in automatically using the

* PARENTOBJECT initial value, which sets the field to be a link to the object that the

current list is responding to.

List Presentation: JD tasks by priority

Field Name Value
List [All tasks]
Format [Sort JD tasks by priority]
Title "John Doe's tasks sorted by

priority"
Description
Menu Prompt "Tasks sorted by priority"

The second option available to John Doe: all of the tasks for which he is responsible,

sorted by priority, with date due used as a tie breaker for tasks with the same priority.

246

APPENDIX C: PROGRAM LISTINGS

List Format: Sort JD's tasks by priority

Field Name Value
Sort Order ['Priority' DESCENDING]

['Date Due' ASCENDING]
Filter [JD Responsible]
Item Formats [Default Task Format]
Advancement DEFAULT
Mechanism
Selection Mechanism DEFAULT
List Actions [Add Task]
Name for Objects Option
Response List? NO
Say Item Count? NO

This is nearly identical to the List Format for the first option, except that the two sort

orderings are reversed, to reflect sorting on 'Priority' first rather than 'Date Due'.

The third option available to John Doe: all of the status reports recorded by him.

List Format: All recorded by JD

Field Name Value

Sort Order --

Filter [JD recorded]
Item Formats [Default Status Report Format]
Advancement SKIP
Mechanism
Selection Mechanism NONE
List Actions --

Name for Objects Status Report
Response List? NO
Say Item Count? NO

No provision is made for adding new status reports from here, because the system would

not know which task the status report is associated with.

247

List Presentation: JD status reports

Field Name Value
List [All Status Reports]
Format [All recorded by JD]
Tide "Status reports recorded by John

Doe"
Description
Menu Prompt "John Doe's recorded status

reports"

Filter: JD recorded
Field Name Value
Or Filters --

And Filters --

Class required [Status Report]
Field Filters 'Added by' [=JD]

This filter picks out only those status reports that were recorded by John Doe. The [=JD]

Object Validity check was already shown above, as part of the filter for selecting only

tasks for John Doe was responsible.

The fourth and final option available to John Doe: all of the status reports about projects

for which he is responsible. Note that these status reports might have been recorded by

anyone.

List Format: All reports JD responsible for

Field Name Value
Sort Order --

Filter [JD responsible for task]
Item Formats [Default Status Report Format]
Advancement SKIP
Mechanism
Selection Mechanism NONE
List Actions --

Name for Objects Status Report
Response List? NO
Say Item Count? NO

Filter: JD responsible for task

Field Name Value
Or Filters --

And Filters --
Class required [Status Report]
Field Filters 'Task' [JD Responsible]

248

List Presentation: JD status reports

Field Name Value
List [All Status Reports]
Format [All recorded by JD]
Title "Status reports recorded by John

Doe"
Description
Menu Prompt "John Doe's recorded status

reports"

APPENDIX C: PROGRAM LISTINGS

This filter picks out only status reports about tasks for which John Doe is responsible. It

embeds the [JD Responsible] Filter specified earlier for selecting tasks that JD is

responsible for. This illustrates one advantage of the Filter constructs of the HyperVoice

language. In a relational query language such as SQL [Date 1986] this operation would

first require a join of the two tables representing tasks and status reports, based on a task-

id field, then a filter operation on the joined table, then a projection back to select only

the status report fields. In the HyperVoice program above, the filter on the status reports

simply specifies that the object linked into the 'Task' field must satisfy another filter.

3.3 PROJECT LEADER INSTANCES

The project leader may choose to access the tasks and status reports by person responsible

or may choose to access them all together. The objects below specify the initial menu

accessed by the project leader.

Person: Project Leader
Field Name Value
Name Recorded
User Id 8888
Password 0000
Privileges EDITING
Start Object [Project Leader Choices]
Phone Number 1234567
Fax Number 7654321
Email Address Recorded
US mail address Recorded

List Presentation: Project Leader Choices

Field Name Value
List [PL's choice list]
Format [Menu Format]
Title "Project Leader's options"
Description
Menu Prompt "Project Leader"

List: PL's choice list

Field Name Value
Contents [All tasks by date due]

[All tasks by priority]
[All status reports]
[Tasks and Status Reports by
Person]

249

The Project Leader has four options. The first three are similar to the first three options

seen by project members. The difference is that no filters are specified in the List Format

objects, so that all tasks or status reports are selected rather than a subset being selected.

Due to their similarity to objects above, the objects for the first three menu choices are

omitted.

List Presentation: Tasks and Status Reports by Person

Field Name Value
List [Users List]
Format [Choose Person for Access]
Title "Choose a person"
Description
Menu Prompt "Access tasks and status reports

for a particular person"

The project leader can also access information relevant to any one member of the project,

by selecting that person from a menu of all the people.

