Pursuit-evasion games in dynamic flow fields via reachability set analysis

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

As Published: http://dx.doi.org/10.23919/ACC.2017.7963664

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Version: Author’s final manuscript

Citable link: http://hdl.handle.net/1721.1/119854

Terms of Use: Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms: http://creativecommons.org/licenses/by-nc-sa/4.0/
Pursuit-Evasion Games in Dynamic Flow Fields
via Reachability Set Analysis

Wei Sun1, Panagiotis Tsiotras2, Tapovan Lolla3, Deepak N. Subramani4 and Pierre F. J. Lermusiaux5

\textbf{Abstract}—In this paper, we adopt a reachability-based approach to deal with the pursuit-evasion differential game between two players in the presence of dynamic environmental disturbances (e.g., winds, sea currents). We give conditions for the game to be terminated in terms of reachable set inclusions. Level set equations are defined and solved to generate the reachable sets of the pursuer and the evader. The corresponding time-optimal trajectories and optimal strategies can be readily retrieved afterwards. We validate our method by applying it to a pursuit-evasion game in a simple flow field, for which an analytical solution is available. We then implement the proposed scheme to a problem with a more realistic flow field.

I. INTRODUCTION

Pursuit-evasion games is a subclass of differential games that has received a great deal of attention since the early 1960's mainly owing to its application for air combat scenarios. Starting from the seminal work by Isaacs in his book \textit{Differential Games} [1], a large literature exists on the subject. From a theoretical point of view, the optimal strategies of both players (the pursuer and the evader) are given from the solution a nonlinear, partial differential equation (the Hamilton-Jacobi-Issacs equation). From a practical point of view, the problem is far from being solved, solutions of HJI equations are not readily available. This is especially the case for problems with multiple players having non-trivial dynamics. Much of the effort has been therefore devoted to establishing numerical techniques for the solution of pursuit-evasion problems under a minimal set of assumptions.

Despite the formidable character of the underlying HJI, several pursuit-evasion problems admit closed-form solutions. The solutions are often geometric in nature (thus are limited to problems of just two players on the plane) and involve the back-propagation of certain singular fronts from the terminal surface. Such methods are outlined in great detail in Isaacs's book. The Homicidal Chauffeur game [1], for instance, deals with a pursuit-evasion game between an evader having a finite maximum turning radius and an agile pursuer. A converse version of the Homicidal Chauffeur game, also known as the Suicidal Pedestrian game, was studied in [2], [3]. The game between two players with curvature constraints is studied in the Game of Two Cars [4]. A general result for this problem was presented in [5].

Other pursuit-evasion games under some specific conditions include the isotropic rocket problem [1] and the Lion and Man problem [6]. An extension of the game of pursuit with curvature constraints to the three-dimensional space was addressed in [7]. Stochastic differential games of two players have also been explored, including a stochastic version of the Homicidal Chauffeur game, addressed in [8].

Another framework several researchers have used when dealing with pursuit-evasion problems is based on reachable set analysis [9]–[11]. According to this approach, the reachable state space of both players is utilized to find the optimal controls of the pursuer and/or the evader. Reachable set analysis has been applied for performing missile/sensor trade-offs in homing guidance [12], for obtaining escape strategy under pursuit [13], and for finding pursuer control under control constraints [14].

Despite the previous work in this area, few approaches have taken into consideration how dynamic environmental conditions may affect the outcome of the game. For instance, when either the pursuer or the evader (or both) is a small autonomous underwater vehicle (AUV) or small unmanned aerial vehicle (UAV), the presence of sea currents or winds, respectively, may significantly affect the vehicle motion. As a result, during pursuit-evasion, the optimal behavior of these vehicles, as the solution of a differential game, may be greatly affected by the existence of the external dynamic flow field.

Some optimal control problems have taken into account the effect of an external flow field. For example, in [15] the authors address the problem of optimal guidance of a Dubins vehicle [16] in a flow field to a specified position. The minimum-time guidance problem for the isotropic rocket in the presence of wind has been studied in [17]. The problem of minimizing the expected time to steer a Dubins vehicle to a target set in a stochastic wind field has also been discussed in [18]. However, the same level of attention has not been shared in the literature for pursuit-evasion games under the influence of external disturbances.

