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Ring-Based Stiffening Flexure
Applied as a Load Cell With
High Resolution and Large
Force Range
This paper applies linear elastic theory and Castigliano’s first theorem to design nonlin-
ear (stiffening) flexures used as load cells with both large force range and large resolu-
tion. Low stiffness at small forces causes high sensitivity, while high stiffness at large
forces prevents over-straining. With a standard 0.1 lm deflection sensor, the nonlinear
load cell may detect 1% changes in force over five orders of force magnitude. In compari-
son, a traditional linear load cell functions over only three orders of magnitude. We
physically implement the nonlinear flexure as a ring that increasingly contacts rigid
surfaces with carefully chosen curvatures as more force is applied. We analytically
describe the load cell performance as a function of its geometry. We describe methods
for manufacturing the flexure from a monolithic part or multiple parts. We experimentally
verify the theory for two load cells with different parameters. [DOI: 10.1115/1.4037243]

1 Introduction

Compliant mechanisms, or flexures, are machine joints that
transfer motions and forces without friction, resulting in little
wear or backlash and high precision. Most nonlinear compliant
mechanism literature concerns nonlinearities due to the material
or geometric constraints, and the nonlinearity is not desired but
needs to be included in a model. The most common nonlinearities
are elastomer and power-law materials that behave linearly
for small deflections but weaken at large deflections [1]. Axial
stretching and geometric constraints lead to stiffening behavior
for large deflections [2]. Typically, the change in stiffness in flex-
ure mechanisms is not as extreme as the change in the mechanism
described in this paper. Flexure applications include prosthetics
[3], nanopositioning for semiconductor fabrication [4], gyroscope
acceleration detection [2], and energy-harvesting devices [5]. This
paper focuses on the use of flexures as load cells [6], although the
analysis and fabrication methods may be relevant to many other
applications.

Load cells are often implemented as S-beams or disks that
deform under a force and cause a deflection or strain transducer to
send a corresponding electric signal [7]. Load cells themselves
have a large set of applications ranging from material strength
testing to prosthetic limb sensing [8], monitoring infusion
pumps delivering drugs [9], agricultural product sorting [10],
and human–robot collision force sensing [11]. Traditional linear
load cells can be designed for almost any force capacity from
1.0� 10–1–2.5� 106 N and withstand 50–500% overload capacity
by the use of overstops [7]. Because traditional load cells deform
linearly, they have constant force measurement resolution over
their entire force range.

There are several challenges for designing a load cell. The load
cell should have minimal mass, volume, hysteresis, and parasitic
load sensitivity [7]. The most critical challenge is the trade-off
between force sensitivity and range: It is desirable to maximize
load cell strain or deflection in order to increase the force

measurement resolution by the strain or deflection sensor, which
typically resolves 14-bits between 0 and its maximum rated mea-
surement [12–14]. Simultaneously, one wants to maximize the
load cell’s functional force range and protect it from overloading,
which requires limiting the strain.

A common approach for overcoming this design challenge is
using multiple linear springs with varied stiffnesses in series
[10,15,16]. Overload stops prevent the weaker springs from
deflecting too far, after which the stiffer springs continue to
deflect. Using this approach, Storace and Sette [15] were able to
measure weights over a range of 1–30 kg. The device of Chang
and Lin [10] uses two linear load cells and has dimensions of
100� 100� 30 mm3. This is about twice the frontal area of a
typical 1000 N linear load cell, which is 50� 60� 12 mm3. Chal-
lenges with this multiple-spring-and-transducer approach may be
that it results in a bulky, expensive, or less reliable load cell com-
pared to a single-spring-and-transducer device.

Our approach for designing a load cell with high force resolu-
tion and capacity is to use a nonlinear-stiffening mechanism rather
than multiple linear ones [17]. A nonlinear load cell may have a
low stiffness at low forces, and therefore, its deflection and strain
will be very sensitive to the applied force. When used with a
constant-resolution deflection sensor, this allows the load cell to
have high force resolution at small forces. High stiffness at large
forces protects the load cell from over-straining. The design may
be volume compact and inexpensive due to requiring only one
nonlinear spring and sensor per device.

