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In this paper, a reachability-based approach is adopted to deal with the pursuit–evasion differential game between

one evader andmultiple pursuers in the presence of dynamic environmental disturbances (for example, winds or sea

currents). Conditions for the game to be terminated are given in terms of reachable set inclusions. Level set equations

are defined and solved to generate the forward reachable sets of the pursuers and the evader. The time-optimal

trajectories and the corresponding optimal strategies are subsequently retrieved from these level sets. The pursuers

are divided into active pursuers, guards, and redundant pursuers according to their respective roles in the pursuit–

evasion game. The proposed scheme is implemented on problems with both simple and realistic time-dependent

flowfields, with and without obstacles.

I. Introduction

P URSUIT–EVASION differential games have been studied
extensively in the literature. The state of the art focuses on

formulating and solving the Hamilton–Jacobi–Isaacs (HJI) partial
differential equation, which was introduced by Isaacs in his seminal
bookDifferential Games: A Mathematical Theory with Applications

to Warfare and Pursuit, Control and Optimization [1]. In the same
book, several pursuit–evasion games were introduced and analyzed.
The homicidal chauffeur game [1] deals with a pursuit–evasion game
between a pursuer having a finite minimum turning radius and an
agile evader. A converse version of the homicidal chauffeur game,
also known as the suicidal pedestrian game, was studied in [2,3]. The
game between two players with curvature constraints is known as the
game of two cars and was studied in [4]. A general result for this
problem was presented in [5]. Other pursuit–evasion games under
specific conditions included the isotropic rocket problem [1] and the
lion and man problem [6]. An extension of the game of pursuit with
curvature constraints to the three-dimensional space has been
addressed in [7]. Stochastic differential games of two players have
also been explored, including a stochastic version of the homicidal
chauffeur game, which was addressed in [8].
In addition to two-player pursuit–evasion games, multiple-player

pursuit–evasion games have also gained attention, mainly owing to
the increased current interest in multiagent problems. For example,
conditions for target interception with multiple agile pursuers under
single integrator dynamics was studied by Pshenichnyi [9].
Conditions for simultaneous capture of k out of n pursuers were
derived in [10]. Evasion frommany pursuers with integral constraints

was discussed in [11]. Finally, in [12], the authors studied the
homicidal chauffeur game with multiple cooperative pursuers.
Besides the HJI equation approach, another approach researchers

have used when dealing with pursuit–evasion problems is based on
reachable set analysis [13–15]. According to this approach, the
reachable state space of the pursuers and the evaders is used to find
the optimal controls of the pursuer and/or the evader. A reachability
set analysis has been applied in performing missile/sensor tradeoffs
in homing guidance [16], in obtaining escape strategy under pursuit
[17], and in finding pursuer control under control constraints [18].
Despite the plethora of work in this area, few approaches have

taken into consideration how dynamic environmental conditions
may affect the outcome of the game. For instance, when either the
pursuers or the evaders (or both) are small autonomous underwater
vehicles or small unmanned aerial vehicles, the presence of time-
varying or spatially varying sea currents or winds, respectively, may
significantly affect the vehicle’s motion. As a result, during pursuit–
evasion, the optimal behavior of the players, as is determined by the
solution of a differential game, may be greatly affected by the
existence of an external dynamically changing flowfield.
Some optimal control problem formulations have taken into

account the effect of an external flowfield. For example, in [19], the
authors addressed the problem of optimal guidance to a specified
position of a Dubins vehicle [20] under the influence of an external
flow. Theminimum-time guidance problem for an isotropic rocket in
the presence of wind has been studied in [21]. The problem of
minimizing the expected time to steer a Dubins vehicle to a target set
in a stochastic wind field has also been discussed in [22]. However,
the same level of attention in the literature has not been devoted to
pursuit–evasion games with two (or more) competing agents under
the influence of external disturbances (e.g., winds or currents).
In this paper, we consider a multipursuer/one-evader pursuit–

evasion game in an external dynamic flowfield that is assumed to be
known.Due to the generality of the external flow, Isaacs’s approach is
not readily applicable [1]. Instead, we follow a different approach and
we find the optimal trajectories of the players through a reachable set
method. Specifically, we use the level set method [23,24] to generate
the reachable sets of both the evader and the pursuers and to retrieve
the corresponding optimal control actions at the current location of
the agents by backward propagation of their respective reach-
able sets.
Level set methods have been previously applied by Mitchell et al.

[25] and Jang and Tomlin [26] to solve pursuit–evasion games
[25,26]. Reference [26] aimed at solving a nonzero sum pursuit–
evasion game where the evader and each individual pursuer were
assigned their own value functions. The authors of [25] first
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decreased the degrees of freedom of the problem by reformulating it
in terms of the relative distance between the pursuer and the evader.
The level set method was then applied to solve the corresponding
Hamilton–Jacobi–Isaacs equation that governs the backward
reachable set from the target set in order to solve the differential
game. Our approach differs from that in [25] because we do not
attempt to solve the pursuit–evasion game directly by solving the
corresponding HJI equation. Instead, we generate the forward
reachable sets of the players, and we find the optimal time to capture
as the first instance when the reachable set of the evader is fully
covered by the reachable set of the pursuer [14]. We then identify the
first rendezvous point of the players and retrieve the optimal
trajectories and controls of both players through backtracking of their
respective trajectories [27,28]. The reason we follow this approach
instead of the more direct approach in [25] is due to the
dimensionality of the problem. When introducing complex dynamic
environmental effects into the system, the pursuit–evasion problem
cannot be reduced to a problem described solely in terms of the
relative distance between the pursuer and the evader, unless some
very restrictive assumptions are imposed on the structure of the
external flowfield [29]. In otherwords, in order to deal with a pursuit–
evasion problem between one pursuer and one evader taking place in
the presence of a general flowfield, the level set method needs to be
implemented on a fourth-dimensional state space. The computational
cost of level set methods is very high when the dimension exceeds
three or four [30]. On the other hand, the forward reachable set
approach used in this paper is quite efficient because the propagated
level sets all remain two-dimensional. The approach works even for
realistic flows with dynamic currents for which the speed can be
much larger than the vehicle speeds [31], and it can treat dynamic
obstacles [32]. Finally, because the generation of the reachable sets of
each player can be done independently of the other players, the
solution can be implemented in a decentralizedmanner using parallel
computing.

