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Abstract

Evolutionary models in which N players are repeatedly matched to play a game
have “fast convergence” to a set A if the models both reach A quickly and leave
A slowly, where “quickly” and “slowly” refer to whether the expected hitting and
exit times remain bounded when N tends to infinity. We provide simple and general
Lyapunov criteria which are sufficient for reaching quickly and leaving slowly. We use
these criteria to determine aspects of learning models that promote fast convergence.
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1 Introduction

The study of stochastic stability in evolutionary models focuses on the long-run outcomes

of various sorts of adjustment processes that combine best response or learning dynamics

with mutations, errors, or other sorts of random fluctuations. Because the stochastic terms

make these systems ergodic, they have a unique invariant distribution which corresponds to

their long-run outcome, and since these outcomes typically single out a single equilibrium

they provide a way to do equilibrium selection, as in Kandori, Mailath, and Rob (1993)

and Young (1993). However, the long-run outcome is only relevant if it is reached in a

reasonable amount of time in populations of the relevant size, and this is not the case if

agents intend to play a best response to the current state and the stochastic term arises

from a constant probability of error, as here the expected time for the population to shift

to the risk-dominant equilibrium is exponentially large in the population (Ellison, 1993).

For this reason, there has been considerable interest in understanding when the long run

outcome is reached “quickly” in the sense that the expected number of time periods to reach

a neighborhood of the selected outcome is bounded above, independent of the population

size. Past work in economics has used one of two methods for showing that this occurs:

either an argument using coupled Markov processes as in Ellison (1993), or a two-step

approach of first showing that the associated deterministic, continuous time, mean field

has a global attractor, and then showing that the discrete-time stochastic system behaves

approximately the same way when N is large, as in Kreindler and Young (2013, 2014.) We

say more about these papers below.1

This paper provides a simple Lyapunov condition for quickness that covers this past

work. We also provide a complementary Lyapunov condition under which the process

leaves the target set “slowly,” in the sense that the probability of getting more than ε

away from the set in any fixed time goes to zero as the population size increases. As this

latter property seems necessary for convergence to the target set to be interesting, we only

say that there is “fast convergence” when both conditions hold. By providing a unified

approach to proving fast convergence, we highlight the connection between them; this may

provide intuition about other settings where the same result will apply. Our conditions are

also relatively tractable and portable, which lets us prove that there is fast convergence in a

number of new cases that are more complicated than those already in the literature. As one

example of this, Section 2 presents a model of local interaction with a small-world element,

1In mathematical biology hitting times for evolutionary processes have been characterized by diffusion
approximations as in Ethier and Kurtz (1986) and Ewens (2004) and have been explicitly calculated for
birth-death processes as in Nakajima and Masuda (2015).
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where players interact both with their neighbors and with randomly drawn members of the

whole population; here neither of the past techniques can be applied.

Section 3 presents the general model, which is based on a collection of time-homogeneous

Markov chains SN = {SN(t) : t = 0, 1
N
, 2
N
, . . .} with finite state spaces ΩN , where N

indexes the number of players in the population. These Markov chains may track for

example the play of each player at each location of a network. We then define functions

φN on ΩN that map to a space X of fixed dimension, and consider the processes given by

XN(t) = φN(SN(t)). For example, these processes can describe the share of agents using

each of a finite number of pure strategies in a game.

Section 4 presents a pair of general results that use a Lyapunov function V to provide

sufficient conditions for “reaching quickly”and “leaving slowly.” Proposition 1 says roughly

that the system reaches a subset A of X quickly if the expectation of V (XN(t)) decreases

by at least a fixed rate c > 0 whenever the state is outside of A, that is,

E
[
V
(
XN
(
t+

1

N

))
− V

(
XN(t)

) ∣∣∣SN(t)
]
≤ − c

N
when XN(t) 6∈ A.

Intuitively, if XN(t) is deterministic and V is nonnegative, this condition implies that

XN(t) will reach A from initial state x in V (x)/c periods; Proposition 1 extends this to

a probabilistic statement. Proposition 2 provides a closely related condition for leaving

A slowly: If the maximum rate at which the state can move is bounded and V (XN(t))

is decreasing in expectation at rate c whenever XN(t) is outside A, then the system will

leave A slowly. Intuitively, this is because getting more than ε away from A would take

large number of steps against the drift. Propositions 3 and 4 extend the analysis to the

case where the expected decrease of the Lyapunov function decreases as the target set is

approached, and to the case where a set is reached quickly through a multi-step process

that need not monotonically approach the set.

Sections 5 and 6 use our general results to examine whether convergence is fast in

various evolutionary game dynamics. In Section 5 we study models where the population

shares using each strategy provide an adequate state space, as when the noisy-sampling

model of Sandholm (2001) is extended to include random errors, or when agents play a

stochastic best response to the current state, with less costly errors occurring less often,

as in Kreindler and Young (2013, 2014).2 Our examples further explore each of these

mechanisms. Here, there will be fast convergence to a neighborhood of the state in which all

2Sandholm analyzed a continuum population model, but the approximation results of Benaim and
Weibull (2003) can be used to show that there is fast convergence in finite populations if errors are added
to Sandholm’s model. (If the only source of noise is sampling, then the population can stay at the dominated
equilibrium.)
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agents use one particular strategy whenever the popularity of that strategy is increasing in

expectation when the state is outside the neighborhood, and conversely there will not be fast

convergence to such a neighborhood if the popularity is decreasing in expectation whenever

the popularity is sufficiently low. Section 5.2 examines models with stochastic choice, and

Section 5.3 considers models where agents receive noisy signals of the current state. In most

of the examples we show that if there is enough noise, there is fast convergence to the set

where the majority of agents use the risk-dominant action in a coordination game, because

the share of agents playing the risk-dominant action increases in expectation whenever it

is less than one-half. Intuitively, pure noise will increase the share of any strategy when

it is near zero, and at intermediate states risk-dominance pushes in one direction; the last

part of the argument is that in both sorts of examples the dynamics have a convexity that

generates a reinforcing interaction between noise and risk dominance.

Section 6 analyzes two examples that require larger and more complex state spaces: a

two-neighbor local interaction model like Ellison (1993), where the state must track the

actions taken at each location in the network; and a model of learning with recency, where

the state must track past observations. In these more complex models, it is very helpful

that our Lyapunov results can be applied directly, without first establishing that the model

converges in an appropriate sense to some deterministic limit dynamic as N →∞, because

the relevant approximation theorems assume that the dimension of the state space is fixed

and finite independent of N .

To help clarify the difference between our approach and past work, we will review

simplified versions of the Ellison (1993) and Kreindler and Young (2013) results in a bit

more detail to explain their proof techniques and how our Lyapunov-function approach

applies to them. Suppose then that a single population of agents plays a symmetric 2× 2

coordination game with two strict Nash equilibria, one of which is both risk-dominant and

Pareto-dominant, and one agent adjusts their play per time step.

In Kreindler and Young (2013), agents observe the population fractions that are cur-

rently using each action, and choose a logit best response to it. Here the state of the system

is simply these fractions, and their result shows that the state moves quickly to a neigh-

borhood of the risk dominant equilibrium when there is enough noise, i.e. that the agent

puts sufficient probability on the suboptimal choice. To prove this, they first showed that

when there is “enough noise” (as parameterized in their paper by the logit parameter) the

logit best reply curves have a unique intersection,3 so the associated deterministic, contin-

3This intersection is what Fudenberg and Kreps (1993) called a Nash distribution and McKelvey and
Palfrey (1995) subsequently called a quantal response equilibrium. The uniqueness of the intersection relies
on the convexity alluded to earlier, as shown in example 2.
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uous time mean field has a unique steady state; because the system is one-dimensional this

means that the share of agents playing the risk-dominant action increases monotonically

whenever it is below the steady-state level. They then used the results of Benäım and

Weibull (2003) to show that the discrete-time stochastic system behaves approximately the

same way whenN is large, and specifically that the limit of the expected waiting time to

the neighborhood of the attractor is the same.

In the two-neighbor local interaction model of Ellison (1993), agents are arranged on

a circle. With probability 1 − ε the adjusting agent chooses a best reply to the play of

his neighbors, while with probability ε the agent chooses the other strategy. Here the

intuitive reason for fast convergence is that a small pocket of agents playing the risk-

dominant action is very robust to noise or mutations, while a cluster of agents using the

other action is not. Ellison’s formal argument uses a coupling of Markov processes. It

starts by showing that there is a T such that even in the worst case where no players

outside a small fixed neighborhood ever use the risk-dominant action, the neighborhood

will with high probability have all players using the risk dominant action after T periods.

The original model can be seen as a coupling together of a collection of these neighborhood-

specific processes and the linkages can only further speed convergence to the risk dominant

action.4

Our approach to these and other examples is to use the intuition for fast convergence

to identify a suitable Lyapunov function. In the case where agents play a stochastic best

response to the aggregate population fractions, as in Kreindler and Young (2013), we use

the share of agents playing the risk dominant action. Here the properties of the response

function imply that the expected value of this share is strictly increasing whenever it is no

greater than 1
2
, which implies fast convergence to that set. As we will show in section 5,

the argument for more general payoffs and for games with more than 2 actions is similar: it

requires that there be “enough noise” that the risk dominated equilibria disappear- which

depends on the extent of risk dominance- and it also requires that the noise be sufficiently

small that the intersection of the response curves gives probability more than 1
2

to the risk-

dominant action. Unlike the deterministic approximation results, our result applies directly

to the discrete-time stochastic process and does not require the technical conditions needed

for the approximation theorem to apply.

In the case of local interaction, the state of the system must encode what each agent is

doing, so it corresponds to a vector in {A,B}N . For this reason it would be difficult to prove

fast convergence here using approximation by a deterministic mean field, as the dimension

4Young (2011) uses a similar argument.
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of the state of the system changes with N. To use our approach, we must identify some

quantity that is increasing in expectation until most agents play A. The most obvious

function to try, the share of agents playing A, is increasing in expectation when fewer

than half of the players play A, but decreasing (albeit at less than an ε rate) in states like

(A,A,A, . . . , A,B,B, . . . , B) where more than half of the players are already using strategy

A. In these problem states, the expected number of agents who have A as a best response

is strictly increasing. That function also does not work as a Lyapunov function because it

has an expected change of zero at some other states like (B,A,B,B,A,B, . . . , B,A,B.).

However, adding the two functions with appropriate weights does provide a valid Lyapunov

function, and so implies that there is fast convergence to a set where most players have A

as their best response. One of our general results also lets us show further that the system

quickly reaches the set where most agents play A.

2 Local Interaction in a Small World

In this section we present an example that readers can keep in mind as they read our more

abstract model and results.

Consider the following local interaction model with a “small-world” element: N players

are arranged around circle and are randomly matched to play a 2× 2 coordination game.

One player chosen at random considers updating his strategy in each period. With proba-

bility 1 − ε > 1/2 the updating player plays a best response to the average of the play in

the previous period of four players: his two immediate neighbors and two players selected

uniformly at random;5 with probability ε the updating player chooses the opposite strategy.

This combination of local and global interaction seems a reasonable description of many

social games. We focus on the case where strategy 1 is risk-dominant, but not 1
4
-dominant:

an updating player has strategy 1 as the best response if at least two of the four players

in his sample are using it, but strategy 2 is the best response if at least 3 players in the

sample are using strategy 2. An example is the familiar coordination game where players

get 2 if they coordinate on strategy 1, 1 if they coordinate on strategy 2, and 0 if they

miscoordinate.

In the noiseless (ε = 0) version of this model, strategy 1 will not spread contagiously as it

does in the two-neighbor local interaction model. Instead, in states with just a few isolated

clusters of players using strategy 1, the clusters will tend to shrink from the edges and

5To simplify the algebra we assume that the random samples are independent draws from the full
population (including the player himself and the immediate neighbors).
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disappear. However, the model does have both some local interaction and some sampling-

based beliefs, both of which can promote fast evolution, so it is plausible that evolution

may be fast.

Neither of the two standard proof techniques can be readily applied: The dimension of

the state space increases with the number of players, which rules out using the Benäım and

Weibull (2003) analysis of deterministic approximations of large-population models, and

the model does not have the sort of purely local stable “clusters” that underlie Ellison’s

coupling argument.

An application of our Lyapunov condition shows that the model has fast convergence to

the risk dominant equilibrium if the noise level is above a critical threshold. Let x1 denote

the fraction of the agents using strategy 1. Intuitively, when x1 is very small the state

tends to increase because of the ε noise. When x1 is larger there are additional adoptions

from players who have neighbors playing strategy 1 and/or see it in their random sample.

This force dominates until most players are playing the risk dominant action.

Example 1. Consider the model above. Suppose that strategy 1 is risk dominant. Then,

for ε > 0.065 the model has fast convergence to {x|x1 > 1− 1.5ε}.