In this paper, we consider a two-player pursuit-evasion game in an external dynamic flow field. Due to the generality of the external flow, Isaacs’ approach cannot be readily used. Instead, we find the optimal trajectories of the players.
through the evolution of their reachable sets. We utilize the level set method [19], [20] to generate the reachable sets and retrieve the corresponding optimal control actions at the current location of the players by backward propagation of their respective reachable sets. Repeated application of the procedure thus results in the calculation of the optimal feedback strategies of both players. Since the computation of the reachable sets can be performed independently for each player, the proposed procedure leads to a decentralized computation of the feedback strategies of all the players.

Level set methods have been previously applied by Tomlin et al. to solve pursuit-evasion games [21], [22]. The authors of [21] first reduce the degrees of freedom of the problem by reformulating it in terms of the relative distance between the pursuer and the evader. Then the level set method is applied to the corresponding Hamilton-Jacobi-Isaacs (HJI) equation to back-propagate the backward reachable set to solve the differential game directly. Our approach differs from those in [21], [22] since we do not attempt to solve the pursuit-evasion game directly by solving the HJI equation. Instead, we generate the forward reachable sets of the players separately and find the optimal time-to-capture as the first time when the reachable set of the evader is fully covered by the reachable set of the pursuer [10]. We then identify the first rendezvous point of the players and retrieve the optimal trajectories and controls of both players through backtracking of their respective trajectories [23]–[25]. The reason we choose this approach instead of the more direct approach in [21], [22] is due to the dimensionality of our problem. When we introduce dynamic environmental effects into the system, the pursuit-evasion problem cannot be reduced to a problem described solely in terms of their relative distance, unless some very restrictive assumptions are imposed on the structure of the external flow field [26]. We also note that an advantage of the forward reachable set approach is that it is efficient, even in realistic simulations with dynamic ocean currents that can be much larger than vehicle speeds [27]. On the other hand, working directly with the HJI equation is not easily generalizable to multiple players. The approach can also be combined with distance-based coordination of multiple vehicles and with dynamic obstacles [28].

II. PROBLEM FORMULATION

Consider a pursuit-evasion game in an external dynamic flow field with a single pursuer \(P \) and a single evader \(E \). The dynamics of the pursuer \(P \) is given by

\[
\dot{X}_P(t) = u_P(t) + w(X_P(t), t), \quad X_P(0) = X_{P_0},
\]

where \(X_P(t) = [x_P(t), y_P(t)]^T \in \mathbb{R}^2 \) denotes the position of the pursuer, \(u_P(t) \in \mathbb{R}^2 \) is the control input of the pursuer that satisfies the piecewise constraint \(u_P(t) \in U_P \), where \(U_P = \{u \in \mathbb{R}^2, |u| \leq \bar{u}\} \), and \(|\cdot| \) represents the 2-norm. In (1), \(w(X, t) \in \mathbb{R}^2 \) represents the external dynamic flow. It is reasonable to assume that the magnitude of this flow (e.g. winds or currents) is bounded from above by some constant, hence there exists a constant \(\bar{w} \) such that \(|w(X, t)| \leq \bar{w} \), for all \((X, t)\). Here we assume that the effects of the external dynamic flow field on the pursuer and evader are identical.

The objective of the pursuer is to intercept an evader, whose kinematics is given by

\[
\dot{X}_E(t) = u_E(t) + w(X_E(t), t), \quad X_E(0) = X_{E_0},
\]

where \(X_E(t) = [x_E(t), y_E(t)]^T \in \mathbb{R}^2 \) is the position of the evader, and \(u_E(t) \) is its control input such that \(u_E(t) \in U_E \), where \(U_E = \{v \in \mathbb{R}^2, |v| \leq \bar{v}\} \).