II. Problem Formulation

We consider a pursuit–evasion game in the presence of an external
flowfield with n pursuers and a single evader. Henceforth, we will
refer to the pursuers and the evader collectively as “agents.” The
dynamics of the pursuers Pi�i � 1; : : : ; n� are given by

_Xi
P � uiP � w�Xi

P; t�; Xi
P�t0� � Xi

P0
(1)

where Xi
P ≔ �xiP; yiP�T ∈ D ⊂ R2 denotes the position of the ith

pursuer. Here,D denotes a compact subset ofR2 and uiP is the control
input (i.e., velocity) of the ith pursuer such that uiP ∈ U i

P for all i ∈ I ,
andI � f1; 2; : : : ; ng stands for the index set of the pursuers. The set
U i
P consists of all piecewise continuous functions for which the range

is included in the set Ui
P � fui ∈ R2; juij ≤ �uig, where j ⋅ j

represents the Euclidean norm and �ui, i ∈ I , are constants. If

uiP ∈ U i
P, we say that u

i
P is an admissible control for the ith pursuer.

InEq. (1),w�X; t� ∈ R2 represents an exogenous dynamic flow, but it
could also represent an endogenous drift owing to the nonlinear
dynamics of the agent. It is reasonable to assume that the magnitude
of this flow (e.g., winds or currents) is bounded from above by some
constant; that is, there exists a constant �w such that jw�X; t�j ≤ �w for
all �X; t� ∈ D × �t0;∞�.
The objective of the pursuers is to intercept the evader, for which

the kinematics is given by

_XE � uE � w�XE; t�; XE�t0� � XE0
(2)

whereXE � �xE; yE�T ∈ D ⊂ R2 is the position of the evader; and uE
is its control input (i.e., velocity) such that uE ∈ UE, where UE

consists of all piecewise continuous functions for which the range is

included in the set UE � fv ∈ R2; jvj ≤ �vg. When uE ∈ UE, we say
that uE is an admissible control of the evader.
The game begins at time t � t0 with initial positions XE0

and Xi
P0
,

(i ∈ I ), for the evader and the pursuers, respectively, and terminates

when the evader coincides with at least one of the pursuers; in which
case, capture occurs. That is, capture implies that there exists i ∈ I
and a terminal time T ≥ t0 such that X

i
P�T� � XE�T�. Equivalently,

the game terminates if, for any admissible control of the evader
uE ∈ UE, there exists a set of admissible controls �u1P; : : : ; unP� ∈
U1
P × : : : × Un

P of the pursuers such that Xi
P�T� � XE�T� for some

i ∈ I and some timeT ≥ t0. The pursuers aim tominimize the time to
capture if possible, whereas the evader prefers to avoid capture for as
long as possible.
Let

X � �XT
E; X

1T
P ; X2T

P ; : : : ; XnT
P �T ∈ R2�n�1�

denote the state of the game. The game begins at initial time t0 � 0
with initial positions

�X0 � �XT
E0
; X1T

P0
; X2T

P0
; : : : ; XnT

P0
�T

and terminates when at least one of the pursuers reaches the location
of the evader. The terminal time T of the game is defined by

T � infft ∈ R�:Xi
P�t� � XE�t�; i ∈ Ig (3)

Let J�γ1P; γ2P; : : : ; γnP; γE� � T be the cost function of the game,

where γiP, γE:R� × R4 ↦ R2 denotes the feedback strategies of the

pursuers and the evader, respectively: namely, γiP�t; X�t�� and

γE�t; X�t��, where �X�t� is the solution of the system of equations

_Xi
P � γiP�t; X�t�� � w�Xi

P; t�; i ∈ I (4)

_XE � γE�t; X�t�� � w�XE; t� (5)

subject to X�0� � X0. It is assumed that each player has perfect
knowledge of the dynamics of the system represented by Eqs. (1) and

(2), the constraint setsUi
P andUE, the cost function J, as well as the

initial state X0. It is also assumed in this paper that the value V of the
game [1] exists; that is,

V � min
γ1P; : : : ;γ

n
P

max
γE

J � max
γE

min
γ1P; : : : ;γ

n
P

J (6)

Note that pursuit–evasion games of the form addressed in thiswork
are a specific class of differential games for which the Isaacs
condition [1] holds owing to the separability of the dynamics and the
cost, and hence the value of the game exists [33]. The objective of this
paper is to find the open-loop representation of the optimal strategies
of the pursuer and the evader. In particular, we use a reachability-

based method to obtain optimal controls u⋆P�t� � γ⋆P�t; X⋆�t�� and
u⋆E�t� � γ⋆E�t; X⋆�t��, with X⋆ denoting the corresponding optimal
state trajectory of the system [Eqs. (4) and (5)] with strategies

γi⋆P �t; X⋆�t�� and γ⋆E�t; X⋆�t��.

III. Problem Analysis

To solve the differential game introduced in the previous section
(that is, in order to find the conditions for capture and to derive the
corresponding optimal controls and trajectories of both players), we
make use of reachable set analysis. Reachable sets provide a quick
snapshot of all possible future trajectories of the agent, and thus
succinctly encode all possible future positions of the agent under any
possible control action. Knowledge of the reachable sets of the
pursuer and the evader can then be used to drawconclusions about the
potentialmeeting of the two at some future time (or not). In this paper,
we use this intuition behind the information conveyed by the
reachable set of each player to solve the pursuit–evasion problem
under minimal assumptions about the maximum number of players
and the environment they operate in. Because the computation of the
reachable sets for each player can be done independently from the
other players, the proposed method is decentralized and scales well
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with the number of players, which is something that is not the case
withmore traditional approaches that require directly the solution of a
HJI partial differential equation (see also the discussion at the end
of Sec. I).
We start this section with some basic definitions and facts about

reachable sets that will be useful throughout the paper.
Definition III.1 [34]: The reachable setR�X0t� at time t ≥ t0 of a

system of the form of Eq. (1) or Eq. (2) starting at initial condition
X�t0� � X0 is the set of all the points that can be reached by the agent
at time t.
In particular, the reachable set of the ith pursuer at time τ ≥ t0,