The proof is in the Appendix. In outline, we use as Lyapunov function the share of

x1 of agents using strategy 1. Then at any state s in which a fraction x1 of the play-

ers play strategy 1, the expected change in the share of players using strategy 1 will be
1
N

(y(1− ε) + (1− y)ε− x1) , where y is the probability that the updating player has strat-

egy 1 as a best response in state s. We show that this is bounded below by a positive

constant whenever x1 ∈ [0, 1− 1.5ε]. The probability y is not a function of x1, but we can

put a lower bound on y for each x1 by partitioning [0, 1−1.5ε] into three subintervals. When

x1 is small the worst case is to have the players using strategy 1 be completely isolated. In

such states players adopt strategy 1 both due to ε mutations (which by themselves make

strategy 1 grow in popularity whenever x1 < ε) and when they randomly get two observa-

tions of strategy 1 in their sample. When x1 is large the worst case becomes having all of

the players using strategy 1 in a single cluster. Here, the ε mutations tend to decrease x1,

but this is outweighed by adoptions from players who randomly sample multiple players

from the cluster unless almost all players are already in the cluster.
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3 Model and definitions

Suppose that for each integer N = 1, 2, . . . we are given a discrete time homogeneous

Markov chain SN = {SN(t) : t = 0, 1
N
, 2
N
, . . . } with finite state space ΩN .6 Let X be a

compact subset of Rm for some m. Given some function φN : ΩN → X , let XN be the

stochastic process on X determined by XN(t) = φN(SN(t)). In most of our applications

to models of populations playing a game with m actions, we take X to be the (m − 1)-

dimensional unit simplex ∆ = {x ∈ [0, 1]m : x1 + · · ·+xm = 1} and a point x ∈ ∆ gives the

fraction of players using each of the m strategies. We denote the conditional probability

and the conditional expectation given SN(0) = s by Ps and Es. For every A ⊂ X let Ā

denote its closure.

To discuss the speed with which the process XN reaches the set A ⊂ X we write

τNA = inf{t ≥ 0 : XN(t) ∈ A}

for the random variable giving the time at which A is first reached and define

WN(A, s) = Es(τ
N
A )

to be the expected wait to reach A conditional on the process SN starting at state s. Our

first main definition is

Definition 1. The family {XN} reaches A quickly if

lim sup
N→∞

sup
s∈ΩN

WN(A, s) <∞. (1)

Note that as in Kreindler and Young (2013) this is an asymptotic property meaning

that the expected waiting time remains bounded (uniformly over all starting points) in the

N →∞ limit. We think that this is a natural definition of “quickly” for many applications.

For example, our model could capture a situation in which a large number of players are

asyncronously randomly matched to play some game with each player being matched on

average once per unit of calendar time. Here, the 1
N

period length would correspond to

the interval between encounters, and quickly would mean that the calendar time required

for some behavior to arise was bounded independently of the population size.7 In other

6We believe that the assumption that SN has a finite state space is not critical; we use it as a convenient
way to avoid technical difficulties.

7If for every N , SN is irreducible and φ−1N (A) 6= ∅, or, more generally, if for every N , φ−1N (A) is accessible
from its complement, then (1) is equivalent to the existence of a constant M <∞ such that WN (A, s) < M
for all s ∈ ΩN and all N . This stronger condition holds in all the examples in the present paper where we
show that a set is reached quickly. We have made the definition less demanding to include the possibility
that a set is reached quickly even if it is so small that, for finitely many N , it contains none of the states
of XN .
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applications, one could want other definitions of fast convergence.8

Our second main definition is

Definition 2. The family {XN} leaves A slowly if for any finite T and for every open set

U containing Ā

lim
N→∞

max
s∈φ−1

N (A)
Ps(τ

N
X\U ≤ T ) = 0. (2)

Note that the requirement in the definition is stronger than requiring that

lim
N→∞

min
s∈φ−1

N (A)
WN(X \ U, s) =∞.

We made the definition more demanding in this dimension so that we will not count a model

as leaving a set slowly just because there is some probability of being trapped within A for

a very long time. Instead, it must be the case that even for very large T , the probability

of escaping within T periods vanishes in the N →∞ limit.9

Finally, we define “fast convergence” as the combination of these two properties.

Definition 3. The family {XN} has fast convergence to A if {XN} reaches A quickly and

leaves A slowly.

4 Lyapunov criteria

This section contains several sufficient conditions for “reaching quickly” and “leaving

slowly.”

4.1 Main results

We first present results relating the two components of fast convergence to the existence

of Lyapunov functions satisfying certain properties. Proposition 1 contains a Lyapunov

condition for {XN} to reach a given set quickly. Where applicable, it also provides an

explicit upper bound for the expected hitting time.

8For example, in a model of learning from others it might be reasonable to assume that each individual
got more information per unit time in a larger population, e.g. each might get αN pieces of information
per unit time by observing a fraction α of the others. If one modeled every instance of one player getting
one piece of information as a period, then it would be natural to also regard evolution as fast if waiting
times increased linearly in N .

9It would have been more accurate to say {XN} “is likely to remain close to A for a long time” rather
than “leaves A slowly,” but we prefer the simpler wording. For example, for m = 2 a deterministic system
which immediately transitions from (0, 1) to ( 1

N , 1−
1
N ), but then immediately returns to (0, 1) is defined

to leave {(0, 1)} slowly.
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To provide some intuition for the result, suppose that the Markov processes are deter-

ministic and there is a nonnegative function V for which V (XN(t)) decreases by at least

c/N in the next 1/N -length time interval whenever XN(t) is outside A. Clearly, when

such a process starts at x it must reach A within V (x)/c units of time. The proposition

extends this simple argument to the case when the Markov process is not deterministic,

but V (XN(t)) still decreases in expectation at rate c.

Proposition 1. Let A ⊂ X , c ∈ (0,∞), and let V : X → [0,∞) be a bounded function. If

Es
[
V
(
XN (1/N)

)
− V

(
XN (0)

)]
≤ − c

N
for all s ∈ φ−1

N (X \ A), (3)

then WN(A, s) ≤ V (φN(s))/c for every s ∈ ΩN . In particular, if (3) holds for all N

sufficiently large, then {XN} reaches A quickly.

Remark. Note that the implication in the sentence containing (3) holds for every single

N . Thus, if one can show, for example, that there is a constant c0 > 0 so that for all N ,

Es
[
V
(
XN (1/N)

)
− V

(
XN (0)

)]
≤ − c0

N2
for all s ∈ φ−1

N (X \ A),

one can conclude that maxs∈ΩN
WN(A, s) grows at most linearly in N .

Proof of Proposition 1. Fix N ≥ 1, define Y (t) = XN(t ∧ τNA ), and let Z(t) be 0 or 1

according as Y (t) ∈ A or Y (t) 6∈ A. By (3), for t = 0, 1
N
, 2
N
, . . . , we have

E
[
V (Y (t+ 1/N))− V (Y (t))|Y (t) = y, SN(t) = st

]
≤ − c

N
,

for any (y, st) with y 6∈ A that occurs with positive probability. The LHS of the above

inequality is identically zero if y ∈ A. So we can combine these two observations and write

E
[
V (Y (t+ 1/N))− V (Y (t))|Y (t), SN(t)

]
≤ − c

N
Z(t).

The expected change in the value function conditional on the state s at t = 0 can be

computed by iterated expectations as

Es [V (Y (t+ 1/N))− V (Y (t))] = Es
[
E
[
V (Y (t+ 1/N))− V (Y (t))|Y (t), SN(t)

]]
.

This gives

Es [V (Y (t+ 1/N))− V (Y (t))] ≤ − c

N
Es [Z(t)] ,

which is equivalent to

1

N
Es [Z(t)] ≤ 1

c
(Es [V (Y (t))]− Es [V (Y (t+ 1/N))]) .
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The expected time to reach A is given by 1
N
Es[
∑∞

k=0 Z( k
N

)]. The partial sums are

bounded above:

1

N

m−1∑
k=0

EsZ

(
k

N

)
≤ 1

c

m−1∑
k=0

(
Es [V (Y (k/N))]− Es [V (Y ((k + 1)/N))]

)
=

1

c

(
Es [V (Y (0))]− Es [V (Y (m/N))]

)
≤ 1

c
Es [V (Y (0))] =

1

c
V (φN(s)).

Hence, by monotone convergence, WN(A, s) ≤ V (φN(s))/c. �

Remark. The proof resembles that of Foster’s theorem (e.g. Brémaud (1999)). Like that

proof, the one here has the flavor of martingale arguments although it does not appeal to

martingale results.

Our second proposition provides a criterion for {XN} to leave a set A slowly. It requires

that the Lyapunov function decrease in expectation whenever XN(t) is slightly outside A.

This suffices because we also assume that there is an upper bound on the rate at which the

process can move.10 As a result, whenever the process does jump out of A it first reaches a

point slightly outside A. The Lyapunov condition then ensures that for large N the system

is unlikely to escape the neighborhood before being drawn back into A.

Proposition 2. Suppose there is a constant K < ∞ such that Ps(‖XN( 1
N

) − XN(0)‖ ≤
K
N

) = 1 for all N and all s ∈ ΩN , where ‖ · ‖ is the Euclidean norm on Rm. Let A ⊂ X be

a set with φ−1
N (A) 6= ∅ for all N ≥ N0 for some N0. Let c ∈ (0,∞) and let V : X → R be

a Lipschitz continuous function such that

V (x) < V (y) for all x ∈ Ā, y ∈ X \ Ā. (4)

Suppose there is an open set U0 ⊂ X that contains Ā and

Es
[
V
(
XN (1/N)

)
− V

(
XN(0)

)]
≤ − c

N
(5)

whenever s ∈ φ−1
N (U0 \ Ā) and N ≥ N0. Then {XN} leaves A slowly.

Remark. In the Appendix we prove the stronger result that there is a constant γ such

that for N large the exit time τNX\U first order stochastically dominates an exponential

10For example, this would hold if at most K players change their strategies in each 1/N -length time
interval.
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random variable with mean eγN . The argument writes the exit time as the sum over all

instances that the process reaches Ā of the transit times to either reach X \U or to return

to Ā. Each such transit takes at least one unit of time, so it suffices to show that the

number of transits is large enough. The key step is to show that the probability of reaching

X \U before returning to Ā when starting in Ā is small (and declines exponentially in N).

Intuitively, this is true because the bound on the speed with which the process can move

implies that any initial step out of Ā reaches a point that is bounded away from X \U , and

because the drift is toward Ā and many steps against the drift are needed to reach X \ U,
it becomes increasingly unlikely that a transit will lead to X \U rather than to Ā when N

is large.

The technical argument focuses on the random variable Y N(t) ≡ eδ0NV (XN (t)). Using

the hypotheses that XN(t) moves in bounded steps and V is Lipschitz continuous, we

can approximate the exponential in the definition of Y N using a Taylor expansion and

show that for an appropriately small value of δ0, the random variable Y N(t) is a positive

supermartingale whenever XN(t) is between Ā and X \U . This allows us to apply general

results on positive supermartingales to conclude that the probability of reaching X \ U
before returning to Ā is at most e−γN for some constant γ.

The hypotheses of Propositions 1 and 2 are similar. One difference is that Proposition

2 is more demanding in that it has added a bound on the speed with which the process

can move. Another is that Proposition 1 requires that the Lyapunov condition holds on a

larger set (whenever XN(t) is outside A versus just when XN(t) is in some neighborhood

of Ā). When the more restrictive version of each hypothesis holds the process will both

reach A quickly and leave A slowly. Hence, we have fast convergence to A.

Corollary 2.1. Suppose the hypotheses of Proposition 2 are satisfied and that condition

(5) holds also for all s ∈ φ−1
N (X \ A) when N ≥ N0. Then {XN} has fast convergence to

A.

Proof. Any Lipschitz continuous function on X is bounded, and replacing V (x) by V (x)−
miny∈X V (y) if necessary, one may assume that V is nonnegative. Hence, the hypotheses

of Propositions 1 and 2 are satisfied. �

4.2 Extensions: Systems that slow at the limit and multistep
arguments

Some models will not satisfy the hypotheses of the results above because the expected

decrease in the Lyapunov function decreases to 0 as the state approaches the target set A.
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In the case of Proposition 1, one will often be able to slightly weaken the desired conclusion

and argue that for any open neighborhood U of A, the model reaches U quickly. This

will follow if there is a positive lower bound on the rate at which the Lyapunov function

decreases when x ∈ X \ U . In the case of Proposition 2 we can do even better because a

drift that vanishes at A is not a problem. To describe this formally, for A ⊂ X , let U(A, ε)

denote the ε-neighborhood of A in X , U(A, ε) = {x ∈ X : infy∈A ‖x− y‖ < ε}.

Proposition 3. The conclusion of Proposition 2 that {XN} leaves A slowly remains true

if the Lyapunov hypothesis is replaced with “Suppose there is an open set U0 ⊂ X that

contains Ā and for every ε > 0 there are numbers cε > 0 and Nε ≥ N0 such that

Es

[
V

(
XN
( 1

N

))
− V

(
X(N)(0)

)]
≤ − cε

N

for all s ∈ φ−1
N

(
U0 \ U(Ā, ε)

)
and N ≥ Nε.”