Let \(X = [X_P^T, X_E^T]^T \in \mathbb{R}^4 \) denote the state of the game. Then the game begins at initial time \(t_0 = 0 \) with initial positions \(X_0 = [X_{P_0}^T, X_{E_0}^T]^T \), and terminates when the pursuer reaches the location of the evader. The terminal time \(T \) of the game is defined by

\[
T = \inf\{t \in \mathbb{R}^+: X_P(t) = X_E(t)\}.
\]

Let \(J(\gamma_P, \gamma_E) = T \) be the cost function of the game, where \(\gamma_P, \gamma_E : \mathbb{R}^+ \times \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) denote the feedback strategies of the pursuer and the evader, respectively, such that \(\gamma_P(t, X) = u_P(t) \) and \(\gamma_E(t, X) = u_E(t) \). We assume that each player has perfect knowledge of the dynamics of the system represented by (1) and (2), the constraint sets \(U_P \) and \(U_E \), the cost function \(J \), as well as the initial state \(X_0 \). It is also assumed that the value \(V \) of the game [1] exists, that is,

\[
V = \min_{\gamma_P} \max_{\gamma_E} J = \max_{\gamma_E} \min_{\gamma_P} J.
\]

The objective of this paper is to find the open-loop representation of the optimal strategies of the pursuer and the evader. In particular, we utilize a reachability-based method to obtain optimal controls \(u^*_P(t) = \gamma^*_P(t, X^*(t)) \) and \(u^*_E(t) = \gamma^*_E(t, X^*(t)) \), with \(X^*(t) \) denoting the corresponding optimal state trajectory. Henceforth, we consider the control of the pursuer \(u_P \in U_P \), where \(U_P \) consists of all piecewise continuous functions, whose range is included in \(U_P \), and call \(u_P \) an admissible control of the pursuer. Similarly, the control \(u_E \) is an admissible control of the evader if \(u_E \in U_E \), which consists of all piecewise continuous functions whose range is included in \(U_E \).

III. PROBLEM ANALYSIS

A. Reachable Sets

A reachable (or attainable) set at a given time is defined as the set of points that can be visited by the agent at a particular time [29]. The boundary of the reachable set is the reachability front. In particular, the reachable set of the pursuer at time \(t \geq 0 \), denoted by \(\mathcal{R}_P(X_{P_0}, t) \), is the set of all points \(X \in \mathbb{R}^2 \) such that there exists a trajectory satisfying (1), with initial position \(X_{P_0} \) and terminal position \(X t \) at time \(t \). Similarly, the reachable set \(\mathcal{R}_E(X_{E_0}, t) \) of the evader at time \(t \geq 0 \) is the set of all points \(X \in \mathbb{R}^2 \) such that there exists a trajectory satisfying (2), with initial position \(X_{E_0} \) and terminal position \(X t \) at time \(t \). The reachability fronts of the pursuer and the evader at time \(t \geq 0 \) are denoted by \(\partial \mathcal{R}_P(X_{P_0}, t) \) and \(\partial \mathcal{R}_E(X_{E_0}, t) \), respectively. We also denote by \(\mathcal{R}_P^*(X_{E_0}, t) \) the usable reachable set of the evader, which is the set of all terminal points (at time \(t \) of
admissible trajectories of the evader that do not pass through the reachable set of the pursuer at any time in the interval \([0,t]\). In other words, \(R^*_E(X_{E_0},t)\) is the set of terminal points of all the ‘safe’ evader trajectories.

These definitions with respect to the reachable sets lead to the following proposition, which is an extension of Theorem 1 in [10], where the authors derive the condition for capture under the assumption of linear dynamics for both players and a finite energy constraint for the controls.

Proposition 3.1: Let \(T = \inf\{t \in \mathbb{R} : R^*_E(X_{E_0}, t) = \emptyset\}\). If \(T < \infty\), then capture is guaranteed for any time greater than \(T\), while the evader can always escape within a time smaller than \(T\). That is, \(T\) is the optimal time-to-capture. Moreover, let \(X_f\) denote the location where the evader is captured by the pursuer. Then \(X_f\) lies on the intersection of the reachability front of the pursuer \(\partial R_P(X_{P_0}, T)\) and the reachability front of the evader \(\partial R_E(X_{E_0}, T)\).