denoted byRi
P�Xi

P0
; τ�, is the set of all pointsX ∈ R2, such that there

exists a trajectory satisfying Eq. (1) for all t ∈ �t0; τ� with XP�t0� �
Xi
P0

and XP�τ� � X. Similarly, the reachable set RE�XE0
; τ� of the

evader at time τ ≥ t0 is the set of all points X ∈ R2 such that there
exists a trajectory satisfying Eq. (2) for all t ∈ �t0; τ� with initial
condition XE�t0� � XE0

and terminal condition XE�τ� � X.
Definition III.2 [28]: The boundary of the reachable set is the

reachability front.
The reachability fronts of the ith pursuer and the evader at time

t ≥ t0 will be denoted by ∂Ri
P�Xi

P0
; t� and ∂RE�XE0

; t�, respectively.
Definition III.3:Given the reachable sets of the pursuers, we define

the usable reachable set of the evader at time t ≥ t0 as

R⋆
E�XE0

; t� � fX ∈ D: X � XE�t� andXE�τ� ∈= ∪
n

i�1
Ri

P�Xi
P0
; τ�;

∀ τ ∈ �t0; t�g (7)

From this definition, it is clear thatR⋆
E�XE0

; t� ⊆ RE�XE0
; t�. The

definition implies that R⋆
E�XE0

; t� is the set of all terminal points of
the evader at time t, for which the trajectories do not pass through any
reachable sets of the pursuers at any time in the interval [t0, t]. In other
words, R⋆

E�XE0
; t� is the set of terminal points of all “safe” evader

trajectories.
Suppose now that, at some time tc > t0 and for some i ∈ I , we

have that RE�XE0
; tc� ⊆ Ri

P�Xi
P0
; tc�. It follows that, for each

uE ∈ UE, there exists u
i
P ∈ U i

P such that Xi
P�tc� � XE�tc�. In other

words, capture of the evader is guaranteed at time tc by the ith
pursuer. Note that R⋆

E�XE0
; tc� � ∅ in this case.

If, on the other hand, for some te > t0, we have that
R⋆

E�XE0
; te� ≠ ∅, then it follows that there exists uE ∈ UE such

that capture can be avoided in the time interval [t0, te], no matter how
the pursuers choose their (admissible) controls. In other words, if
R⋆

E�XE0
; te� ≠ ∅, the game will not terminate in the time interval

[t0, te].
The previous observations lead to the following theorem, which is

the main theoretical result of this paper. It is used later in order to
develop an efficient numerical algorithm for solving the pursuit–
evasion game with multiple pursuers in the presence of a known
dynamic flowfield.
Theorem III.4: Let

T � inf
n
t ∈ �t0;�∞�:R⋆

E�XE0
; t� � ∅

o

If T < ∞, then capture is guaranteed for any time greater than T,
whereas the evader can always escape within a time smaller than T.
Hence, T is the time to capture if both players play optimally.
Furthermore, let Xf denote the location where the evader is captured
by at least one of the pursuers. Then, we have that

Xf ∈ X �
n
X ∈ D: X � XE�T� andXE�τ� ∈= ∪

n

i�1
Ri

P�Xi
P0
; τ�;

∀ τ ∈ �t0; T�
o (8)

Proof: BecauseUi
P is compact and convex for all i ∈ I , it follows

that, for each �t; X� ∈ �t0;∞� ×D, the sets fu� w�X; t�:u ∈ Ui
Pg

are compact and convex for all i ∈ I . Also, because by assumption

uiP�t� andw�X; t� are bounded for all X ∈ D and t < ∞, the solution

of Eq. (1) exists on [t0, tf] for all tf < ∞. Therefore, by Filippov’s

theorem [35], the reachable sets Ri
P�Xi

P0
; t� are compact for all

t ∈ �t0; tf� and i ∈ I . Similarly, RE�XE0
; t� is compact for

all t ∈ �t0; tf�.
BecauseR⋆

E�XE0
; T� � ∅, it follows fromDefinition III.3 that, for

any trajectory XE�⋅� of the evader that satisfies Eq. (2) subject to an

admissible evading control uE ∈ UE, there exists τ ∈ �t0; T� such that

XE�τ� ∈ ∪
n

i�1
Ri

P�Xi
P0
; τ�

Therefore, XE�τ� ∈ Rk
P�Xk

P0
; τ� for some k ∈ I . In other words,

there exists at least one admissible control ukP ∈ Uk
P for the kth

pursuer, such that Xk
P�τ� � XE�τ�. Therefore, regardless of the

strategy of the evader, it can be captured by the kth pursuer at some

time τ ∈ �t0; T�. This implies that capture is guaranteed for any time

greater than or equal to T.
On the other hand, because T is the first time such that

R⋆
E�XE0

; T� � ∅, it follows that R⋆
E�XE0

; t� ≠ ∅ for all t0 ≤ t < T.
Hence, for any t ∈ �t0; T�, there exists Xt ∈ R⋆

E�XE0
; t�. That is,

Xt � XE�t� andXE�τ� ∈= ∪
n

i�1
Ri

P�Xi
P0
; τ�

for all τ ∈ �t0; t�, for some trajectoryXE�⋅� of the evader, defined over
the interval [t0, t]. This means that XE�⋅� does not pass through the

reachable set of any pursuer. Hence, for any t ∈ �t0; T�, there exist

uE ∈ UE such thatXE�t� � Xt; for all τ ∈ �t0; t� and i ∈ I , there exist
no uiP ∈ UP. It follows that the evader can always avoid capture
before time T. From the two previous statements, we conclude that T
is the optimal time to capture.
To complete the proof, we just need to show that Xf ∈ X . For any

point X ∈ X , it is clear that X ∈ RE�XE0
; T�, and no pursuer can

capture the evader at X before time T. This implies that X should be
the destination of the evader if the latter aims to maximize its time to

capture. Furthermore, at least one of the pursuers needs to reach X in

order to capture the evader. Hence, the point X � Xf, where Xf is

defined as the location where the evader is captured by at least one of

the pursuers. This completes the proof. □

The previous theorem gives us a criterion for capture of the evader;

that is, capture is guaranteed when R⋆
E�XE0

; t� � ∅ for some

t ∈ �t0;∞�. Also notice from Eq. (7) that, in general,R⋆
E�XE0

; t� can
be generated by keeping track of the reachable sets of the pursuers
and the evader at all time before the capture time. However, when we

add some constraints with respect to the speeds of the players, we can

replace this criterion with an instantaneous condition that is easier to

check and implement. Before we state and prove this result, the

following lemma is needed.
Lemma III.5: Let �u � �ui for all i � 1; : : : ; n denote themaximum

speed of a pursuer; let �v denote the maximum speed of the evader,

respectively; and assume that �v < �u. If there exists some time ts ≥ t0
such that XE�ts� ∈ RP�XP0