Proof. Let U be an open set containing Ā. Let v1 := maxx∈Ā V (x) and choose v2 > v1 so

small that Ã := {x ∈ X : V (x) ≤ v2} ⊂ U ∩ U0. Then choose ε > 0 so that U(Ā, ε) ⊂ Ã.

Now apply Proposition 2 with A, c,N0 replaced by Ã, cε and Nε. This yields that {XN}
leaves Ã slowly. Thus, as A ⊂ Ã ⊂ U ,

lim
N→∞

max
s∈φ−1

N (A)
Ps(τ

N
X\U ≤ T ) ≤ lim

N→∞
max

s∈φ−1
N (Ã)

Ps(τ
N
X\U ≤ T ) = 0

for all T ∈ [0,∞). This proves that {XN} leaves A slowly. �

In some cases models have fast convergence even though they do not always “drift”

toward the selected set. For example, in a model where N agents are arranged on a circle

to play a 2 × 2 coordination game and play a best response to the average play of their

2k closest neighbors unless a mutation occurs, the number of players playing the risk-

dominant action is not monotonically increasing – it can decrease in expectation if there is

not a sufficiently large cluster of players playing the risk-dominant action. Ellison (1993)

nonetheless shows that play reaches a neighborhood of the state where everyone plays the

risk-dominant equilibrium quickly. Intuitively, this occurs because evolution can proceed

in a two-step manner: Each period there is a nonzero chance that a cluster of players using

the risk-dominant action will form, and whenever such a cluster exists, the model drifts

toward everyone playing the risk-dominant equilibrium.

Our results can be extended so that they apply to some models of this variety. Specifi-

cally, the proposition below shows that {XN} reaches a set A quickly when three conditions

hold: (1) {XN} reaches a superset B of A quickly; (2) {XN} does not stay too long in

13



B \A, that is, {XN} reaches A∪Bc quickly; and (3) the probability that {XN} reaches A

before Bc when starting anywhere in B \A is bounded away from zero. The proof uses an

argument related to Wald’s equation for the expectation of a random sum of i.i.d. random

variables. A transition from Bc to A consists of a random number of transitions from Bc

to B \ A and back to Bc with a final transition to A. The assumptions ensure that the

expected lengths of the individual transitions are bounded and that the number of these

transitions has a finite expectation as well.

Proposition 4. Let A ⊂ B ⊂ X . Suppose {XN} reaches B quickly, {XN} reaches A∪Bc

quickly, and there exist c > 0 and N0 ∈ N such that for all N ≥ N0,

Ps(X
N(τNA∪Bc) ∈ A) ≥ c for all s ∈ φ−1

N (B \ A). (6)

Then {XN} reaches A quickly.

The proof is contained in the Appendix. We will use this result in the proof of Propo-

sition 7 in the following applications section.

Condition (6) can be hard to verify. The following variant of Proposition 4 does not

contain this condition, but the assumption that {XN} reaches B quickly is replaced by

the stronger assumption that {XN} has fast convergence to a suitable subset of intB, the

interior of B.

Proposition 5. Let A ⊂ B ⊂ X . Suppose {XN} has fast convergence to a set C with

C̄ ⊂ intB and {XN} reaches A ∪Bc quickly. Then {XN} reaches A quickly.

The proof is in the Appendix. We apply this result when we return to the two-neighbor

local interaction model in Section 6. Another potential application for Propositions 4 and 5

that we do not pursue here is to develop results about the selection of iterated p-dominant

equilibria. We believe that this would lead to results like those in Oyama, Sandholm, and

Tercieux (2014).

5 Dynamics based on population shares

This section analyzes models where the evolution of the system depends only on the number

of agents using each strategy, so that the state space ΩN can simply be these numbers. We

connect fast convergence here with whether the popularity of some strategy is increasing

in expectation, and derive several results about particular models as corollaries.
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5.1 A general result

Suppose that N players are choosing strategies for a game with m pure strategies at t =

0, 1
N
, 2
N
, . . .. Throughout this section we assume that in each time period a single agent is

chosen at random to revise his strategy. (With a time renormalization this could describe

a model in which revision opportunities arrive in continuous time according to independent

Poisson processes.) Let XN
i (t) denote the share of agents that play strategy i at time t.

If the current state of the population is x, suppose the revising agent chooses strategy

i with probability fi(x), regardless of the agent’s own current action.11 For now, we let

f1, . . . , fm : ∆→ [0, 1] be arbitrary functions with f1(x) + · · ·+ fm(x) = 1 for all x.

Part (a) of our general result shows that if the probability of choosing some strategy i

exceeds its current share whenever that share is below some threshold a, then there is fast

convergence to the states where the share of i exceeds a. Part (b) gives a partial converse.

Proposition 6. Consider a dynamic {XN} with choice rules f1(x), . . . , fm(x). Let a, c ∈
(0, 1) and i ∈ {1, . . . ,m}.

(a) If

fi(x)− xi ≥ c whenever xi ≤ a,

then {XN} has fast convergence to {x : xi > a} and WN({x : xi > a}, XN(0)) ≤ 1
c
.

(b) If fi is continuous and

fi(x) < a whenever xi = a,

then {XN} leaves {x : xi < a} slowly.

(c) If fi is continuous and

fi(x) > a whenever xi = a,

then {XN} leaves {x : xi > a} slowly.

Remark. We use (b) and (c) to show that fast convergence fails in Example 4. It can

also be used to show that a sequential-move version of the KMR model will not have fast

convergence in a 2 × 2 coordination game unless there is so much noise (or large enough

payoff differences) that one strategy is ε-dominant.

11The assumption that the fi do not depend on the current action rules out models in which agents
respond to the current play of all others not including themselves, but since the effect of any one agent’s
strategy on the overall state is of order 1

N , we do not expect it to matter for large N except perhaps in
knife-edge cases.
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Proof. Here φN(x) = x, SN = XN , and ΩN = {x ∈ ∆ : Nx ∈ Nm
0 }.

(a) Let V (x) = 1−xi. Fast convergence to {x : xi > a} then follows from Corollary 2.1

since for every x ∈ ΩN with xi ≤ a,

Ex

[
V
(
XN
( 1

N

))
− V

(
XN(0)

)]
= −Ex

[
XN
i

( 1

N

)
−XN

i (0)
]

= − 1

N
(1− xi)fi(x) +

1

N
xi[1− fi(x)] = − 1

N
[fi(x)− xi] ≤ −

c

N
.

The uniform bound on the convergence time follows from Proposition 1.

(b) Set c′ = −1
2

sup{fi(x) − xi : x ∈ ∆, xi = a}. The set of x with xi = a is compact

so c′ > 0. The uniform continuity of fi implies that we can choose an ε > 0 so that

fi(x) − xi ≤ −c′ whenever xi ∈ [a, a + ε]. The assertion follows from Proposition 2 with

V (x) = xi.

(c) An argument similar to that in (b) shows that the present condition on fi implies

that there exist c′ > 0 and ε > 0 so that fi(x) − xi ≥ c′ whenever xi ∈ [a − ε, a]. The

assertion follows again from Proposition 2 with V (x) = 1− xi. �

Remark. The continuity of fi is used in part (b) only to show that fi(x)−xi is negative and

bounded away from 0 when xi is in an interval around a. It would suffice to instead assume

that there exists a c > 0 and an a′ > a such that fi(x)− xi ≤ −c whenever xi ∈ (a, a′). In

view of Proposition 3 it is also sufficient to assume that fi is upper semicontinuous with

fi(x)− xi < 0 whenever xi ∈ (a, a′). A similar remark applies to part (c).

The rest of this section presents several examples that use this result in coordination

games under different dynamics. The first subsection looks at the case where fast conver-

gence arises due to the noise caused by stochastic choice; the second subsection considers

the case where players receive noisy signals of the current state. In each case we assume

that strategy 1 is risk dominant.

5.2 Stochastic choice

Our first example here generalizes Kreindler and Young (2013)’s analysis of logit responses

in 2 × 2 games. We show that the key property of the logit responses they analyzed

is that they can be generated by maximizing a perturbed utility function of the form

U(p) =
∑2

i=1 piπi(x) − c(pi)/β, where πi(x) is the expected payoff of strategy i against

distribution x and c : (0, 1]→ R is continuously differentiable, strictly convex, and satisfies

the Inada condition that limp→0 c
′(p) = −∞. Here 1/β is a measure of the amount of

16



noise in the system: as β → 0 choice becomes uniform and as β → ∞ choice becomes

almost deterministic.12 Fudenberg, Iijima, and Strzalecki (2015) show that this form of

stochastic choice corresponds to the behavior of an agent who is uncertain about his payoff

function and so randomizes to guard against moves by a malevolent Nature; logit responses

correspond to c(p) = p ln p.

Example 2. In the model of Section 5.1 suppose that f(x) = argmaxp U(p) with c having

the properties mentioned above, then there is fast convergence to the set {x ∈ ∆ : x1 >
1
2
},

provided β is sufficiently small.

Each of the results in this section result can be proven as an application of Proposition 6

with the share of a strategy as the Lyapunov function. We provide sketches here and leave

the details to the Appendix.13 In this example we can see that f1(x) − x1 > 0 for all x

with x1 ∈ [0, 1
2
] using two cases. Let x∗ be the strictly mixed Nash equilibrium of the

unperturbed game. For x1 ∈ (x∗1,
1
2
], the fact that strategy 1 is the unperturbed best

response implies that f1(x) > 1
2

which implies that f1(x) − x1 > 0. For x1 ∈ [0, x∗1], note

that the strict convexity of c implies that f1(x) converges uniformly to 1
2

when β → 0, so

if we choose β small enough (enough noise), we will have f1(x) − x1 > 0 for all x with

x1 ≤ x∗1 as well.

Our next example generalizes Kreindler and Young in a different way, by considering

games with more than 2 actions. Consider an m-action coordination game, m ≥ 2, whose

payoff matrix is a diagonal matrix with diagonal entries α1 > α2 ≥ · · · ≥ αm > 0. When

an agent revises his action, he chooses action i with probability

fi(x) =
eβαixi∑m
j=1 e

βαjxj
,

where x = (x1, . . . , xm), xj is the fraction of agents currently using action j, and 1/β ∈
(0,∞) is a measure of noise.

Example 3. If

α1 >
2(m− 2 + eβα2)

eβ
, (7)

then the logit dynamic {XN} has fast convergence to {x ∈ ∆ : x1 >
1
2
}.

12Blume (1993) studied logit responses in a model of local interaction and noted the role of the noise
level there. Fudenberg and Kreps (1993) introduced stochastic choice rules in the study of fictitious play;
Fudenberg and Levine (1995) show that stochastic choice generated by perturbed utility leads to “stochas-
tic fictitious play,” and generates Hannan-consistent choice. Hofbauer and Sandholm (2002), Benäım,
Hofbauer, and Hopkins (2009), and Fudenberg and Takahashi (2011) use perturbed utility to construct
Lyapunov functions for stochastic fictitious play, and study perturbed utility in an evolutionary model.

13The proof of Example 2 in the Appendix follows an alternate approach applying Proposition 8.
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The proof of Example 3 is a simple application of the fast convergence criterion in

Proposition 6(a). Because f is continuous, the hypothesis of Proposition 6(a) holds

provided that f1(x) > x1 when x1 ≤ 1
2
, and a short calculation based on the Schur-convexity

of
∑m

i=2 e
βα2xi shows that the condition is implied by (7).

Condition (7) involves a relationship between α1 and β. To interpret the condition

denote the right hand side of (7) by φ(β), keeping α2 > 0 fixed. The function φ is strictly

convex on (0,∞) with limβ→0 φ(β) = limβ→∞ φ(β) = ∞, see Figure 1. Condition (7)

can only hold if α1 exceeds the minimum of φ, that is, if the degree of risk dominance is

sufficiently large.14 If this is the case, then the set of β satisfying (7) is the nonempty level

set {β : φ(β) < α1}, which is a bounded interval with a positive distance from 0, and the

interval increases to (0,∞) as α1 → ∞. Thus, Example 3 shows fast convergence if the

degree of risk dominance is sufficiently large and there is enough but not too much noise.15

0 2 4
0

5

10

β

φ(
β)

Figure 1: Graph of φ when m = 3 and α2 = 1. According to Example 3, the logit dynamic
has fast convergence if the point (β, α1) lies above this graph.

The following example is a partial converse to Example 3. It gives three conditions

under each of which {XN} does not have fast convergence to {x : x1 >
1
2
}: (a) If there is

too little noise, fast convergence fails because play gets stuck at a dominated equilibrium.

(b) Fast convergence fails if m ≥ 3 and there is too much noise. In this case choice is

14Note that ex−1 ≥ x implies that condition (7) cannot be satisfied unless α1 >
2(m−2)
eβ + 2α2. Hence,

something beyond α1 > 2α2 will be necessary for the result to apply.
15In the m = 2 case, even random choice will lead to half of the agents playing action 1, and as shown

in Example 2 for more general dynamics, for every degree of risk dominance there will be fast convergence
when there is enough noise. Kreindler and Young (2013) show that α1 > α2 suffices whenever β ≤ 2.
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almost independent of payoffs, and the risk-dominant equilibrium will only be played by a

1/m fraction of agents. (c) Fast convergence fails for every level of noise if the payoffs αi

are too close and m ≥ 3.