Proof: Since \(U_P\) is compact and convex, it follows that, for each \((t,x)\), the set \(\{u_P + w(X_p, t) : u_P \in U_P\}\) is compact and convex. Also, since \(u_p\) and \(w(X_p, t)\) are bounded by assumption, the solution of (1) exists on \([0,t_f]\), for all finite \(t_f\). Therefore, by Filippov’s Theorem [30], the reachable set \(R_P(X_{P_0}, t)\) is compact, for all \(t \in [0,t_f]\). Similarly, \(R_E(X_{E_0}, t)\) is compact, for all \(t \in [0,t_f]\). Since \(R^*_E(X_{E_0}, t) \subseteq R_E(X_{E_0}, t), R^*_E(X_{P_0}, t)\) is bounded for all \(t \in [0,t_f]\).

Since \(R^*_E(X_{E_0}, T) = \emptyset\), it follows that for any point \(X \in R_E(X_{E_0}, T)\) that can be visited by the evader at time \(T\) through an admissible evading control \(u_E \in U_E\), it is also true that \(X \in R_P(X_{P_0}, T)\). In other words, there exists an admissible control of the pursuer \(u_P \in U_P\) such that \(X_p(T) = X\). Therefore, regardless of the strategy it picks, the evader can be captured by the pursuer at time \(T\). This implies that capture is also guaranteed for any time greater than \(T\).

On the other hand, since \(t = T\) is the first time such that \(R^*_E(X_{E_0}, t) = \emptyset\) is satisfied, it follows that \(R^*_E(X_{E_0}, t) \neq \emptyset\) for all \(0 \leq t < T\). Hence, for all \(t \in [0,T]\), there exists \(X_t \in R_E(X_{E_0}, t)\) such that \(X_t \notin R_P(X_{P_0}, t)\). That is, for any time \(t \in [0,T]\), there exist an admissible control for the evader to reach \(X_t\) such that \(X_t\) cannot be visited by the pursuer at time \(t\) through any admissible control. It follows that the evader can always avoid capture before time \(T\).

From the two previous statements, we can conclude that \(T\) is the optimal time-to-capture.

Let \(X\) be the point that is the intersection of the reachability front of the pursuer \(\partial R_P(X_{P_0}, T)\) and the reachability front of the evader \(\partial R_E(X_{E_0}, T)\). Then \(X\) is a point in \(R_E(X_{E_0}, T)\) that the pursuer cannot reach before time \(T\) (by definition of \(R^*_E\)). This implies that \(X\) should be the destination of the evader if the latter aims to maximize the time-to-capture. On the other hand, the pursuer also needs to reach \(X\) if \((s)\)he would like to capture the evader. Therefore, the location \(X_f\) where the evader is captured by the pursuer must coincide with \(X\), which completes the proof. □

Remark 1: In cases when \(\bar{u} \geq \bar{v}\), the safe reachable set of the evader \(R^*_E(X_{E_0}, t)\) satisfies

\[
R^*_E(X_{E_0}, t) = R_E(X_{E_0}, t) \setminus R_P(X_{P_0}, t),
\]

for all \(t \geq 0\). In such cases, the condition \(R^*_E(X_{E_0}, t) = \emptyset\) is equivalent to the condition \(R_E(X_{E_0}, t) \subseteq R_P(X_{P_0}, t)\).

Then, the optimal time-to-capture is the first time when the reachable set of the pursuer \(R_P(X_{P_0}, t)\) completely covers the reachable set of the evader \(R_E(X_{E_0}, t)\).

Proposition 3.1 is valid under the assumption that capture is guaranteed at some finite time. We provide a sufficient condition for this to occur in the next theorem.

Theorem 3.2: Assume \(w(X,t)\) satisfies the triangle inequality in \(X\) and its norm is bounded from above by a constant \(\lambda > 0\), where \(\lambda < \bar{u} - \bar{v}\). Then the game terminates in finite time regardless of the initial positions between the pursuer and the evader. Furthermore, the time-to-capture satisfies the upper bound

\[
T \leq \frac{X_{E_0} - X_{P_0}}{\bar{u} - \bar{v} - \lambda}.
\]

