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Mapping 3D Underwater Environments with
Smoothed Submaps

Mark VanMiddlesworth1, Michael Kaess2, Franz Hover3, and John J. Leonard1

Abstract This paper presents a technique for improved mapping of complex un-
derwater environments. Autonomous underwater vehicles (AUVs) are becoming
valuable tools for inspection of underwater infrastructure, and can create 3D maps
of their environment using high-frequency profiling sonar. However, the quality of
these maps is limited by the drift in the vehicle’s navigation system. We have devel-
oped a technique for simultaneous localization and mapping (SLAM) by aligning
point clouds gathered over a short time scale using the iterative closest point (ICP)
algorithm. To improve alignment, we have developed a system for smoothing these
“submaps” and removing outliers. We integrate the constraints from submap align-
ment into a 6-DOF pose graph, which is optimized to estimate the full vehicle tra-
jectory over the duration of the inspection task. We present real-world results using
the Bluefin Hovering AUV, as well as analysis of a synthetic data set.

1 Introduction

Inspection of underwater infrastructure is currently a costly, time-consuming, and
dangerous task performed manually by human divers. As autonomous underwater
vehicles become more sophisticated, it will be increasingly feasible and desirable to
automate these inspection tasks. However, there are many technical challenges that
must still be overcome, particularly in the domain of localization and navigation in
complex 3D environments.

Underwater localization is particularly difficult because globally-referenced satel-
lite navigation such as GPS is rapidly attenuated in water. Underwater vehicles
must therefore either rely on inertial measurements, observations of local features,
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or acoustic communication with a globally-referenced transponder for localization.
Current AUVs, such as those used for seafloor photographic and bathymetric sur-
veys, generally use a combination of these techniques.

Inspection of harbors, platforms, and other underwater infrastructure poses unique
navigational challenges beyond those of a seafloor survey. Range-based acoustic lo-
calization such as LBL is subject to multi-path interference, which is exacerbated by
the shallow depths and hard, flat walls of harbor environments. Additionally, large
metallic objects such as ship hulls render magnetic compasses largely ineffective,
requiring that heading be estimated with drift-prone inertial sensors. Finally, while
seafloor surveys can often be performed using inertial navigation and corrected in
post-processing, the collision hazards posed by underwater infrastructure require
accurate navigation in real time.

2 Related Work

This paper builds upon a large body of prior research in underwater simultaneous
localization and mapping (SLAM), 3D mapping, and dense point cloud alignment.
The goal of SLAM is to correct for drift in the vehicle’s dead reckoning by using
repeated observations of static landmarks in the environment. There are two broad
families of approaches: filtering and smoothing. Both approaches generally assume
Gaussian process and measurement error models.

Filtering approaches track the robot’s current pose by incrementally adding dead
reckoning and loop closure constraints. Because constraints are added incremen-
tally, this approach is naturally suited to real-time operation. Barkby et al. [2] used a
particle filter along with a bathymetric sonar to produce a 2.5D map of the seafloor
in real time. The extended Kalman filter (EKF) has been applied to imaging sonar
data [16], and forward-looking sonar [11] collected by AUVs. The extended infor-
mation filter (EIF) [21], in which the normal distribution is parameterized in terms
of its information vector and information matrix rather than its mean and covari-
ance, has a sparse structure which enables efficient computation. Walter et al. [22]
used a filtering approach to survey an underwater structure using features manually
extracted from an imaging sonar.

A disadvantage of filtering approaches is that they estimate only the current vehi-
cle pose. Because information from loop closure constraints is not back-propagated
to correct previous pose estimates, these approaches do not provide an accurate es-
timate of the entire vehicle trajectory. This is particularly problematic when adding
constraints from large loop closures, which produces discontinuities in the estimated
vehicle path.

Smoothing approaches also include all past poses into the optimization. Exploit-
ing the fact that the information matrix is exactly sparse in view-based SLAM, Eu-
stice et al. [9] applied the information filtering approach to camera data from the
RMS Titanic, producing a 6-DOF trajectory estimate. Dellaert and Kaess [7] formu-
late the SLAM problem as a bipartite factor graph, and provide an efficient solution
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Fig. 1 Bluefin Hovering Autonomous Underwater Vehicle (HAUV) with Soundmetrics DIDSON
sonar.

by smoothing and mapping (SAM). Incremental smoothing and mapping (iSAM)
[13] incrementalizes the matrix factorization to efficiently integrate new constraints
without re-factoring the information matrix.