; ts�, then XE�t� ∈ RP�XP0
; t� for

all t ≥ ts.
Proof: Because XE�ts� ∈ RP�XP0

; ts� for some time ts ≥ t0, it
follows that there exists uP ∈ UP such that XP�ts� � XE�ts�. By
assumption, we have �v < �u. Therefore, for any uE ∈ UE that starts

from XE�ts� at time ts, the pursuer, by choosing uP � uE, which is

admissible because �v < �u, can ensure that XP�t� � XE�t� for all

t ≥ ts. Hence, XE�t� ∈ RP�XP0
; t� for all t ≥ ts. □

This lemma essentially states that, when themaximum speed of the
evader is smaller than the maximum speed of each pursuer, then once

the evader enters the reachable set of a pursuer, it can never leave this

reachable set.We are now ready to present the simplified condition on

the capture of the evader as follows.
Proposition III.6: When

�v ≤ min
i∈I

�ui

the setR⋆
E�XE0

; t� satisfies

Article in Advance / SUN ETAL. 3
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R⋆
E�XE0

; t� � RE�XE0
; t� \ ∪

n

i�1
Ri

P�Xi
P0
; t� (9)

for all t ≥ t0. In such cases, the condition R⋆
E�XE0

; t� � ∅ is

equivalent to the condition

RE�XE0
; t� ⊆ ∪

n

i�1
Ri

P�Xi
P0
; t� (10)

Proof: By Definition III.3, for any X ∈ R⋆
E�XE0

; t�, we have that
X ∈ RE�XE0

; t� and

X ∈= ∪
n

i�1
Ri

P�Xi
P0
; t�

Therefore,

R⋆
E�XE0

; t� ⊆ RE�XE0
; t� \ ∪

n

i�1
Ri

P�Xi
P0
; t� (11)

Now, let

X ∈ RE�XE0
; t� \ ∪

n

i�1
Ri

P�Xi
P0
; t� (12)

It follows that there exists a trajectory XE�⋅� of the evader, defined
over the interval [t0, t] such that X � XE�t�. Furthermore,

XE�t� ∈= ∪
n

i�1
Ri

P�Xi
P0
; t�

We claim that

XE�τ� ∈ RE�XE0
; τ� \ ∪

n

i�1
Ri

P�Xi
P0
; τ�

for all τ ∈ �t0; t�. Because, trivially, XE�τ� ∈ RE�XE0
; τ�, it only

suffices to show that

XE�τ� ∈= ∪
n

i�1
Ri

P�Xi
P0
; τ�

for all τ ∈ �t0; t�. Suppose, on the contrary, that there exist τ ∈ �t0; t�
and i ∈ I such that XE�τ� ∈ Ri

P�Xi
P0
; τ�. Because

�v ≤ min
i∈I

�ui

it follows that, once the evader enters the reachable set of a pursuer, it

can never leave the reachable set of this pursuer. Hence, XE�σ� ∈
Ri

P�Xi
P0
; σ� for all σ ≥ τ, contradicting Eq. (12). It follows that

X ∈ R⋆
E�XE0

; t�, and thus

RE�XE0
; t� \ ∪

n

i�1
Ri

P�Xi
P0
; t� ⊆ R⋆

E�XE0
; t� (13)

From Eqs. (11) and (13), it follows that

R⋆
E�XE0

; t� � RE�XE0
; t� \ ∪

n

i�1
Ri

P�Xi
P0
; t�

The equivalence of condition R⋆
E�XE0

; t� � ∅ with Eq. (10)

follows immediately. □

In the case where

�v ≤ min
i∈I

�ui

the optimal time to capture is the first time instant when the union of

the reachable sets of the pursuers

∪
n

i�1
Ri

P�Xi
P0
; τ�

completely covers the reachable set of the evader RE�XE0
; t�. If

�v > �ui, for some i ∈ I (the relative maximum speed of the evader is
larger than that of the ith pursuer), relation (9) may not always hold.
Some admissible evader trajectories may temporarily enter the
reachable set of the ith pursuer and exit later on. This is not allowable.
To eliminate this possibility in such cases, R⋆

E�XE0
; t� can be

determined by treating the reachable set of the ith pursuer as a
dynamic “forbidden” region for the evader [27,32]. That is, whenever
the reachable set of the evader intersects the reachable set of anyof the
pursuers, we can either stop the evolution of the intersected part of the
evader’s reachable set or let it evolve at the same speed as the
reachable set of the pursuer. This way, we can ensure that the terminal
points of the admissible trajectories of the evader that temporarily
enter the reachable set of the pursuer and exit later on are not included
in the usable reachable set of the evader.

IV. Numerical Construction

A. Level Set Method

To construct the reachable sets of the pursuers and the evader, we
apply the level set method [23,24]. The level set method is a
convenient mathematical tool to track the evolution of the
reachability front. It evolves the reachability front by embedding it as
a hypersurface in a higher dimension, where time is the additional
dimension. Automatic handling of merging and splitting of the fronts
and other topological changes are made possible by this higher-
dimensional embedding. The level set formulation provides an
implicit representation of the front, which offers several advantages
over an explicit representation [23,24]. For example, implicit
function representations are widely used for describing closed and
multivalued curves, for point classification (such as determining
whether a point is inside or outside an interface), and for finding
intersection points and offsets.
The choice of implicit function is not unique in order to represent a

curve. The signed distance function is one of the most common
choices and will be used in this paper. Its definition is given as
follows:
Definition IV.1: The signed distance function φ�X�with respect to

a setR is defined as

φ�X� �
8<
:

min
Y∈∂R

jX − Yj; if X ∈= R;

−min
Y∈∂R

jX − Yj; if X ∈ R
(14)