List Format: Choose Person for Access 1

Field Name Value
Sort Order --

Filter --

Item Formats [Say User Name; navigate]
Advancement SKIP
Mechanism
Selection Mechanism POSITIONAL
List Actions --

Name for Objects Option

Response List? NO
Say Item Count? YES

Item Format: Say User Name; navigate

Field Name Value
Object Class [User]
Field Formats ['Name' NO
Select Action [Goto Start Item]

Each menu option

User object.

is just the name of a person, which comes from the 'Name' field of the

250

APPENDIX C: PROGRAM LISTINGS

Select Action: Goto Start Item

Field Name Value
Action Type GOTO FIELD 'Start Item'
Action After Retuming STAY AT CURRENT ITEM

If a User object is selected, the system presents the List Presentation in the User object's

'Start Item' field. Note that this is the same thing that the project member hears after first

logging in. Thus, when the project leader makes a selection from this menu, the project

leader has all the same options that a project member has, as described above.

This program illustrates some of the limitations of the HyperVoice language. First, all of

the presentation formats are pre-specified, which does not allow for ad-hoc queries, such

as finding all of the tasks for which one of two people are responsible. Second, the

language does not have an abstraction mechanism for creating new primitives. The

program listing only shows the List Presentations and List Formats for one of the project

members, John Doe. Similar ones would have to be created for each additional project

member. Instead, there should be a way to create a new macro or a new primitive with a

few variables for the information that differs among the Presentation Formats and List

Formats for the different project members. These limitations and extensions were

discussed in the future research section of chapter 4.

251

D MENU EXPERIMENT DETAILS

In the second menu experiment, subjects made selections from two different menu trees.

This appendix contains enough of the details of the experiment so that, together with the

material from Chapter 5, other researchers could replicate it. The appendix first presents

the text of the prompts in both trees. Then, it gives the prompts that explained each of the

twelve selection tasks that subjects performed. Finally, a 12x12 Latin Square determines

the order in which subjects performed the set of tasks.

1 THE MENU TREES

Below are the text of the prompts for the options in the two applications. Submenus are

indented. These prompts were the same with all of the menu selection styles. Thus, in the

top-level menu, with the standard menu style, the prompts for selecting sports scores is:

"Sports scores and highlights, press 2" With positional selection, the "press 2" is omitted

and the caller is instead prompted to press 1 for the current selection. If the subject then

selects the sports option, the system plays the menu header, "The sports report. Where

Budweiser brings you all the action." The subject can then make a selection of pro sports,

local college, NCAA, or olympic highlights.

1.1 NEWS AND INFORMATION APPLICATION

Welcome to PhoneLine. Your only source for up to the minute news and
information. Brought to you by GTE, where the power is on.
1. News reports from around the country and around the globe.

The News Desk. Brought to you by Ford motor company, where quality is job
one.

1. State news. Keeping you up to date on Massachusetts.
2. National News. Brought to you by Turner Broadcasting Company.
3. World headlines. Late breaking international news.
4. The business report, provided by the Wall Street Journal.

2. Sports scores and highlights.
The sports report. Where Budweiser brings you all the action.
1. The Pro Sports reports, sponsored by Budweiser.

253

1. The NFL this week. Off season trades and news.
2. The NBA Report. Countdown to the finals.
3. The major league baseball report. Sponsored by Budweiser. This Bud's for

you.
4. NHL action. Game and strike news.

2. Local college action, covering BU, BC, Harvard and Northeastern.
The local college sports scene, brought to you by WFNX, the cutting
edge of rock
1. Boston College, home of the Eagles
2. Boston University, home of the Terriers
3. Harvard University. Home of the Crimson.
4. Northeastern University, home of the Wildcats

3. The NCAA report, with college scores from around the nation.
Rundown on the NCAA, brought to you by Barnes and Noble Bookstores.
1. Basketball scores from the NCAA-sponsored tournaments.
2. Football news from around the NCAA
3. Hockey scores and news from around the NCAA

4. Olympic highlights. The latest on Albertville.
Selected Olympic Results.

1. Figure skating results from Albertville, France.
2. Olympic hockey results.
3. Alpine and Nordic skiing results from Albertville, France.

3. Horoscopes. By noted astrologer Jeane Dixon.
Horoscopes. Don't make a move without consulting the stars
1. Aquarius, January 20th to February 18th.
2. Pisces, February 19th to March 20th.
3. Aries, March 21st to April 19th.
4. Taurus. April 20th to May 20th.
5. Gemini, May 21st to June 21st.
6. Cancer, June 22nd to July 22nd.
7. Leo, July 23rd to August 22nd.
8. Virgo, August 23rd to September 22nd.
9. Libra. September 23rd to October 23rd.
10. Scorpio, October 24th to November2lst.
11. Sagittarius, November 22nd to December 2 1st.
12. Capricorn, December 22nd to January 19th

4. Entertainment news and happenings around town.
The entertainment report. Where the Boston Phoenix helps you make your leisure

time count.
1. Hot videotape releases. The top renting videos in your area.

Videotape Hits. Supplied by Blockbuster videos, with a store near you.
1. The Rocketeer
2. Regarding Henry
3. Return of Blue Lagoon
4. Deadlock
5. Miles From Nowhere
6. Over Her Dead Body

2. Movie reviews by Gene Aubrey of the New York Times.
Now playing at your local theater.
1. Shining Through
2. Fried Green Tomatoes
3. Grand Canyon
4. Freejack

254

APPENDIX D: MENU EXPERIMENT DETAILS

5. Final Analysis
6. Naked Lunch

3. Television Tonight. Highlights of this evening's programs.
Tonight's TV Highlights, brought to you by Heritage Cable TV.
1. On ABC this evening
2. On CBS tonight.
3. On NBC this evening
4. Fox network offerings tonight
5. Highlights of the cable networks this evening

4. Music: what's selling and what's playing around town.
The music scene is brought to you by the Phoenix, Boston's #1 weekly

newspaper.
1. Billboard's top ten singles. Brought to you by Strawberries records in
Framingham.
2. The top 10 albums according to Billboard magazine
3. Rock Talk. MTV VeeJay Martha Quinn brings you the scoop.
4. Concerts in Boston and MetroWest.

