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Drag Reduction Using Wrinkled Surfaces in High Reynolds

Number Laminar Boundary Layer Flows
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Department of Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts, 02139, USA /

(Dated: 30 August 2017)

, passivesdrag
iously been de-

Inspired by the design of the ribbed structure of shark ski
reduction methods using stream-wise riblet surfaces have pr

i u? et surfaces
aligned in the flow direction (also known as a “wrinkled”“texture) on the
evolution of a laminar boundary layer flow. Usifigenumesical analysis with
the open source CFD solver OpenFOAM, boundary layerﬁio over sinusoidal
wrinkled plates with a range of wavelength to plate length ratios (A/L), as-
pect ratios (24/)), and inlet velocities are gxamined. ¥-4s shown that in the
laminar boundary layer regime the riblets areable te retard the viscous flow
inside the grooves creating a cushion of stagnant,fluid which the high speed
fluid above can partially slide over, tius redueing the shear stress inside the
grooves and the total integrated vis K'{Er e on the plate. Additionally,

essylocal average shear stress distri-

us
we explore how the boundary layer M
bution, and total drag force on 'Wns'm,k\e[itplate vary with the aspect ratio
h ofsthe
t

of the riblets as well as the lengt plate. We show that riblets with an
aspect ratio of close to unity &d& highest reduction in the total drag,
and that because of the interpl tween the local stress distribution on the
plate and stream-wise evolution ofithe boundary layer the plate has to exceed
a critical length to giye a n rease in the total drag force.

Mets, Boundary Layers, Laminar, OpenFOAM

Keywords: Drag Reduc

I. INTRODUCTION \
£
The conceg( { achi 'n{ frictional drag reduction at high Reynolds numbers using riblets
was first i troch%c\los to 40 years ago*3. In this approach to skin friction reduction,
surfaces gextured withistream-wise riblets (aligned in the flow direction) are used to modify
7 Hear the textured surface. Previous experimental measurements and numerical
e shown a possibility of achieving up to 10 % reduction in the total frictional
immeérsed and textured surface®®.
y?; underpinning riblet-based drag reduction were originally motivated by a
umber dependent ideas: First, biological observation of fine ridges aligned in the
W direﬁtion on the denticles of fast-swimming sharks (which are closely packed all over
s’ body) raised the possibility of achieving drag reduction using stream-wise
grofyes.2>* 1142 Second, it was suggested that riblets or stream-wise grooved textures could
constrain the growth of turbulent structures and reduce the Reynolds shear stress near the
wall by choosing physical rib sizes smaller than the radius of the vortices.®10:18:26:42 [nde-
“pendent DNS calculations and experimental measurements in turbulent boundary layer and
channel flows for various Reynolds numbers in the range of Rey, ~ 3 x 10* — 8 x 10° have
shown that the diameter of the stream-wise vortical structures near the wall have values of
between 10 and 44 6* and the mean spacing of these structures is about 100 §*.24:25:33 Here

a)shraayai@mit.edu
b) gareth@mit.edu
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the Reynolds number is defined as Rej, = pV L/ where p and p are the fluid density and
viscosity, V' is the characteristic velocity, and L the characteristic length, and the viscous
length scale 0* is defined as v/v* where v* = /7, /p and 7, is the magnitude of the wall
shear stress.

to new experiments in 1970s on the heat transfer of turbulent flows pastdvalls with stream-
wise fins, and sharp internal corners (i.e. rectangular ducts and condui perimentally,
it has been observed that the secondary flow structures that developwinsi he corners
of non-circular ducts, and at the base of the fins (the intersection of he fins with the

it was shown that
corner by limiting the span-wise component of the velocit t}? sulting in a local
re-laminarization of flow inside the corners.3*42 Thus, it wa othesised that walls with
periodic textures aligned in the stream-wise directions (§ueh as riblets) that contributed a
large number of independent corner regions could perfotin in a similar manner.!7,22:34:42

Third, advances in techniques used to manufacture pipes with straig?r spiral fins lead
).

demonstrated the possibility of creating surfaces with varigus types of wrinkled textures in
the forms of sinusoidal periodic and non-periodigc les and herringbone patterns using
hyper-elastic materials.”-314% Using 3D printing hod§,.Wen et al. have used micro-CT
scans of a shortfin mako shark to replicatesghark denticles. They arrayed the printed
denticles linearly on a flexible substrate that was_theh immersed in a tow tank used for
hydrodynamic testing, including net drag for easturements. Their results showed drag
reduction for channel Reynolds numbe “r@?l-ﬁhan Re;, > 9.6 x 10* and for denticles

with rib spacing of 51 um and ribeights between 11 — 21 pm.** With the advances in
our understanding of the tunability avelength and amplitude of textured surfaces

with geometric, dynamic and méterial \parameters, it is also of interest to investigate the
possibility of using such surfacesomapplications such as smart adhesion®, and flow con-

trol. Terwagne et al. have recently d dimpling patterns of wavelength of 4.37 mm
and average dimple depth of %&m\o — 0.8 mm on spherical surfaces of 20 mm radius

Independently, in recent decades, new devek;;c:{ts soft materials research have
w

and showed the potential of dynamically controlling the total drag for Reynolds numbers
between 5 x 103 — 10%32

In order, to underst
boundary layer, i i
layer spatially

d thefintegrated effect of the riblets on the structure of a viscous

€es ove;gib et textured surfaces prior to the transition to turbulence, and
corresponding laminar flow evolution could lead to an increase or