In the underwater domain, pose graphs have been shown to produce more consis-
tent maps due to their ability to correct prior navigation error and re-linearize around
the corrected trajectory. Beall et al. [3] used an offline pose-graph based smoothing
approach to estimate a full 6-DOF trajectory in a large-scale underwater photo sur-
vey. Kunz and Singh [14] applied offline pose graph optimization to visual and sonar
data. Pose graphs have been used for real-time mapping of a locally planar complex
structures such as ship hulls [12].

We chose to use a pose graph formulation for the improved handling of nonlinear
error models and large loop closures, as we expect relatively large navigation drift
in the absence of a magnetic compass. Additionally, the ability to reconstruct the
full vehicle trajectory is particularly important for inspection tasks, to verify that
the target has been fully covered by the vehicle’s sensors.

In bathymetric and photomosaicing applications, a 2.5-dimensional representa-
tion of the environment (depth map) is sufficient, but complex environments require
a full 3D representation. Fairfield et al. [10] use evidence grids inside a particle filter
to perform real-time 3D mapping of a sinkhole with an imaging sonar.

Submap alignment requires generation of loop closure constraints, which, in vi-
sual SLAM, are commonly derived using viewpoint-invariant visual features such
as SIFT. However, bathymetric and profiling sonars generally do not produce easily
identifiable viewpoint-invariant features. If the vehicle dead reckoning is accurate
over short time periods, as is the case with most IMU and DVL based systems, the
sonar data can be aggregated into “submaps” for improved matching. The aggre-
gated point cloud data is then treated as a single measurement. Point cloud-based
approaches such as [15] and [5], which use iterative closest point (ICP) to align
submaps, have been applied to scanning laser data. However, sonar data gener-
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ally exhibits much higher noise than laser scanners, complicating registration. Prior
work in the underwater domain has demonstrated success at aligning bathymetric
(2.5D) submaps using cross-correlation [18] and ICP [17] to provide constraints for
an EKF-based SLAM system; these are perhaps the most closely related to the work
presented here. However, our work differs in a few key areas. Our contributions are
as follows:

• A full 3D representation of arbitrarily complex marine environments
• Reconstruction of the entire vehicle trajectory using a pose graph
• A method of smoothing submaps for improved alignment

3 Problem Statement

Our complex area inspection missions begin with a long-range survey, which is
used to construct a rough mesh of the inspection target. This mesh is used to plan an
inspection path that covers the entire inspection target while avoiding collision. We
use the sampling-based technique described in [8] for path generation.

Data for these experiments was collected on the Bluefin Hovering Autonomous
Underwater Vehicle (HAUV), a vehicle specifically designed for ship hull inspection
(see Fig. 1). Full details of the platform can be found in [12]; here we will briefly
summarize the relevant attributes.

3.1 Navigation Sensors

The HAUV is equipped with a Honeywell HG1700 IMU, an RDI 1200kHz DVL,
and a Keller pressure sensor. The DVL can be locked downward or rotated to point
at the ship hull; in our complex-area operations, we keep the DVL locked down-
ward. The DVL and IMU are combined to provide a position estimate. The x and
y position is estimated by integrating velocities from the DVL and IMU, and are
therefore subject to long-term drift. Because magnetic compasses are unreliable in
the presence of steel structures, we do not use a magnetic compass; therefore, head-
ing ψ is also subject to drift. Depth z, pitch θ , and roll φ are all measured directly,
so they are subject to measurement noise, but not to drift.

3.2 Sonar

We use the DIDSON profiling sonar, which has an aperture 22◦ wide and 1◦ tall.
There are 96 beams comprising the width of the sonar, each of which provides
acoustic intensity in 512 bins representing range. To extract ranges from these inten-
sities, we perform a median filter to reduce noise, then threshold the intensity and



Mapping 3D Underwater Environments with Smoothed Submaps 5

accept the first (shortest-range) return along each beam. This somewhat reduces the
effect of multipath interference, which often appears as an echo of close objects at a
longer range. The range extraction at time t produces 2-D polar points pl

t = (θ ,r) in
the sonar coordinate frame, which are transformed into Cartesian points pt = (x,y,z)
in the vehicle coordinate frame.

We generally operate the sonar with a minimum range of 1m and maximum range
of 6m for close inspection tasks, therefore each of the 512 range bins represents
approximately 1cm. In practice, however, the range resolution is more coarse. Even
in an ideal environment, measuring a hard, flat surface in a low-noise swimming
pool, we observe that the return is generally “smeared” along several bins.

Harbor environments further degrade the quality of sonar data. Reflections from
ship hulls, surface waves, and, surprisingly often, large fish lead to spurious returns
even with aggressive filtering. From our experience, the error is generally on the
order of 5cm, with occasional larger errors up to half a meter.