1.2 WEATHER APPLICATION

Welcome to WeatherLine. Forecasts for over 50 U.S. and international cities.
Brought to you by Thomas Cook Travel, where we bring the world to you.
1. Asian and Pacific Rim cities

Choose the Asian or Pacific Rim city you will be traveling to:
1. Beijing. Mainland China's premier city.
2. Tokyo, Japan. The gateway to the orient.
3. Bangkok. Capital of Thailand.
4. Seoul. Capital of South Korea.

2. Western European Cities and regions.
Western European weather: select the region you are traveling to.
1. German and Austrian cities.

Germany and Austria, served by Lufthansa Air.
1. Berlin, and Eastern Germany.
2. Bonn, Germany, and the northern Rhine valley.
3. Munich, Germany and the German Alps.
4. Vienna and the Austrian forecast.

2. French and Belgian cities.
France and Belgium, served by Air France.
1. Bordeaux, France and the wine country.
2. Brussels, capital of Belgium.
3. Paris, France. City of lights.
4. Marseilles, France and the Mediterranean coast.

3. Spanish and Portuguese Cities.
Spain and Portugal, served by Ibena Airways.
1. Barcelona, Spain. Home of the 1992 summer olympics.
2. Lisbon, Portugal's capital.
3. Madrid, and Central Spain.

4. Italian and Grecian cities
Italy and Greece, served by Alitalia Airways.
1. Athens, Greece and the Grecian islands.
2. Milan, Italy and the Italian Alps.
3. Rome, Italy and the Vatican City.

3. Canadian city and regional forecasts.

255

Provincial capitals and major cities of Canada.
1. Calgary and the Canadian Rockies.
2. Edmonton, and the Central Alberta forecast..
3. Halifax, Nova Scotia, and Prince Edward Island.
4. Montreal. Old world charm right next door.
5. St. John and New Brunswick province
6. Ottawa, Canada's capital city.
7. Southern Newfoundland, including the provincial capital, St. John's.
8. Saskatoon, and the Canadian plains.
9. Toronto, and Eastern Ontario.
10. Vancouver, and southern British Columbia.
11. Yukon and the Northwest territories.
12. Winnipeg, and southern Manitoba.

4. Major United States cities by region.
United States weather: select the region you are traveling to.
1. The West and Southwest, including all pacific coast and rocky mountain
states.

Major cities in the western and southwestern states.
1. Albuquerque, New Mexico. Sitting on top of the continental divide.
2. Los Angeles, and Southern California.
3. Phoenix, and southern Arizona.
4. Portland, and western Oregon.
5. San Francisco, California, and the Silicon Valley.
6. Seattle, Washington and Puget Sound.

2. The midwest, including all Plains, Great lakes, and Ohio River Valley states.
Major cities in the midwestern states.
1. Chicago, Illinois and the lake Michigan shore.
2. Cincinnati, and southwestern Ohio
3. Des Moines, Iowa and the agricultural heartland.
4. Detroit, Michigan and the Great Lakes.
5. Minneapolis, Minnesota and the Northern Plains region.
6. Saint Louis and eastern Missouri.

3. The northeast region, New England and coastal states from Maine to
Pennsylvania.

Major cities of the northeastern United States.
1. Albany, and central New York.
2. Boston, Massachusetts and the Cape.
3. New York City and the greater metropolitan area.
4. Philadelphia, Pennsylvania and central New Jersey.
5. Portland, Maine, and the New England ski report.

4. The Southern Region, including all Mid-Atlantic, Gulf coast, and South Central
states.

Major cities in southern and middle Atlantic states.
1. Atlanta, and the north Georgia area.
2. Miami, and the South Florida report.
3. New Orleans, Louisiana, and the Mississippi Delta.
4. Washington, DC, the nation's capital.

256

APPENDIX D: MENU EXPERIMENT DETAILS

2 THE TASKS

Each subjected completed twelve selection tasks from each menu tree, but different

subjects completed the tasks in different orders. Since the two menu trees have the same

structure, the set of tasks can be determined by paths through the tree. For example, the

path 1-3 means to select the first item from the top-level menu, the third item from the

second menu. In the news application, this picks out the path, "News; Word headlines."

In the weather application, this picks out the path, "Asian cities; Bangkok." The twelve

paths are lettered A through L and listed below with the tasks presented to subjects.

A. 1-2

You heard that President Bush announced a new tax proposal last night. You would like

to see what PhoneLine has to say about it.

Check the weather in Tokyo.

B. 2-1-3

You heard that the Boston Red Sox and the New York Yankees just made a big trade.

Where would you look for it?

Check the weather in Munich, Germany.

C. 2-2-3

Did Harvard win their hockey game last night against Yale?