Recall that, for any c ∈ R, the c-level set of a φ is the set
{X:φ�X� � c}. We hereby use the signed distance function from the
reachable set to track the evolution of the fronts of the reachable sets
of all agents. This is achieved by expressing the reachable front at
time t as the zero-level set of the corresponding signed distance
function. Assuming that the signed distance function with respect to
the ith pursuer reachable setRi

P�Xi
P0
; t� at time t is ϕi

P�X; t�, then the
evolution of the reachable front ∂Ri

P�Xi
P0
; t� is governed by the

viscosity solution of the Hamilton–Jacobi equation [28,36]:

∂ϕi
P�X; t�
∂t

� �uj∇ϕi
P�X; t�j � ∇ϕi

P�X; t�w�X; t� � 0 (15)

with initial condition ϕi
P�X; t0� � jX − Xi

P0
j. Note that

Ri
P�Xi

P0
; t� � fX ∈ D:ϕi

P�X; t� ≤ 0g

and

∂Ri
P�Xi

P0
; t� � fX ∈ D:ϕi

P�X; t� � 0g

Similarly, the reachable front ∂RE�XE0
; t� of the evader is

computed by solving the Hamilton–Jacobi equation

∂ϕE�X; t�
∂t

� �vj∇ϕE�X; t�j � ∇ϕE�X; t�w�X; t� � 0 (16)

4 Article in Advance / SUN ETAL.

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

A
pr

il 
12

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
21

25
 



with initial condition ϕE�X; t0� � jX − XE0
j, where ϕE�X; t� is the

signed distance function with respect to the reachable setRE�XE0
; t�

of the evader at time t.
In the case where the condition in Proposition III.6 is not satisfied,

we need to track ∂R⋆
E�XE0

; t� in order to determine the optimal time
to capture. Instead of propagating ∂R⋆

E�XE0
; t� directly, we propagate

an intermediate reachable front ∂ ~RE�XE0
; t�, which can be computed

by solving the following modified version of the Hamilton–Jacobi
equation:

∂ ~ϕE�X; t�
∂t

� ~v�t�j∇ ~ϕE�X; t�j � ∇ ~ϕE�X; t�w�X; t� � 0 (17)

where

~v�t� �
8<
:
min
i∈I

�ui; if ∪
n

i�1
ϕi
P�X; t� < 0;

�v; otherwise

(18)

and initial condition ~ϕE�X; t0� � jX − XE0
j.

The main idea here is to treat the reachable sets of the pursuers as
moving obstacles, propagate ~RE�XE0

; t�with the maximum speed of
the evader �v for the parts that fall outside the union of the reachable
sets of the pursuers, and to keep pace with the propagation of the
reachable set of the slowest pursuer when the front of the evader
enters any reachable set of the pursuers. By doing this, we can make
sure that the front of the evader does not grow out of the union of the
reachable sets of the pursuers. The parts of the reachable front of the
evader that do not encounter the reachable sets of the pursuers remain
unaffected by the change of speed from �v to ~v because these changes
are only performed for points inside the reachable sets of the pursuers.
Let

~RE�XE0
; t� � fX ∈ D: ~ϕE�X; t� ≤ 0g

At every time instant t, by construction, ~RE�XE0
; t� excludes all the

points X such that X � XE�t� and

X ∈= ∪
n

i�1
Ri

P�Xi
P0
; t�

whereas

X ∈ ∪
n

i�1
Ri

P�Xi
P0
; τ�

for some τ ∈ �t0; t�. It follows that

R⋆
E�XE0

; t� � ~RE�XE0
; t� \ ∪

n

i�1
Ri

P�Xi
P0
; t�

Moreover, because

Ri
P�Xi

P0
; t� � fX ∈ D:ϕi

P�X; t� ≤ 0g

the usable reachable set of the evader can also be represented in a form
that is more suitable for numerical calculations; that is,

R⋆
E�XE0

; t� � fX ∈ D: ~ϕE�X; t� ≤ 0 and ∪
n

i�1
ϕi
P�X; t� ≥ 0g

B. Classification of Pursuers

For problems with a large number of pursuers, it is quite possible
that optimal capture may not involve all pursuers. That is, not all
pursuers need to go after the target at the same time. In [37], for
instance, a sequential pursuit strategy was introduced, according to
which only a single pursuer participated in the pursuit of the target/
evader, although the specific pursuer might change dynamically as
the game evolves. In certain applications, such as when the pursuers
are subject to energy or fuel limitations, or when they play a dual role

as pursuers and guards of a certain region of responsibility, it may be
beneficial that some of the pursuers remain inactive. In group pursuit
problems involving several pursuers, we may therefore classify the
pursuers according to their level of involvement as either redundant,
active, or guards. In the following, we elaborate on the motivation of
this classification.

1. Redundant Pursuers

When we formulate a multiple-pursuers/one-evader pursuit–
evasion game, depending on the initial positions of the pursuers and
the evader, there may be some pursuers that do not affect the outcome
of the pursuit.
Definition IV.2:A pursuerPk is redundant if, given the pursuer set

{P1; : : : ; Pn}, the optimal time to capture T is the same as the
optimal time to capture ~T given the pursuer set fP1; : : : ; Png \ Pk.
From the point of view of the pursuers, it is important to identify

any redundant pursuers, because fuel or energy savingsmay result by
placing these redundant pursuers on standby, and deploy them only if
the evader shows up in their vicinity, or when it is absolutely
necessary to ensure capture.
Through the reachable set approach, we can find the minimum

number of pursuers needed to capture an evader under optimal time-
to-capture pursuit. Oneway to identify any redundant pursuers is, for
each pursuer, to compare the two optimal values of time to capture
with and without this pursuer. If these two values turn out to be equal
to each other, then this pursuer is redundant.
When the condition

�v ≤ min
i∈I

�ui

is satisfied, the following method to determine the redundant
pursuers ismore practical. Specifically, the jth pursuer is redundant if

RE�XE0
; T� ⊆ ∪

n

i�1;i≠j
Ri

P�Xi
P0
; T�

where T is the optimal time to capture given the pursuer set
{P1; : : : ; Pn}. For instance, Figs. 1 and 2 show two pursuit–evasion
problems restricted in the domain D � �0; 25� × �0; 25�. The initial
positions of the two pursuers and the evader are depicted by the dots.
The maximum speeds of the pursuers and the evader are given by
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d) T = 3.64