On the HAUV, the DIDSON is mounted to provide a horizontal “fan” of range
returns, and can be swept 90◦vertically. Due to the sonar’s narrow field of view, we
primarily use the fixed configuration for long-range surveys. Close range surveys
consist of a series of waypoints, with the vehicle holding station while the sonar is
swept vertically.

4 Pose Graph SLAM Using Submap Alignment

Fig. 3.2 shows the high-level architecture of our system. Our task is to estimate
the vehicle pose xt = [x,y,z,ψ,θ ,φ ] over the entire trajectory of a complex inspec-
tion task, t = [1..n]. As the vehicle moves along the inspection path, it aggregates
sonar pings into submaps. The submaps are stored in the submap catalog, and are
smoothed and aligned to provide loop closure constraints.

Fig. 2 An unfiltered submap projected alongside the prior mesh using dead reckoning, illustrating
the approximate scale of dead reckoning error and some characteristics of unfiltered sonar data.
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Fig. 3 Architecture of submap-based SLAM.

4.1 Submap Formation

To form submaps, we assume that dead reckoning is accurate over a short time
scale, and use dead reckoning to aggregate groups of consecutive sonar pings into
submaps. Each submap is assigned an anchor time, in this case halfway between the
start and end time, and is treated as a single measurement taken at the anchor time.

Choosing submap size is a balance between the submaps being large enough to
align with one another, but not so large as to incorporate significant navigation drift.
With the DIDSON in the sweeping configuration, we simply define a submap as a
single vertical sweep. When the DIDSON is locked in the horizontal configuration,
we define a minimum number of points ksub and a maximum time window for the
submaps tsub; when either threshold is reached, a submap is created. For a list of
parameter values used in our experiments, see Table 1.

When the vehicle is actively scanning a target, the points threshold ksub generally
triggers submap formation well within the time window tsub. When sonar returns are
sparse (e.g. the vehicle is transiting between inspection waypoints), the time limit
tsub will trigger submap formation. In our experiments, these sparse submaps often
produce poor alignments and are therefore not used for loop closures.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
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Fig. 4 A submap as it progresses through the four steps of the smoothing process. This submap
consists of a vertical portion of the middle of the propeller and a segment of the hull, viewed from
the starboard aft side. From left to right: the raw submap, submap after voxel filter 1, submap after
outlier rejection, submap after voxel filter 2, and submap after parametric surface modeling. (a-d)
wide view showing outliers. (f-j) detail shows smoothing of propeller blades. (k-o) illustrate the
relative point density at each step.

4.2 Submap Smoothing

Before aligning the submaps, we perform a filtering and smoothing operation to
reduce the sonar artifacts described above. This serves two purposes: to eliminate
spurious returns caused by acoustic reflections, fish, etc., and to achieve a more uni-
form point density for better alignment. We rely primarily on the implementations
found in the freely-available Point Cloud Library [19].

The first step is a voxel filter, in which the submap is divided into cubes of size v1,
and if multiple points occupy the same cube, they are removed and replaced with
a single point at their centroid. We choose v1 to be 2cm, which is approximately
the spacing between DIDSON beams at medium range. Thus the first voxel filter
serves to remove “redundant” data without significantly reducing the resolution of
the submap.

Second, we perform k-nearest-neighbor outlier rejection, in which points are re-
jected if the average distance to their knn nearest neighbors is > σnn standard devia-
tions above the mean (for details and implementation, see [20]). This is effective at
removing artifacts caused by electrical noise, minor multipath reflections, and small
fish (we leave systematic multipath interference and large fish for future work).
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The third step is a larger voxel filter of size v2. The goal of this step is to produce
a cloud of roughly uniform density, as the parametric surface modeling in step 4 is
sensitive to variations in point density. Therefore, we choose v2 to be roughly the
distance covered between DIDSON frames (5-10 Hz) when the vehicle is moving at
speed (.5-1 m/s), giving us v2≈ 10cm. This step has the effect of combining adjacent
points from within DIDSON frames, so that their spacing more closely matches the
spacing between frames.

Finally, the resulting points are smoothed using a local parametric approxima-
tion as described in [1]. For each point, a polynomial surface is constructed which
minimizes the mean squared error to points within a radius r. The point normal is
estimated as the normal to the parametric surface, and the point is projected onto the
surface. The surface normal is also stored for each point, as it will be utilized in the
alignment step. 1

After smoothing, the smoothed submap and surface normals are stored in the
submap catalog and used for alignment, while the full-resolution unprocessed
submap is retained for reprojection into the final map. For an illustration of submaps
at each step of the smoothing process, see Fig. 4.