Check the weather in Paris. (Not Texas, France!)

257

D..2-3-1

The NCAA basketball tournament is about to begin, and you want to see if University of

Kentucky got a bid this year.

Check the weather in Barcelona

E. 2-4-3

You want to know who won the women's downhill at the Olympics. Go ahead.

What is the weather report for Rome, Italy?

F. 3-4

You are a Taurus. What is you horoscope?

What is the weather forecast for Montreal?

G. 3-9

Your friend is a Libra. What is her horoscope?

What is the weather forecast for Toronto?

H. 4-1-2

You are planning to rent a videotape tonight, and you want to here the review for

"Regarding Henry". Find it on the service.

What is the weather forecast for Los Angeles, CA?

258

APPENDIX D: MENU EXPERIMENT DETAILS

I. 4-2-1

You think Melanie Griffith is in the new movie, "Shining Through", but you want to

check the review to make sure before heading out to the theater. Do it.

Check the weather in Chicago, IL.

J. 4-2-5

Find the review for the new movie, "Final Analysis", now playing at a theater near you.

You want to know how much snow is predicted for Minneapolis, MN. Go ahead.

K. 4-3-2

What shows are on CBS TV tonight?

What is the five day forecast for Boston, MA?

L. 4-4-1

You are interested in knowing which songs are at the

top of the charts. Find the list of singles.

What is the weather forecast for Atlanta, GA?

3 TASK ORDERING

A 12x12 matrix used to order tasks for the twelve subjects. The letters A through L

represent the twelve possible tasks. Each row shows the order of tasks for one subject.

259

A B C D E F G H I J K L
B I A G C H E J F L D K
C A E B F D I G K H L J
D G B H A J C L E K F I
E C F A D B K I L G J H
F H D J B L A K C I E G
G E I C K A L B J D H F
H J G L I K B D A F C E
I F K E L C J A H B G D
J L H K G I D F B E A C
K D L F J E H C G A I B
L K J I H G F E D C B A

This matrix satisfies the Latin Square properties:

1) Each subject (row) performs every task exactly once

2) In every trial position (column) every task is executed by some subject.

3) For every pair of tasks, each one appears directly to the right of the other

exactly once in the matrix.

This assignment of tasks to subjects has only one drawback. The first subject gets tasks A

through H in order. For ease of presentation, those tasks progress from selections early in

a menu to selections later in the menu. This might potentially give the first subject quite

an advantage. To remedy this, we relabeled tasks A through H in a random order, thus

preserving all three desirable Latin Square properties but eliminating the possibility that

the first subject would gain an advantage from knowing that the tasks progress through

the menu in an orderly way.

260

REFERENCES

Ackerman, M. S. and Malone, T. W. Answer Garden: A Tool for Growing
Organizational Memory. In Proceedings of COIS '90 Conference on Office
Information Systems. (Cambridge, MA, 1990). ACM, pp. 31-39.

Akscyn, R. M., McCracken, D. L. and Yoder, E. A. KMS: A Distributed Hypermedia
System for Managing Knowledge in Organizations. Communications of the
ACM. 31, 7 (1988), pp. 820-835.

Arons, B. Authoring and Transcription Tools for Speech-Based Hypermedia Systems. In
Proceedings of the Conference of the American Voice Input/Output Society.
(199 1a), pp. 15-20.

Arons, B. Hyperspeech: Navigating in Speech-Only Hypermedia. In Proceedings of
Hypertext. (1991b). ACM, pp.133-146

Arons, B. Techniques and Applications of Time-Compressed Speech. In Proceedings of
AVIOS '92: Conference of the American Voice Input/Output Society.
(Minneapolis, MN, 1992).

Arthur, W. B. Competing Technologies: An Overview. In Technical Change and
Economic Theory. G. Dosi, Ed. Columbia University Press, New York, NY,
1987.

Beard, D., Palanlappan, M., Humm, A., Banks, D., Nair, A. and Shan, Y.-P. A Visual
Calendar for Scheduling Group Meetings. In Proceedings of CSCW '90:
Conference on Computer-Supported Cooperative Work. (Los Angeles, CA,
1990). ACM, pp. 279-290.

Bollobas, B. Graph Theory: an Introductory Course. Springer Verlag, New York, 1979.

Cahn, J. E. The Generation of Affect in Synthesized Speech. Journal of the American
Voice Input/Output Society. July (1990).

Callahan, J., Hopkins, D., Weiser, M. and Shneiderman, B. An Empirical Comparison of
Pie vs. Linear Menus. In Proceedings of CHI '88 Conference on Human Factors
in Computing Systems (Washington, DC, 1988). ACM, pp. 95-100.

Carasik, R. P. and Grantham, C. E. A Case Study of CSCW in a Dispersed Organization.
In Proceedings of CHI '88 Conference on Human Factors in Computing Systems.
(Washington, D.C., 1988). ACM, pp. 61-66.

Chaiklin, S. and Schrum, L. Community-Based Telecommunications. In Third Guelph
Symposium on Computer Mediated Communication. (Guelph, Ontario, Canada,
1990).