Example 4. (a) If
1

β
≤ α2

2 log(m− 1) + 2 log
(

4α1

α2
− 1
) , (8)

then the logit dynamic {XN} leaves {x : x2 > 1 − α2/(4α1)} slowly. In particular, {XN}
does not reach {x : x1 >

1
2
} quickly.

(b) If
1

β
≥ (1 +

1

m
)(α1 − αm +

1

m
αm), (9)

then {XN} leaves {x : x1 <
1
m

+ 1
m2} slowly. In particular, if m ≥ 3, then (9) implies that

{XN} does not reach {x : x1 >
1
2
} quickly.

(c) There is a constant γ > 1 so that if m ≥ 3 and

α1 < γαm, (10)

then there is no β > 0 so that {XN} reaches {x : x1 >
1
2
} quickly.

The proof is again an application of the Lyapunov criteria in Proposition 6 and consists

mainly of showing that f2(x) > x2 or f1(x) < x1 on the boundaries of the specified sets.

5.3 Noisy signals

This subsection considers two examples where agents receive only a noisy signal of the state.

In the first, players play an exact best response to a signal of the state which is noisy for

two separate reasons: finite sampling and observation errors. At each time t = 1
N
, 2
N
, . . . ,

one randomly chosen agent i draws, with replacement, a sample of size r from the current

population; with probability 1 − ε agent i correctly recognizes how j is playing, but with

probability ε agent i instead thinks j is playing another action, with all strategies other

than the true one being equally likely, and observation errors are independent across all

observations. (Note that if ε = 1 − 1
m

, then each observation is equally likely to be each

pure strategy irrespective of actual play.) The revising agent i then adopts the best

response to this set of observations.

Here, we consider general m × m games, but assume that strategy 1 is p-dominant

for some p ≤ 1
2
.16 We find that there is fast convergence to the set of states where the

16That is, strategy 1 is the unique best response to every mixed strategy that assigns at least probability
p to strategy 1 (Morris, Rob, Shin, 1995).

19



popularity of strategy 1 exceeds a threshold provided that the sample size r is sufficiently

small relative to the level of p-dominance (but at least two). Specifically, we require that r

is small enough so having any observation of strategy 1 in his sample will lead agent i to

choose strategy 1.

Example 5. In the model described above, if r ∈ [2, 1
p
], then {XN} has fast convergence

to {x : x1 > 1− (1− 1
m

)r} for every ε ∈ (0, 1− 1
m

).

We defer the calculations to the Appendix. The key once again is that the probability

of choosing the risk-dominant strategy 1 is above its current share as long as the share

is below the threshold. This follows from the fact that the above probability is bounded

below by a concave function of that share, with the bound being above the share at x1 = 0

and equal to it at x1 = 1− (1− 1
m

)r.

As a final application of Proposition 6 we suppose that beliefs derive from correctly

observing a random sample of play (eliminating the second source of observation noise

in the previous example) and return to stochastic choice in 2 × 2 coordination games.

Roughly, our results say that such noisy beliefs speed evolution in the sense that sampling

enlarges the set of parameters for which evolution is fast. More precisely, we compare the

Markov chain XN describing the dynamics where the revising agent chooses strategy 1 with

probability g(x) if the current state of the population is x with the chains XN
r in which

updating agents apply the same rule g to a random sample of size r.17 In the random

sampling model the probability f (r)(x) that a revising agent chooses strategy 1 is

f (r)(x) =
r∑

k=0

g

(
k

r

)(
r

k

)
xk(1− x)r−k, x ∈ [0, 1].

We begin by considering when the implication

{XN} reaches (1
2
, 1] quickly ⇒ {XN

r } reaches (1
2
, 1] quickly (11)

is true.18 Proposition 7 provides a symmetry condition on g under which implication (11)

holds for every r. This generalizes Kreindler and Young’s (2013) result beyond logit best

responses and strengthens the results to show there is fast convergence in the model with

sampling beliefs whenever there is fast convergence with full information (as opposed to

when a sufficient condition for reaching quickly holds). To understand the condition we

17Here, the state is the fraction of agents using strategy 1.
18In the analysis of the relation between {XN

r } and {XN} we take advantage of the fact that the functions
f (r) are the Bernstein polynomials of g to exploit known results about properties of these polynomials.
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place on g and why it is a generalization, note that when sup0<x< 1
2
g(x) < 1

2
, {XN} cannot

reach (1
2
, 1] quickly. So, ignoring a knife-edge case, we assume there exists x∗ ∈ (0, 1

2
)

with g(x∗) ≥ 1
2
. In two-action games with strategy 1 being risk dominant, the logit model

satisfies a stronger version of the symmetry condition: g(x∗ + x) + g(x∗ − x) = 1 for all

x ∈ [0, x∗] where x∗ is the mixed-strategy equilibrium. We loosen this to only require an

inequality.19

Proposition 7. In the above model of learning in a 2 × 2 game let x∗ ∈ (0, 1
2
). Suppose

that g(x∗ + x) + g(x∗ − x) ≥ 1 for all x ∈ [0, x∗] and that g is strictly increasing. Suppose

{XN} reaches [x∗, 1] quickly. Then, there exists ξ > 1
2

such that {XN} and {XN
r } have

fast convergence to (ξ, 1] for every r.

Our next result sharpens the message of the previous one by showing that there is a

range of parameter values for which there is fast convergence with random sampling beliefs,

but not when players observe the full state. Consider as above a family of decision rules

g(x, β), where 1/β is a measure of the level of noise.

Proposition 8. Consider a 2-action game with affine payoff functions πi and let x∗ ∈ (0, 1
2
)

be such that sign(π1(x)−π2(x)) = sign(x−x∗). Suppose that the choice rule g can be written

in the form g(x, β) = P [β(π1(x)−π2(x)) ≥ ε], where ε is a random variable with support R,

ε and −ε have the same distribution, and P [ε = 0] < 1−2x∗. Then there exist 0 < β∗ < β∗r

such that

(i) if β ∈ (0, β∗) then both models have fast convergence to the set (1
2
, 1].

(ii) if β ∈ (β∗, β∗r ) then the system with random sampling has fast convergence to (1
2
, 1]

but the system with full information does not.

Intuitively, fast convergence requires a sufficient amount of noise, and random sampling

provides an additional stochastic element without breaking the monotonicity needed to ap-

peal to Proposition 6. The proof of Example 2 shows that the condition of this proposition

applies to choice rules generated by the perturbed utility functions considered there.20

19We also have strengthened (11) in that we relax the assumption that {XN} reaches ( 1
2 , 1] quickly to

the assumption that {XN} reaches [x∗, 1] quickly.
20 Note also that the assumption that the support of ε is R implies that g(x, β) is always strictly between

0 and 1, i.e. choice is always stochastic. This is needed for the result: when c(p) = p2 as in Rosenthal (1989)
and Voorneveld (2006) the choice rule is deterministic at some states and as we show in the Appendix the
conclusion of the proposition is false. In this case, there is a β∗ > 0 such that both models have fast
convergence to ( 1

2 , 1] if 0 < β < β∗ and the state 0 is an absorbing state for both models if β ≥ β∗.
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6 More complex state spaces

In the examples of Section 5, the state space of the Markov process is naturally taken to

be ∆, as the dynamics only depend on the population shares using each strategy. Many

interesting models require a more complex state space. For example, the probability that a

player adopts some strategy may depend on the player’s position in a network or with whom

he has been matched previously in addition to the current population shares. An attractive

feature of our Lyapunov approach is that it also applies to a variety of such models. In this

section we discuss two applications: one involving learning from personal experience with

recency weights, and a variant of Ellison’s (1993) two-neighbor circle model.

First, consider a finite-memory fictitious-play style learning model in which N agents

are matched to play an m-action two-player game G at t = 0, 1
N
, 2
N
, . . . and learn only from

play in their own interactions.21 Assume that strategy 1 is p-dominant for some p < 1
2

and

that agents remember the outcomes of their k most recent matches. Within each period the

players are randomly matched and play the game using strategies they selected at the end

of the previous period. One player is then randomly selected to update his or her strategy.

The updating player does one of two things. With probability 1 − ε he selects a strategy

which is a best response to a weighted average w1a−i,t + w2a−i,t−1 + . . . + wka−i,t−(k−1) of

the actions a−i,t, . . . , a−i,t−(k−1) that his opponents have used in the most recent k periods.

With probability ε he selects a strategy uniformly at random. The selected strategy will

be used until the player is next chosen to update.

Informally, a motivation for using recency weights is that agents would want to place

more weight on more recent observations if they believed that their opponents’ play was

changing over time. There is ample experimental evidence suggesting that beliefs are indeed

more heavily influenced by recent observations both in decision problems and in games;

see Cheung and Friedman (1997) for one of the first measures of recency bias in a game

theory experiment, and Erev and Haruvy (2013) for a survey of evidence for recency effects

in experimental decision problems. Benäım, Hofbauer and Hopkins (2009) and Fudenberg

and Levine (2014) provide theoretical analyses of recency, but neither consider the large-

population limit that is our focus here.

We show that this model has fast convergence to a p-dominant equilibrium if the weights

21Ellison (1997) studied the finite-memory variant as well as the more traditional infinite-memory ficti-
tious play model with the addition of a single rational player, and showed that the rational player could
manipulate the play of a large population of opponents when one action was strongly risk-dominant. Most
other studies of fictitious play assume that all agents in the same player role have the same beliefs. One
exception is Fudenberg and Takahashi (2011), who allow each of N agents to have different beliefs; they
focus on the asymptotics for a fixed N rather than the large-population limit.
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place enough emphasis on recent actions. Note that this result does not require that noise

levels be above some threshold, and that play converges to an arbitrarily small neighbor-

hood of the selected equilibrium when the level of noise is sufficiently low. To state the

result formally, note that the model defines a Markov process SN(t) on the state space

ΩN = {1, 2, . . . ,m}kN+N : the first kN components of the state vector record what each

player saw in the periods t − 1
N
, t − 2

N
, . . . , t − k

N
; and the last N components record the

action that each player has selected for use in period t. Given any state SN(t) we can define

a random variable XN(t) ∈ ∆ to be the fraction of players who have each pure strategy as

their selected action in state SN(t).

Example 6. Consider the model above with k > 1. Suppose that strategy 1 is p-dominant

in G and the recency weights satisfy w1 > p and w2 + w3 > p. Then, for any ε > 0 the

model described above has fast convergence to {x ∈ ∆|x1 > 1− 1.2ε}.

Remarks.

1. Even though the state space in this model grows with the number of players, we can

use the share x1 of strategy 1 as the Lyapunov function here.

2. The result implies there can be fast convergence even with long memories and mod-

erate levels of p-dominance provided that players place substantial weights on their

most recent experiences. For example, if players place weight proportional to
(

2
3

)n−1

on their nth most recent observation, then w1 > 1/
(
1 + 2

3
+ 4

9
+ . . .

)
= 1

3
and

w2 +w3 >
2
9

+ 4
27
> 1

3
, so there is fast convergence to a neighborhood of strategy 1 if

strategy 1 is 1
3
-dominant.

3. Note moreover that the noise from sampling is sufficient for fast convergence, the ε

error probability can be arbitrarily small provided it is bounded away from 0 uni-

formly in N : if there is any probability at all that the risk dominant action is played,

the recency weighting will guarantee that its share grows.

4. Another form of recency weighting is to completely ignore all observations from more

than k periods ago but weight all of the last k periods equally, so that wn = 1
k

for n =

1, 2, . . . , k. In this case the result implies there is fast convergence to a neighborhood

of the state where everyone plays strategy 1 if strategy 1 is 1
k
-dominant. This implies

that we always have convergence to a risk-dominant equilibrium if memories are short

enough (but longer than one period).
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Proof of Example 6. Consider the two-period ahead dynamics of the model. By Propo-

sitions 1 and 2 it suffices to show that we can find c > 0 for which

inf
s∈φ−1

N (x)
E[(XN

1 (2/N)−XN
1 (0))|XN(0) = x, SN(t) = s] ≥ c

N

for all x with x1 ∈ [0, 1− 1.2ε].

We can evaluate the change in the popularity of strategy 1 by counting every time a

player playing strategy 1 is selected to update as a loss of 1 and every adoption by an

updating player as a gain of 1. The expected losses are x1 from revisions at t = 0 and

at most (x1 + 1
N

) from revisions at t = 1
N

. There will be a gain without a mutation from

the period t revision if the player selected to update at t is matched with a player who

uses strategy 1 in period t, or if he saw strategy 1 in both periods t − 2
N

and t − 1
N

. At

t = 0 only the former is guaranteed to be possible for all s – the worst case state is that

the matching was such that the sets of players who saw strategy 1 in periods t − 1
N

and

t − 2
N

are disjoint– so all we can say is that the expected number of adoptions is at least

x1(1− ε). But the t = 1
N

revision will produce an adoption of the latter type if the player

who saw strategy 1 in period t = − 1
N

is randomly matched with a player playing strategy

1 at t = 0 and is then randomly selected to update at t = 1
N

. So the expected number

of non-mutation adoptions is at least
(
(x1 − 1

N
) + (1− x1 + 1

N
)x1(x1 − 1

N
)
)

(1 − ε). And

there are ε
2

adoptions in expectation due to mutations in each of the two periods.