Proof: Let \(\Delta X = X_E - X_P\). We have that

\[
\frac{d|\Delta X|}{dt} = \frac{d}{dt} |\Delta X|^\top |\Delta X| = (u_E - u_P + w(X_E, t) - w(X_P, t))^\top |\Delta X| |\Delta X|.\]

Since \(w(X,t)\) satisfies the triangle inequality and is bounded, it follows that

\[
|w(X_E, t) - w(X_P, t)| \leq |w(X_E - X_P, t)| \leq \lambda.
\]

Therefore,

\[
\frac{d|\Delta X|}{dt} \leq (u_E - u_P)^\top |\Delta X| + |w(X_E, t) - w(X_P, t)| |\Delta X| |\Delta X| \leq \min_{u_E} \max_{u_P} \left\{ (u_E - u_P)^\top |\Delta X| |\Delta X| \right\} + \lambda \leq \bar{v} - \bar{u} + \lambda.
\]

Note that (8) implies that the right-hand side of (7) is strictly negative, since it is assumed that \(\lambda < \bar{u} - \bar{v}\). Thus, \(|\Delta X|\) can be driven to 0 in finite time, for all initial conditions of the pursuer and the evader. Finally, (6) follows after integrating both sides of (8).

IV. Numerical Solution

A. Level Set Method

In order to construct the forward reachable sets of the pursuers and the evader, we utilize the level set method. The level set method is a convenient tool to track the evolution of the reachability front. It evolves an interface (front) by solving a partial differential equation (PDE) that describes the evolution of the front. The level set method is particularly useful for problems involving moving boundaries, such as capture games, where the boundary of the reachability set changes over time.

The level set method is based on the idea of representing the boundary of the reachability set as the zero level set of a higher-dimensional embedding function. This function, called the level set function, is smooth and well-behaved, allowing for efficient computation of the evolution of the boundary. The evolution of the level set function is governed by an advection equation, which is a PDE that describes how the function evolves under the influence of the dynamics of the players.

The advection equation is derived by considering the optimal control problem associated with the game. The optimal control problem seeks to find the control that maximizes the probability of capture or minimizes the time to capture, depending on the perspective. By formulating this problem as an optimal control problem, we can use Pontryagin’s maximum principle to derive a Hamiltonian system that describes the dynamics of the players. The Hamiltonian system is then used to derive the advection equation for the level set function.

The advection equation for the level set function, \(\phi\), is given by

\[
\frac{\partial \phi}{\partial t} + H_N \cdot \nabla \phi = 0,
\]

where \(H_N\) is the normal vector to the level set function and \(\nabla\) is the gradient operator. The right-hand side of the equation depends on the dynamics of the players, which are modeled by a system of ordinary differential equations (ODEs). The ODEs are derived by considering the dynamics of the players, which are typically modeled by a system of differential equations that describe the motion of the players in the game.

The level set method is implemented by discretizing the advection equation using a finite difference scheme, which approximates the derivatives in the equation. The discretized equation is then solved numerically using a time-stepping scheme, such as the explicit Euler method or the semi-implicit Euler method. The solution of the discretized equation gives the evolution of the level set function, which can be used to track the evolution of the reachability set.

The level set method is a powerful tool for computing the reachability sets of the players in capture games. It allows for the efficient computation of the evolution of the reachability set, even in high-dimensional spaces, where other methods may become computationally infeasible. The level set method is widely used in computer graphics, computational fluid dynamics, and other areas where the evolution of interfaces is important.

In conclusion, the level set method is a versatile and powerful tool for computing the reachability sets of the players in capture games. It allows for the efficient computation of the evolution of the reachability set, even in high-dimensional spaces, and is widely used in a variety of applications.

Remark: The level set method is a powerful tool for computing the reachability sets of the players in capture games. It allows for the efficient computation of the evolution of the reachability set, even in high-dimensional spaces, and is widely used in a variety of applications.
which offers several advantages over an explicit representation.