Chalfonte, B. L., Fish, R. S. and Kraut, R. E. Expressive Richness: A Comparison of
Speech and Text as Media for Revision. In Proceedings of CHI '91 Conference

261

on Human Factors in Computing Systems. (Seattle, WA, 1991). ACM, pp. 21-
26.

Collier, G. Thoth-II: Hypertext with Explicit Semantics. In Proceedings of Hypertext
'87. (Chapel Hill, NC, 1987). ACM, pp. 269-287.

Conklin, J. Hypertext: An Introduction and Survey. IEEE Computer. 20, 9 (1987), pp.
17-41.

Cormen, T. H., Leiserson, C. E. and Rivest, R. L. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

Creecy, R. H., Masand, B. M., Smith, S. J. and Waltz, D. L. Trading MIPS and Memory
for Knowledge Engineering. Communications of the ACM. 35, 8 (1992), pp. 48-
64.

Date, C. J. An Introduction to Database Systems. Addison-Wesley, Reading, MA, 1986.

de Baar, D. J. M. J., Foley, J. D. and Mullet, K. E. Coupling Application Design and
User Interface Design. In Proceedings of CHI '92 Conference on Human Factors
in Computing Systems. (Monterey, CA, 1992). ACM, pp. 259-266.

Degen, L., Mander, R. and Salomon, G. Working with Audio: Integrating Personal Tape
Recorders and Desktop Computers. In Proceedings of CHI '92 Conference on
Human Factors in Computing Systems. (Monterey, CA, 1992). ACM, pp. 413-
418.

Detweiler, M., Schumacher, R., Jr. and Gattuso, N., Jr. Alphabetic input on a Telephone
Keypad. In Proceedings of the Human Factors Society-- 34th annual meeting.
(Santa Monica, CA, 1990).

diSessa, A. A. and Abelson, H. Boxer: A Reconstructable Computational Medium.
Communications of the ACM. 29, 9 (1986), pp. 859-868.

Dreyfus, H. L. Being-in-the-world: A Commentary on Heidegger's Being and Time,
Division I. MIT Press, Cambridge, MA, 1991.

Dumais, S. T., Furnas, G. W., Landauer, T. K., Deerwester, S. and Harshman, R. Using
Latent Semantic Analysis to Improve Access to Textual Information. In
Proceedings of CHI '88 Conference on Human Factors in Computing Systems.
(Washington, DC, 1988). ACM, pp. 281-288.

Dumais, S. T. and Landauer, T. K. Using Examples to Describe Categories. In
Proceedings of CHI '83 Conference on Human Factors in Computing Systems.
(1983). ACM, pp. 112-115.

Dumais, S. T. and Landauer, T. K. Describing Categories of Objects for Menu Retrieval
Systems. Behavior Research Methods, Instruments, and Computers 16, 2 (1984),
pp. 242-248.

Engelbeck, G. and Roberts, T. The Effects of Several Voice-Menu Characteristics on
Menu Selection Performance. Technical Report ST0401, US West Advanced
Technologies, 1990.

262

REFERENCES

Fast, L. and Ballantine, R. Dialing a name: Alphabetic Entry Through a Telephone
Keypad. SIGCHI Bulletin. 20, 2 (1988), pp. 34.

Feiner, S. Seeing the Forest for the Trees: Hierarchical Display of Hypertext Structures.
In Proceedings of COIS '88 Conference on Office Information Systems. (Palo
Alto, CA, 1988). ACM, pp. 205-212.

Fichman, R. G. and Kemerer, C. F. Adoption of Software Engineering Process
Innovations: The Case of Object-Orientation. WP-242, MIT Center for
Information Systems Research, 1992.

Foss, C. Effective Browsing in Hypertext Systems. In Proceedings of RIAO '88.
(Cambridge, MA, 1988). ACM, New York, pp. 16-23.

Furnas, G. W. Experience With an Adaptive Indexing Scheme. In Proceedings of CHI
'85 Conference on Human Factors in Computing Systems. (San Francisco, 1985).
ACM, pp. 131-135.

Furnas, G. W. Generalized Fisheye Views. In Proceedings of CHI '86 Conference on
Human Factors in Computing Systems. (Boston, 1986). ACM, pp. 16-23.

Furuta, R. and Stotts, P. D. Programmable Browsing Semantics in Trellis. In
Proceedings of Hypertext '89. (Pittsburgh, PA, 1989). ACM, pp. 27-42.

Garzotto, F., Paolini, P., Schwabe, D. and Bernstein, M. Tools for Designing
Hyperdocuments. In HypertextiHypermedia Handbook. E. Berk and J. Devlin,
Ed. McGraw-Hill, New York, 1991, pp. 179-207.

Gaver, W. W. Auditory Icons: Using Sound in Computer Interfaces. Human-Computer
Interaction. 2, 2 (1986), pp. 167-177.

Goodman, D. The Complete HyperCard 2.0 Handbook. Bantam, New York, 1990.

Gould, J. D. and Boies, S. J. Human Factors Challenges in Creating a Principal Support
Office System-- The Speech Filing System Approach. ACM Transactions on
Office Information Systems. 1, 4 (1983), pp. 273-298.

Gould, J. D., Boies, S. J., Levy, S., Richards, J. T. and Schoonard, J. The 1984 Olympic
Message System: A Test of Behavioural Principles of System Design.
Communications of the ACM. 30,9(1987), pp. 758-769.