C‘Iﬁ uced by periodic sinusoidal wrinkles on a spatially developing laminar
ndary layer flow. We study the systematic changes in velocity profiles, pressure
d the resulting local changes in the boundary layer thickness and the shear

be tripped to transition at earlier Reynolds numbers, resulting in an increase in the total
frictional drag force, however this is not the focus of this study.!:?®

This paper is organized as follows: in section II, we discuss the numerical method used in
e research combined with a grid resolution and benchmark study of flat plate boundary
layer. Then in section III, the primary results of the numerical study are presented; first
we discuss the evolution of the velocity profiles along the boundary layer that develops over
periodic riblet surfaces as well as the pressure distribution in the stream-wise direction.
Then we discuss the effect of wrinkles of various aspect ratio on the thickness of the boundary
layer, and lastly we explore the effect of the riblets on changes in the local shear stress
distribution along the length of the plate as well as on the total integrated frictional drag
over riblet surfaces with various aspect ratios.
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Il. METHOD

Our goal is to solve the full steady-state Navier-Stokes equations for the three velocity
components (u, v, w) and the pressure (p) distribution in the laminar viscous boundary layer
that develops over different textured plate geometries. In the present study the numerical

rithm (Semi Implicit Method for Pressure Linked Equations)®”. The S
widely used for steady state problems with velocity and pressure coupli

nents and lastly the pressure correction equation is solved,
estimate. The algorithm then checks for convergence and
at the desired convergence criteria or continues to the nexf itération step.1637 The SIM-
PLE algorithm is already implemented in the open sour¢e CFD package OpenFOAM® for
three dimensional laminar viscous flows and this imple ntaticg was utilized throughout

the present study. =
A schematic of the geometry and the coordinate sys

t
Stream-wise wrinkles (sinusoidal riblets) are aligned in th¢ direction parallel to the flow
(z-direction) and are fully defined by two gepmetrie,parfameters, the wavelength (\) char-

acterizing the spacing of the riblets and the ‘amplitude (A), defined here as the distance
between the peak and the trough of a wave as,showa i
n

minates the procedure

used is shown in Figure 1(a).

Figure 1(b). Velocities in the z,y, 2
direction are denoted by u, v, w respecti el;%l: total length of the plate along the flow
direction is denoted by L. To compare simulations with different riblet geometries, two
dimensionless groups are used: the @spect ratig AR = 2A/) of the riblets provides a local
measure of the sharpness of the ribbe pékxﬂlm‘and A/ L provides a global measure of the size
of the plate riblets with respectffo, the scale of the plate. Because the flow also evolves in

f

R

the stream-wise direction it is als uldin our analysis to compare the ridge wavelength
to the local position using &l led: variable z/X. The lines y = 0 and y = —A are
chosen to be at the peak an O‘%g‘l\of the wrinkles respectively and the surface of the
riblets can then be written in the foxm y, = —g + % cos (%’Tm) where z is the cross-stream
direction.

(b)

THFIG! ) Schematic of the 3D geometry of the flow domain used in OpenFOAM simulations; (b)

S

Thei)cross section of a wrinkled surface (z — y plane)

The scale of the wrinkles simulated in this work were chosen based on the physical riblet

Sizes reported previously to show drag reduction®%4042; the wavelength has been kept

constant at A = 27/3 x 107* m ~ 200 pm and the length of the domain (0 < L/\ < 191)
and riblet amplitude (AR = 0.48,0.72,0.95,1.43,1.91) have been varied to investigate the
effect of geometric changes on the level of drag reduction that can be achieved. The height
of the domain has been kept constant to 1 mm and thus the surface area of the inlet and
all the cross sections (in both smooth and riblet cases) is 2 x 10~7 m?2. To ensure the flow
is laminar, the Reynolds number of all the cases simulated were limited to Rey, < 5 x 10,
which is the conventional criterion for natural (unforced) transition to turbulence on a flat
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plate.32

The appropriate Reynolds number that parametrizes the relative importance of inertial
and viscous effects in this spatially developing flow is defined using the flow direction (z) as
the length scale (similar to the classical boundary layer theory) plus the maximum velocity of
the free stream along the plate (W), which is determined after the simulations are carried
out. The local Reynolds number in this spatially-developing flow car&/wus be written as

Re, = Wyz/v, where v = pu/p is the kinematic viscosity of the fluid{ w, is the dynamic
viscosity and p is the density of the fluid. \
1@6 1(a)"are similar

The boundary conditions of this problem shown schematically i

to the case of a conventional boundary layer problem32. At the inlet«(at' the plane z = 0),

The wrinkled surface at the bottom of the domain is non-p ¢ 1d acts as a no-slip
wall, the upper surface has a zero pressure and no velocity it and the outlet
(at the plane z = L) has zero velocity gradient acrosg.i zab‘pressure. The two
side walls have periodic boundary conditions. Note that “due to ading edge effects, the
maximum velocity in the simulations is up to 30% lar,
Win and this value of W, is reported for each castt.udie

A. Grid Resolution Study f ¥

The dimensions of the mesh elements u%
similar for all cases, with an average si OM. The average size is calculated as the
cubic root of average cell volume V'1/3). e siallest mesh elements are located close to
the wall at the leading edge with an@verage size of 0.05 x A and the largest mesh element at
the top boundary close to z = L have'a le g&kseale in the stream-wise direction of 0.1 x A.
As an illustrative example of th€ problém size, to simulate the cases of L/A = 95.5 with 3
wrinkles in the lateral direction, p\%?i 10% mesh elements were used. For longer/shorter
geometries, the number of mesh.elements was proportionally increased/decreased.

