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We develop performance criteria for the objective comparison of different classes of
single-degree-of-freedom oscillators under stochastic excitation. For each family of
oscillators, these objective criteria take into account the maximum possible energy
harvested for a given response level, which is a quantity that is directly connected to

with respect to magnitude or temporal rescaling of the input spectrum and they depend
only on the relative distribution of energy across different harmonics of the excitation. We
then compare three different classes of linear and nonlinear oscillators and using
stochastic analysis methods we illustrate that in all cases of excitation spectra (mono-
chromatic, broadband, white-noise) the optimal performance of all designs cannot exceed
the performance of the linear design. Subsequently, we study the robustness of this
optimal performance to small perturbations of the input spectrum and illustrate the
advantages of nonlinear designs relative to linear ones.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Energy harvesting is the process of targeted energy transfer from a given source (e.g. ambient mechanical vibrations, and
water waves) to specific dynamical modes with the aim of transforming this energy to useful forms (e.g. electricity). In
general, a source of mechanical energy can be described in terms of the displacement, velocity or acceleration spectrum.
Moreover, in most cases the existence of the energy harvesting device does not alter the properties of the energy source
i.e. the device is essentially driven by the energy source in a one-way interaction.

Typical energy sources are usually characterized by non-monochromatic energy content, i.e. the energy is spread over a
finite band of frequencies. This feature has led to the development of various techniques in order to achieve efficient energy
harvesting. Many of these approaches employ single-degree-of-freedom oscillators with non-quadratic potentials, i.e. with a
restoring force that is nonlinear see e.g. [1–13]. In all of these approaches, a common characteristic is the employment of
intensional nonlinearity in the harvester dynamics with an ultimate scope of increasing performance and robustness of the
device without changing its size, mass or the amount of its kinetic energy. Even though for linear systems the response of
the harvester can be fully characterized (and therefore optimized) in terms of the energy-source spectrum (see e.g. [4,14]),
this is not the case for nonlinear systems which are simultaneously excited by multiple harmonics – in this case there
are no analytical methods to express the stochastic response in terms of the source spectrum. While in many cases
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(e.g. in [3,6,8,13]) the authors observe clear indications that the energy harvesting capacity is increased in the presence of
nonlinearity, in numerous other studies (e.g. [1,2,5,7]) these benefits could not be observed. To this end it is not obvious if
and when a class (i.e. a family) of nonlinear energy harvesters can perform “better” relative to another class (of linear or
nonlinear systems) of energy harvesters when these are excited by a given source spectrum.

Here we seek to define objective criteria that will allow us to choose an optimal and robust energy harvester design for a
given energy source spectrum. An efficient energy harvester (EH) can be informally defined as the configuration that is able
to harvest the largest possible amount of energy for a given size and mass. This is a particularly challenging question since the
performance of any given design depends strongly on the chosen system parameters (e.g. damping and stiffness) and in
order to compare different classes of systems (e.g. linear versus nonlinear) the developed measures should not depend on
the specific system parameters but rather on the form of the design, its size or mass as well as the energy source spectrum.
Similar challenges arise when one tries to quantify the robustness of a given design to variations of the source spectrum for
which it has been optimized.

To pursue this goal we first develop measures that quantify the performance of general nonlinear systems from
broadband spectra, i.e. simultaneous excitation from a broad range of harmonics. These criteria demonstrate for each class of
systems the maximum possible power that can be harvested from a fixed energy source using a given volume. We prove
that the developed measures are invariant to linear transformations of the source spectrum (i.e. rescaling in time and size of
the excitation) and they essentially depend only on its shape, i.e. the relative distribution of energy among different
harmonics. For the sake of simplicity, we will present our measures for one dimensional systems although they can be
generalized to higher dimensional cases in a straightforward manner.

Using the derived criteria we examine the relative advantages of different classes of single-degree-of-freedom (SDOF)
harvesters. We examine various extreme scenarios of source spectra ranging from monochromatic excitations to white-
noise cases (also including the intermediate case of the Pierson–Moskowitz (PM) spectrum). We prove that there are
fundamental limitations on the maximum possible harvested power that can be achieved (using SDOF harvesters) and these
are independent from the linear or nonlinear nature of the design. Moreover, we examine the robustness properties of
various SDOF harvester designs when the source characteristics are perturbed and we illustrate the dynamical regimes
where nonlinear designs are preferable compared with the linear harvesters.

2. Quantification of power harvesting performance under broadband excitation

We study the energy harvesting properties of a SDOF oscillator subjected to random excitation. In the energy harvesting
setting, randomness is usually introduced through the excitation signal which although is characterized by a given
spectrum, i.e. a given amplitude for each harmonic, the relative phase between harmonics is unknown and to this end is
modeled as a uniformly distributed random variable. We consider the following system consisting of an oscillator lying on a
basis whose displacement hðtÞ is a random function of time with given spectrum. The equation of motion for this simple
system has the form

m €xþλð _x� _hÞþFðx�hÞ ¼ 0; (1)

where m is the mass of the system, λ is a dissipation coefficient expressing only the harvesting of energy (we ignore in this
simple setting any mechanical loses), and F is the spring force that has a given form but free parameters, i.e.
FðxÞ ¼ Fðx; k1;…; knÞ. One could think of F as a polynomial: Fðx; kpÞ ¼∑p ¼ 1;…;Nkpxp.