4.3 Submap Alignment

We align submaps using Iterative Closest Point [4], an algorithm for aligning a set of
measurement points (also called source points) to a target model by iteratively com-
puting rigid transformations that minimize the sum of squared distances between
the points and target model. Each measurement point is represented in Cartesian
coordinates as p = [x,y,z], and the target can be any model that allows computation
of distances to a point, such as a parametric surface, line, or another point cloud.
In our case, we have normal estimates for each submap, so we use point-to-plane
distances in computing the transform.

For measurement points p′i corresponding to target points pi with normals ni in
the target, ICP computes the rigid transform T that minimizes the sum of square
errors between the measurement set and the target set:

∑
i
||(p′i−T pi) ·ni||2 (1)

1 While the previous steps were fairly well-grounded in sonar geometry and error characteristics, it
is not immediately obvious why step 4, parametric surface modeling, is appropriate. In the general
case, there is no reason to expect arbitrary input data to form a smooth manifold. However, in
the underwater inspection domain, we find this technique justified for two reasons (beyond its
empirical effectiveness). First, we make the general observation that the seafloor is, although not
strictly polynomial, almost by definition a watertight manifold. Second, many of our inspection
targets are anthropogenic structures which do, in fact, have a good polynomial approximation.
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When a suitable alignment is found, we transform the anchor pose of the source
submap, and formulate a relative constraint between the source and target anchor
poses. This constraint is added as a factor in the pose graph.

ICP is known to be highly sensitive to initialization, due to the local minima
which are often present in the cost function. If not initialized close to the correct
solution, it will converge to the wrong local minimum. We address this issue in
two ways. First, we initialize ICP with the most recent estimate of the relative po-
sition of the source and target poses. This is equivalent to assuming that the dead
reckoning between the last correctly-aligned pose and the current pose is within the
region of attraction of the correct alignment. Second, we assign a fitness score to
each alignment that represents the normalized sum of squared distances between
corresponding points. Smaller fitness scores represent better alignments. If the fit-
ness score exceeds a threshold α , we reject the alignment and do not add a loop
closure constraint to the pose graph. This threshold is dependent on the scope of the
data set, point density, and noise levels; we found α = .1 to be a reasonable value
for our experiments.

For the purposes of this work, we assume data association is known; future work
will address the issue of determining which pairs of submaps from the catalog to
align.

4.4 Pose Graph Construction

We formulate the pose graph as a factor graph, in which nodes represent poses
and factors represent constraints between poses, following the formulation in [13].
Specifically, a factor graph G = (F ,Q,E ) is comprised of factor nodes fi ∈F and
variable nodes qi ∈Q. An edge ei j ∈ E exists if factor node fi depends on variable
node q j. Our goal is to find the maximizing variable assignment

Q∗ = argmax
Q

∏
i

fi(Qi), (2)

where Qi is the set of variables adjacent to the factor fi.
We construct a pose graph using constraints from dead reckoning and submap

alignments. Dead reckoning constraints are periodically added, with a conserva-
tive covariance based on our sensor properties. When we get a match between two
submaps, it is formulated as a relative constraint between the two corresponding
anchor poses.

We estimate the covariance of a submap alignment constraint using a conserva-
tive heuristic based on the normalized covariance of the points in the source submap.
While not exact, this provides an intuitively reasonable approximation. For example:
alignment of the Y-Z plane would have higher certainty along the surface normal (X
axis), and alignment of a uniform ball of points would be considered equally certain
in all directions.
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As constraints are added, they are incorporated incrementally, without costly
variable re-ordering or redundant computation. The full batch optimization using
Gauss-Newton, including variable reordering, is performed asynchronously in the
background. This enables real-time operation, even for large pose graphs.

Fig. 5 Planned path for inspecting the propeller of the USS Saratoga.

5 Results

We tested our system in an underwater inspection scenario on the USS Saratoga,
a decommissioned aircraft carrier in Newport, RI. We performed a survey of the
running gear, including the approximately 7m diameter propeller and a section of
the hull above the propeller. The survey consisted of three vertical track lines from
5-6m range with the DIDSON in fixed mode, followed by 24 close-range waypoints
at which the DIDSON was swept vertically. The trajectory was generated by En-
glot and Hover’s sampling-based coverage planning [8]; the planned path is shown
in Fig. 5. The entire trajectory took approximately 1200 seconds to execute. For
a summary of the parameters used for our submap smoothing and alignment, see
Table 1.