We first take two models W%&: 1.91 and AR = 0 (flat plate), L/A = 23.87 and
Rey, = 6650 and use these to investigate the effect of the spatial resolution by changing the
number of cells (or ¢ nﬁhgt}?e average size of the elements). The results are presented in

16

Figure 2 in terms > change in the overall integral drag coefficient on the plate as the
number of elements N in mulation is incremented, or as the characteristic size of the
mesh element is#edugéd. The drag coefficient on the plate is defined as

D 1
_ _ o y).endAy |
5\Q€ A = T /Aw(f o). (1)

total drag force on the wall, A, is the wetted area of the wall, n,, is the

t e surface of the wall, 7, is the shear stress tensor evaluated at the wall.
zg coefficient calculated using the Blasius solution Cp = 1.328/+/Rey, is also
1pure 2 by a dash-dotted line. Due to the leading edge effects present for plates

a nodé}ate Reynolds numbers (lower than Re;, < 10%) the calculated results for this flat
about 20% higher than the classical Blasius theory. This difference can be captured
usiti a higher order theory in which the drag coefficient includes an additional term and

ande written as3? Cp = 1.328Re; /*+2.67Re; /®+O(Re;"). The computational results

are within 1% of this higher order theory.

Results show that increasing the number of elements in the finite volume model (FVM)
from 1.22x 10° to 1.68 x 10° (equivalently, changing the average cell size from 0.09\ to 0.08)\)
changes the drag coefficient by only 0.1% and thus using the latter cell size gives sufficient
resolution for the simulations. It is also clear from Figure 2 that the drag coefficient on the
wrinkled plate (with AR = 1.9) is substantially lower than the flat plate, but it should be
noted that this drag coefficient has been normalized by the total wetted area of the plate
and does not explicitly display the increase in the surface area due to the presence of the
riblets. The interplay of the reduced drag coefficient and the increase in the wetted surface
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FIG. 2. Effect of (a) the number of mesh elements and (b)
on computed flow over surfaces with sinusoidal riblets. The
drag coefficient on the riblet walls for a geometry with AR = 1.9% and AR = 0 (flat plate),
Rer, = 6650 and L/\ = 23.87. The theoretical results ftporr onding flat plate are shown with

a dashed line (classical Blasius theory) and with a dash-dot.ine (higher order theory®?).

area is discussed further in section IITC. A similar a ‘aLgE'mesh size as the N = 1.68 x 106
(V1/3/X = 0.08) cells used for L/\ = 23.7¢hashegen employed throughout this study. For
L/X=47.75and L/A = 95.5 , N = 3.36 x 10%and

\

B. Benchmark - Flat Plate Boundar ES
~

= 6.72x 10 cells are used respectively.

As an initial benchmark, the p a flat plate boundary layer has been solved with
the method outlined in sectien II. is' benchmark study the same geometry as Figure
1(a) has been used with a wall instead of the wrinkled one located at y = 0.
The rest of the boundary conditigns are the same as explained above. Water has been
chosen as the workingefluid with v 1076 m?/s and the inlet velocity is Wy, = 6 m/s.
The corresponding ree-stream velocity is found to be Wy, = 6.56 m/s and the

Reynolds number length is Rey = 31550, corresponding to a flat plate of

length L = 0.1 mt
In order to vdlidate the sglution, the results from the numerical simulations are compared
with the ori | lamimar’ boundary layer theory. Based on the Blasius solution for the

laminar boundary«layer How over a flat plate under zero pressure gradient, the velocity

profiles orﬁhe length of the flat plate are self-similar when expressed in terms of a
similarity wariable n defined as n = y/zv/Re.. Using this rescaled wall variable n and

lizing the velocity with the free-stream velocity w/W, the velocity profiles

ther, having the form shown by the solid line in Figure 3(a), as calculated

“Blastug inf1907 932, The numerically computed velocity profile w/W,, at the end

f the platéy z = L (corresponding to Re;, = 31550) and scaled using the definition of

& y/LyReL is also shown on Figure 3(a) by the points. As shown, the results of the
d the numerical simulation match very well.

ditionally, the computed values of the wall shear stress along the plate can be compared

with' the Blasius boundary layer theory. According to the Blasius solution for the flat plate

ndary layer, the shear stress at each point along the plate can be expressed in the form

“of a non-dimensional local skin friction coefficient Cy at each point on the flat wall and is

given as>?

7y=(y =0,2)  0.664

C(z) = = .
! Lowz, Re.

(2)

The local skin friction distribution at the wall 7,.(y = 0,2) is also extracted from the
simulations, scaled with 1/2 pW2 and plotted versus the local Reynolds number Re., next
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to the theoretical line (solid line) in Figure 3(b). It is clear that good agreement with the
Blasius result is obtained all along the plate.

X AR =0.00 (FVM)

5 | |[=—AR =0.00 (Theory - Blasius) [ —AR =0.00
_ Y|
=3 o 10 }

x AR =0.00

FIG. 3. Results of finite volume modeling (FVM) of
and comparison with classical boundary layer theory fo

plate ary layer using OpenFOAM
flat plate with Rer, = 31550; (a) Velocity
L. Maximum difference between