We assume that the excitation process is stationary and ergodic having a given spectrum ShhðωÞ (see Appendix A for
definition). We also assume that after sufficient time the system converges to a statistical steady state where the response
can be characterized by the power spectrum SqqðωÞ. For this system the harvested power per unit mass is given by

Ph ¼
λ

m
ð _x� _hÞ2 ; (2)

where the bar denotes ensemble or temporal average in the statistical steady-state regime of the dynamics. For convenience
we apply the transformation x�h¼ q to obtain the system

€qþ λ̂ _qþ F̂ ðqÞ ¼ � €h; (3)

where λ̂ ¼ λ=m and F̂ ¼ F=m.
Through this formulation we note that the mass can be regarded as a parameter that does not need to be taken into

account in the optimization procedure. This is because for any optimal set of parameters λ̂ and F̂ , the energy harvested will
increase linearly with the mass of the oscillator employed (given that λ̂ and F̂ remain constant).

2.1. Absolute and normalized harvested power Ph

In the present work, we are interested to compare the maximum possible performance between different classes
of oscillators and to this end we ignore mechanical losses and assume that the damping coefficient λ̂ describes entirely
the energy harvested. In terms of the spectral properties of the response, the absolute harvested power Ph can then be
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expressed as

Ph ¼ λ̂ _q2 ¼ λ̂

Z 1

�1
ω2SqqðωÞ dω: (4)

This quantifies the amount of energy harvested per unit mass.

2.2. Size of the energy harvester B

An objective comparison between two harvesters should involve not only the same mass but also the same size. We
chose to quantify the characteristic size of the harvesting device using the mean square displacement of the center of mass
of the system. For the SDOF setting, this is simply the typical deviation of the stochastic process qðtÞ given by

d¼
ffiffiffiffiffiffi
q2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

�1
SqqðωÞ dω

s
: (5)

Our goal is to quantify the maximum performance of a harvesting configuration for a given typical size d and for a given
form of input spectrum. To achieve invariance with respect to the source-spectrum magnitude, we will use the non-
dimensional ratio

B¼ q2

h2
; (6)

which is the square of the relative magnitude of the device compared with the typical size of the excitation motion
ffiffiffiffiffiffi
h2

q
. The

above quantity also expresses the amount of energy that the device carries relative to the energy of the excitation and to this
end we will refer to it as the response level of the harvester. It will be used to parametrize the performance measures
developed in the next section with respect to the typical size of the device.

2.3. Harvested power density ρe

For each response level B, we define the harvested power density ρe as the maximum possible harvested power
maxfλ̂ ;k̂ i jBggPh (for a given excitation spectrum and under the constraint of a given response level B) suitably normalized with
respect to the response size q2 and the mean frequency of the input spectrum

ρe Bð Þ ¼
maxfλ̂ ;k̂ ijBggPh

ω3
hq

2
¼
maxfλ̂ ;k̂ ijBggðλ̂ _q

2 Þ
ω3
hq

2
(7)

where the mean frequency of the input spectrum is defined as

ωh ¼
1

h2

Z 1

0
ωShh ωð Þ dω: (8)

This measure should be viewed as a function of the response level of the device B. As we show below it satisfies an
invariance property under linear transformations of the excitation spectrum, i.e. rescaling of the spectrum in time and
magnitude (Fig. 1). More specifically we have the following theorem.

Theorem 1. The harvested power density ρe is invariant with respect to linear transformations of the input energy spectrum
ShhðωÞ (uniform amplification and stretching). In particular, under the modified excitation gðtÞ ¼ a

ffiffiffi
b

p
hðbtÞ or equivalently the

input spectrum SggðωÞ ¼ a2Shhðω=bÞ, where a40 and b40, the curve ρeðBÞ remains invariant.

Proof. Let λ̂0 and k̂i;0 be the optimal parameters for which the quantity Ph attains its maximum value for the input spectrum
ShhðωÞ under the constraint of a given response level B0 ¼ q2=h2 . For convenience, we will use the notation F̂ 0ðqÞ ¼
F̂ ðq; k̂1;0;…; k̂n;0Þ. For these optimal parameters we will also have the optimum response q0ðtÞ that satisfies the equation

€q0þ λ̂0 _q0þ F̂ 0ðq0Þ ¼ � €h: (9)

We will prove that under the rescaled spectrum SggðωÞ ¼ a2Shhðω=bÞ the harvested power density curve ρeðBÞ remains
invariant. By direct computation, it can be verified that the modified spectrum SggðωÞ corresponds to an excitation of the
form

gðtÞ ¼ a
ffiffiffi
b

p
hðbtÞ: (10)