Green, M. A Survey of Three Dialog Models. ACM Transactions on Graphics. 5, 3
(1986), pp. 244-275.

Greif, I. and Sarin, S. Data Sharing in Group Work. ACM Transactions on Office
Information Systems. 5, 2 (1987), pp. 187-211.

Grudin, J. Why Groupware Applications Fail: Problems in Design and Evaluation.
Office: Technology and People. 4, 3 (1989), pp. 245-264.

Halasz, F. Reflections on NoteCards: Seven Issues for the Next Generation of
Hypermedia Systems. Communications of the ACM. 31, 7 (July 1988), pp. 836-
851.

263

Halstead-Nussloch, R. The Design of Phone-Based Interfaces for Consumers. In
Proceedings of CHI '89 Conference on Human Factors in Computing Systems.
(Austin, TX, 1989). ACM, pp. 347-352.

Harvey, G. Understanding HyperCard. SYBEX, Inc., Alameda, CA, 1988.

Hayes, P., Szekely, P. and Lerner, R. Design Alternatives for User Interface
Management Systems Based on Experience with COUSIN. In Proceedings of
CHI '85 Conference on Human Factors in Computing Systems. (San Francisco,
CA, 1985). ACM, pp. 169-175.

Hill, R. D. Event-Response Systems-- A Technique for Specifying Multi-Threaded
Dialogues. In Proceedings of CHI + GI '87 Conference on Human Factors in
Computing Systems and Graphics Interface. (Toronto, Canada, 1987). ACM,
pp. 241-248.

Hindus, D. and Schmandt, C. Ubiquitous Audio: Capturing Spontaneous Collaboration.
In Proceedings of CSCW '92 Conference on Computer Supported Cooperative
Work. (Toronto, Canada, 1992). ACM, to appear.

Hutchins, E. L., Hollan, J. D. and Norman, D. A. Direct Manipulation Interfaces. In
User Centered System Design. D. A. Norman and S. W. Draper, Ed. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1986, pp. 87-124.

Johnson, J. Selectors: Going Beyond User-Interface Widgets. In Proceedings of CHI '92
Conference on Human Factors in Computing Systems. (Monterey, CA, 1992).
ACM, pp. 273-279.

Kiger, J. L. The Depth/Breadth Trade-off in the Design of Menu-Driven User Interfaces.
International Journal of Man-Machine Studies. 20, 2 (1984), pp. 201-213.

Kim, W. C. and Foley, J. D. DON: User Interface Presentation Design Assistant. In
Proceedings of UIST '90 ACM Symposium on User Interface Software and
Technology. (Snowbird, Utah, 1990). ACM, pp. 10-20.

Ladner, R., Day, R., Gentry, D., Meyer, K. and Rose, S. A User Interface for Deaf-Blind
People (Preliminary Report). In Proceedings of CHI + GI '87 Conference on
Human Factors in Computing Systems and Graphics Interface. (Toronto, 1987).
ACM, pp. 75-80.

Lai, K.-Y., Malone, T. and Yu, K.-C. Object Lens: A "Spreadsheet" for Cooperative
Work. ACM Transactions on Office Information Systems. 6, 4 (1988), pp. 332-
353.

Landauer, T. K. and Nachbar, D. W. Selection from Alphabetic and Numeric Menu
Trees Using a Touch Screen: Breadth, Depth, and Width. In Proceedings of CHI
'85 Conference on Human Factors in Computing Systems. (1985). ACM, pp. 73-
78.

Landow, G. P. Relationally Encoded Links and the Rhetoric of Hypertext. In
Proceedings of Hypertext '87. (Chapel Hill, NC, 1987). ACM, pp. 331-343.

Landow, G. P. The Rhetoric of Hypermedia: Some Rules for Authors. Journal of
Computing in Higher Education. 1, 1 (1989), pp. 39-64.

264

REFERENCES

Laverson, A., Norman, K. and Shneiderman, B. An Evaluation of Jump-ahead
Techniques in Menu Selection. Behaviour and Information Technology. 6, 2
(1987), pp. 97-108.

Lee, E. and MacGregor, J. Minimizing User Search Time in Menu Retrieval Systems.
Human Factors. 27, (1985), pp. 157-162.

MacGregor, J., Lee, E. and Lam, N. Optimizing the Structure of Database Menu Indexes:
a Decision Model of Menu Search. Human Factors. 28, 4 (1986), pp. 387-399.

Magnum Software Corporation. TFLX Quick Manual: A Simple Overview of Magnum
TFLX and its Picture Programming System. 21115 Devonshire Street, Suite 337,
Chatsworth, CA 91311, 1990.

Malone, T. W., Grant, K. R., Lai, K.-Y., Rao, R. and Rosenblitt, D. Semi-structured
Messages are Surprisingly Useful for Computer-Supported Coordination. In
Computer-Supported Cooperative Work: A Book of Readings. I. Greif, Ed.
Morgan Kaufmann, San Mateo, CA, 1988, pp. 311-331.

Malone, T. W., Lai, K.-Y. and Fry, C. Experiments with Oval: A Radically Tailorable
Tool for Cooperative Work. In Proceedings of CSCW '92 Conference on
Computer Supported Cooperative Work. (Toronto, CA, 1992). ACM , to appear.