I1l. RESULTS
\

ceed to use the finite volume gode toy igate how the presence and shape of the sinusoidal
ment of the boundary layer flow. We first investigate
stream-wise and span-wise direction as well as the
direction in section IITA. Then we discuss different
measures used to calculate $he boundary layer thickness and how the riblets affect the
evolution in the bgun layer thickness in section IIIB. Lastly, we examine the effect
of the riblets onhe shea ess distribution along the length of the plate as well as the

t

L{ast te the flat plate boundary layer, with a textured plate the velocity profile takes
ez;t each cross section depending on the span-wise (z-direction) location across
an example, the velocity profiles at 7 equi-spaced distances across a single
soidal wrinkle with AR = 1.91 at Rey, = 13300 and L/ = 47.75 are presented in Figure
4. Similar shaped velocity profiles have been previously reported in both experimental and
nul:yrical simulations by Djenidi et al.!?!® They reported velocity profiles, further away
ron the leading edge at a Reynolds number of Rey, = 7.13 x 10* for a plate of L/\ = 92
featuring V-shaped grooves with AR = 1.72. Their profiles were comparable with the key
atures reported here, showing a retarded (nearly stagnant) flow inside the grooves (with
a local velocity less than 20% of the free-stream velocity) while outside of the riblets all
velocity profiles collapsed onto the same universal profile. Similar flow retardation and
mean velocity profiles have been reported for turbulent flow over thin rectangular riblets as
well as V-groove and U-groove textures of different sizes'®:'829,
Because the differences in the shape of the velocity profiles vary systematically with the
cross sectional position (x), the velocity profiles at the peak (z = A) and in the trough (x =
A/2) of the wrinkles are chosen as the representative profiles to be discussed further as they
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7

y) /W at 7 different
locations of x = tA/6 and 0 < ¢ < 6, within a single groove of te with AR = 1.91
and L/A = 47.75 at Rer = 13300; Here n = y/L+/Rer which is efinition as used in the
flat plate boundary layer theory. The dashed line denotes t ical profile from the Blasius
solution to boundary layer equation for a flat plate (AR =

(b) the trough (z = A/
and AR = 1.91.

exteema of the problem. To illustrate qualitatively the three-dimensional
flow, tours of the dimensionless velocity distribution (w/Wes,) at the

peak and ch ribbed plates at Rey, = 13300, L/A = 47.75 and AR = 1.9 are shown in
Figures ?%d 5(b)%respectively. Qualitatively the velocity contours at the peak appear
very si t0 the evolution observed along a flat plate boundary layer while the contour
dist n 1the trough differs from the peak and depict a thicker boundary layer for

The evolution in the velocity distributions can be studied more quantitatively by plotting
spatial changes of the velocity profiles in the flow direction, as shown in Figure 6.
non-dimensionalize the position along the plate using a characteristic diffusive
scale v/W,, so that the dimensionless position corresponds to a local Reynolds number

es' = Wooz/v. Although the wrinkles (sinusoidal riblets) result in different velocity profiles
at different locations, the main features and the local differences induced by the riblets can
e effectively contrasted by comparing the velocity profiles at the peak and trough of a
single riblet. Figures 6(a) and 6(b) present the velocity profiles at the peak and trough
respectively (corresponding to the velocity contours in Figure 5). As we have noted, the
stream-wise profiles at the peak, w(z = A,y) closely resemble the profiles of flat plate
boundary layer theory. In the trough, the profiles w(z = A/2,y) look markedly different
and reveal a thicker boundary layer, with the velocity inside the groove (y < 0) much lower
than the free-stream velocity. For this case with AR = 1.91 the minimum velocity observed
in each profile i.e. Wy, = min(w(x = A/2,y)) is not always zero (as it is for the velocity
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FIG. 6. Evolution of stream-wise velogity profiles w(z,y, z) in the flow direction along (a) a peak

z = X and Ymin = 0 and( ong a trough z = A\/2 and ymin, = —A of a surface with sinusoidal
riblets with L/\ = 47.%5 _and = 1.91 at Rer = 13300.

profiles at thesea = A)§ but can in fact become negative and within a region between

about 2500 <1 , a local re-circulation is observed. The location of the minimum

velocity a c?fp&%on z along the plate is shown in Figures 6(a) and 6(b) by the red

3' a line If there is a re-circulation present, then the line of minimum velocity

m the wall inside the groove. As a consequence above this line of points, a

is also formed inside the grooves and shown in each figure by the solid green
line a lar symbols.

zgsentative local positions (corresponding to local Reynolds numbers of Re, =

4000 and Re, = 8000 the trough profiles show a region of weak re-circulation
~insi grooves (y < 0) whereas outside the groove, the velocity profiles at the peak and
at the trough collapse on each other and evolve in similar fashion toward the outer inviscid
ow' far from the plate. Further along the plate at Re, = 12000, the recirculating region
S ends, and thereafter the fluid inside the groove is in an essentially stagnant condition with
“Zero velocity. Outside the groove the two velocity profiles meet and grow similarly to reach

the free-stream velocity.

Our detailed computations of the velocity field in the vicinity of the sinusoidal texture
reveal that due to the presence of the wrinkles the flow inside the grooves feels a strong
retardation that ultimately results in this local re-circulating region. Eventually, as the
frictional effects of the walls diffuse further outwards, the recirculating region ends and the

fluid in the groove becomes almost stagnant inside the grooves. This stagnant fluid acts like
a “cushion” of fluid on which the fluid outside of the grooves can slide. Similar behavior is
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2 | SO DEMEEEEE G |
> Trough E
= Peak %

FIG. 7. Normalized velocity profiles at peak and trough at differen
14.32, (b)Re, = 8000, z/\ = 28.65 and (c)Re. = 12000, z/\ & 42.9
riblet surface with AR =1.91 and L/\ = 47.75.

ng the flow direction for a

)

observed for cases with higher Reynolds numbers a(ibn lengths (achieved by changing
the inlet velocity and the length of the plate). exaggpl , for riblets of AR = 1.91 with

global Reynolds number of Rey, = 120600 and L/ -5, velocity profiles in the trough
are presented in Figure 8 and as it can bey % irculation starts at a later position
i

ance downstream.