Moreover, by direct calculation we can verify that

g2 ¼ a2bh2 and ωg ¼ bωh: (11)
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Fig. 1. Various spectral curves obtained by magnitude and temporal rescaling of the Pierson–Moskowitz spectrum. Amplification and stretching of the
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We pick a response level B0 for the system excited by hðtÞ and wewill prove that ρe;gðB0Þ ¼ ρe;hðB0Þ. Under the new excitation
the system equation will be

€qþ λ̂ _qþ F̂ qð Þ ¼ �a
ffiffiffi
b

p d2hðbtÞ
dt2

: (12)

We apply the temporal transformation bt ¼ τ. In the new timescale, we will have (differentiation is now denoted with 0)

b2q″þ λ̂bq0 þ F̂ ðqÞ ¼ �ab5=2h″: (13)

For q2=g2 ¼ B0, we want to find the set of parameters λ̂ and k̂i that will maximize Pg ¼ λ̂ _q2 given the dynamical constraint
(12). This optimized quantity can also be written as

Pg ¼ λ̂ _q2 ¼ b2λ̂q02; (14)

where q0 is described by the rescaled equation (13). However, the optimization problem in Eqs. (13) and (14) is identical with
the original one given by Eq. (9) and it has an optimal solution when λ̂ ¼ bλ̂0 and F̂ ðqÞ ¼ ab5=2F̂ 0ðq=a

ffiffiffi
b

p
Þ. For this set of

parameters, Eq. (13) coincides with Eq. (9) and the solution to (13) will be qðtÞ ¼ a
ffiffiffi
b

p
q0ðbtÞ. Note that for this solution we

also have

q2

g2
¼ a2b

q20

a2bh2
¼ q20

h2
¼ B0; (15)

and therefore the optimized solution that we found corresponds to the correct response level. The last step is to compute
the harvested power density for the new solution. These will be given by

ρe;g B0ð Þ ¼
maxfλ̂ ;k̂ i jB0ggðλ̂ _q

2 Þ
ω3
gq2

¼
maxfλ̂ ;k̂ ijB0ggðb

2λ̂q02 Þ
ðb3ω3

hÞða2bq20 Þ
¼ ðbλ̂0Þðb3a2q020 Þ
ðb3ω3

hÞða2bq20 Þ
¼ λ̂0q020
ω3
hq

2
0

¼ ρe;h B0ð Þ: (16)

This completes the proof. □

We emphasize that the above property can be generalized for multidimensional systems; a detailed study for this case
will be presented elsewhere. Through this result we have illustrated that both uniform amplification and stretching of the
input spectrum (see e.g. Fig. 1 various amplified, and stretched versions of the Pierson–Moskowitz) will leave the harvested
power density unchanged, and therefore the shape of spectrum is the only factor (i.e. relative distribution of energy
between harmonics) that modifies the harvested power density.

Another important property of the developed measure is its independence of the specific values of the system
parameters since it always refers to the optimal configuration for each design. Thus, it is an approach that characterizes a
whole class of systems rather than specific members of this class. To this end it is suitable for the comparison of systems
having different forms e.g. having a different function F̂ ðq; k̂1;…; k̂nÞ since it is only the form of the system that is taken into
account and not the specific parameters λ̂ and k̂1;…; k̂n.

These two properties give an objective character to the derived measure as it depends only on the form of the employed
configuration and the form of the input spectrum. For this reason, it can be used to perform systematic comparisons and
optimizations among different classes of system configurations, e.g. linear versus nonlinear harvesters. In addition to the
Please cite this article as: H.K. Joo, & T.P. Sapsis, Performance measures for single-degree-of-freedom energy harvesters
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above properties, the curve ρeðBÞ reveals the optimal response level q2 so that the harvested power over the response
magnitude is maximum, achieving in this way optimal utilization of the device size.

We note that for a multidimensional energy harvester it may also be useful to quantify the harvester performance using
the effective harvesting coefficient λe which is defined as the maximum possible harvested power maxfλ̂ ;k̂ ijBggPh (for a given
excitation spectrum and under the constraint of a given response level B) normalized by the total kinetic energy of the
device EK :

λe Bð Þ ¼
maxfλ̂ ;k̂ i jBggPh

ωhEK
; (17)

where we have also non-dimensionalized with the mean frequency of the input spectrum so that the ratio satisfies similar
invariant properties under linear transformations of the input spectrum. Although for MDOF systems the above measure can
provide useful information about the efficient utilization of kinetic energy, for SDOF systems of the form (1) we always have
λeðBÞ ¼ λ̂ and to this end we will not study this measure further in this work.