For any \(c \in \mathbb{R} \), the \(c \)-level set of a function \(\phi : \mathbb{R}^2 \rightarrow \mathbb{R} \) is the set \(\{ X \in \mathbb{R}^2 | \phi(X) = c \} \). We consider the **signed distance function**

\[
\phi(X) = \begin{cases}
\min_{Y \in \partial R} |X - Y|, & \text{if } X \text{ is outside the front,} \\
\max_{Y \in \partial R} |X - Y|, & \text{if } X \text{ is inside the front.}
\end{cases}
\]

The signed distance function is one of the most commonly used implicit functions in level sets. It is smooth and monotonic across the interface. It also keeps fixed amplitude gradients in the field. For all \(X \in \partial R \), we have \(\phi(X) = 0 \). That is, the zero level set implicitly represents the reachability front. Moreover, the reachable set can be represented by \(\{ X \in \mathbb{R}^2 | \phi(X) \leq 0 \} \).

The reachability front \(\partial R_p(X_{P_0}, t) \) of the pursuer is governed by the viscosity solution of the Hamilton-Jacobi (HJ) equation [24], [25], [31]

\[
\frac{\partial \phi_p(X,t)}{\partial t} + \bar{v} |\nabla \phi_p| + w(X,t) \nabla \phi_p = 0 \quad \text{(10)}
\]

with initial condition \(\phi_p(X,0) = |X - X_{P_0}| \). Moreover, the reachable set of the pursuer coincides with the region(s) where \(\phi_p \) is non-positive. Similarly, the reachability front \(\partial R_e(X_{E_0}, t) \) of the evader is given by the HJ equation

\[
\frac{\partial \phi_e(X,t)}{\partial t} + \bar{v} |\nabla \phi_e| + w(X,t) \nabla \phi_e = 0 \quad \text{(11)}
\]

with initial conditions \(\phi_e(X,0) = |X - X_{E_0}| \).

In the case when \(\bar{v} > \bar{u} \), we need to track the propagation of \(\partial R_e^+(X_{E_0}, t) \). Its reachability front can be computed by solving the following modified version of the Hamilton-Jacobi equation (11):

\[
\frac{\partial \phi_e^+(X,t)}{\partial t} + \bar{v}(t) |\nabla \phi_e^+| + w(X,t) \nabla \phi_e^+ = 0 \quad \text{(12)}
\]

where

\[
\bar{v}(t) = \begin{cases}
\bar{v}, & \text{if } \phi_p(X,t) \geq 0, \\
\bar{u}, & \text{otherwise.}
\end{cases}
\]

The main idea is to propagate \(R_e^+(X_{E_0}, t) \) with the maximum speed of the evader \(\bar{v} \) when it is outside the reachable set of the pursuer, and to keep pace with the propagation of \(\partial R_p(X_{P_0}, t) \) when the front of the evader enters the reachable set of the pursuer to make sure that it never grows out of the reachable set of the pursuer again. Note that \(R_e^+(X_{E_0}, t) \) is represented by \(\{ X \in \mathbb{R}^2 | \phi_e^+(X,t) \leq 0 \text{ and } \phi_p(X,t) \geq 0 \} \).

B. Time-Optimal Paths

As was shown in Proposition 3.1, the location \(X_f \) where the evader is captured by the pursuer is the first intersection of \(\partial R_p(X_{P_0}, T) \) and \(\partial R_p(X_{E_0}, T) \) when \(R_e(X_{E_0}, T) \subset R_p(X_{P_0}, T) \). An example is presented in Figure 1. After we have identified the (common) terminal position of the pursuer and the evader, we can retrieve the optimal trajectories and optimal controls of both players by backward propagation along the reachable sets.

![Fig. 1: Level sets of the pursuer in red and the evader in blue at time \(T \), which is the first time such that \(R_e(X_{E_0}, T) \subset R_p(X_{P_0}, T) \). \(X_f \) is the point common to both fronts, \(\partial R_p(X_{P_0}, T) \) and \(\partial R_e(X_{E_0}, T) \). The initial positions of the pursuer and the evader are depicted by red and blue dots, respectively.](image-url)

In particular, the time-optimal trajectories \(X_p^* \) and \(X_e^* \) satisfy the following differential equations [24], when \(\phi_p \) and \(\phi_e \) are differentiable:

\[
\frac{dX_p^*}{dt} = \bar{u} \frac{\nabla \phi_p}{|\nabla \phi_p|} + w(X_p^*, t), \quad \text{(14)}
\]

\[
\frac{dX_e^*}{dt} = \bar{v} \frac{\nabla \phi_e}{|\nabla \phi_e|} + w(X_e^*, t). \quad \text{(15)}
\]