This paper describes a nonlinear-stiffening load cell which uses
curved beams that increasingly contact surfaces with carefully
chosen curvatures as more force is applied, as shown in Fig. 1.
We derived the design starting from a nonlinear cantilever-surface
spring described by Timosheko [5,18]. This load cell has high
resolution (within 1% of the force value) over a large range (five
orders of magnitude). An absolute linear encoder senses the non-
linear deflection. This combined flexible element and rigid surface
mechanism has minimal hysteresis [6]. In Sec. 2, we develop the
force-deflection theory. In Sec. 3, we describe two methods for
manufacturing the load cell mechanical components from one
monolithic part or multiple parts. In Sec. 4, we describe the load
cell performance sensitivity to geometric parameters. In Sec. 5,
we experimentally verify the theory for a monolithic and multipart
load cell. We describe conclusions in Sec. 6.
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2 Theoretical Modeling

We consider the nonlinear ring flexure shown in Fig. 1. The
flexure deflects nonlinearly as increasing force causes an increas-
ing length of the ring to wrap along the surface starting from
hR¼ 0. As the free length of the ring shortens, the flexure stiffens.

We found that the flexure stiffening rate may be favorably
decreased, as described in Sec. 4, when the ring thickness is
tapered; that is, the ring thickness symmetrically increases in each
quadrant from the root, hR¼ 0 to hR¼ p/2 according to

t hRð Þ ¼ ti þ tf � tið Þ
hR

p=2

� �q

(1)

where ti is the ring thickness in the flexure plane at hR¼ 0, tf is the
thickness at hR¼ p/2, and q is a chosen power parameter. The
variable thickness causes variable ring rigidity

EI hRð Þ ¼ E
b t hRð Þð Þ3

12
(2)

We determine the ring deflection as a function of force, P, in
four main steps:

(1) Express the internal loading along the ring as a function of
the applied force, P.

(2) Determine the free segment’s boundary conditions for each
applied force, P. By “boundary conditions,” we refer to the
two unknown parameters that appear in the strain energy
expression: the ring–surface contact angle, hRC(P), and the
reaction moment, MD(P), as labeled in Fig. 1(b). hRC is the
coordinate along the ring where the deformed ring stops
conforming to the surface shape.

(3) Express the strain energy in the ring as a function of the
applied force, P.

(4) Use Castigliano’s first theorem to calculate the cumulative
ring deflection for increasing force, P.

In our derivation, we consider a compressive loading and use
the sign convention shown in Fig. 1(b). The tensile loading
theory matches the compression theory when the force P is
negative-valued, and the surface mean radius is smaller than the
ring mean radius, S < R.

We make several simplifying assumptions in our model:

� Transverse shear strain effects are negligible so Euler–
Bernoulli beam theory applies [19].

� The flexure deflects only in-plane.
� Once a ring segment wraps around the surface, it conforms

to the surface shape and does not lift away from the surface
for larger forces.

� A no-slip condition also applies to the ring segment in con-
tact with the surface.

� In this paper, we consider only a surface with a constant
radius, S. Future work may extend the theory for surface cur-
vatures that change with hS.

2.1 Internal Loading Along the Ring. First, we describe
internal bending moments and forces along the ring. For the ring
segment in contact with the surface, hR< hRC, the ring curvature
changes to match the mean surface curvature

Dj ¼ 1

S
� 1

R
(3)

The mean surface radius, S, is a theoretical design parameter. The

physically fabricated outer surface radius So(hS) differs from S to

account for the tapered ring thickness. So(hS) is S plus half the
ring thickness, t(hR), at the ring location, hR, that contacts the sur-
face at hS. We find the ring location, hR, that contacts a certain
surface location, hS, by equating the curves’ arc lengths

RhR ¼ ShS (4)

The physically fabricated outer surface radius is

S hSð Þ ¼ S þ
t

ShS

R

� �
2

(5)

where the ring thickness is defined in Eq. (1). Subtraction is used
instead of addition for the inner surface radius. The load cell non-
linear deflection is symmetric in compression and tension modes
if the inner and outer rigid surfaces cause the same magnitude Dj
as the ring wraps around them.