e
(i.e. a higher local Re,) and it extends to N
=

2 —o—Maximum Velocity‘
~e—Minimum Velocity S

~#—Stagnation point

FIG. 8.
120600

rmalized velgcity profiles along the flow direction in the trough of a wrinkle for Rer, =
=195.5 and AR = 1.91.

he aspect ratio AR of the wrinkles also has an effect on whether a re-circulating
reaZd or not. The progression of local velocity profiles for a wrinkled texture
eynolds number Rey, = 13300 and L/X = 47.75 with a lower aspect ratio of
= 0.95 (compared to AR = 1.91 in Figure 6(b)) is presented in Figure 9. Again we
ow retardation inside the grooves with a stagnant layer of fluid and a bounding
stagnation line, shown with a green line with triangular symbols. However for this shallower
riblet geometry the minimum velocity is zero and located at the wall (shown by red line
with circular symbols) and thus no re-circulation develops in the groove (y < 0).

"% This local re-circulation in the grooves can also be identified by using other vortex identi-
fication methods such as the scalar measure @ defined as Q = €2 : Q—8 : S§.2! This measure
based on the the second invariant of the velocity gradient tensor, compares the rotation rate
in the fluid (the anti-symmetric part of the velocity gradient tensor 2 = £(Vu—Vu”) ) with
the irrotational straining (symmetric part of the velocity gradient tensor § = 1 (Vu+VuT))
in the fluid.?2!. For example for Re;, = 13300 and L/\ = 47.75 the iso-Q surfaces of
Q = 1206.5 < w, ,, > are shown in Figure 10 where w, is the z component of the vorticity
vector and < w,,, > is the magnitude of the mean z component of vorticity evaluated at
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[
—&—Maximum Velocity
=&—Minimum Velocity

~#-Stagnation point

A
o VN

FIG. 9. Normalized velocity profiles along the flow directionfin the trough of a wrinkle for Re;, =
13300, L/\ = 47.75 and AR = 0.95. 5

the wall. The observed vortical structures develgp gsﬂ:e same region within the grooves as
the local flow re-circulation that was observe%m@. .

FIG. 10. Vortical struetures in'ghe grooves of a wrinkled surface for Reyr = 13300, L/ = 47.75
and AR = 1.91 revi an isg-Q surface with Q = 1206.5 < w, . >2; As seen in the figure the
vortical structuresfare l?:ate in the middle of the re-circulating region identified in Figure 6(b).

e of the plate, the effects of stream-wise pressure gradients are not

Close to t( ding
negligible uﬁvhis sults in velocity profiles with a higher maximum velocity than the bulk
y

fluid veldcit 7. at the inlet2732. To evaluate the effects of this local acceleration near
i ge, the stream-wise pressure distribution above one of the troughs (z = \/2)

i ) in Figure 11. Figure 11(a) shows the dimensionless pressure distribution
e? as pf = p/2pW2) as a function of the local position along the plate (or local
eynol wiiber, Re,) for a series of different aspect ratio wrinkles, keeping the inlet
elocity ¢onstant. As seen in the figure, close to the leading edge a favorable pressure
ient (pressure decrease) is observed. However at an intermediate location along the
IS turns into an adverse pressure gradient (local stream-wise pressure increase) and
ult?ately the pressure increases to an asymptotic value of zero (set by the exit boundary
ondition).
In the case of the boundary layer over a flat plate (AR = 0), the changes in pressure
isappear after Re, ~ 15000, and from there onwards, the classical flat plate boundary
layer approximation of % =~ 0 is a valid assumption to simplify the equations of motion.
However, in the presence of the riblets, the region of favorable pressure gradient is extended
and the pressure decreases to progressively lower values as the riblet aspect ratio increases.
This results in the need for a larger pressure recovery in the adverse pressure gradient
region, and this contributes to the establishment of local flow re-circulation. Comparing
the case of AR = 1.91 from Figures 11(a) and 6(b) we can observe that the location
of the minimum pressure is consistent with the location of the start of the re-circulation
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inside the grooves. In addition the local region corresponding to the adverse pressure
gradient (%—I: > 0) corresponds to the entire recirculating region inside grooves. As the
pressure gradient driving this re-circulating flow slowly decays away down the plate, a
cushion of stagnant fluid is formed, which can be observed in the grooves in Figure 6(b). The
computations in Figure 11(a) for different aspect ratios show that the pressure distribution
in case of riblets with AR < 0.95 is only slightly different from AR =40 (flat) case and
thus results in only a very thin stagnant “cushion” of fluid. For th{D nfiguration this
textured plate does not exhibit any re-circulation in the grooves (cf. iget?ﬁﬁg However,
for aspect ratios of AR 2 0.95 the magnitude of the local advepSe pressure gradient is

notably enhanced and the recirculating region shown in Figures 6(b 8 develops.

FIG. 11. (a) Stream-wise pressure distrihittion at A/2 and y = 0 (above a trough) as a function
of the local Reynolds number down the platé for different aspect ratio riblets, keeping the inlet
velocity constant (Rer, = 25000 an A ="95.5). Inset shows additional details for small values of
(b6.$\d
1t1es

=

Re. < 10° on a logarithmic scale. ssure distribution along the direction of flow on top of a

groove at y = 0 for various inl (and different global Reynolds numbers) and L/A = 95.5.