3. Quantification of performance for SDOF harvesters

We now apply the derived criteria in order to compare three different classes of nonlinear SDOF energy harvesters
excited by three qualitatively different source spectra. In particular, we compare the performance of linear SDOF harvesters
with two classes of nonlinear oscillators: an essentially nonlinear with cubic nonlinearity (mono-stable system) and one
that has also cubic nonlinearity but negative linear stiffness (double well potential system or bistable) as illustrated in Fig. 2.
The first family of systems has been studied in various contexts with the main focus on the improvement of the energy
harvesting performance fromwide-band sources. The second family of nonlinear oscillators is well known for its property to
maintain constant vibration amplitudes even for very small excitation levels, and it has also been applied to enhance the
energy harvesting capabilities of nonlinear energy harvesters. More specifically we consider the following three classes of
systems (Fig. 3):

€qþ λ̂ _qþ k̂1q¼ � €h ðlinear systemÞ; (18)

€qþ λ̂ _qþ k̂3q3 ¼ � €h ðcubic systemÞ; (19)

€qþ λ̂ _q� ν̂qþ k̂3q3 ¼ � €h ðnegative stiffnessÞ: (20)

Our comparisons are presented for three cases of excitation spectra, namely the monochromatic excitation, the white noise
excitation, and an intermediate one characterized by colored noise excitation with Gaussian, stationary probabilistic
structure and a power spectrum having the Pierson–Moskowitz form

Shh ¼
1
ω5 exp �ω�4� �

: (21)

The monochromatic and the white noise excitations are characterized by diametrically opposed spectral properties: the first
case is the extreme form of a narrow-band excitation, while the second represents the most extreme case of a wide-band
excitation. Our goal is to understand and objectively compare various designs that have been employed in the past to
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Fig. 3. Linear and nonlinear SDOF systems: (a) linear SDOF system, (b) nonlinear SDOF system only with a cubic spring, and (c) nonlinear SDOF systemwith
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achieve better performance from sources which are either monochromatic or broad-band. We are also interested to use
these two prototype forms of excitation in order to interpret the behavior of SDOF harvesters for intermediate cases of
excitation such as the PM spectrum.

We first present the monochromatic and the white noise cases where many of the results can be derived analytically. We
analyze the critical differences in terms of the harvester performance and subsequently, we numerically perform stochastic
optimization of the nonlinear designs for the intermediate PM spectrum. For the PM excitation, we employ a discrete
approximation of the excitation h in spectral space, with harmonics that have given amplitude but relative phase differences
modeled as uniformly distributed random variables. The responses of the dynamical systems (18) and (19) are then
characterized by averaging (after sufficient time so that transient effects do not contribute) over a large ensemble of
realizations, i.e. averaging over a large number of excitations h generated with a given spectrum but randomly generated
phases.

3.1. SDOF harvester under monochromatic excitation

Linear system: We calculate the harvested power density ρe for the linear oscillator under monochromatic excitation, i.e.
the one-sided power spectrum is given by ShhðωÞ ¼ α2δðω�ω0Þ. For this case the computation can be carried out analytically.
In particular for the linear oscillator we will have the power spectrum for the response given by

Sqq ωð Þ ¼ ω4

ðk̂1�ω2Þ2þ λ̂
2 ω

2Shh ωð Þ: (22)

Thus, the response level can be computed as

B¼ q2

h2
¼ ω4

0

ðk̂1�ω2
0Þ2þ λ̂

2 ω
2
0; (23)

where h2 is simply α2. Moreover, the average rate of energy harvested per unit mass will be given by

Ph ¼ λ̂ _q2 ¼ λ̂α2
ω6
0

ðk̂1�ω2
0Þ2þ λ̂

2 ω
2
0: (24)

Then we will have from Eq. (23)

ðk̂1�ω2
0Þ2þ λ̂

2
ω2
0 ¼

ω4
0

B : (25)

Thus, for a given B, the mean rate of energy harvested will be given by

Ph ¼ λ̂ _q2 ¼ λ̂q2ω2
0: (26)

Therefore the mean rate of energy harvested will become maximum when λ̂ is maximum. For fixed B, Eq. (25) shows that
the maximum legitimate value of λ̂ will be given by λ̂ ¼ω0=

ffiffiffiffiBp
and this can be achieved when k̂1 ¼ω2

0. Therefore we
will have

Ph ¼ω3
0
q2ffiffiffiffiBp ¼ω3

0h
2 ffiffiffiffi

B
p

¼ α2ω3
0

ffiffiffiffi
B

p
; (27)

ρe ¼
maxfλ̂ ;k̂ ijBggPh

ω3
hq

2
¼ 1ffiffiffiffiBp : (28)
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Hence, for a linear SDOF system under monochromatic excitation, the harvested power density is proportional to the
magnitude of the square root of B while the harvested power is proportional to the square root of the response level.

Cubic and negative stiffness harvesters: For a nonlinear system the response under monochromatic excitation cannot be
obtained analytically and to this end the computation will be carried out numerically. In Fig. 4, we present the response level
Fig. 4. Response level B and power harvested for the case of monochromatic spectrum excitation over different system parameters. The response level B is
also presented as a contour plot in the power harvested plots. All three cases of systems are shown: linear (top row), cubic (second row), and negative
stiffness with ν̂ ¼ 1:
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B for all three systems (linear, cubic, and the one with negative stiffness with ν̂ ¼ 1) for various system parameters. We also
present the total harvested power superimposed with contours of the response level B.