Adding all of these changes together and ignoring all of the 1
N

terms, it suffices by

Corollary 2.1 to show that there is a c > 0 for which

φ(x1) := −2x1 + [2x1 + (1− x1)x2
1](1− ε) + ε ≥ c for all x1 ∈ [0, 1− 1.2ε].

If x1 ∈ [0, 1
3
], then φ(x1) ≥ −2x1 + 2x1(1 − ε) + ε = (1 − 2x1)ε > 0. In the interval

[1
3
, 1], φ is concave with φ(1

3
) > 0, and a numerical calculation shows that φ(1 − 1.2ε) =

0.2ε − 1.68ε2 + 4.608ε3 − 1.728ε4 > 0. Thus φ(x1) > 0 if x1 ∈ [1
3
, 1 − 1.2ε]. Hence φ is

positive in [0, 1− 1.2ε] and the claim follows with c := min{φ(x1) : 0 ≤ x1 ≤ 1− 1.2ε}. �

Remark. The result could be strengthened to show that there is fast convergence to a

somewhat smaller set by considering k-period ahead transitions instead of the two-period

ahead transitions considered in the proof.

Now consider a variant of the two-neighbor local interaction model of Ellison (1993).22

22The model differs from that of Ellison (1993) in that we consider a version where one randomly chosen
player at a time considers revising, whereas Ellison (1993) assumes that all players revise simultaneously.
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N players arranged around a circle are choosing strategies for a 2× 2 coordination game.

Assume that at each t = 0, 1
N
, 2
N
, . . . one player is chosen at random to consider revising

his or her strategy. The selected player plays a best response to the average play of her two

immediate neighbors with probability 1−ε and plays the opposite strategy with probability

ε.

The description above defines a Markov process SN(t) on the state space ΩN = {1, 2}N

which consists of vectors describing whether each player uses strategy 1 or strategy 2. Given

any state SN(t) we define XN(t) to be the two-vector with the first component XN
1 (t) giving

the fraction of players who have strategy 1 as a best response to their neighbors’ actions

in SN(t) and with second component XN
2 (t) giving the fraction of players using strategy 1.

In this example, the share using strategy 1 can be used as a Lyapunov function to

show that there is fast convergence to the set of states where at least a 1
2
− δ share of

the players use strategy 1. But it will not suffice for showing convergence to a smaller

neighborhood of the risk dominant equilibrium, because in the state (1, 2, 1, 2, . . . , 1, 2)

every player will switch to the opposite strategy with probability 1 − ε, so the expected

share playing 1 is constant instead of increasing. The expected number of agents who

have 1 as a best response is strictly increasing in that state. But that candidate Lyapunov

function also does not suffice because it has zero expected change at some states including

(2, 1, 2, 2, 1, 2, . . . , 2, 1, 2). Adding these two functions with the appropriate weights does

provide a valid Lyapunov function. Part (a) of the result below exploits this to say that

there is fast convergence to a set of states where most players have strategy 1 as their best

response. Part (b) provides an explicit bound on the convergence time that holds for any

N .23 Part (c) notes further that the system quickly reaches a state where most players are

using strategy 1. The intuition for this is that the system cannot remain long in the set of

states where most players have strategy 1 as a best response without having most players

adopt strategy 1. The proof uses our result on multistep convergence, Proposition 5.

Example 7. In the model above suppose that strategy 1 is risk dominant. Then,

(a) {XN} has fast convergence to {x ∈ [0, 1]2 : x1 + 3εx2 ≥ 1− 4ε}.
(b) For every N > 2 and every initial state, the expected time until at least a 1−4ε fraction

of the players have strategy 1 as a best response is at most 2ε−2.

(c) {XN
2 } reaches (1− 8ε, 1] quickly.

Proof of Example 7. (a) Define V : [0, 1]2 → R by V (x) = −(x1 + 3εx2). Let A = {x ∈
[0, 1]2 : V (x) ≤ 4ε − 1}. The Appendix contains a proof of the lemma below which says

23This result improves on the result in Ellison (1993) in providing an explicit bound on the convergence
time and in providing a bound that applies for all ε, not just sufficiently small ε.
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that this is a valid Lyapunov function:

Lemma 1. If N > 2 and s is any state in which the fraction of players who have strategy

2 as a best response is at least 4ε then

Es

[
V

(
XN

(
1

N

))
− V

(
XN (0)

)]
≤ − ε

2

N
.

Hence, Corollary 2.1 implies the system has fast convergence to A.

(b) The bound on the expected time until at least a 1 − 4ε fraction of the players

have the risk-dominant action as a best response follows from Proposition 1 applied to the

nonnegative Lyapunov function 2 + V (x).

(c) We apply Proposition 5 with X = [0, 1]2,

B = {x ∈ [0, 1]2 : x1 + 3εx2 > 1− 4ε− ε2},

A = {x ∈ B : x2 > 1− 8ε},

C = {x ∈ [0, 1]2 : x1 + 3εx2 ≥ 1− 4ε}.

By part (a), {XN} has fast convergence to C. We use Proposition 1 with V (x1, x2) =

1 − x2 to show that {XN} reaches A ∪ Bc quickly. The expectation of the increment

XN
2 ( 1

N
)−XN

2 (0) can be written as 1
N

times the probability that the selected player chooses

action 1 minus the probability that the selected player had previously been using action 1.

If s is a state with (x1, x2) ∈ Ac ∩B, then x2 ≤ 1− 8ε and x1 ≥ 1− 7ε and it follows that

Es

[
XN

2

(
1

N

)
−XN

2 (0)

]
≥ 1

N
[(1− ε)x1 − x2] ≥ 1

N
[(1− ε)(1− 7ε)− (1− 8ε)] =

7ε2

N
.

Thus, {XN} reaches A ∪ Bc quickly. By Proposition 5, {XN} reaches A quickly. This

implies that {XN
2 } reaches (1− 8ε, 1] quickly. �

In addition to these examples, we conjecture that our results could be fruitfully applied

to the network models of Kreindler and Young (2014), where the dimension of the state

space is the size of the population.

7 Related Literature

Ellison (1993) raises the issue of slow convergence; it shows that in the model of Kandori,

Mailath, and Rob (1993) the rate of convergence slows as the noise level converges to zero,

26



and that the expected waiting time to reach the long-run equilibrium grows exponentially

as the population size N increases. Blume (1993) provides conditions under which an

infinite-population local interaction model is ergodic; evolution can be thought of as fast

for large N if it still occurs when N = ∞. Möbius (2000) defines a model as “clustering”

on a set of states A if the probability of A under the ergodic distribution converges to 1 as

N →∞, and analyzes the limit of the worst case expected wait to reach A. Kreindler and

Young (2013) defines a concept of “fast selection” which is roughly equivalent to what we

call “reaches A quickly.” Relative to this the novelty in our concept consists of adding the

“leaves A slowly” requirement.

There is also a sizable literature on factors that promote fast evolution, including local

interaction (Ellison (1993), Blume (1993), Young (2011)), personal experience (Ellison

(1997)), endogenous location choice (Ely (2002)), homophily (Golub and Jackson (2012)),

and population structure (Hauert, Chen and Imhof (2014)). Samuelson (1994) and Ellison

(2000) note that evolution is more rapid when it can proceed via a series of smaller steps.

Kreindler and Young (2014) provides sufficient conditions on payoffs and noise for evolution

to be fast on arbitrary networks.

The methodological parts of our paper are related to the literature on stochastic stability

with constant step size, where the dimension of the Markov process is held fixed as the

population grows.24 Benäım and Weibull (2003) considers models where all agents have

the same beliefs (which is why the state space doesn’t depend on the population size)

and a random player from an N agent population is chosen to revise his play at t =
1
N
, 2
N
, 3
N
, .... The paper shows that the maximum deviation between the finite N model

and its continuous limit over a T period horizon goes to zero as N → ∞, and also that

the probability of exiting the basin of attraction of an attractor of the continuous model

by time T goes to zero (exponentially fast) as the population size increases; this is related

to our “leaving slowly” results. Roth and Sandholm (2013) develops more general results

along these lines, and provides conditions that imply that play in the discrete-time model

remains within ε of the dynamics of the continuous-time model for at least T periods with

probability that goes to one as N grows. The results can provide an alternate method for

establishing some of our applied results in cases where the state space remains the same as

the population grows.

24Kaniovski and Young (1995) and Benäım and Hirsch (1999) provide results connecting discrete-time
and continuous-time limit dynamics in the context of fictitious-play style models, but the results themselves
are not closely related because the approximation occurs in the t→∞ limit with the population size held
fixed.
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8 Conclusion

We defined a notion of fast convergence for evolutionary models, which refines the previous

literature by requiring that some set A is both reached quickly and left slowly. We then

used Lyapunov functions to give sufficient conditions for fast convergence. One advantage

of our approach is that it can apply to models with state spaces that do not have a finite-

dimensional continuous time limit dynamic. At a conceptual level, our proofs provide a

unified way of viewing examples that had previously been handled with a variety of specific

techniques, and lead to proofs that directly highlight the reason for fast convergence. Our

approach also separates the factors sufficient for fast convergence from technical conditions

needed to assure a well-behaved approach to the mean field, and allow us to handle models

with more complex state spaces where it is not clear how existing results on approximation

by the mean field could be applied. We illustrated the use of our conditions in various

examples without presenting quantitative results, but the simulations of e.g. Ellison (1993)

and Kreindler and Young (2013) make us optimistic that when convergence is fast in our

sense it will be fast enough to be of practical importance.
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Appendix

Proof of Example 1. Let s be any state in which a fraction x1 of the players play strategy

1. The expected change in the fraction of players using strategy 1 will be

E(X1(t+
1

N
)− x1|SN(t) = s) =

1

N
[y(1− ε) + (1− y)ε− x1] ,

where y is the expected fraction of players who have strategy 1 as a best response in state

s. Note that the RHS can be reorganized as

y(1− ε) + (1− y)ε− x1 = y(1− 2ε) + ε− x1

= (y − x1)(1− 2ε) + ε(1− 2x1)

Any state s with fraction x1 players playing strategy 1 will have fraction r players with two

neighbors playing strategy 1, fraction 2(x1 − r) with one neighbor playing strategy 1, and

fraction (1−2x1+r) with no neighbor playing strategy 1 for some r ∈ [0, x1]. The value of y

depends on the state s only through x1 and r. Because players with two neighbors playing

strategy 1 will always have strategy 1 as their best response, those with one neighbor playing

strategy 1 will have strategy 1 as their best response if at least one player they randomly

sample uses strategy 1, and those with no neighbors playing strategy 1 must have both

players in their sample using strategy 1, we have y = r+2(x1−r)(2x1−x2
1)+(1−2x1+r)x2

1.

Writing x1 = r + (x1 − r) and collecting terms gives

y − x1 = (x1 − r)(−1 + 4x1 − 2x2
1) + ((1− x1)− (x1 − r))x2

1

= (x1 − r)(−1 + 4x1 − 3x2
1) + (1− x1)x2

1

Plugging back into the formula for the change in x1 gives

NE(X1(t+
1

N
)− x1|SN(t) = s)

=
(
(x1 − r)(−1 + 4x1 − 3x2

1) + (1− x1)x2
1

)
(1− 2ε) + ε(1− 2x1),

We show that the RHS can be bounded below by some positive constant c by considering

three cases.

First, for x1 ∈ [0, 1
3
] the quadratic (−1 + 4x1 − 3x2

1) = (3x1 − 1)(1 − x1) is negative.

Hence, the RHS is minimized for r = 0 in which case it is equal to

(−x1 + 5x2
1 − 4x3

1)(1− 2ε) + (1− 2x1)ε = (−x1 + 5x2
1 − 4x3

1) + (1− 10x2
1 + 8x3

1)ε
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The polynomial −x1 + 5x2
1 − 4x3

1 is only negative if x1 is additionally less than 1
4

and

1 − 10x1 + 8x3
1 is positive in this case, so the RHS will be bounded away from zero for

x1 ∈ [0, 1
3
] if ε is chosen to be greater than

sup
x1≤ 1

4

−x1 + 5x2
1 − 4x3

1

1− 10x2
1 + 8x3

1

.

Evaluating this numerically shows that choosing ε = 0.065 suffices.

Second for x1 ∈ [1
3
, 1

2
] the expected change in x1 is minimized for r = x1 in which case

it is simply (1− x1)x2
1(1− 2ε) + ε(1− 2x1). This is obviously bounded away from zero for

all ε < 1
2
.