Along the free ring segment, hRC< hR< p/2, the internal bend-
ing moment is

M hRð Þ ¼ MD �
P

2
R 1� sin hRð Þð Þ (6)

where MD is a reaction moment at hR¼ p/2, as shown in Fig. 1.
Along the entire ring, the force normal to the ring’s cross sec-

tion is

N hRð Þ ¼ �
P

2
sin hRð Þ (7)

The shear force parallel to the cross section is

V hRð Þ ¼ �
P

2
cos hRð Þ (8)

2.2 Equations to Determine the Free Ring Segment
Boundary Conditions. Next, we determine the contact angle,
hRC(P), and reaction moment, MD(P), for a given force, P. We use
Euler–Bernoulli beam theory relating a thin ring’s internal
moment to the change in curvature

M ¼ EIDj (9)

First, we consider hRC(P). For the ring segment in contact with
the surface, hR< hRC, we assume that the ring curvature changes
to match the surface mean curvature. At the contact angle, the
ring change in curvature is continuous because the surface does

Fig. 1 A nonlinear load cell flexure cut from a flat plate with an
applied load P: (a) entire load cell with a linear encoder and (b)
free body diagram of one symmetric flexure quadrant for com-
pression mode
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not impose an applied moment on the ring. We apply
Euler–Bernoulli beam theory, Eq. (9), at the contact angle to
equate the ring change in the curvature required for surface tan-
gency and the change in the curvature due to the internal moment

MðhRCÞ ¼ EIðhRCÞDjðhRCÞ (10)

where EI(hR) is the ring cross section rigidity defined in Eq. (2),
Dj(hR) is the change in curvature defined in Eq. (3), and M(hR,
MD, P) is the internal moment defined in Eq. (6).

Second, we consider MD(P). As shown in Fig. 1, the ring cannot
rotate about the z axis at point D due to symmetry. Counterclock-
wise rotation of the ring at point D due to internal loading is

/D ¼
ðp=2

0

Dj R dhR ¼ 0 (11)

Substituting Eqs. (3), (6), and (9) into Eq. (11), the rotation at
D is

/D ¼ DjS RhRC þ
ðp=2

hRC

M hR;MD;Pð Þ
EI hRð Þ

RdhR ¼ 0 (12)

We simultaneously solve Eqs. (10) and (12) for hRC(P) and
MD(P) using the numeric solver fsolve in MATLAB for each
force, P.

2.3 Complementary Strain Energy in the Ring. Comple-
mentary strain energy in the ring is the summation of internal
bending, shear, and normal complementary energies [19]

U ¼ UBend þ UShear þ UNormal (13)

While bending dominates the load cell internal energy for small
forces, shear and normal energy become significant as the ring
free segment shortens. The complementary bending energy along
the entire thin ring is

UBend ¼ 4

ðhRC

0

EI Djð Þ2

2
R dhR þ

ðp=2

hRC

M2

2EI
R dhR

 !
(14)

The factor of 4 accounts for the four ring quadrants. Complemen-
tary energy due to the internal shear force is

UShear ¼
ð2p

0

6V2

10GA
R dhR (15)

where GA is the ring cross section’s shear stiffness. Complemen-
tary energy due to the normal force is

UNormal ¼
ð2p

0

N2

2AE
R dhR (16)

2.4 Castigliano’s First Theorem to Determine Deflection.
We use Castigliano’s first theorem to calculate the cumulative
ring deflection as increasing force is applied [19]

d ¼
ðP

0

@U Fð Þ
@F
F

dF (17)

where the complementary strain energy, U, in the ring is defined
in Eq. (13).