For both the linear and the cubic oscillators, we can observe the 1:1 resonance regime (see plots for the response level B).
For these two cases, we also observe a similar decay of the response level with respect to the damping coefficient. This
behavior changes drastically in the negative stiffness oscillator where the response level is maintained with respect to the
changes of the damping coefficient. This is expected if one considers the double well form of the corresponding potential
that controls the amplitude of the nonlinear oscillation. Despite the robust amplitude of the response, the performance
(i.e. the amount of power being harvested) drops similarly with the other two oscillators (especially the cubic one) as the
damping coefficient increases. Therefore robust response level does not necessarily imply a constant performance level. To
quantify the performance, we present in Fig. 5 the maximum harvested power and the harvested power density for the
three different oscillators. We observe that in all cases the linear design has superior performance compared with the
nonlinear configurations. In addition, we note that the cubic and the negative stiffness oscillators have a strongly variable
performance which presents non-monotonic behavior with respect to the response level B (Fig. 5).

To better understand the nature of this variability, we pick two characteristic values of B (one close to a local minimum i.
e. B¼ 8:5 and one at a local maximum, i.e. B¼ 8:1) for the negative stiffness oscillator (Fig. 6). From these points, we can
observe that the strong performance for the nonlinear oscillator is associated with the signatures of 1:3 resonance in the
response spectrum. We also note that the small amplitude of the higher harmonic is not sufficiently large to justify the
difference in the performance. On the other hand, the significant amplitude difference on the primary harmonic, which can
be considered as an indirect effect of the 1:3 resonance, justifies the strong variability between the two cases.
Fig. 5. (a) Maximum harvested power, and (b) power density for linear and nonlinear SDOF systems under monochromatic excitation.
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Fig. 6. A nonlinear system with the combination of a negative linear (ν̂ ¼ 1) and a cubic spring. Blue solid line corresponds to a local minimum of the
performance in Fig. 4: k̂3 ¼ 0:1 and λ̂ ¼ 0:2. Red dashed line corresponds to a local maximum of the performance in Fig. 4: k̂3 ¼ 0:25 and λ̂ ¼ 0:2. (a)
Response in terms of displacement. (b) Fourier transform modulus jq̂ðωÞj. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

Please cite this article as: H.K. Joo, & T.P. Sapsis, Performance measures for single-degree-of-freedom energy harvesters
under stochastic excitation, Journal of Sound and Vibration (2014), http://dx.doi.org/10.1016/j.jsv.2014.05.003i

http://dx.doi.org/10.1016/j.jsv.2014.05.003
http://dx.doi.org/10.1016/j.jsv.2014.05.003
http://dx.doi.org/10.1016/j.jsv.2014.05.003


g

H.K. Joo, T.P. Sapsis / Journal of Sound and Vibration ] (]]]]) ]]]–]]] 9
Independently of the super-harmonic resonance occurring in the nonlinear designs for certain response levels, it is clear
that the best performance for SDOF systems under monochromatic excitation can be achieved within the class of linear
harvesters. To understand this result, we consider the general equation (3) multiplying with _q and applying the mean value
operator. This will give us the following energy equation:

1
2

d
dt

_q2
� �

þ λ̂ _q2 þ F̂ ðqÞ _q ¼ � €h _q : (29)

In a statistical steady state, we will have the first term vanishing. This is also the case for the third term, which represents
the overall energy contribution from the conservative spring force. Moreover, the harvested power is equal to the second
term and thus we have

Ph ¼ λ̂ _q2 ¼ � €h _q : (30)

For the monochromatic case, we have €hðtÞ ¼ �αω2
0 cos ω0t. We represent the arbitrary statistical steady-state response as

q¼∑
i
q̂i cos ðωitþϕiÞ; (31)

with q̂i40, and ϕi are phases determined from the system dynamics. From this representation, we obtain

Ph ¼∑
i
q̂iαω

2
0ωi lim

T-1
1
T

Z T

0
cos ω0t sin ωitþϕi

� �
dt: (32)

The quantity inside the integral will be nonzero only when i¼0. Thus,

Ph ¼ q̂0αω
3
0
ω0

2π

Z 2π=ω0

0
cos ω0t sin ω0tþϕ0

� �
dt ¼ 1

2
q̂0αω

3
0 sin ϕ0: (33)

Note that from the representation for q, we obtain

q2 ¼∑
i;j
q̂iq̂j cos ðωitþϕiÞ cos ðωjtþϕjÞ ¼ ∑

i;jðia jÞ

1
2
q̂iq̂jf cos ð½ωi�ωj�tþϕi�ϕjÞþ cos ð½ωiþωj�tþϕiþϕjÞggþ∑

i

1
2
q̂2
i f1þ cos ð2ωitþ2ϕiÞg

¼ 1
2
∑
i
q̂2
i : (34)