The evolution of simi ressure distribution can be calculated for the case of AR = 1.91
and L/ = 95.5, and Tobal Reynolds numbers of 2.5 x 104, 5.1 x 10* and 2.5 x 10°
(by changing the jflet ity) and are presented as a function of the position or local
in Eigu (b). Comparing the three cases shows that the location of
the minimum pressure (which coincides with the start of the recirculating region in the
case of AR { .91) evglvés with changes in the inlet velocity while the magnitude of the
minimum di EN@; ressure stays nearly constant. We denote the location of the

ure ai

pre . and seek to find a scaling for L. as the flow geometry changes.

ap  pWZ

3 0z L.

and the divergence of the shear stress tensor in the z direction for the viscous flow inside
“the grooves (with characteristic groove length scale A) can be expressed as

3)

(Vo) ~ (WAVoo) . (4)

Therefore for the pressure gradient to balance with the shear stress gradient inside the
grooves, we require
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or in dimensionless form

PWeo A

= RE)\ (8)

L -
’ )
Therefore, the location of the minimum pressur aBng th te is expected to increase
linearly with increases in the inlet velocity. Fig 12 ws the calculated location of

the minimum pressure for cases with inlet velocities 0.5 </W;,, < 7 m/s (and calculated

maximum velocities of 0.6 < W, < 8.2 m/s, respéegively) for wrinkles with AR = 1.91
plotted as a function of pWo A/u. Tt ¢ '/Nes; om the figure that the calculated
location scales linearly with the Reynolds ntmpber«based on the wrinkle length scale ())
Rey = pWoo A/ as predicted using th Wove. Additional computations indicate
that keeping the inlet velocity consgant and, varying the wavelength at a constant aspect

ratio of AR = 1.9 results in the samesealing asJEquation 8 and in Figure 12.

/ 0 500 1000 15
\\ [!WX ,\I,I=Re'\
FIG. 12. Loca’ion of the minimum pressure for flow over textured surfaces with various inlet

velocitiés Win < 7 m/s and the calculated maximum velocities of 0.6 < Wo, < 8.2 for

rising from" variations in the texture of the surface. The local shear stress acting on

fa, surfage is directly proportional to the velocity gradient at the wall. Furthermore, as

was earlier, the presence of the wrinkled topography provides a method to alter the

curk\:ﬁure of the velocity profiles near the plate, especially inside the grooves, thus resulting

in lower velocity gradients at the walls (for example, compare the peak and trough profiles

\ in Figures 7). This results in a lower local wall shear stress inside the grooves compared

ith an equivalent flat plate and thus can result in a net reduction in the local average

shear stress. This is especially seen in the recirculating region and stagnant areas where

there is a cushion of almost stationary fluid. In these regions the velocity gradient is small

or close to zero (as seen in Figure 6(b)). However, conversely, the total surface area of a

grooved or ridged surface over which the shear stress is acting increases with the ridge scales

and this can potentially offset or even overwhelm the local friction reduction. We therefore

now proceed to carefully evaluate each contribution to the total skin friction on a wrinkled
surface.


http://dx.doi.org/10.1063/1.4995566

AlPP

Publishing

NI

| This manuscript was accepted by Phys. Fluids. Click here to see the version of record.

13

B. Boundary Layer Thickness & Velocity Decomposition

We have shown qualitatively in Figures 6, 8 and 9, that the presence of stream-wise
sinusoidal riblets along the surface increases the overall thickness of the boundary layer. To
quantify this, we need to develop an appropriate definition of the boundary layer thickness
for flow over riblet surfaces. To do this we generalize the definition of displacement thickness
for a two dimensional flat plate boundary layer to the integral form sh wwl‘*’m

A* 1 w
za)\:za)\/s<1_VVOO>dS ©)

where A* is now a displacement area, cv is the number of wri es‘aadelle in the simulation,
z is the local stream-wise location and S is the cross sectional‘agea of the flow in the z — y
plane. This expression for A*(z) is defined locally but h?%quat can be extended to a
global definition by replacing the position z with the total plate length L. The boundary
layer thickness for a flat plate (AR = 0) and three ﬁiﬁeren rinkle textures of AR = 0.48,
AR =0.95 and AR = 1.91 are calculated for cases\with-various inlet velocities and a fixed
L/X = 47.75 and plotted on double logarithmi€_ax e;i;; the global Reynolds number
Rey, = pWoo L/ in Figure 13. From the figure, it is cleakly seen that increasing the aspect
ratio of the riblets (AR) results in an increase in théythickness of the boundary layer, as
expected from the velocity contours shown'iu figuze 6.

At higher Reynolds numbers Rey > 20* when the initial pressure gradient is negligible,
the flat plate results extracted from the ¢
by Blasius. However, for lower Rey

a;

utatiens follow the Rezo'5 scaling as calculated
ers, where the effects of the initial pressure
gradient are non-negligible along the ngth of the plate, the data follows the scaling
found from the higher order boutidary layer theory results presented by van de Vooren and
Dijkstra®®, which can be fitted to werJaw proportional to Rezo'44

Re,

Boundary layer thickness for different Re; and different wrinkle aspect ratios; in all
47.75 and for each profile the change in the Reynolds number is due to systematically

ition to the displacement area, a momentum area (the equivalent of the classical
momentum thickness for a boundary layer that now varies in both x and y) can be calculated
siflg the following expression'432

S} 1 w w
za)\_zoz)\/SWoo <1_VVOO)dS' (10)

Similar to displacement area, the above definition is local and it can be extended to a global
definition by replacing the position z with the length of the plate L.

Keeping the inlet velocity constant, the variation of the displacement area (A*) and mo-
mentum area (0) locally along the flow direction (z) are plotted in Figure 14 for wrinkles
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with various aspect ratios, showing an increase in the local displacement area of the bound-
ary layer as AR increases. For all wrinkled cases studied this value is larger than for a
flat plate with AR = 0 but the results slowly converge as Re, increases beyond 10*. This
provides a clear indication that the effects of the wrinkled texture on the boundary layer
size decay away as the flow progresses along the plate. In the case of the momentum area,
again the local value of the momentum area for wrinkled walls is alway§ larger than the
flat wall, but as Re, increases beyond 10%, the data once again converé’éW\the flat plate
results.