3 Fabrication Methods

We consider two different load cell designs. We fabricated both
load cells using an Omax MicroMAX waterjet machine with the
parameters listed in Table 1. The Omax MicroMAX cuts with a
near-zero taper [20]. Slight angles in the surface due to a waterjet
taper would negatively affect the theory by reducing the amount
of ring-surface contact.

The first design is a multipart load cell assembled from two
inner blocks, two outer blocks, and two flat spring steel beams
bent into rings, all bolted together, as shown in Fig. 2(a). The
spring steel ring has a constant thickness. The second design is
a monolithic load cell, where the blocks and flexible ring are
cut from a single sheet of 7071 aluminum, and the ring has a
variable thickness along its length (0.5 mm at the flexure root
and 10 mm at 90 deg), as shown in Fig. 2(b). As shown in
Fig. 2(c), we cut gaps at the surface roots and inserted curved
blocks to extend the surface curve to the root. This was required
because the waterjet cannot cut a kerf smaller than 0.4 mm, and
for the chosen parameters, the load cell performance is quite
sensitive to a gap at the root: with a gap (no block), the load
cell deflects with two linear regions due to the ring pivoting
about the surface start-point rather than wrapping along the
surface starting at the root. This effect was experimentally dem-
onstrated in Kluger et al. [6].

The two designs have different advantages. The main advant-
age of the multipart load cell is that if the flexure breaks, then
only the flexure needs to be replaced, without needing to replace
the blocks. If part of the monolithic load cell breaks, then, the
entire device needs to be replaced. Another advantage of the
multipart load cell is that it is less costly to waterjet: cutting out
the ring width from a spring steel sheet requires less precision
than cutting out the ring thickness, because the load cell per-
formance is much less sensitive to errors in ring width than
errors in ring thickness. A third advantage of the multipart load
cell is that the spring steel ring has a higher yield stress than an
aluminum ring. Fourth, the minimum ring thickness and mini-
mum difference between ring and surface radii is not limited by
the waterjet’s kerf and accuracy. Our optimization procedures
for the load cell showed that minimizing the difference in ring
and surface radii, S � R increases the load cell range because
then the ring undergoes less bending. Minimizing the ring thick-
ness allows the load cell to be sized smaller for a given initial
stiffness.

Table 1 Fabricated load cell parameters

Parameter Multipart load cell Monolithic load cell

Ring mean radius, R ðmmÞ 74.67 80.00
Inner surface mean radius, Si ðmmÞ 70.00 77.00
Outer surface mean radius, So ðmmÞ 80.00 83.24
Ring width, b (mm) 12.70 6.35
Ring thickness at root, ti (mm) 0.508 0.50
Ring thickness at hR¼p/2, tf (mm) 0.508 10.00
Ring polynomial for thickness variation, q — 3
Ring material Blue tempered steel 1095 Aluminum 7075-T651
Ring elastic modulus, E (GPa) 205 72
Ring yield stress (MPa) 1800 420
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The main advantage of the monolithic load cell is that waterjet-
ting the ring thickness allows the ring to have a variable thickness
along its length, which allows the ring stiffness to increase with
less stress than the shortening mechanism alone. Furthermore,
although the monolithic load cell requires root blocks adhered to
the surfaces for assembly, it does not require bolts, which risk
becoming loose. Finally, the monolithic load cell ring does not
have a prestress before any load is applied, as does the multipart
load cell fabricated by bending a flat beam into a ring, which lim-
its the maximum compressive force that can be applied to the load
cell before yield.

Other features that improve the load cell performance are over-
stops to prevent overstraining and plates to prevent out-of-plane
over-straining. The load cell size can be scaled, as described in
Ref. [6].

In terms of performance, both load cell types can be designed with
comparable force sensitivity, range, and size, as discussed in Sec. 4.