It is straightforward to conclude that for constant response level q2 the harvested power will become maximumwhen q̂0 is
maximum, and this is the case only when all the energy of the response is concentrated in the harmonic ω0, a property that
is guaranteed to occur for the linear systems. Thus, for SDOF harvesters, excited by monochromatic sources, the optimal linear
system can be considered as an upper bound of the performance among the class of both linear and nonlinear oscillators.
3.2. SDOF harvester under white noise excitation

We investigated the monochromatic excitation case of both linear and nonlinear systems as an extreme case of a narrow-
band excitation. The opposite extreme, the one that corresponds to a broadband excitation, is the Gaussian white noise. We
consider a dynamical system governed by a second-order differential equation under the standard Gaussian white noise
excitation _W ðtÞ with zero mean and intensity equal to one (i.e. W2 ¼ 1):

€qþ λ̂ _qþ F̂ ðqÞ ¼ α _W ðtÞ: (35)

For this SDOF system, the probability density function is fully described by the Fokker–Planck–Kolmogorov equation which
for the statistical steady state can be solved analytically providing us with the exact statistical response of system (35) in
terms of the steady-state probability density function (see e.g. [15])

pst q; _qð Þ ¼ C exp � λ̂

α2
_q2

2
þ
Z q

0
F̂ xð Þ dx

" # !
; (36)

where C is the normalization constant so that ∬ pstðq; _qÞ dq d _q ¼ 1.
In order to use previously developed measures, we define h2 ¼ α2 (the typical amplitude of the excitation is equal to the

intensity of the noise). Moreover, since there is no characteristic frequency we can choose without loss of generality ω2
h ¼ 1.

Using expression (36), we can compute an exact expression for the harvested power

P _W ¼ λ̂ _q2 ¼ α2: (37)

which is an independent quantity of the system parameters – the above result can be generalized in MDOF system as shown
in [16]. We observe that in this extreme form of broadband excitation the harvested power is independent of the system
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parameters and depends only on the excitation energy level α. In addition, the harvested power density ρe will be given by

ρe Bð Þ ¼
maxfλ̂ ;k̂ i jBggPh

ω3
hq

2
¼ α2

q2
¼ 1

q2

h2

¼ 1
B: (38)

Similarly with the harvested power, we observe that the harvested power density is also independent of the employed
system design (Fig. 7). Moreover, when we compare with the monochromatic excitation case (where we illustrated that the
best possible performance can be achieved with linear systems), we see that the harvested power density drops faster with
respect to the device size B when the energy is spread (in the spectral sense) compared with the case where energy is
localized in a single input frequency.

3.3. SDOF harvester under colored noise excitation

The third case of our analysis involves a colored noise excitation, the Pierson–Moskowitz form (Eq. (21)), which can be
considered as an intermediate case between the two extremes presented previously. For a general excitation spectrum, the
computation of the performance measures for the nonlinear systems has to be carried out numerically. However for the
linear system the computation of the mean square amplitude and the mean rate of energy harvested per unit mass can be
computed analytically [15]

q2 k̂1; λ̂
� �

¼
Z 1

0

ω4

ðk̂1�ω2Þ2þ λ̂
2 ω

2 1
ω5exp �ω�4� �

dω; (39)

Ph k̂1; λ̂
� �

¼ λ̂

Z 1

0

ω6

ðk̂1�ω2Þ2þ λ̂
2 ω

2 1
ω5exp �ω�4� �

dω: (40)

For the nonlinear systems, we employ a Monte-Carlo method since the computational cost for simulating the SDOF
harvester is reasonable. In particular, we generate random realizations which are consistent with the PM spectrum using a
frequency domain method [17]. Subsequently, we simulate the dynamics of the SDOF long enough so that the system
reaches a statistical steady state. The results are presented in Fig. 8. We can still observe similar features with the
monochromatic excitation even though the variations of response level and performance are now much smoother
(compared with the monochromatic case). For the linear system, we do not have the sharp resonance peak that we had
in the monochromatic case while the two nonlinear designs behave very similarly in terms of their performance maps.
However, the characteristic difference of the negative stiffness design, related to the persistence of the response level even
for large values of damping, is preserved in this non-monochromatic excitation case. Note that similar to the monochro-
matic case this robustness in the response level does not necessarily imply strong harvesting power.

3.4. Comparison of the three different systems

A comparison of the linear system and the nonlinear systems under the Pierson–Moskowitz spectrum excitation is
shown in Fig. 9. As it can be seen from Fig. 9b, the linear oscillator has the best performance compared to two nonlinear
Fig. 7. (a) Maximum harvested power, and (b) power density for linear and nonlinear SDOF systems under white noise excitation.
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designs (note that for the negative stiffness oscillator a wide range of values ν̂ was employed and in all cases the results for
the power density were qualitatively the same – to this end only the case ν̂ ¼ 1 is presented). This is expected for any colored
noise excitation, given that for the monochromatic extreme we have shown rigorously that the optimal performance of any
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nonlinear oscillator cannot exceed the optimal linear design, while for the white noise excitation all designs have identical
performance. The relative performance in terms of harvested power for the three different classes of oscillators under three
different types of excitations are summarized in Table 1.