Finally, for x1 ∈ [1
2
, 1− `ε] the minimum again occurs for r = x1 and the value is again

(1 − x1)x2
1(1 − 2ε) + ε(1 − 2x1) which expands as x2

1 − x3
1 + (1 − 2x1 − 2x2

1 + 2x3
1)ε. The

first term is positive and the second negative, so for each x1 the expression is minimized by

choosing ε as large as possible given x1: ε = (1−x1)/`. Factoring out the 1−x1 we find that

this holds for all x1 in the range if ` is chosen to be greater than supx1>0.5
−2x31+2x21+2x1−1

x2

The maximum is about 1.42. �

Proof of Proposition 2. To show that condition (2) holds for every open set U containing

Ā, it suffices to show that this is true for every open U with Ā ⊂ U ⊂ U0 and U 6= X .

Given this restriction, condition (5) always holds until the process has left U . Since V is

Lipschitz continuous and the increments of XN are bounded by K
N

, there is a constant κ

such that Ps(|V (XN( 1
N

)) − V (XN(0))| ≤ κ
N

) = 1 for all s ∈ ΩN and all N . Using this

bound, Taylor’s formula implies that

Ese
δN [V (XN ( 1

N
))−V (XN (0))] = 1 + δNEs

[
V

(
XN
( 1

N

))
− V (XN(0))

]
+RN,s,

where |RN,s| ≤ 1
2
δ2κ2eδκ. Pick δ0 > 0 so that δ0κ

2eδ0κ < c. Let Y N(t) = exp(δ0NV (XN(t)))

and ZN(t) = Y N(t∧ τN
Ā
∧ τNX\U). Suppose N ≥ N0. Then, by (5), for every s ∈ φ−1

N (U \ Ā),

EsY
N
( 1

N

)
= eδ0NV (φN (s))Ese

δ0N [V (XN ( 1
N

))−V (XN (0))]

≤ EsY
N(0)

(
1− δ0c+

1

2
δ2

0κ
2eδ0κ

)
≤ EsY

N(0).

Thus, {ZN(t)} is a nonnegative supermartingale.

Let v1 = maxx∈Ā V (x), v3 = minx∈X\U V (x). By (4), v1 < v3. Let v2 ∈ (v1, v3) and

γ = 1
2
δ0(v3 − v2). If s ∈ ΩN and V (φN(s)) ≤ v2, then, by the maximal inequality (see e.g.
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Shiryaev (1996), page 493),

Ps(τ
N
X\U < τNĀ ) ≤ Ps

(
sup
t≥0

ZN(t) ≥ eδ0Nv3
)
≤ e−δ0Nv3EsZ

N(0) (12)

= e−δ0Nv3eδ0NV (φN (s)) ≤ eδ0N(v2−v3) = e−2γN .

Let σN−1 = −1. Define stopping times σN0 ≤ σN1 ≤ . . . by

σNk = inf

{
t ∈ 1

N
N0 : t > σNk−1, X

N(t) ∈ Ā ∪ (X \ U)

}
, k ∈ N0.

In view of (5), Ps(V (XN( 1
N

)) < V (XN(0))) > 0 for all s ∈ φ−1
N (U \ Ā). Thus, Ps(τ

N
Ā
<

∞) > 0 for all s ∈ φ−1
N (U \ Ā). This implies that Ps(τ

N
Ā
∧ τNX\U < ∞) = 1 for all s ∈ ΩN ,

see Durrett (1996), page 290. Hence Ps(σ
N
k <∞ for all k) = 1.

Assume from now on that N ≥ N0 is so large that v1 + κ
N
≤ v2. Then for every

s ∈ φ−1
N (Ā), Ps(V (XN( 1

N
)) ≤ v2) = 1 and so, by (12)

Ps(X
N(σN1 ) ∈ Ā) =

∑
ξ∈ΩN :V (φN (ξ))≤v2

Pξ
(
XN(σN0 ) ∈ Ā

)
Ps

(
SN
( 1

N

)
= ξ

)
≥ 1− e−2γN .

Hence, for s ∈ φ−1
N (Ā) and k = 0, 1, . . . ,

Ps
(
NτNX\U > k

)
≥ Ps

(
XN(σNj ) ∈ Ā, 0 ≤ j ≤ k

)
≥
(
1− e−2γN

)k
.

It follows that for all T ∈ [0,∞),

Ps
(
τNX\U > T

)
= Ps

(
NτNX\U > bNT c

)
≥
(
1− e−2γN

)NT ≥ exp
(
−Te−γN

)
,

provided that N is also so large that 2Ne−γN ≤ 1. Here bNT c denotes the largest integer

≤ NT . In the last step, it was used that 1− u ≥ e−2u for u ∈ [0, 1
2
]. �

The proofs of the results on multi-step evolution in Propositions 4 and 5 use the following

lemma.

Lemma 2. Let A,B,C ⊂ X with A ⊂ B. Let N ∈ N, K ∈ (0,∞), and c ∈ (0, 1). Suppose

that

Esτ
N
A∪Bc ≤ K and Esτ

N
A∪C ≤ K for all s ∈ ΩN (13)

and

Ps(τ
N
A < τNBc) ≥ c for all s ∈ φ−1

N (C). (14)

Then Esτ
N
A ≤ 2K/c for all s ∈ ΩN .
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Proof. Let σ0 = 0 and for j = 0, 1, . . . ,

σ2j+1 = inf{t ≥ σ2j : XN(t) ∈ A ∪ C},

σ2j+2 = inf{t ≥ σ2j+1 : XN(t) ∈ A ∪Bc}.

Condition (13) implies that Ps(σj < ∞ for all j) = 1 for every s ∈ ΩN . Let J = inf{j ∈
N0 : XN(σj) ∈ A}. Then, by Fubini,

Esτ
N
A = Es

J∑
j=1

(σj − σj−1) =
∞∑
j=1

Es[(σj − σj−1)1{J≥j}].

Let Ft denote the σ-algebra generated by SN(0), . . . , SN(t), let F denote the σ-algebra

generated by ∪tFt, and let Fσj denote the σ-algebra up to time σj, that is, Fσj = {F ∈
F : F ∩ {σj = t} ∈ Ft for all t}. For every j ≥ 1,

{J ≥ j} = {XN(σ0) 6∈ A, . . . , XN(σj−1) 6∈ A}

= {SN(σ0) 6∈ φ−1
N (A), . . . , SN(σj−1) 6∈ φ−1

N (A)},

so that {J ≥ j} ∈ Fσj−1
. Hence,

Es[(σj − σj−1)1{J≥j}] = Es[E[(σj − σj−1)1{J≥j}|Fσj−1
]]

= Es[1{J≥j}E[σj − σj−1|Fσj−1
]].

By (13) and the strong Markov property,

E[σj − σj−1|Fσj−1
] =

{
ESN (σj−1)τ

N
A∪C ≤ K if j is odd,

ESN (σj−1)τ
N
A∪Bc ≤ K if j is even.

Thus, Esτ
N
A ≤ K

∑∞
j=1 Ps(J ≥ j) ≤ 2K

∑∞
j=0 Ps(J ≥ 2j + 1). If Ps(J ≥ 2j + 1) > 0, then

Ps(J ≥ 2j + 1) = Ps(X
N(σk) 6∈ A for k = 0, . . . , 2j)

=

2j∏
k=1

Ps(X
N(σk) 6∈ A|XN(σκ) 6∈ A for κ = 0, . . . , k − 1).

When k is even, the conditional probability is at most 1 − c by (14). Hence Esτ
N
A ≤

2K
∑∞

j=0(1− c)j = 2K/c. �

Proof of Proposition 4. Since {XN} reaches B and A ∪ Bc quickly, there exist N1 ∈ N
and K < ∞ so that for all N ≥ N1 and all s ∈ ΩN , Esτ

N
B ≤ K and Esτ

N
A∪Bc ≤ K. If
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N ≥ N0, then, by (6), Ps(τ
N
A < τNBc) ≥ c for every s ∈ φ−1

N (B\A). Lemma 2 with C = B\A
shows that Esτ

N
A ≤ 2K/c for all s ∈ ΩN , provided N ≥ max{N0, N1}. �

Proof of Proposition 5. Since {XN} reaches C and A ∪ Bc quickly, there exist N1 ∈ N
and K <∞ so that for all N ≥ N1 and all s ∈ ΩN , Esτ

N
A∪C ≤ Esτ

N
C ≤ K and Esτ

N
A∪Bc ≤ K.

The last inequality implies by Markov’s inequality that Ps(τ
N
A∪Bc ≥ 2K) ≤ 1

2
. Since {XN}

leaves C slowly and C̄ ⊂ intB there exists N2 > N1 so that for all N ≥ N2,

Ps(τ
N
Bc ≤ 2K) ≤ 1

4
for all s ∈ φ−1

N (C).

Thus, if N ≥ N2, then for every s ∈ φ−1
N (C),

Ps(τ
N
A ≥ τNBc) = Ps(τ

N
Bc = τNA∪Bc) ≤ Ps(τ

N
A∪Bc ≥ 2K or τNBc ≤ 2K) ≤ 3

4
.

It now follows by Lemma 2 that Esτ
N
A ≤ 8K for all s ∈ ΩN if N ≥ N2. �

Proof of Example 2. The result can again be shown by applying Proposition 6(a),

but instead we apply Proposition 8 to also justify the claim at the end of Subsection 5.3.

The probability f1(x, β) is uniquely determined by β[π1(x) − π2(x)] = ψ(f1(x, β)), where

ψ(p) := c′(p)− c′(1− p), 0 < p < 1. The function ψ is continuous and strictly increasing,

limp→0+ ψ(p) = −∞, and limp→1− ψ(p) =∞. The inverse function ψ−1 is therefore a con-

tinuous strictly increasing function on R with limu→−∞ ψ
−1(u) = 0 and limu→∞ ψ

−1(u) = 1.

Let ε be a random variable that has ψ−1 as its distribution function. Then the support of ε

is R, P (ε = 0) = 0, and f1(x, β) = ψ−1(β[π1(x)− π2(x)]) = P (β[π1(x)− π2(x)] ≥ ε). Since

ψ(1 − p) = −ψ(p) for all p, 1 − ψ−1(u) = ψ−1(−u) for all u, which implies that ε and −ε
have the same distribution. The assertion now follows from Proposition 8. �

Proof of Example 3. For every x ∈ ∆,

m∑
i=2

eβαixi ≤
m∑
i=2

eβα2xi ≤ m− 2 + eβα2(1−x1) ≤ m− 2 + eβα2 ,

where the second inequality follows from the Schur-convexity of
∑m

i=2 e
βα2xi , see e.g. Mar-

shall and Olkin (1979), page 64. Hence, f1(x) ≥ h(x1), where

h(x1) =
1

1 + (m− 2 + eβα2)e−βα1x1
.

Since, by (7), βα1 > 2(m−2+eβα2)/e and eu ≥ eu for all u ≥ 0, eβα1x1 > 2(m−2+eβα2)x1

for x1 > 0. Consequently,

h(x1) >
1

1 + 1
2x1

≥ x1

36



for 0 < x1 ≤ 1
2
. Since h is continuous and h(0) > 0, it follows that there exists c > 0 so

that f1(x) − x1 ≥ h(x1) − x1 ≥ c for all x ∈ ∆ with x1 ≤ 1
2
. The assertion follows from

Proposition 6(a). �

Proof of Example 4. (a) For every x ∈ ∆,∑
j 6=2

eβαjxj ≤
∑
j 6=2

eβα1xj ≤ (m− 2) + eβα1(1−x2),

where the second inequality follows from the Schur-convexity of
∑

j 6=2 e
βα1xj . Thus,

1

f2(x)
= 1 + e−βα2x2

∑
j 6=2

eβαjxj ≤ 1 + (m− 2)e−βα2x2 + eβ[α1(1−x2)−α2x2].

If x2 = 1− α2/(4α1), then x2 >
3
4

and

α1(1− x2)− α2x2 <
1

4
α2 −

3

4
α2 = −1

2
α2,

and it follows that
1

f2(x)
< 1 + (m− 2)e−

3
4
βα2 + e−

1
2
βα2 . (15)

Hence, if β satisfies (8), then for every x with x2 = 1− α2/(4α1),

f2(x) >
1

1 + (m− 1)e−
1
2
βα2
≥ 1

1 + (4α1/α2 − 1)−1
= 1− α2

4α1

.

This implies by Proposition 6(c) that {XN} leaves {x : x2 > 1 − α2/(4α1)} slowly. As

1− α2/(4α1) > 3
4
, it follows that {XN} does not reach {x : x1 >

1
2
} quickly.

(b) The inequality eu ≥ 1 + u implies that for all x ∈ ∆,

1

f1(x)
= 1 +

∑
j≥2

eβ(αjxj−α1x1) ≥ m+ β[αm(1− x1)− (m− 1)α1x1]. (16)

Hence, if β satisfies (9), then for all x with x1 = 1
m

+ 1
m2 ,

1

f1(x)
≥ m+ β

[
αm

(
1− 1

m
− 1

m2

)
− (m− 1)

(
1

m
+

1

m2

)
α1

]
= m− β

[
(α1 − αm)

(
1− 1

m2

)
+
αm
m

]
> m− m

m+ 1
=

1

x1

,

so that by Proposition 6(b), {XN} leaves {x : x1 < 1
m

+ 1
m2} slowly. If m ≥ 3, then

1
m

+ 1
m2 <

1
2
, and it follows that {XN} does not reach {x : x1 >

1
2
} quickly.
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(c) A numerical computation shows that e−9/4 + e−3/2 < 1
3
, and so there is a constant

c ∈ (4
5
, 1) such that e−9c/4 + e−3c/2 < 1

3
. Let

φ(u) = 1 + (u− 2)e−3cu/4 + e−cu/2.