4 Performance Sensitivity to Parameters

Load cell performance is a tradeoff between flexure stiffness,
which limits how finely a deflection sensor may resolve changes
in force; and flexure stress, which limits the force capacity.

The load cell stiffness is

K ¼ @P

@d
(18)

If a linear encoder deflection sensor can resolve 0.1 lm deflections
and we would like to resolve a force to within 1% its value, then
we require the flexure stiffness to remain below

K � 105P (19)

Details on the stiffness limitations for a given force resolution
can be found in Ref. [6].

The stress along the ring due to bending is [19]

r ¼ Et Dj
2

(20)

Equation (20) neglects stress due to the shear and normal forces
because we found that these stresses contribute less than 2% to
the ring’s von Mises equivalent stress.

When the ring is fabricated by bending a flat beam into a circle,
the prestress added to the load cell bending stress is

rPre ¼
Et

2R
(21)

The multipart load cell fabricated from a flat beam and the
monolithic load cell can be designed with comparable force sensi-
tivity, range, and size.

While we want the ring to be a weak spring for high sensitivity
at small forces, we want it to be a stiff spring to limit bending
stress at large forces. As more force is applied to the load cell,
two mechanisms cause the ring stiffness to increase: shortening of
the free length, and increase in the average thickness of the free
length (for the monolithic variable thickness ring only). For the
two designs considered in this paper, the variable thickness mech-
anism allows the ring stiffness to increase with less stress than the
shortening mechanism alone, as shown in Figs. 3(c) and 3(d).

A main limitation for both load cell designs was the minimum
allowable ring radius. The multipart load cell radius was limited
in order to limit prestress when bending the spring steel beam into
a circle. The multipart load cell has a �680 MPa prestress at all
points due to bending the flat spring steel beam into a circle,
which limits the allowable ring force in compression before yield.
On the other hand, the prestress greatly increases the force range
in tension, as shown in Fig. 3(d). The monolithic load cell radius
was limited to decrease the initial stiffness. The load cell’s initial
stiffness can be decreased (i.e., force sensitivity can be increased)
by decreasing the ring thickness or its radius. The monolithic load
cell ring thickness was limited by the waterjet kerf and accuracy.
For both load cell designs, sensitivity at high forces is not a
problem: if the load cell is sensitive at small forces, then its
stiffness increases gradually enough so that a constant-deflection–
resolution sensor can resolve larger forces with a higher percent-
age resolution than smaller forces, as shown in Fig. 3(c).

Figure 3 illustrates the load cell sensitivity to a fabrication error
that increases the ring-surface radius difference, that is, increases
the inner surface radius, Si, or decreases the outer surface, So, by
1%, for both load cell designs. Figure 3(a) shows that this 1%
decrease in surface-ring radius difference decreases the deflection
at 1000 N force by 0.69 mm or 20% for the monolithic load cell
(0.89 mm or 15% for the multipart load cell). As shown in
Fig. 3(d), this corresponds to a maximum stress decrease from

Fig. 2 Fabricated load cells: (a) multipart assembled load cell experiment during maximum tension, (b) monolithic load
cell with tapered ring thickness and root inserts in compression, and (c) close-up view of root inserts
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193 MPa to 159 MPa, 18%, for the monolithic load cell
(�1363 MPa to �1296 MPa, 5%, for the multipart load cell).

If the reverse fabrication error occurs and the ring-surface
radius difference is 1% larger than intended, then overstops will
not properly prevent overload. If the monolithic (multipart) load
cell is designed for 1.00So and overstops at 1000 N, but 0.99So is
fabricated, then, the overstops will not engage until 1903 N, a
90% increase (5400 N, a 440% increase), is applied and the stress
exceeds 202 MPa, a 4.7% increase (1525 MPa, a 13% increase),
not shown. If the monolithic (multipart) load cell is designed for
1.01Si or 0.99So but 1.00Si or 1.00So is fabricated, then overstops
will stop the load cell deflection at 345 N (9.65 N) rather than
1000 N.