Fig. 1 Evolution of the reachability fronts between two pursuers and
one evader.
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�u1 � �u2 � 2, �v � 1. The vector field of the flowfield is shown in the
background. In the first problem, there are two pursuers (P1 and P2)
against one evader, whereas in the second problem, an additional
pursuer (P3) is added to the pursuer team.
In this example, and all subsequent ones (unless stated otherwise),

it will be assumed that the pursuers have a larger maximum speed
than the evader. In the absence of an external field, and under simple
motion by all players, it is known that the evader can always avoid
capture if it has a speed advantage over the pursuers [38]. In the
presence of an external field, however, this may not always be the
case. Later on, we provide an example where the evader is captured
evenwhen all pursuers have amaximum speed that is smaller than the
speed of the evader. Please also note that, similarly, an evader may be
able to avoid capture from a team of pursuers that has a speed
advantage in the presence of an external flowfield.
All examples in this section are subject to a linear flowfield

approximated by an affine function w�X� � A�X − Xs�, where

A �
�

0.2 0.3

−0.15 0.1

�
; Xs �

�
15

15

�
(19)

This wind field can be seen as a flow generated from a single
singularity point located at Xs, with its characteristics captured by A.
Also, the front of the reachable set of the evader is depicted by a
dashed elliptical in each of the following examples so that it can be
easily distinguished from the front of the reachable sets of the
pursuers.
The evolution of the reachability fronts between two pursuers and

one evader is depicted in Fig. 1. The usable reachable set of the evader
is illustrated in each of the subfigures. Notice that it is known from
Theorem III.4 and shown in this example that the capture point Xf is
the point in the reachability set of the evader that is not covered by the
union of the reachability sets of the pursuers until the capture time T.
For the example shown in Fig. 2, pursuer P3 turns out to be a

redundant pursuer because the optimal time to capture of the evader is
the same, regardless of whetherP3 exists or not. If we removeP3 and
its corresponding reachable set at time T, we can recover the case
presented in Fig. 1; that is, the outcome of the game is not changed by
the presence of pursuer P3.
Once a redundant pursuer is identified, it can be removed from the

set of the active pursuers. It is important to note, however, that we
cannot remove two or more redundant pursuers at the same time.
Instead, we have to reidentify the redundant pursuers after one
redundant pursuer is removed. The reason is that a redundant pursuer
may not remain redundant after another redundant pursuer is
removed. One such example is shown in Fig. 3, where pursuers P4

and P5 guard the same shaded subset of the evader’s reachable set,
which is the subset of the reachable set of the evader not covered by
the union of the reachable sets of pursuers P1, P2, and P3. In this

scenario, pursuers P4 and P5 are both redundant. However, if we

remove both at the same time, then the reachable set of the evader

cannot be fully covered by the reachable sets of the remaining

pursuers, resulting in the extension of the time to capture. On the

other hand, if we reidentify the redundant pursuers after we have

removed one of these two pursuers, the other pursuer will not be a

redundant pursuer in the updated, reduced set of pursuers.

2. Active Pursuers and Guards

Henceforth, we assume that all pursuers are not redundant;

otherwise,we can identify and remove any redundant pursuers one by

one until no redundant pursuers are left, as explained previously.

Under this assumption, we can further divide the pursuer set into two

distinct subsets. One subset consists of all the active pursuers,

whereas the second subset contains pursuers that do not chase the

evader; but, without their presence, there would be no guarantee of

capture. The pursuers in the latter subset are called the guards. Once

the capture point Xf is found, the active pursuers can be identified as

the pursuers for which the boundary of the reachable sets at time T
intersects Xf, whereas the rest of the pursuers are guards.

The classification of the pursuer set into active pursuers and guards

can be demonstrated by the situation depicted in Fig. 4. For this

problem, �u1 � �u2 � �u3 � �u4 � �u5 � 2, �v � 1. As is shown in this
figure, the reachable sets of pursuersP1,P2, andP3 at timeT coincide

at Xf. These three pursuers need to reach Xf at time T to ensure

0 5 10 15 20 25
0
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10

15

20

25

x

y P1 P2

P3

E

Xf

Fig. 2 Level sets of three pursuers and one evader at time T. Here, Xf

denotes the capture point.
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Fig. 3 Level sets of five pursuers and one evader at time T. Pursuers P4

and P5 are each redundant pursuers by definition, but they cannot be
removed together.
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Fig. 4 Level sets of four pursuers and one evader at time T. Pursuers
P1, P2, and P3 are active pursuers; and P4 is a guard. Capture occurs at
point Xf .
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capture of the evader. Hence, these are the active pursuers. On the

other hand, pursuer P4 cannot reach Xf within time T, but its

reachable set covers a portion of the reachable set of the evader.

Therefore,P4 acts as a guard of the shaded region depicted in Fig. 4 so

that the evader cannot use a control to escape from that area.
It is also worth noting that, if one would like to account for the

possibility that the evader may not maneuver optimally, then the

process of classifying active pursuers and guards should be repeated

at each time step. Otherwise, a pursuer that has been initially

classified as a guard might remain inactive even if the evader moves

toward it and away from the active pursuers (e.g., the shaded area

in Fig. 4).

C. Time-Optimal Paths

In this section, we present amethod to retrieve the optimal controls

of the evaders and the active pursuers, as well as their corresponding

optimal trajectories.
When we deal with multiple pursuers (n > 1), the first goal is to

find the optimal trajectories of the active pursuers along with their

corresponding optimal controls. Because the active pursuers can

reach Xf at time T, it is clear that Xf resides on the boundary of their

reachable sets; otherwise, capture would have occurred earlier.