Hence, the corresponding time-optimal controls of the pursuer and the evader are

\[
u_p^* = \bar{u} \frac{\nabla \phi_p}{|\nabla \phi_p|}, \quad \nu_e^* = \bar{v} \frac{\nabla \phi_e}{|\nabla \phi_e|}. \quad \text{(16)}
\]

C. Numerical Implementation

In this section, we present an algorithm to solve the pursuit-evasion game in an external flow field.

The algorithm contains the following three steps:

1. **Evolution of Forward Reachable Sets**: In cases when \(\bar{u} \geq \bar{v} \), the forward reachable sets of the pursuer and the evader are evolved by computing the viscosity solutions to the unsteady HJ equations (10) and (11) respectively. These evolutions are carried out until the reachable set of the evader is fully covered by that of the pursuer. Otherwise (\(\bar{v} > \bar{u} \)), we propagate \(\partial R_p(X_{P_0}, t) \) and \(\partial R_e(X_{E_0}, t) \) with (10) and (12) until \(R_e^+(X_{E_0}, t) = \emptyset \).

2. **End Point Identification**: When \(\bar{u} \geq \bar{v} \), find the location of \(X_f \) where the pursuer captures the evader by identifying the intersection of the reachable fronts between the pursuer and the evader. Another numerical way to find \(X_f \) is by identifying the point on the reachability front of the evader at the terminal time that has the highest value of the pursuer’s signed distance function. Otherwise (\(\bar{v} > \bar{u} \)), \(X_f \) can be approximated by the point in \(R_e^+(X_{E_0}, t) \) one time step before becomes the empty set.
3. **Backward Trajectory Tracking:** When \(\bar{u} \geq \bar{v} \), and after the reachability fronts of the pursuer and the evader meet at \(X_f \), the optimal controls of the pursuer and the evader can be achieved through (16). Also, we can compute the optimal trajectories \(X_{fP}^* \) and \(X_{fE}^* \) of the pursuer and the evader, respectively, by solving (14) and (15) backwards starting from \(X_f \) at time \(t = T \). Otherwise (\(\bar{v} > \bar{u} \)), we simply replace \(\nabla \phi_{s} \) with \(\nabla \phi_{s}^* \) and follow the same procedure to find the optimal trajectories.

For more details about the numerical schemes for the propagation of level sets and for backtracking of the optimal trajectories, please refer to [23], [24], [31]–[33].

V. **Simulation Results**

In this section, we present simulation results of the pursuit-evasion problem under an external flow field. We first verify our numerical solution with an analytical solution under an affine flow field. We then apply our method to a problem with a more realistic representation of the flow field. Note that in both cases, we assume \(\bar{u} > \bar{v} \).

When the external wind field is approximated by an affine function \(w(X) = A(X - S_0) + b \), where \(A \in \mathbb{R}^{2 \times 2} \) and \(S_0, b \in \mathbb{R}^2 \) are constant matrix and constant vectors, respectively, then the problem can be solved through the standard Isaacs’ differential game approach [26]. This wind field can be seen as a flow generated from a single singularity point located at \(S_0 \), with its characteristics captured by \(A \) and \(b \).

We set
\[
A = \begin{bmatrix} 0.2 & 0.3 \\ -0.15 & 0.1 \end{bmatrix}, \quad S_0 = \begin{bmatrix} 5 \\ 5 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.
\]

The initial conditions of the pursuer and the evader are given by \(X_{p0} = [2, 2]^T \) and \(X_{e0} = [4, 4]^T \). The maximum speeds of the pursuer and the evader are set to \(\bar{u} = 2 \) and \(\bar{v} = 1 \), respectively. The optimal trajectories of the pursuer and the evader calculated from [26] are presented in Figure 2a, and the result generated by the method in this paper is shown in Figure 2b. They are identical to each other, as expected.