As described above, fabrication errors in the multipart load cell
result in larger magnitudes of deflection and force errors than fab-
rication errors in the monolithic load cell. The multipart load
cell’s higher sensitivity is due to how its force–deflection curve is
initially much flatter and then abruptly approaches a steeper stiff-
ness asymptote than the monolithic load cell.

We note that while the 1% change in surface radius has a signif-
icant effect on the load cell’s final deflection and stress, it has a

small effect on the ring contact angle and stiffness at a given
force, as shown in Figs. 3(b) and 3(c).

In summary, the monolithic load cell has the favorable proper-
ties that its stress increases more gradually and its sensitivity to
errors is smaller (due to the ring thickness taper), but it has the
unfavorable property that its size must be larger (due to radii mini-
mum constraints) than the multipart load cell. Future work will
include considering multipart load cells that use surfaces with
elliptical shapes rather than circular shapes, as this may reduce the
multipart load cell’s stress at large forces.

5 Experimental Verification

We performed quasi-static force versus deflection tests to verify
the flexure theory described in Sec. 2 and show the effectiveness
of the two fabrication methods described in Sec. 3. Figure 4 com-
pares the force versus deflection results to the theory. The two
slightly different experimental setups for the multipart and mono-
lithic load cells are shown in Fig. 2. Both tests used an ADMET
eXpert 5000 force tester machine with 65� 10�5 mm resolution
that compressed or tensioned the load cell at a rate of 0.05 mm/s,

Fig. 3 Load cell performance sensitivity to 1% increase in surface radius: (a) force versus deflection, (b) force
versus contact angle, (c) force versus stiffness, and (d) stress along the ring inner radius when force P 5 1000 N.
Monolithic load cell: black. Multipart load cell: gray. Experimental parameters: solid line. Inner surface radius Si

increased by 1%: dashed line.
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an Interface SM-25 load cell with a 100 N capacity for small
forces, and an Interface SM-250 load cell with a 1000 N capacity
for large forces. The nonlinear load cell bottom was bolted to the
tabletop. The multipart nonlinear load cell top was bolted to the
Interface load cell. A clevis pin attached to the Interface load cell
went through a hole near the top of the monolithic nonlinear load
cell.

We used spacer blocks to determine a reference point for the
load cell zero deflection. For the multipart load cell, the zero-
deflection point was determined by resting a spacer block on the
bottom inner rigid block. The ADMET head traveled downward
until the Interface load cell measured a sharp force increase to
5 N, which signified that the space between the top and
bottom inner rigid blocks equaled the spacer block height of
17.3569 mm 6 0.0056 mm, based on micrometer measurements.
Data from these procedures showed that the ADMET head trav-
eled 0.0259 6 0.0139 mm after the force started to abruptly
increase.

For the monolithic load cell, the zero-deflection point was
determined by resting two spacer blocks on the bottom inner rigid
block. Due to gravity, the top inner block rested on the spacer
blocks when the clevis pin, loose in the nonlinear load cell hole,
was not supporting it. The ADMET head traveled upward until
the Interface load cell measured an increased force of 0.1 N,

signifying that the ADMET head was supporting the nonlinear
load cell with a spacing between the inner and outer surfaces
equal to the spacer block height. The spacer blocks had a height
of 3.2310 6 0.0036 mm, based on micrometer measurements.

During the tests, the ADMET head slipped at large forces. To
account for this, we conducted force-versus-deflection tests in
both tension and compression mode with the Interface load cell
bolted directly to the bottom fixture to determine ADMET slip
during the multipart load cell test and with the clevis pinned
through a hole in a sufficiently rigid block ðdðP ¼ 1000 NÞ �
0:001mmÞ to determine the ADMET slip during the monolithic
load cell test. The mean experimental deflection from five trials
was determined for each test configuration and direction. This
deflection as a function of force was subtracted from the experi-
mental nonlinear load cell deflection.