Therefore, whenϕi
P are differentiable, the optimal trajectory for each

active pursuer satisfies [27]

dXi�
P

dt
� �ui

∇ϕi
P

j∇ϕi
Pj

� w�Xi�
P ; t�; i ∈ IA (20)

where IA ⊆ I denotes the index set of the active pursuers. The

corresponding optimal controls of the active pursuers are thus

ui�P � �ui
∇ϕi

P

j∇ϕi
Pj
; i ∈ IA (21)

As for the evader, there are two possible outcomes after the

termination of the evolution of the reachable sets of the pursuers and

the evader.One possibility is that, at the terminal timeT,Xf resides on

∂ ~RE�XE0
; T�

�
or ∂RE�XE0

; T� when �v ≤ min
i∈I

�ui
�

In this case, it follows that the boundary of the reachable set of the

evader is not fully covered for all t < T. When differentiable, the

optimal trajectory of the evader is then unique and it satisfies the

differential equation

dX�
E

dt
� �v

∇ϕE

j∇ϕEj
�w�X�

E; t� (22)

The corresponding optimal control for the evader is given by

u�E � �v
∇ϕE

j∇ϕEj
(23)

It may also happen thatXf lies in the interior of ~RE�XE0
; T�, or the

interior of RE�XE0
; T� when

�v ≤ min
i∈I

�ui

This situation occurs when there exists tc ∈ �t0; T� such that

∂RE�XE0
; t� ⊂ ∪

n

i�1
Ri

P�Xi
P0
; t�

for all t ∈ �tc; T�. However, some part of the interior of RE�XE0
; t�

may not be covered until time T. In this case, the optimal control of

the evader is not necessarily unique. In particular, the control of the

evader can be chosen from the set

U�
E �

n
uE ∈ UE: X satisfies �2� and X�τ� ∈= ∪

n

i�1
Ri

P�Xi
P0
; τ�;

∀ τ ∈ �t0; T�
o

(24)

It follows that an optimal control for the evader is valid, as long as it
can bring the evader to Xf at time T without getting captured by any
of the pursuers before time T.

V. Simulation Results

We present simulation results for the multiple-pursuer/one-evader
pursuit–evasion problem under a realistic flowfield, and for different
initial conditions for the pursuers and the evader.
We first consider a state-dependent wind field approximation

generalized from the Rankine model of a vortex [39]:

w�X� � w0 �
Xns
i�1

ωiAi�X − Xsi� (25)

where

ωi �
1

maxfr2si ; jX − Xsi j2g
(26)

In Eq. (25), ns is the number of flow singularities; Xsi is the
location of the ith flow singularity; rsi denotes the singularity radius;
and Ai is a 2 × 2 matrix, for which the structure captures the local
characteristics of the ith flow singularity. The model approximates
the velocity field of a vortex with a linear vector field inside a disk,
and the velocity outside of the disk changes with a rate inversely
proportional to the squared distance to the center of the disk.
We set the number of flow singularities to ns � 3. The locations of

the flow singularities are Xs1 � �18; 18�T , Xs2 � �12; 19�T , and

Xs3 � �14; 12�T ; and the corresponding radii are rs1 � 3, rs2 � 2,

and rs3 � 3, respectively. We also let w0 � �0.2;−0.3�T . The local
wind field matrices are given by

A1 �
�

0 3

−1.5 0

�
; A2 �

�
4 2

0 −2

�
; A3 �

�
2 1

−2 2

�

In the first example, we formulate a three-pursuer/one-evader

problem. The three pursuers are initially located at X1
P0

� �13; 13�T ,
X2
P0

� �16; 14�T , and X3
P0

� �14; 17�T , respectively. Their corre-

sponding maximum speeds are given by �u1 � 1.5, �u2 � 1.2, and
�u3 � 0.5. The initial location of the evader is given by

XE0
� �14; 15�T , and its maximum speed is �v � 1. Note that, in

this example, the maximum speed of the evader is larger than the
speed of one of the pursuers. Therefore, we need to propagate the
intermediate reachability front of the evader in order to

recoverR⋆
E�XE0

; t�.
The optimal time to capture is T � 4.25. P1 is the only active

pursuer in this case, whereas P2 and P3 are guards. Notice that the
optimal time to capture in the case of only P1 and P2 against E is
T12 � 5.33. Similarly, the optimal time to capture in the case of P1

and P3 against E is T13 � 5.04. Therefore, P2 and P3 are not
redundant. Also, the optimal time to capture between P1 and E is
T1 � 5.38. It can be observed from this example, and in accordance
with Definition IV.2, that the optimal time to capture is reduced as
more (nonredundant) pursuers join the pursuit. The reachable fronts
of the pursuers and the evader at time T, as well as the corresponding
optimal trajectories of the active pursuer and the evader, are shown in
Fig. 5. The curves represent the reachable fronts of the pursuers at the
terminal time. As before, arrows on the background represent the
external flowfield. In the figure, Xf denotes the capture point.
For the next example, we keep all the initial conditions unchanged,

but we modify the maximum speed of the third pursuer from �u3 �
0.5 to �u3 � 2. After this change, the condition
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�v ≤ min
i∈I

�ui

is satisfied. By Proposition III.6, it suffices to update RE�XE0
; t�

instead of R⋆
E�XE0

; t� and show condition (10). As illustrated in
Fig. 6, the simultaneous capture of the three pursuers is required at the
optimal time to capture of T � 1.31. Optimal trajectories of the three
pursuers are depicted to demonstrate the capture of the evader. The
terminal position of the evader Xf is denoted by the centermost dot.
The optimal trajectory of the evader is not shown because it is not
unique and can be picked from Eq. (24).
Next, we consider the case where

max
i∈I

�ui < �v

In particular, we consider four pursuers with maximum speed

�u1 � �u2 � �u3 � �u4 � 0.9 and an evader with maximum speed
�v � 1. The initial positions of the pursuers are given as

X1
P0
��13;13�T , X2

P0
��15;13�T , X3

P0
��15;15�T , and X4

P0
��13;15�T ;

whereas the evader is initially located at XE0
� �14; 14�T . The

flowfield is the same one as in the previous example. Capture in this
case occurs at T � 1.99, and the corresponding optimal trajectories of
the active pursuers are shown in Fig. 7.
The next example intends to demonstrate the effect of the flowfield

in the game outcome. To this end, consider a pursuit–evasion game
between four pursuers and one faster evader. The initial positions of

the pursuers are given as X1
P0

� �13; 13�T , X2
P0

� �15; 13�T ,
X3
P0

� �15; 15�T , and X4
P0

� �13; 15�T ; whereas the evader is initially
located at XE0

� �14; 14�T . The maximum speeds of the pursuers are

set as �u1 � �u2 � 0.65 and �u3 � �u4 � 0.95, and the evader’s
maximum speed is set to �v � 1. The flowfield is given by
w�X� � A�X − xs�, where