We have for all u ≥ 3

φ′−3cu/4

[
1− 3

4
c(u− 2)− c

2
ecu/4

]
< e−3cu/4

[
1− 3c

4
− c

2

]
< 0,

so that 1 < φ(u) ≤ φ(3) < 4
3
. Set γ1 = 1/[4(1− 1/φ(3))]. Then γ1 > 1.

Suppose first that

α1 ≤ γ1α2 and βα2 ≥ cm. (17)

Then for all x ∈ ∆ with x2 = 1− α2/(4α1), by (15),

f2(x) >
1

φ(m)
≥ 1

φ(3)
= 1− 1

4γ1

≥ 1− α2

4α1

,

provided that m ≥ 3. This implies by Proposition 6(c) that {XN} does not reach {x : x1 >
1
2
} quickly.

Suppose next that

α1 < γ2αm and βα2 < cm, (18)

where γ2 = 1 + (1− c)2/(4c) > 1. Then for every x ∈ ∆ with x1 = 2/[m(1 + c)], by (16),

1

f1(x)
≥ m+ βαm [1− x1 − (m− 1)γ2x1] = m− βαm(1− c)

2c
+
βαm(1− c)2

2cm(1 + c)

> m− βα2(1− c)
2c

> m− m(1− c)
2

=
1

x1

.

Thus, by Proposition 6(b), {XN} leaves {x : x1 < 2/[m(1 + c)]} slowly. If m ≥ 3,

2/[m(1 + c)] < 1
2
, and it follows that {XN} does not reach {x : x1 >

1
2
} quickly.

To complete the proof set γ = min(γ1, γ2) and observe that (10) implies that for every

β > 0 either (17) or (18) must hold. �

Proof of Example 5. For x ∈ ∆, 0 ≤ ε ≤ 1− 1
m

, and 0 ≤ y ≤ 1 let

q(x, ε) = x1(1− ε) + (1− x1)
ε

m− 1
, H(y) = 1− (1− y)r.

In state x, the probability that a randomly sampled agent is thought to have played strategy

1 is q(x, ε), so that in a sample of size r, the probability that a revising agent chooses

strategy 1 is f1(x, ε) = H(q(x, ε)).
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Obviously, H is strictly increasing, and (∂/∂ε)q(x, ε) = (1−mx1)/(m− 1). Hence, for

every x ∈ ∆, f1(x, ε) is strictly increasing in ε if x1 <
1
m

, and f1(x, ε) is strictly decreasing

in ε if x1 >
1
m

.

Let ξ = (ξ1, . . . , ξm) be a point in ∆ with ξ1 = 1 − (1 − 1
m

)r. Then f1(ξ, 1 − 1
m

) = ξ1.

Since r ≥ 2, ξ1 >
1
m

, so that f1(ξ, ε) is strictly decreasing in ε. Thus, f1(ξ, ε) − ξ1 > 0 for

every ε ∈ (0, 1 − 1
m

). Also, if x ∈ ∆ and x1 = 0, then f1(x, ε) > 0 for ε > 0. Since H is

concave, it follows that for every ε ∈ (0, 1− 1
m

), f1(x, ε)−x1 > 0 for all x ∈ ∆ with x1 ≤ ξ1.

In view of the continuity of f1 it now follows from Proposition 6(a) that {XN} has fast

convergence to {x : x1 > ξ1}. �

The proof of Proposition 7 uses two lemmas. The first notes that in a 2 × 2 game

Proposition 4 implies that we have fast convergence if we can show that {XN} quickly

reaches some threshold and the dynamics are monotone from that point. The second

provides the desired monotonicity result for the dynamics with sampling. In the following

the state x ∈ [0, 1] is the fraction of agents using strategy 1 and g(x) is the probability that

a revising agent chooses strategy 1.

Lemma 3. In the model described above let a and ξ be constants with 0 < a < ξ < 1 and

suppose c > 0. Suppose that {XN} reaches [a, 1] quickly and

g(x)− x ≥ c for all x ∈ [a, ξ].

Then {XN} has fast convergence to (ξ, 1].

Proof of Lemma 3. Let A = (ξ, 1], B = [a, 1]. It follows from Proposition 1 with

V (x) = 1− x that {XN} reaches A ∪Bc quickly. For x ∈ (B \ A) ∩ {0, 1
N
, . . . , N

N
},

Px(X
N( 1

N
) = x+ 1

N
)

Px(XN( 1
N

) = x− 1
N

)
=

(1− x)g(x)

x(1− g(x))
≥ (1− x)(x+ c)

x(1− x− c)
≥ c0,

where c0 := (1 + c)2/(1 − c)2. Hence, by the formula for absorption probabilities of birth

and death chains, see e.g. Karlin and Taylor (1975), page 113,

Px(X
N(τNA∪Bc) ∈ A) ≥ 1∑∞

k=0 c
−k
0

= 1− c−1
0 > 0.

Thus, by Proposition 4, {XN} reaches A quickly. That {XN} leaves A slowly follows from

Proposition 2 with V (x) = 1− x as the Lyapunov function. �

Lemma 4. Suppose g(0) > 0, g(k
r
) ≥ k

r
for all k < r

2
, g(k

r
) + g(1 − k

r
) ≥ 1 for all

k = 0, . . . , r, and g(k
r
) + g(1− k

r
) > 1 for some k. Then min{f (r)(x)− x : 0 ≤ x ≤ 1

2
} > 0.
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Proof of Lemma 4. Set g̃(x) = g(x)− x. Then g̃(1− k
r
) ≥ −g̃(k

r
) for all k. Hence for all

x ∈ [0, 1],

f (r)(x)− x =
∑
k≤ r

2

g̃

(
k

r

)(
r

k

)
xk(1− x)r−k +

∑
k< r

2

g̃

(
1− k

r

)(
r

k

)
xr−k(1− x)k

≥
∑
k< r

2

g̃

(
k

r

)(
r

k

)[
xk(1− x)r−k − xr−k(1− x)k

]
. (19)

If k < r
2
, then g̃(k

r
) ≥ 0 and the term in square brackets is nonnegative for all 0 ≤ x ≤ 1

2
.

Thus for all 0 ≤ x < 1
2
,

f (r)(x)− x ≥ g(0)[(1− x)r − xr] > 0.

Since g(k
r
) + g(1 − k

r
) > 1 for some k, the inequality in (19) is strict for x = 1

2
, and so

f (r)(1
2
)− 1

2
> 0. �

Proof of Proposition 7. Suppose {XN} reaches [x∗, 1] quickly. To apply Lemma 4 note

first that if there existed some x0 ∈ (0, x∗) with g(x0) < x0, then, since g is nondecreasing,

for all x ∈ (1
2
(g(x0) + x0), x0),

g(x)− x ≤ g(x0)− g(x0) + x0

2
=
g(x0)− x0

2
< 0.

By the remark after Proposition 6, it would follow that {XN} does not reach [x∗, 1] quickly.

Thus g(x) ≥ x for all 0 ≤ x ≤ x∗. As g(x∗) ≥ 1
2

and g is strictly increasing, there exists

δ > 0 such that g(x) ≥ x+ δ for all x ∈ [x∗, 1
2

+ δ]. For all x ∈ [0, 1
2
],

1

2
+ x > x∗ + min(x, x∗),

1

2
− x ≥ x∗ −min(x, x∗),

and so

g

(
1

2
+ x

)
+ g

(
1

2
− x
)
> g(x∗ + min(x, x∗)) + g(x∗ −min(x, x∗)) ≥ 1.

In particular, g(0) > 0. It now follows from Lemma 4 that min{f (r)(x)−x : 0 ≤ x ≤ 1
2
} > 0

for every r.

As g is nondecreasing, so is each f (r), and limr→∞ f
(r)(1

2
) = 1

2
[g(1

2
−) + g(1

2
+)] > 1

2

(see Lorentz (1986), pages 23 and 27.) Since f (r)(1
2
) > 1

2
for every r, it follows that

there exists ξ ∈ (1
2
, 1

2
+ δ) so that f (r)(1

2
) > ξ for every r. Hence, if x ∈ [1

2
, ξ], then

f (r)(x)− x ≥ f (r)(1
2
)− ξ > 0. Consequently,

min
0≤x≤ξ

f (r)(x)− x > 0 and inf
x∗≤x≤ξ

g(x)− x > 0.
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Therefore, by Proposition 6(a), {XN
r } has fast convergence to (ξ, 1] and by Lemma 3, {XN}

has fast convergence to the same set. �

Proof of Proposition 8. Write h(u) for P [u ≥ ε]. Note that the restrictions on the

distribution of ε imply that h is strictly increasing and satisfies

h(u) + h(−u) ≥ 1 for all u, lim
u→−∞

h(u) < x∗, lim
u→0−

h(u) > x∗.

For β > 0 let G(β) = inf{g(x, β) − x : 0 ≤ x ≤ x∗}. Let β∗ = sup{β > 0 : G(β) ≥
0}. Since limu→0− h(u) > x∗, G(β) > 0 for some small β > 0, and so β∗ > 0. If x ∈
(limu→−∞ h(u), x∗), then limβ→∞ g(x, β)− x < 0. Thus, β∗ < ∞. To prove claims (i) and

(ii) it will suffice to show that for some β∗r > β∗ three results hold:

(a) if 0 < β < β∗, {XN} has fast convergence to (1
2
, 1];

(b) if β > β∗, {XN} does not reach [x∗, 1] quickly;

(c) if 0 < β < β∗r , {XN
r } has fast convergence to (1

2
, 1].

(a) Let 0 < β < β∗. Then there exists β′ ∈ (β, β∗] with G(β′) ≥ 0. As g(x∗, β) = h(0) ≥
1
2

and limu→0− h(u) > x∗, there exists δ > 0 such that g(x, β)−x ≥ δ for all x ∈ [x∗−δ, x∗].
If x ∈ [0, x∗−δ], then x′ := β

β′
(x−x∗)+x∗ ∈ [0, x∗] and β[π1(x)−π2(x)] = β′[π1(x′)−π2(x′)],

so that

g(x, β)− x = g(x′, β′)− x′ + (x∗ − x)

(
1− β

β′

)
≥ G(β′) + δ

(
1− β

β′

)
.

Hence g(x, β) − x ≥ δ(1 − β/β′) for all x ∈ [0, x∗]. Since g(x, β) is strictly increasing in

x and g(x∗, β) ≥ 1
2
, it follows that inf0≤x≤ 1

2
g(x, β) − x > 0 and so, by Proposition 6(a),

{XN} has fast convergence to (1
2
, 1].

(b) Let β > β∗. Then G(β) < 0, so that for some x0 ∈ (0, x∗], δ := x0 − g(x0, β) > 0.

Since g(x, β) is increasing in x, g(x, β) − x ≤ − δ
2

for all x ∈ [x0 − δ
2
, x0]. Hence, by the

remark after Proposition 6, {XN} does not reach [x∗, 1] quickly.

(c) To prove the assertion about {XN
r } we first show that for r ≥ 2,

inf
1
r
≤x≤ 1

2

g(x, β)− x ≥ 1− β

β∗
if β ≥ β∗ and (r − 2)β ≤ rβ∗. (20)

Suppose β satisfies both conditions. If x∗ ≤ x ≤ 1
2
, then g(x, β)− x ≥ g(x∗, β)− 1

2
≥ 0 ≥

1 − β
β∗

. Suppose now 1
r
≤ x ≤ x∗. Let {βn} be a sequence with G(βn) ≥ 0 for all n and
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βn → β∗. Let xn = β
βn

(x− x∗) + x∗. Then xn ≤ x∗ for all n and limn→∞ xn > 0. Thus, for

n sufficiently large, xn ∈ [0, x∗], so that g(xn, βn)− xn ≥ G(βn) ≥ 0 and

g(x, β)− x = g(xn, βn)− xn + (x∗ − x)

(
1− β

βn

)
≥ 1− β

βn
.

Letting n→∞ completes the proof of (20).

Since x∗ < 1
2
, π1(1− x)− π2(1− x) > π2(x)− π1(x), and so,

g(x, β) + g(1− x, β) > h(β[π1(x)− π2(x)]) + h(β[π2(x)− π1(x)]) ≥ 1

for all x ∈ [0, 1] and β > 0. Consequently,

f (r)(x, β)− x =
r∑

k=0

(
g

(
k

r
, β

)
− k

r

)
pr,k(x)

≥ g(0, β)(1− x)r + [g(1, β)− 1]xr

+
∑

1≤k< r
2

(
g

(
k

r
, β

)
− k

r

)
[pr,k(x)− pr,r−k(x)],

where pr,k(x) =
(
r
k

)
xk(1 − x)r−k. Recall from (a) that g(k

r
, β) ≥ k

r
if k ≤ r

2
and β < β∗.