ERXRE

P
'
Bf{aAz)

FIG. 14. Evolution of (a) the local displac, menﬁg& ( and (b) the local momentum area (©)
along the plate (plotted in the form of a lo s number Re.) for wrinkles with different
aspect ratios 0 < AR < 2 keeping the lefigth (L8 = 191) and inlet velocity constant W;,, = 1 m/s.
For these conditions, calculations for a fi te =0) give Woo = 1.33 m/s.

T

The shape factor H = A*/ @,Kashz frequently in aerodynamics as an indicator of
boundary layer separation addae-citculation® 432, For flow over a flat plate in the laminar
regime, H < 2.65 and at hi Nolds numbers it reaches the value of H = 2.65 as
given by the Blasius solution. shape factor of the evolving boundary layer profiles
along the length of the es are shown in Figure 15 for wrinkles with different aspect
ratios as a function 6f the local Reynolds number Re, (corresponding to Figure 14). The
introduction of stpam-wige wrinkles results in an increase in the local shape factor of the

compared wi 1 (H < 4)', but no re-circulation for 0 < AR < 1.5. For the case
with the highest aspect ratio (AR = 1.91), the shape factor reaches a peak value of H = 4.5
at Re, ~4 4000)and then as the flow progresses along the plate H monotonically decays to

a nea stant value. The region with local Reynolds number of 3000 < Re, < 8000
whe, factor goes through an increase and then a decrease corresponds to the
re-cir egion documented earlier in Figure 6(b). At distances further down the

ate the'amplified value of the shape factor (H > 2.65) is a quantitative indication of fluid
owing a@ver a cushion of stagnant fluid.
~ is of interest to understand the differences between the calculated velocity profiles
obtal for flow over wrinkled surfaces with different aspect ratios and the corresponding
Blasius solution for the flat plate at every location of the riblet cross section. As we saw
arlier, far from the surface of the riblets, the velocity profiles at different cross sectional
locations collapse onto the same profile and behave similarly to the Blasius solution (Figure
1‘) Additionally, as we move further down the plate, the effects of the riblets on the
velocity profile are confined to the creation of a cushion of stagnant fluid inside the grooves
and are barely noticeable outside the grooves. In order to examine the difference between
the classical two dimensional boundary layer and the current computations, the velocity
contours at each cross section are decomposed into two additive contributions; the first
contribution assumes the flat plate boundary layer solution of Blasius holds at every location
in the cross section and is here denoted by w,, (x,y). The second contribution is obtained
from the difference between the actual velocity profile w(z,y) and the flat plate boundary
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FIG. 15. Shape factor (H = A*/©) of the velocity profile in a'vigco mry layer for different
aspect ratio wrinkles corresponding to Figure 14.

therefore:
h'
wiz,y) _ w,d N (z.1)
We % We (11)

The velocity gradient and the shear tress\z{ortional to the velocity gradient at the wall
tw

or n = 0) can thus also be decompo parts:

layer solution at every cross sectional location, den(ted byldw(z,y) =w(x,y) —w,, (x,y);

~

ow wBL& dAw
where 7, is the wall shear stress“en the wrinkled wall, assuming the flat plate boundary
layer solution holds location. This decomposition can be used to understand the
in the local shear stress due to the periodic texture of the wall and

increase or reduction
composition are presented in Figures 16, 17 and 18. If the

illustrative examples of
flat plate solutiofiwasdhe solution everywhere to the velocity field (w,, ), then the gradient
rm%yto the wall (n) evaluated at the wall (n = 0 or y = y,) could be

of the velocity#fiel
found from m\&ess
‘) ow,,

on

ow
=1/14+ (A gin (2= 2 YWsrys 13
- \/ (%5 sin (% x)) ay (13)

Y=Ys

i{ the Blasius solution on the flat plate. The shear stress at the wall is defined
On|n—o, thus

T = 1+ (S sin (320)) 7, (14)

5., 18 the wall shear stress for the flat wall as calculated by the Blasius solution.
ince the first trigonometric term in the expression in Equation 14 is always larger than or
equal to unity, the shear stress at the wall of a textured surface (in this case a sinusoidally
wrinkled surface) would be higher than that of the flat plate if the Blasius solution were to
hold everywhere for flow over a riblet surfaces (7, > 7, ,). Therefore, any local decrease
in the shear stress on the wrinkled plate (compared with the flat plate) will be dependent
on the sign of the last term in Equation 12. This decomposition can be used to explain how
wrinkle size affects changes in the viscous shear stress compared to the stress distribution
above a flat plate at the same local Reynolds number Re,. For example the cross sectional

where 7
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FIG. 16. Decomposition of the full computed velocity profile (w/Wo)
the first one shown in (b) is based on the flat plate boundary layer velocity defect

with AR = 0.48.

at'plate boundary layer w,, /W plus a velocity defect

\L%e ity profile (w/Wx) shown in (a) into two pieces;
(Aw/Ws) shown in (c). Figures apove arg, for Reé. = 4000 and z/A =14.32 with AR = 0.95.