A �
�
−0.2 0.3

−0.15 −0.1

�
; Xs �

�
17

17

�
(27)

For this case, capture occurs at T � 1.71, as illustrated in Fig. 8. In
contrast, the evader escapes in the absence of an external flowfield.
This is demonstrated in Fig. 9, where a snapshot of the level sets at
t � 4.11 is shown. Notice that, at that time instant, the evader reaches
the point Y without being captured. The evader can keep avoiding
capture after that time because it is faster and Y is outside the convex
hull of the pursuers. This example shows that the presence of the
flowfield can change the outcome of the game; hence, it is imperative
that its effect is quantified and included, if needed, in the game
formulation.
We finally apply our algorithm to a pursuit–evasion problem

taking place inside a smooth water channel with a circular island
obstacle. The external flow enters the rectangle region shown in

10 15 20
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14

16

18

20

22

x

y

P1

P2

P3

E

P1

Xf

Fig. 6 Optimal trajectories of the three active pursuers. Closed curves
represent the reachable fronts of the pursuers at the terminal time.
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18

20
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P3
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Xf

Fig. 7 Optimal trajectories of the three active pursuers and the
reachable fronts of the pursuers at the terminal time.

12 14 16
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19
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Xf

Fig. 8 Reachable fronts of the pursuers and usable reachable front of
the evader at the terminal time, and optimal trajectories of the two active
pursuers.
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10

12

14

16

18

20
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P3P4

Y

Fig. 9 Reachable fronts of the pursuers and usable reachable front of
the evader at t � 4.41. Case of faster evader without flowfield.

10 15 20 25
10

15

20

25

x

y

P1

P2
E

P3

Xf

Fig. 5 Optimal trajectory of the evader and the set ∂ ~RE�XE0
;t�, as well

as the optimal trajectory of the active pursuer.
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Fig. 10a from the left edge and drifts past a circular island, which
induces vortices downstream. The island is centered at [4.5,1.5] and
has a radius of 0.5. More details regarding the simulation of this
flowfield can be found in [28]. Through this example, we
demonstrate that the proposed algorithm can handle scenarios with
arbitrary spatiotemporal flowfields and that the algorithm can be
naturally extended to deal with obstacles in a flowfield.
The initial positions of the pursuers and the evader are set as

X1
P0

� �1; 2�T , X2
P0

� �3; 1�T , and XE0
� �6; 1�T , respectively. Their

corresponding maximum speeds are given by �u1 � 4.5, �u2 � 3, and
�v � 1. Because minf �u1; �u2g > �v, we simply evolve the reachability
sets of both players. When the reachability front of any one of the
players encounters the obstacle, we stop the evolution of the parts on
the reachability front that would otherwise go through the obstacle to
ensure that the optimal path we find later on is guaranteed to be a
collision-free path. Capture occurs at time T � 1.44, and the optimal
paths of the pursuers and the evader are depicted in Fig. 10c. Their
corresponding reachability fronts are also illustrated. Snapshots of
the reachability fronts of the pursuer and the evader at times t � 0.5
and t � 1 are included in Figs. 10a and 10b to demonstrate the
evolution of the reachability fronts.
To demonstrate the feedback nature of the proposed strategies, in

Fig. 11, we show the result of a game with just two players (one
pursuer and one evader), in which the evader employs a suboptimal
strategy. Specifically, while the pursuer determines its control action
at each instant of time using the reachability set analysis outlined in

Sec. III, in Fig. 11 (left), the evader implements a constant bearing

strategy given by uE � �v�cos�π∕2�; sin�π∕2��T. Capture occurs at

T � 0.93, whereas if the evader had acted optimally, capture would

have occurred at T � 1.08, which is the value of this game. Figure 11

(right) shows another similar scenario where the evader uses the

(also suboptimal) strategy uE � �v�cos�π∕4�; sin�π∕4��T. In this case,
capture occurs at T � 1.04, which is somewhat better than before but

still less than the optimal value of T � 1.08. For both of these

examples, the flowfield is affine, given byw�X� � A�X − Xs�, where

A �
�

0 0.3

−0.15 0

�
; Xs �

�
5

5

�
(28)

For this example, the maximum speeds are �u � 4 and �v � 1; and
the initial conditions are XP0

� �2; 2�T and XE0
� �4; 4�T for the

pursuer and the evader, respectively.

VI. Conclusions

In this paper, differential games between an evader and multiple

pursuers in an external dynamic flowfield are considered. Under the

assumptions that each player has perfect knowledge of the dynamics

of the system, the constraint control sets, the cost function, and the

initial state, aswell as under the assumption that the value of the game

exists, it is shown that the game terminates when the usable reachable

set of the evader becomes the empty set for the first time. A simplified

condition for capture of the evader can be derivedwhen themaximum

speed of the evader is less than the maximum speed of each pursuer.

The level set method is adopted to compute and propagate the

reachable sets of all the players. Depending on whether a pursuer

contributes to the outcome of the game, whether it chases the evader

directly, or whether it guards some part of the reachable set of the

evader so that the evader does not detour from its optimal trajectory,

the pursuers can be, respectively, classified into redundant pursuers,

active pursuers, or guards. The redundant pursuers are those that can

be removed from the set of pursuers without impacting the outcome

of the game. Pursuers that actively chase the evader are the active

pursuers. Guards represent pursuers for which their mere presence

affects the optimal time to capture, but they do not pursue the evader

as long as the latter follows an optimal path. The optimal trajectories

and controls of the pursuers and the evader are retrieved by backward

propagation along the corresponding levels of the reachable sets. The

proposed solution scheme is demonstrated by applying it to

multiplayer pursuit–evasion games taking place in realistic strong

and time-dependent external flowfields, including a case with an

obstacle.

E

P1

P2

a) t = 0.5

P1

P2 E

b) t = 1.0

P1

P2

E Xf

c) T = 1.44
Fig. 10 Evolution of the reachability fronts and optimal trajectories at
the optimal time to capture. Arrows on the background represent the
time-varying external flowfield.
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Fig. 11 Evolution of the reachability fronts and optimal trajectories at the optimal time to capture. In this case, the evader plays suboptimally.
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