We do not have ground truth for this data set, but we estimate that the navigation
drift was on the order of 30cm over the course of the survey. For an illustration of
the navigation drift, see Fig. 2.

A mesh generated from our inspection trajectory is show in Fig. 6(b). The raw
point cloud was denoised and smoothed using a variant of our submap smoothing
algorithm described in Section 4.2. It was then meshed with a simple greedy trian-
gulation. The raw sonar returns, reprojected from the optimized vehicle trajectory,
can be seen in Fig. 6(a). Behind the propeller, the drive shaft is visible, along with a
support strut. Note the high number of spurious sonar returns. Because the ship was
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ksub 500 Submap formation: min. points per submap
tsub 25 sec Submap formation: max. time per submap
v1 2 cm Voxel filter 1: size
knn 50 Outlier rejection: # neighbors considered
σnn 2 Outlier rejection: std. dev. limit
v2 10 cm Voxel filter 2: size
r 0.3 m Polynomial surface modeling: radius
α .1 Submap alignment: fitness threshold

Table 1 Key parameters for submap formation, smoothing, and alignment.

not operational, it had a significant amount of growth on the propeller and shaft, and
had become a habitat for fish, oysters, and other marine life.

(a) (b)

Fig. 6 (a): The final point cloud from the propeller inspection trajectory. Raw submaps have been
reprojected according to the SLAM-corrected trajectory, and points are colored by submap. (b): A
smoothed mesh generated from the raw point cloud.

To isolate the effect of pose graph alignment, we also generated a partially syn-
thetic data set based on the actual vehicle trajectory. We corrupted the vehicle trajec-
tory with navigation drift, simulated by incrementally adding zero-mean Gaussian
noise to dead reckoning measurements of x, y, and ψ state variables. We used a stan-
dard deviation of .01m for x and y, and .00001 radian for ψ , accumulating at 20Hz.
We also added zero-mean Gaussian noise to the absolute measurements of z, θ , and
φ to simulate increased measurement noise without drift. We also added synthetic
sonar measurements created from the actual vehicle trajectory and a high-resolution
sonar map of the propeller gathered in a previous experiment. To simulate sonar
pings at each waypoint, we extracted points in the sonar field of view, downsampled
them to the sonar resolution, and added Gaussian noise with a standard deviation of
5cm.

Fig. 7 shows the reprojected clouds from our synthetic data set, using the dead
reckoning (left) and SLAM (right) trajectories. As is apparent, the dead reckon-
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Fig. 7 Comparison of point clouds generated from dead reckoning (left) vs. SLAM (right).
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Fig. 8 Average per-pose error over time.

ing error caused misalignment in the reprojection, which is corrected in our SLAM
framework. Fig. 8 shows the average per-pose trajectory error over time. At each
loop closure event, the SLAM error is reduced, while the dead reckoning error con-
tinues to accumulate. Note that, in the SLAM reprojection, the sonar noise domi-
nates the alignment error, even though the trajectory is estimated based on the noisy
sonar returns. We attribute this to our smoothing procedure detailed in Section 4.2.
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6 Conclusion

We have presented a system for submap-based loop closure in 3D underwater map-
ping, and demonstrated its use on real and synthetic data sets. By smoothing the
submaps before alignment, we have reduced the effect of the spurious returns fre-
quently found in cluttered and heavily biofouled environments. By regularizing
point cloud density, our system is able to combine submaps of varying resolution,
while retaining the full-resolution point clouds for reprojection into the final map.
Using a pose graph framework, we are able to reconstruct the entire vehicle trajec-
tory, which is necessary to ensure full coverage of the inspection target. Our system
runs in real time, and it is robust to moderate amounts of sonar noise and navigation
drift.

7 Future Work

This effort suggests many areas for future research. We have a simple threshold-
based system for outlier rejection, but a fully probabilistic solution could potentially
improve our results. We would also like to experiment with different alignment tech-
niques, such as multi-scale ICP or the normal distribution transform.

We could potentially further reduce error by using a volumetric, rather than point-
based, reconstruction. For example, the signed distance function [6] combines mul-
tiple measurements into a single implicit surface model. This has been used to great
effect with RGBD cameras, and we suspect it may help reduce the sonar noise still
present in our final models. A drawback of naive volumetric techniques is that mis-
alignments are incorporated into the final model and affect all subsequent align-
ments. Perhaps a hybrid system, which used our pose graph technique for initial
trajectory estimates and a volumetric reconstruction for further refinement, could
combine the benefits of volumetric techniques with the flexibility of pose graph
SLAM.
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