ADMET backlash and load cell taper contributed to an
additional subtraction of 0.2095 6 0.0890 mm from the deflection
for the multipart load cell. ADMET backlash, clevis pin slip,
and load cell taper contributed to an additional subtraction of
0.2193 6 0.1745 mm from the deflection for the monolithic load
cell.

The above sources of deflection uncertainty in the nonlinear
load cell force-versus-displacement data include the spacer block
height, the ADMET displacement resolution from both the

Fig. 4 Experimental force, stiffness, and deflection behavior for load cells shown in Figs. 2: (a) and (b) multipart
load cell, (c) and (d) monolithic load cell. The horizontal and vertical bars indicate measurement uncertainty.
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nonlinear load cell test and the ADMET slip tests, and the offset
due to initial ADMET backlash, load cell taper, and slip. These
sources sum to a zero-deflection point measurement uncertainty of
60.0948 mm for the multipart load cell and 60.1782 mm for the
monolithic load cell, which are indicated by horizontal bars in
Fig. 4. Deflection measurement relative to the zero-deflection
point have 60.0001 mm uncertainty.

We performed five trials for both nonlinear load cells in both
compression and tension modes, with a 100 N Interface load cell
and a 1000 N Interface load cell and determined the experimental
force mean and standard deviation as a function of load cell
deflection.

As shown in Fig. 4, the force-versus-deflection experimental
results generally agree well with the theory over the 0.01–1000 N
range.

Table 2 lists the maximum experimental deflection deviations
from the theory and standard deviations from random error for
each experiment. The random errors at low range may be due to
limited repeatability in the fixtures and limited precision in the
sensor load cells used in our experiment. The errors from the
theory may reflect the zero-deflection uncertainty due to the lim-
ited precision in the sensor load cells. The nonlinearity causes
small deflection errors due to irrepeatability and imprecision to
result in very large force errors from the theory as the force
increases. Furthermore, as illustrated in Sec. 4, small fabrication
errors in the surface shape may result in large force-versus-
deflection errors. Fabricating the monolithic load cell root inserts
too large may have caused the load cell to be stiffer than predicted
for forces less than 13 N, which is when the ring contacts the root
inserts.

Figures 4(b) and 4(d) show experimental stiffness curves that
were determined by taking the gradient of the data moving aver-
age force and displacement in 0.05 mm segments. The waviness
in these curves may reflect imprecision in the sensor load cell and
repeatability issues, particularly with the monolithic load cell
setup, as discussed in the previous paragraph for the force-versus-
deflection plots. The additional waviness of the monolithic load
cell compared to the multipart load cell may also be related to
how the monolithic load cell has contact between two waterjetted
surfaces, while the multi-part load cell has contact between a
waterjetted surface and precision-ground spring steel.

We have assumed no-slip conditions in the ring as it contacts
the surface. It is possible that large ring axial compression could
violate the no-slip condition, in which case the contact point angle
might be larger than expected, stiffening the actual behavior com-
pared to the theory.

We have also assumed that transverse shear strain effects are
negligible when we applied Euler–Bernoulli beam theory. Trans-

verse shear strain effects are negligible when t=R < 0:1 [19]. This
condition holds along the entire length of the multipart load cell,

for which t=R ¼ 0:007. This condition holds along 90% of the
length of the monolithic ring, for which the thickness at hR¼ p/2

leads to t=R ¼ 0:13. At 1000 N, the contact angle hRC¼ 1.0 radi-

ans, and the root of the free length has t=R ¼ 0:3. Future work

will extend the theory to include Timoshenko beam behavior that
may become significant as the free length shortens and a larger
fraction of the free length is thicker. Timoshenko beam behavior
may be more important as we consider parameters that reduce the
load cell size.