An important qualitative difference between the response under the Pierson–Moskowitz spectrum and the monochro-
matic excitation is the behavior of the harvested power for larger values of B. While for the monochromatic case the
harvested power scales with

ffiffiffiffiBp
, this is not the case for the colored noise excitation where the harvested power seems to

converge to a finite value (a behavior that is consistent with the white noise excitation). Therefore, we can conclude that for
small values of response level B the optimal performance under colored noise excitation behaves similarly with the
monochromatic excitation while for larger values of B the optimal performance seems to be closer to the white-noise
response. The above conclusions are also verified from Fig. 10 where the three optimal harvested power density curves
Fig. 9. (a) Maximum harvested power, and (b) power density for linear and nonlinear SDOF systems under Pierson–Moskowitz spectrum.

Table 1
Harvested power of three different classes of oscillators under three different types
of excitations. L denotes the linear oscillator, MN denotes the monostable
nonlinear oscillator, and BN denotes the bistable nonlinear oscillator.

Excitation Performance comparison

Monochromatic excitation LbBN 4MN
Colored noise excitation L4MN 4BN
White noise excitation L¼MN ¼ BN

0 1 2 3 4 5 6 7 8 9 10
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ρ e
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Colored
White

B

Fig. 10. Harvested power density ρe for the three different types of excitation spectra. The linear design is used in all cases since this is optimal.
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Table 2
The performance of optimal SDOF energy harvesters with respect to the size of the
device. The number of þ indicates under which excitation the energy harvester
performs relatively better.

Case Monochromatic Colored noise White noise

Bo1 þ þþ þþþ
B41 þþþ þþ þ
B¼ 1 þ þþþ þ
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(corresponding to the three forms of excitation) are presented together. The performance of the optimal SDOF energy
harvesters with respect to the size of the device B is incorporated in Table 2.

4. Quantification of performance robustness

We have examined the optimal performance for different designs of SDOF harvesters under various forms of random
excitations. Even though the linear design has the optimal performance for fixed response level B, the robustness of this
performance under perturbations of the input spectrum characteristics (and with fixed optimal system parameters) has not
been considered. This is the scope of this section where we investigate how linear and nonlinear systems with optimal
system parameters behave when the excitation spectrum is perturbed.

More specifically, we are interested to investigate the robustness properties with respect to the frequency shifts of the
excitation spectrum. Clearly, the harvested power and the response level (that characterizes the size of the device) will be
affected by the spectrum shift. To quantify these variations we consider the following three ratios:

δ¼ Bshifted

B0
; τ¼ ðPhÞshifted

ðPhÞ0
; s¼ ðρeÞshifted

ðρeÞ0
; (41)

where δ quantifies the variation of the response level B0 which essentially expresses the size of the device, τ quantifies
exclusively the changes in performance while s shows the changes in harvested power density, i.e. it also takes into account
the variations of the response level B.

Monochromatic excitation: For the monochromatic excitation, perturbation in terms of spectrum shift can be expressed as

Shhðω�ϵÞ ¼ δðω�ω0�ϵÞ: (42)

where ω0 ¼ 1. In Fig. 11, we present the ratios describing the variation of the response level δ, the harvested power τ and the
harvested power density s in terms of perturbation ϵ for various levels of the unperturbed response level B. For small
response levels, i.e. when the system response is smaller than the excitation (B¼ 0:5) we observe that the negative stiffness
oscillator has more robustness to maintain its response level when it is excited by lower frequencies ðϵo0Þ. For the same
case, the harvested power decays in a similar fashion with the other two oscillators. Therefore, for ϵo0 and B¼ 0:5 the
nonlinear oscillator with negative stiffness has the most robust performance. For faster excitations ðϵ40Þ we observe that
all oscillators drop their response level in smaller values than the design response level B0 with the linear system having the
most robust behavior in terms of the total harvested power. We emphasize that as long as δo1 robustness is essentially
defined by the largest value of τ among different types of oscillators.

For B¼ 1, we can observe that for all values of ϵ the negative stiffness oscillator has the most robust behavior in terms of
the excitation level while the behavior of the harvested power is also better compared with the other two classes of
oscillators. For larger values of the response level (B¼ 8), we note that the response level ratio δ is maintained in levels
below 1; therefore the size of the device will not be exceeded due to the input spectrum shifts. On the other hand when we
consider the variations of the harvested power, we observe that all in all the linear oscillators have the most robust behavior,
while the two nonlinear oscillators drop suddenly their performance to very small levels for larger, positive values of ϵ.