Next, we consider a wind field approximation generalized from the Rankine model of vortex [34]:
\[
w(X) = w_0 + \sum_{i=1}^{n_s} \omega_i A_i (X - x_{s_i}), \quad (17)
\]
where \(\omega_i = 1/\max\{r_{s_i}^2, \|X - x_{s_i}\|^2\} \). In (17) \(n_s \) is the number of flow singularities, \(x_{s_i} \) is the location of the \(i \)-th flow singularity and \(r_{s_i} \) denotes the singularity radius. \(A_i \) is a \(2 \times 2 \) matrix, whose structure captures the local characteristics of the \(i \)-th flow singularity. The model approximates the velocity field of a vortex with a linear vector field inside a disk and the velocity outside of the disk decreases as the inverse squared distance to the center of the disk.

For our numerical simulation, we set the number of flow singularities to \(n_s = 3 \). The locations of the flow singularities are \(x_{s_1} = [18, 18]^T \), \(x_{s_2} = [12, 19]^T \), \(x_{s_3} = [14, 12]^T \), and the corresponding radii are \(r_{s_1} = 3 \), \(r_{s_2} = 2 \), \(r_{s_3} = 3 \), respectively. The local wind field matrices are given by
\[
A_1 = \begin{bmatrix} 0 & 0.3 \\ -0.15 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0.4 & 0.2 \\ 0 & -0.2 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 0.2 & 0.1 \\ -0.2 & 0.2 \end{bmatrix}.
\]
We also choose \(w_0 = [0.2, -0.3]^T \).

The reachable fronts of the pursuer and the evader at the terminal time are shown in Figure 3a. The corresponding optimal trajectories of the pursuer and the evader are shown in Figure 3b.

In order to demonstrate that the proposed numerical procedure results in feedback strategies that take advantage of a suboptimal play by either one of the players, in Fig. 4 we show the resulting trajectories of a game in which the evader follows a constant bearing strategy.

On the other hand, the pursuer determines its control action at each instant of time using the reachability set analysis outlined in Section III. Capture occurs at \(T = 0.93 \), whereas if the evader had acted optimally, capture would have occurred at \(T = 1.08 \), which is the value of this game. For this example, the maximum speeds are \(\bar{u} = 4 \) and \(\bar{v} = 1 \) and the initial conditions are \(X_{p0} = [2, 2]^T \) and \(X_{e0} = [4, 4]^T \) for the pursuer and the evader, respectively.
C. F. Chung, T. Furukawa, and A. H. Göktogan, “Coordinated control of controls and trajectories can be computed analytically. We then applied our scheme to a more realistic flow field.

REFERENCES

VI. CONCLUSION

In this paper, we consider a differential game between a pursuer and an evader in an external dynamic flow field. It is shown that the game terminates when the usable reachable set of the evader is the empty set for the first time. A sufficient condition for the existence of finite termination time is presented. The level set method is adopted to generate the reachable sets of both players, and the optimal trajectories of both agents are retrieved by backward propagation of the corresponding reachable sets. We have tested our method on a pursuit-evasion game whose optimal controls and trajectories can be computed analytically. We then applied our scheme to a more realistic flow field.

VI. CONCLUSION

In this paper, we consider a differential game between a pursuer and an evader in an external dynamic flow field. It is shown that the game terminates when the usable reachable set of the evader is the empty set for the first time. A sufficient condition for the existence of finite termination time is presented. The level set method is adopted to generate the reachable sets of both players, and the optimal trajectories of both agents are retrieved by backward propagation of the corresponding reachable sets. We have tested our method on a pursuit-evasion game whose optimal controls and trajectories can be computed analytically. We then applied our scheme to a more realistic flow field.

REFERENCES

VI. CONCLUSION

In this paper, we consider a differential game between a pursuer and an evader in an external dynamic flow field. It is shown that the game terminates when the usable reachable set of the evader is the empty set for the first time. A sufficient condition for the existence of finite termination time is presented. The level set method is adopted to generate the reachable sets of both players, and the optimal trajectories of both agents are retrieved by backward propagation of the corresponding reachable sets. We have tested our method on a pursuit-evasion game whose optimal controls and trajectories can be computed analytically. We then applied our scheme to a more realistic flow field.

REFERENCES