Marics, M. How Do You Enter "D'Anzi-Quist" Using a Telephone Keypad? In
Proceedings of the Human Factors Society-- 34th annual meeting. (Santa
Monica, CA, 1990).

Markus, M. L. Towards a 'Critical Mass' Theory of Interactive Media: Universal Access,
Interdependence and Diffusion. In Perspectives on Organizations and New
Information Technology. J. Fulk and C. W. Steinfeld, Ed. Sage Publications,
Newbury Park, CA, 1990, pp. 194-218.

Mehlenbacher, B., Duffy, T. M. and Palmer, J. Finding Information on a Menu: Linking
Menu Organization to the User's Goals. Human-Computer Interaction. 4, 3
(1989), pp. 231-251.

Miller, D. P. The Depth/Breadth Tradeoff in Hierarchical Computer Menus. In Human
Factors Society 25th annual meeting. (Santa Monica, 1981). pp. 296-300.

Muller, M. J. and Daniel, J. E. Toward a Definition of Voice Documents. In
Proceedings of COIS '90 Conference on Office Information Systems. (Boston,
MA, 1990). ACM, pp. 174-183.

Murray, J. A. H. and Burchfield, R. W. (Ed.) The Oxford English Dictionary. Clarendon
Press, Oxford, 1933.

Nunamaker, J. F., Dennis, A. R., Valacich, J. S., Vogel, D. R. and George, J. F.
Electronic Meeting Systems to Support Group Work. Communications of the
ACM. 34,7 (1991), pp. 40-61.

Ochsman, R. B. and Chapanis, A. The Effects of 10 Communication Modes on the
Behavior of Teams During Co-operative Problem-solving. International Journal
of Man-Machine Studies. 6, (1974), pp. 579-619.

265

Olsen, D. R., Jr. A Programming Language Basis for User Interface Management. In
Proceedings of CHI '89 Conference on Human Factors in Computing Systems.
(Austin, TX, 1989). ACM, pp. 171-176.

Olsen, D. R., Jr., McNeill, T. G. and Mitchell, D. C. Workspaces: An Architecture for
Editing Collections of Objects. In Proceedings of CHI '92 Conference on Human
Factors in Computing Systems. (Monterey, CA, 1992). ACM, pp. 267-272.

Paap, K. R. and Roske-Hofstrand, R. J. The Optimal Number of Menu Options per
Panel. Human Factors. 28, 4 (1986), pp. 377-385.

Postman, N. Amusing Ourselves to Death: Public Discourse in the Age of Show
Business. Viking Penguin, New York, 1985.

Remde, J. R., Gomez, L. M. and Landauer, T. K. SuperBook: An Automatic Tool for
Information Exploration-- Hypertext? In Proceedings of Hypertext '87. (Chapel
Hill, NC, 1987). ACM, pp. 175-187.

Repenning, A. and Sumner, T. Using Agentsheets to Create a Voice Dialog Design
Environment. In Symposium on Applied Computing. (Kansas City, MO, 1992).
ACM, pp. 1199-1207.

Resnick, P. and King, M. The Rainbow Pages: Building Community with Voice
Technology. In Directions and Implications of Advanced Computing. (Boston,
MA, 1990).

Resnick, P. and Virzi, R. A. Skip and Scan: Cleaning Up Telephone Interfaces. In
Proceedings of CHI '92 Conference on Human Factors in Computing Systems.
(Monterey, CA, 1992). ACM, pp. 419-426.

Resnick, P. HyperVoice: A Phone-Based CSCW Platform. In Proceedings of CSCW '92
Conference on Computer-Supported Cooperative Work. (Toronto, 1992). ACM.
To appear.

Resnick, P. The Smart Fast Forward Button. In Proceedings of the American Voice
Input/Output Society. (Minneapolis, MN, 1992). To appear.

Richards, J. T., Boies, S. J. and Gould, J. D. Rapid Prototyping and System
Development: Examination of an Interface Toolkit for Voice and Telephony
Applications. In Proceedings of CHI '86 Conference on Human Factors in
Computing Systems. (New York, 1986). ACM, pp. 216-220.

Roberts, T. L. and Engelbeck, G. The Effects of Device Technology on the Usability of
Advanced Telephone Functions. In Proceedings of CHI '89 Conference on
Human Factors in Computing Systems. (Austin, TX, 1989). ACM, pp. 331-337.

Rosson, M. B. and Mellen, N. M. Behavioral Issues in Speech-Based Remote
Information Retrieval. In Proceedings of the American Voice Input/Output
Society. (San Francisco, CA, 1985).

Samuelson, P. Protecting User Interfaces Through Copyright: The Debate. In
Proceedings of CHI '89 Conference on Human Factors in Computing Systems.
(Austin, TX, 1989). ACM, pp. 97-104.

266

REFERENCES

Schmandt, C. and Arons, B. A Conversational Telephone Messaging System. IEEE
Transactions on Consumer Electronics. CE-30, (1984).

Shneiderman, B. Direct Manipulation: A Step Beyond Programming Languages.
Behavior and Information Technology. 1, (1983), pp. 237-256.