Colored noise excitation: Similarly with the monochromatic case, we consider a small perturbation ϵ for the colored noise
excitation spectrum:

Shh ω�ϵð Þ ¼ 1
ðω�ϵÞ5

exp �ðω�ϵÞ�4
� �

: (43)

The results are presented in Fig. 12 for three different cases of unperturbed excitation levels B0. In contrast to the
monochromatic case, the ratios δ; τ; and s have much smoother dependence on the perturbation ϵ. Moreover, their variation
is very similar for all three response levels B0. More specifically, we can clearly see that the two classes of nonlinear
oscillators can better maintain their response level over all values of ϵ. On the other hand, the linear oscillator obtains a
larger response level B when the spectrum is shifted to the right ðϵ40Þ without substantially increasing the harvested
power compared with the other two nonlinear oscillators. For ϵo0, all three families of oscillators harvest the same amount
of energy. Thus, for colored noise excitation, the two families of nonlinear oscillators achieve the most robust performance.
Hence, as long as the nonlinear design is chosen so that it has comparable optimal performance with the family of linear
oscillators, it is the preferable choice since it has the best robustness properties.
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Fig. 11. Robustness of (a) the response level, (b) the power harvested, and (c) the harvested power density for the monochromatic excitation under three
regimes of operation: B¼ 0:5, B¼ 1, and B¼ 8.
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5. Conclusions

We have considered the problem of energy harvesting using SDOF oscillators. We first developed objective measures that
quantify the performance of general nonlinear systems from broadband spectra, i.e. simultaneous excitation from a broad
range of harmonics. These measures explicitly take into account the required size of the device in order to achieve this
performance. We demonstrated that these measures do not depend on the magnitude or the temporal scale of the input
spectrum but only the relative distribution of energy among different harmonics. In addition they are suitable to compare
whole classes of oscillators since they always pick the most effective parameter configuration.

Using analytical and numerical methods, we applied the developed measures to quantify the performance of three
different families of oscillators (linear, essentially cubic, and negative stiffness or bistable) for three different types of
excitation spectra: an extreme form of a narrow band excitation (monochromatic excitation), an extreme form of a wide-
band excitation (white-noise), and an intermediate case involving colored noise (Pierson–Moskowitz spectrum). For all
three cases, we presented numerical and analytical arguments that the nonlinear oscillators can achieve in the best case
equal performance with the optimal linear oscillator, given that the size of the device does not change. We also considered
the robustness of each design to input spectrum shifts concluding that the nonlinear oscillator has the best behavior for the
colored noise excitation. To this end, we concluded that, under a situation of designing a harvester with specific power, a
nonlinear oscillator designed to achieve a performance that is close to the optimal performance of a linear oscillator is the
best choice since it also has robustness against small perturbations.

Future work involves the generalization of the presented criteria to MDOF oscillators and the study of the benefits due to
the nonlinear energy transfers between modes [18–21]. Preliminary results indicate that the application of nonlinear energy
transfer ideas can have a significant impact on achieving higher harvested power density by distributing energy to more
than one mode achieving in this way a smaller required device size without reducing its performance level.
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Fig. 12. Robustness of (a) the response level, (b) the power harvested, and (c) the harvested power density for the PM spectrum excitation under three
regimes of operation: B¼ 0:5, B¼ 1, and B¼ 8.
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Appendix A. An overview of spectral properties for stationary and ergodic signals

Here we recall some basic properties for random signals. Let hðtÞ be a stationary and ergodic signal for which we assume
that it has finite power, i.e.

lim
T-1

1
2T

Z T

�T
h tð Þj2 dto1:
��

We define the correlation function

Rhh τð Þ ¼ lim
T-1

1
2T

Z T

�T
h tð Þh tþτð Þ dt ¼ hðtÞhðtþτÞ;

where the bar denotes ensemble averaging and the last equality follows from the assumption of ergodicity. Note that we
always have the property

jRhhðτÞjrRhhð0Þ:
Based on the correlation function, we can compute the power spectrum

Shh ωð Þ ¼F Rhh τð Þ½ � ¼ lim
T-1

1
2T

Z T

�T
hðtÞe� iωt dt

����
����
2

;
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where the Fourier transform is given by

F ½RhhðτÞ� ¼
Z 1

�1
RhhðτÞe� iωτ dτ:

The power spectrum describes how the energy of a signal hðtÞ is distributed among harmonics in an averaged sense.
The total averaged energy of the signal is given by

Eh ¼ lim
T-1

1
2T

Z T

�T
h tð Þj2 dt ¼ jhðtÞj2 ¼ Rhh 0ð Þ ¼ 1

2π

Z 1

�1
Shh ωð Þ dω:

����
In contrast to the usual energy spectrum defined by the magnitude of the Fourier transform of the signal, i.e. SeðωÞ ¼
jF ½hðtÞ�j2; the power spectrum can be defined for a signal for which the energy

R T
�T jhðtÞj2 dt is not finite. Therefore we

should see the power spectrum as a time or ensemble average of the energy distributed over different harmonics.
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