Moreover, 0 ≤ pr,k(x) − pr,r−k(x) ≤ 1 if k ≤ r
2

and x ∈ [0, 1
2
]. It now follows by (20) that

for every β > 0 with (r − 2)β ≤ rβ∗,

min
x∈[0, 1

2
]
f (r)(x, β)− x ≥ [g(0, β) + g(1, β)− 1]

(
1

2

)r
− r

2

(
1− β

β∗

)−
,

where u− = −min(u, 0). Since π1(1)−π2(1) > π2(0)−π1(0), g(0, β) +g(1, β) > 1 for every

β > 0, and

lim inf
β→β∗

g(0, β) + g(1, β) ≥ g(0, β∗+) + g(1, β∗−) > 1.

Therefore, for every r ∈ N there exists β∗r > β∗ so that if β < β∗r , then infx∈[0, 1
2

] f
(r)(x, β)−

x > 0. By Proposition 6(a), if β < β∗r , then {XN
r } has fast convergence to (1

2
, 1]. �

Proof of claim in footnote 20. Assume the payoff functions πi are as in Proposition 8

and the choice rule g(x, β) is generated by a perturbed utility function with cost function

c(p) = p2. To show that the conclusion of Proposition 8 does not hold we show that for

every parameter β > 0 either {XN} and {XN
r } have fast convergence to (1

2
, 1] or neither

system has.

For the present cost function c, g(x, β) = h(β[π1(x)− π2(x)]), where

h(u) =


0, u ≤ −2
u+2

4
, −2 < u < 2,

1, u ≥ 2.
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Let β∗ = 2/[π2(0) − π1(0)]. If β ≥ β∗, then g(0, β) = 0 and so 0 is an absorbing state of

XN and XN
r for every N . In particular, neither {XN} nor {XN

r } has fast convergence to

(1
2
, 1].

Suppose next that β < β∗. Then there exist γ0 > 0, γ1 > 0 so that g(x, β) = min(γ0 +

γ1x, 1) for all x ∈ [0, 1], and γ0 + γ1x
∗ = 1

2
. If γ0 + γ1 ≤ 1, then g(x, β) = γ0 + γ1x for all x,

and so f (r)(x, β) = γ0 + γ1x for all x. If γ0 + γ1 > 1, then g(x, β) ≥ γ0 + (1− γ0)x for all

x, and so f (r)(x) ≥ γ0 + (1 − γ0)x for all x. In either case, g(x, β) > x and f (r)(x, β) > x

for every x ∈ [0, 1
2
]. Thus, by Proposition 6(a), {XN} and {XN

r } have fast convergence to

(1
2
, 1]. �

Proof of Lemma 1. For ε > 1
4

the result is trivial. Otherwise, let y1 and y2 be the

fraction of players who have 1 as a best response in s and the fraction who are using action

1 in s. We wish to show that

Es

[
V

(
Y N

(
1

N

))
− V

(
Y N (0)

)]
≤ − ε

2

N

whenever y1 < 1− 4ε. We do this using two cases.

Case 1: s has two adjacent players using strategy 2.

Any such state can be written as a concatenation of one or more substrings by the fol-

lowing algorithm: initially pick a player using strategy 1 and view that player as belonging

to the largest substring containing that player that does not have adjacent players using

strategy 2; repeat adding additional substrings by starting with as-yet unassigned players

using strategy 1 until there are no such players; if two of the resultant substrings are sep-

arated by two or more players using 2 regard the sequence of two or more 2’s as another

substring; otherwise if a single 2 separates two of the initially defined substrings treat the

single 2 as belonging to the substring immediately to its right. This produces a division of

s into some number M of substrings, each of which starts and ends with a 2. Further, each

substring is of one of three possible types: (i) a sequence of two or more 2s, e.g. 22222; (ii)

a string starting and ending with 2 containing at least one 1 and with no consecutive 2s,

e.g. 21212 or 2121112112; or (iii) a string starting with 22, ending with 2 and containing

at least one 1 and no consecutive 2s after the first pair, e.g. 2212 or 221212111112.

Let m = 1, 2, . . . ,M index the substrings. Write Nm for the length of substring m, km

for the number of players within substring m who have 2 as their best response, and `m for

the number of players in substring m who are using strategy 1. Note that

Es

[
V

(
Y N

(
1

N

))
− V

(
Y N (0)

)]
=

M∑
m=1

Nm

N
∆Vm,
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where ∆Vm is the expected change in V conditional on the player chosen to update belong-

ing to substring m. We will show below using three subcases that

∆Vm ≤ −
1

N

1

Nm

(kmε− 3`mε
2) (21)

Using the formula above equation (21) will imply that

Es

[
V

(
Y N

(
1

N

))
− V

(
Y N (0)

)]
≤ − 1

N2

M∑
m=1

kmε− 3`mε
2.

Note that
∑M

m=1 km = (1 − y1)N and
∑M

m=1 `m is simply the number of players using

strategy 1. When y1 < 1− 4ε the first of these is at least 4εN . And the second is at most

(1 − 4ε)N because the number of players using strategy 1 is at most the number with 1

as a best response (because the player to the left of any player using 1 has 1 as a best

response). Hence,

Es

[
V

(
Y N

(
1

N

))
− V

(
Y N (0)

)]
≤ − 1

N2

(
(4Nε)ε− 3(1− 4ε)Nε2

)
≤ − 1

N
ε2.

We show that equation (21) is satisfied by considering three subcases:

Case 1(i) Substring m is of the form 222 . . . 2 with km ≥ 1 2s.

All players in substring m have 2 as a best response so km = Nm. Each player switches

to 1 with probability ε. A switch to 1 by the leftmost or rightmost player increases y1 by

at least 1
N

because the player to his or her right/left now has 1 as a BR. And a switch to

1 by any player interior to substring m increases y1 by 2
N

. The expected change in y2 is

positive. Hence,

∆Vm ≤ −
1

N

(
2

Nm

ε+
Nm − 2

Nm

2ε

)
= − 1

N

1

Nm

(2km − 2)ε.

For km ≥ 2 we have 2km − 2 ≥ km so ∆Vm ≤ − 1
N

1
Nm
kmε which is stronger than (21).

Case 1(ii) Substring m starts and ends with a single 2, contains at least one 1 and has

no consecutive 2s.

Each player in such a substring is in one of four situations: playing 2; playing 1 and

having both neighbors playing 2; playing 1 and being on the boundary of a cluster of two

or more players using strategy 1; or playing 1 and being interior to a cluster of three or

more players using 1. Write n2, n1i, n1b, and n1m for the number of players in each of

these four situations. (The i, b, and m can be thought of as referring to whether a 1 player

is“isolated”, on the “boundary” of a cluster, or in the “middle” of a cluster. Note that only
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players in the second situation (playing 1 and having both neighbors playing 2) have 2 as

their best response. Hence, km = n1i.

The number of players with 1 as a best response will increase if and only if a neighbor of

one of the 1 players flanked by 2 players is selected and switches to 1. The number of players

with 1 as a best response will decrease by one in two situations: if the 1-playing neighbor

of a player who is using 1 and is on the boundary of a cluster of 1 players switches to 2;

or if the 1-playing neighbor of the leftmost or rightmost player in the substring switches

to 2. Hence the expected change in y1 conditional on a player from this cluster being

chosen is 1
N

(
2n1i

Nm
(1− ε)− n1b

Nm
ε− 1

Nm
(2ε+ (1− 2ε)z))

)
, where z is the 0, 1, or 2 depending

on whether the leftmost and rightmost players in the substring have a total of 0, 1, or 2

neighbors who are isolated 1-players.

All 2 players and isolated 1 players will switch strategies with probability 1−ε if selected.

Other players will switch from 1 to 2 with probability ε. Hence, the expected change in y2

conditional on a player from this cluster being chosen is 1
N

(
n2

Nm
(1− ε)− n1i

Nm
(1− ε)− n1b+n1m

Nm
ε
)

.

Adding the expressions for the two components of the Lyapunov function gives

∆Vm = − 1

N

1

Nm

(
n1i(2− 2ε)− n1bε− 2ε− (1− 2ε)z + n23ε(1− ε)− n1i3ε(1− ε)− (n1b + n1m)3ε2

)
≤ − 1

N

1

Nm

(
n1i(2− 2ε)− (1− 2ε)z + n23ε(1− ε)− (n1bε+ 2ε+ n1i3ε(1− ε))− (n1b + n1m)3ε2

)
The number n2 of players playing 2 is n1b+2n1i

2
+ 1 because we can count them by counting

the number of 2-playing neighbors that each 1-player has, dividing by 2 to account for

the double counting, and adding 1 because the leftmost and rightmost 2 players were only

counted once. Making this substitution for n2 in the middle of the above expression and

cancelling (and using that 3
2
ε(1− ε) > ε) gives

∆Vm ≤ −
1

N

1

Nm

(
n1i(2− 2ε)− (1− 2ε)z + ε− 3ε2 − (n1b + n1m)3ε2

)
Comparing this expression to (21) we see that (21) will hold if

n1i(2− 2ε)− (1− 2ε)z + ε− 3ε2 ≥ n1iε,

which is equivalent to

n1i(2− 3ε) + ε− 3ε2 ≥ (1− 2ε)z.

We must have n1i ≥ 1 when z > 0 and direct computations show that the equation is

satisfied for all ε < 1
3

when z = 0, when z = 1 and n1i ≥ 1, and when z = 2 and n1i ≥ 1.

Case 1(iii) Substring m starts with 22, ends with a single 2, contains at least one 1 and

has no other consecutive 2s.
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This case is almost identical to the previous one. The expected change in y1 is 1
N

1
Nm

(1−
ε) larger because the only difference is that y1 increases by an additional 1

N
with probability

(1−ε) if the second player from the left is chosen because a switch by that player also makes

the leftmost player have 1 as a best response. The expected change in y2 is 1
N

1
Nm
ε larger

than what one gets from the formula for the previous case after plugging in (n1b+2n1i

2
+ 1)

for n2 because that counting of the number of 2-players misses the leftmost player who

switches to 1 with probability ε when selected. Hence, ∆Vm is 1
N

1
Nm

((1− ε) + 3ε2(1− ε))
larger in absolute value than the expression derived above for Case 1(ii). The number km

of players with 2 as a best response is one larger than in Case (ii). So the fact that 1−ε > ε

implies that inequality (21) continues to hold.

Case 2: s does not have two adjacent players using strategy 2.

In this case we view the state as a single string similar to that involved in Case 1(ii)

above: it starts with a single 2, contains at least one 1, has no consecutive 2s, and ends

with a 1 which is adjacent to the initial 2. Define n2, n1i, n1b, and n1m as in Case 1(ii).

Again, the number of players with 2 as a best response is n1i. By an argument similar to

that above it will suffice to show that

Es

[
V

(
Y N

(
1

N

))
− V

(
Y N (0)

)]
≤ − 1

N2
(n1iε− 3`ε2), (22)

where ` is the number of players using strategy 1. (This is sufficient because n1i ≥ 4εN

and `m ≤ (1− 4ε)N .)

To show that equation (22) is satisfied we compute bounds on the expected changes

in y1 and y2 similar to those used in Case 1(ii). The number of players with 1 as a best

reopens will increase if and only if one of the neighbors of one of the 1 players flanked by

2 players is selected and switches to 1. The number of players with 1 as a best response

will decrease if and only if the 1-playing neighbor of a player who is using 1 and is on

the boundary of a cluster of 1 players switches to 2. Hence, the expected change in y1 is
1
N

(
2n1i

N
(1− ε)− n1b

N
ε
)
.25

All 2 players and isolated 1 players will switch strategies with probability 1−ε if selected.

Other players will switch from 1 to 2 with probability ε. Hence, the expected change in y2

is 1
N

(
n2

N
(1− ε)− n1i

N
(1− ε)− n1b+n1m

Nm
ε
)

. Adding the expressions for the two components

of the Lyapunov function and writing ∆V as shorthand for the expected change in the

25This formula assumes that N ≥ 2 so that the neighbors of an isolated 1-player are distinct.
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Lyapunov function gives

∆V = − 1

N2

(
n1i(2− 2ε)− n1bε+ n23ε(1− ε)− n1i3ε(1− ε)− (n1b + n1m)3ε2

)
≤ − 1

N2

(
n1i(2− 2ε) + n23ε(1− ε)− (n1bε+ n1i3ε(1− ε))− (n1b + n1m)3ε2

)
The number of players n1b playing 2 is n1b+2n1i

2
because we can now double count them by

counting the number of 2-players adjacent to each 1-player. Making this substitution gives

∆V ≤ − 1

N2

(
n1i(2− 2ε) +

(n1b

2
+ n1i

)
3ε(1− ε)− (n1bε+ n1i3ε(1− ε))− (n1b + n1m)3ε2

)
≤ − 1

N2

(
n1i(2− 2ε)− (n1b + n1m)3ε2

)
≤ − 1

N2

(
n1iε− 3`ε2

)
.

This establishes equation (22) and completes the final case of the proof. �
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