Shneiderman, B. Designing Menu Selection Systems. Journal of the American Society
for Information Science. 37, (1986), pp. 57-70.

Shneiderman, B. User Interface Design for the Hyperties Electronic Encyclopedia. In
Proceedings of Hypertext '87. (Chapel Hill, NC, 1987). ACM, pp. 189-194.

Shneiderman, B., Kreitzberg, C. and Berk, E. Editing to Structure a Reader's Experience.
In HypertextiHypermedia Handbook. E. Berk and J. Devlin, Ed. McGraw-Hill,
New York, 1991, pp. 143-164.

Sisson, N., Parkinson, S. R. and Snowberry, K. Considerations of Menu Structure and
Communication Rate for the Design of Computer Menu Displays. International
Journal of Man-Machine Studies. 25, (1986), pp. 479-489.

Stotts, P. D. and Furuta, R. Petri-Net Based Hypertext: Document Structure with
Browsing Semantics. ACM Transactions on Information Systems. 7, 1 (1989),
pp. 3-29.

Strunk, W., Jr. and White, E. B. The Elements of Style. Macmillan, New York, 1979.

Sumner, T., Davies, S., Lemke, A. C. and Polson, P. G. Iterative Design of a Voice
Dialog Design Environment. CU-CS-546-91, University of Colorado at Bouldr,
1991.

Szekely, P. Template-based Mapping of Application Data to Interactive Displays. In
Proceedings of UIST '90 Symposium on User Interface Software and Technology.
(Snowbird, Utah, 1990). ACM, pp. 1-9.

Szekely, P., Luo, P. and Neches, R. Facilitating the Exploration of Interface Design
Alternatives: The HUMANOID Model of Interface Design. In Proceedings of
CHI '92 Conference on Human Factors in Computing Systems. (Monterey, CA,
1992). ACM, pp. 507-515.

Travers, M. A Visual Representation for Knowledge Structures. In Proceedings of
Hypertext '89. (Pittsburgh, PA, 1989). ACM, pp. 147-158.

Trigg, R. H. Tools for Communicating in a Hypertext Environment. In Proceedings of
CSCW '88 Conference on Computer Supported Cooperative Work. 1988).
ACM, pp. 216-226.

Utting, K. and Yankelovich, N. Context and Orientation in Hypermedia Networks. ACM
Transactions on Information Systems. 7, 1 (1989), pp. 58-84.

Vander Zanden, B. and Myers, B. A. Automatic, Look-and-Feel Independent Dialog
Creation for Graphical User Interfaces. In Proceedings of CHI '90 Conference on
Human Factors in Computing Systems. (Seattle, WA, 1990). ACM, pp. 27-34.

267

Virzi, R. A., Resnick, P. and Ottens, D. Skip and Scan Telephone Menus: User
Performance as a Function of Experience. In Proceedings of the Human Factors
Society. (Atlanta, GA, 1992). Human Factors Society. To appear.

Voice Messaging User Interface Forum. Specification Document, Final Version. April
1990. Information Industry Association, Suite 800, 555 New Jersey Avenue, NW,
Washington, DC 20001.

Walker, J. H. Document Examiner: Delivery Interface for Hypertext Documents. In
Proceedings of Hypertext '87. (Chapel Hill, NC, 1987). ACM, pp. 307-324.

Wellner, P. D. Statemaster: A UIMS based on Statecharts for Prototyping and Target
Implementation. In Proceedings of CHI '89 Conference on Human Factors in
Computing Systems. (Austin, TX, 1989). ACM, pp. 177-182.

Wenzel, E. M. Localization in Virtual Acoustic Displays. Presence. 1, 1 (1991), pp. 80-
107.

Weyer, S. A. and Borning, A. H. A Prototype Electronic Encyclopedia. A CM
Transactions on Office Information Systems. 3, 1 (1985), pp. 63-88.

Wiecha, C., Bennett, W., Boies, S. and Gould, J. Tools for Generating Consistent User
Interfaces. In Coordinating User Interfaces for Consistency. J. Nielsen, Ed.
Academic Press, San Diego, CA, 1989, pp. 107-130.

Wiecha, C. and Boies, S. Generating User Interfaces: Principles and Use of ITS Style
Rules. In Proceedings of UIST '90 Symposium on User Interface Software and
Technology. (Snowbird, Utah, 1990). ACM, pp. 21-30.

Winograd, T. A Language/Action Perspective on the Design of Cooperative Work. In
Computer Supported Cooperative Work: A Book of Readings,. I. Greif, Ed.
Morgan Kaufmann, San Mateo, CA, 1988, pp. 623-653.

Wixon, D., Whiteside, J., Good, M. and Jones, S. Building a User-defined Interface. In
Proceedings of CHI '83 Conference on Human Factors in Computing Systems.
(Boston, MA, 1983). ACM, pp. 24-27.

Zellweger, P. T. Active Paths Through Multimedia Documents. In Document
Manipulation and Typography. J. C. v. Vliet, Ed. Cambridge University Press,
1988.

Zellweger, P. T. Scripted Documents: A Hypermedia Path Mechanism. In Proceedings
of Hypertext '89. (Pittsburgh, PA, 1989). ACM, pp. 1-14.

, . 'j)

268