Despite the experimental errors from the theory, a nonlinear
load cell product with a linear encoder deflection sensor may be
calibrated so that it has high accuracy. The experimental stiffness
versus force plots in Figs. 4(b) and 4(d) verify that both load
cells have nonlinear stiffness curves below the maximum allow-
able stiffness for 1% force measurement resolution over the
0.01–1000 N range.

6 Conclusions

We showed how a load cell with increasing stiffness may be
designed with a larger force measurement resolution and force
range than a traditional linear load cell. We physically imple-
mented a stiffening load cell by designing flexible rings that
increasingly contact rigid surfaces as additional force is applied.
As the ring contacts the rigid surfaces, two mechanisms stiffen the
load cell: a shortening of the free ring segment’s length and an
increase in the free ring segment’s average thickness (for the ring
with a tapered thickness).

We investigated parameters that allow the nonlinear load cell to
measure forces with resolutions of 1% of the applied force over a
five-orders-of-magnitude force range, 0.01–1000 N. High resolu-
tion was achieved by designing the nonlinear load cell’s stiffness
to remain below values that allow a sensor with 0.1 lm resolution
to detect changes larger than 1% the applied force.

We described methods for fabricating the load cell from
multiple parts or from a monolithic part. The advantage of the
waterjetted monolithic load cell is that its variable thickness ring
allows for highly variable stiffness without large ring stresses.
The advantage of the multipart load cell is that if the ring breaks,
it may be replaced without replacing the entire load cell.

We experimentally verified the nonlinear load cell theory and
showed the effectiveness of the fabrication method for the two
different load cell designs.

The nonlinear load cell currently has several disadvantages
compared to traditional linear load cells. If the ring thickness is
large, then a large ring radius is required so that the initial load
cell stiffness is low enough for 60.0001 N force resolution when
0.01 N is applied. With outer dimensions of 185� 170� 12.7
mm3 (202� 200� 6.4 mm3), the multipart (monolithic) load cell
is quite large compared to the 50� 60� 12 mm3 linear Interface
load cells. The thin ring width, b, makes the load cell susceptible
to out-of-plane parasitic motions. We found that the monolithic
load cell had a very little resistance to out-of-plane bending, while
the multipart load cell had more resistance due to the multipart
load cell’s larger ring width. The load cell requires a high-cost
absolute linear encoder (on the order of $700) rather than a stand-
ard strain gauge (on the order of $30), because the absolute

Table 2 Experimental deflection deviations

Experiment Maximum error from theory Maximum random deviation

Load cell Mode Sensor load cell Force (N) Deflection dev. (%) Force (N) Deflection st. dev. (%)

Multipart Compression 100 N 18 þ28 0.011 30
Multipart Compression 1000 N 39 þ18 15 3.6
Multipart Tension 100 N 0.011 þ54 .011 150
Multipart Tension 1000 N 428 þ43 0.2 7.5
Monolithic Compression 100 N 0.38 þ91 0.01 396
Monolithic Compression 1000 N 18 þ46 13.3 13.3
Monolithic Tension 100 N 0.011 þ45 0.01 37
Monolithic Tension 1000 N 7 þ18 0.085 14
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deflection of the nonlinear load cell must be known in order to
know the applied force.

Future work on this project will address these disadvantages
and make other improvements:

� A thinner spring steel beam may allow a smaller load cell.
� A more costly but more accurate fabrication method such as wire

electric discharge machining may also prove advantageous for
decreasing load cell size.

� Surface curves of changing radii (such as ellipses) may
reduce stress in the ring.

� Springs shaped with roll-annealed steel could eliminate pre-
stress in the spring steel ring.

� A load cell manufactured with two or more well-spaced or
perpendicular planes rather than a single plane may reduce
sensitivity to out-of-plane parasitic loads.

� We will also add a linear encoder and test the functioning of
the complete load cell.

While this paper focused on a 1% force resolution over
0.01–1000 N, the load cell design constraints may be adjusted for
different ranges, resolutions, and sizes. Finally, we note that the
design concepts described in this paper may apply to many other
applications besides load cells.
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