A

(C)A@/Woo

ecomposition of the full computed velocity profile (w/We) shown in (a) into two pieces;
own in (b) is based on the flat plate boundary layer w,, /Wx plus a velocity defect
in (c). Figures above are for Re, = 4000 and z/\ = 14.32 with AR = 1.91.

elocity €ontours for three different wrinkle sizes (AR = 0.48, AR = 0.95 and AR = 1.91)
Re,) = 4000 and z/X = 14.32 are shown in Figures 16, 17 and 18. In each case the
have the same wavelength while only the amplitude of the wrinkles is changed. In
all &e figures, the y direction is normalized with the constant wavelength (A) of the wrinkle.
e most prominent differences between the actual velocity profiles shown in Figures
16(a), 17(a) and 18(a) and the locally-shifted form of the Blasius solution wgy (Figures
\f6(b), 17(b) and 18(b)) is inside the grooves where the velocity boundary layer is thicker
and the flow is almost stagnant close to the wall (as was also demonstrated earlier). There-
fore, the velocity defect Aw (shown in Figures 16(c), 17(c) and 18(c)) shows non-zero and
negative values which results in a lower velocity gradient in the grooves compared with
Ow,, /0n|,_, inside the grooves. Another region of difference is at the peak of the riblets.
Here the difference is not as clearly discernible, but is clearly non-zero and yields posi-
tive values of the velocity defect Aw (with magnitudes lower than those observed inside
the grooves). This results in a slightly higher velocity gradient at the peak of the riblets
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compared to Qwgy/On. The combination of these features results in a substantially lower
local shear stress inside the grooves, plus a slightly higher shear stress at the peak of the
riblets. Similar conclusions have been reported previously (through DNS results as well as
experiments) indicating that the velocity gradients, and thus local shear stress, observed at
the peaks and troughs of riblet structures are higher and lower respectively than the results

result in an increase in the wall shear stress calculated by using just the ; solution for
the riblets (7pr) without correction. However when examining thé act ity defect
structure in Figures 17(c), 16(c), and 18(c) we see a stronger negativé velocity gradient
inside the grooves which, from Equation 12, can result in a reductien in the net local shear
stress evaluated at each cross section along the plate. ‘)

for the flat plate.!0,20:23
Based on Equation 14 an increase in the aspect ratio (AR = 24/)\) o tkgzgtles would
las
1 vel

C. Wall Shear Stress and Drag

Finally, we investigate the ability of the riblets t6 réduce otal drag force exerted on
the wall. To do this we evaluate the average skin friction-eeefficient C'y (Figure 19(a)) and
the total integrated drag force D (Figure 19(b)) with respe:ao the flat surface. We consider
cases with different aspect ratios (0 < AR < 2) a coftstant L/X = 47.75, as a function
of the global Reynolds number Rej, (by using‘differentiinlet velocities Wy, and computing
the maximum calculated velocity W) foi%igh“ e If the stress tensor at the wall and

i

local wall normal vector evaluated at sitions, ys on the rlblet surface are defined as
Tw(Ts, Ys: 2) and m, (25, ys; 2) Tespectivelywherdy, = —4 + 2 cos(z)zr s)), then the total

drag force on a plate of length L a ave e skin friction coefﬁcient are defined as

\

Tm nw -'Esaysv ) ] .e; dA, (15)
and
D

T (16)

~ 1wz A,
respectlvely 1s t e wetted area of the riblet wall. A reduction in the skin friction
coefficient i 1 1ed a Cf =Cf— Cf o where Cy ¢ is the skin friction coefficient of a flat
plate and tion in total drag is defined as AD = D — Dy where Dy is the total
drag on surfa . Note that negative values in both plots correspond to skin friction
coeffici nt d iction and drag reduction respectively. The results in Figure 19 show that
the he riblets reduces the average skin friction coefficient on the wall in nearly

in fricion“coefficient. This also confirms our observations based on consideration of the

§ec0mposition that the negative velocity defect observed inside the grooves (Figures
(c) and 18(c)) results in a reduction in the average shear stress compared to the
flat late As the aspect ratio of the wrinkles increases, the increase in the magnitude of the
1egative velocity defect Aw < 0 results in a higher reductlon in the average skin friction
coefficient.

However, reduction of the average skin friction coefficient alone cannot define whether a
textured riblet surface is drag reducing or not because the total area of the wetted surface
is also increased through the presence of the wrinkles. The total wetted surface area of
the textured plate is larger than a flat surface and increases with AR; thus for a textured
surface to be drag reducing the reduction in the skin friction coefficient due to the riblets
must more than offset the increasing wetted area. For the results shown in Figure 19(b) at
L/X = 47.75 the only cases that appear to show a net drag reduction are the cases with
aspect ratios of AR = 0.48 and AR = 0.95 and global Reynolds number of Re; = 13300.
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(a)
FIG. 19. Reduction in (a) the skin friction coefficient (CY) nges in the total drag (D)
for wrinkles of different aspect ratios, fixed plate length L/ = 47 75 different Rey (varying

the inlet velocity). Points A, B and C correspond to the sam oints own below in Figure 21(b).

The rest of the cases show substantial increa i& total drag when compared to an
equivalent flat surface. F W

To better understand these drag reducing“eases and how changes in the length of the
plate (Rer) and aspect ratio (AR) interact teaffest theftotal drag, we consider the following
situations: we keep the inlet velocity comstant (thus Keeping W, constant) and extend our
calculations to plates of longer total lengths t ose used in the computations presented
in Figure 19. We consider a maxi platedength of L/A = 191 and an inlet velocity of
Win = 1 m/s (thus corresponding to %\% global Reynolds number of Rey, = 5x 10%)
for 5 different aspect ratios of AR he results are shown in Figure 20. We first
consider the distribution of the w\&sg tress on the wall as a function of different aspect
ratios at different positions # aleng 1gth of the plate corresponding to different values
of the local Reynolds number,%‘om steady two-dimensional boundary layer theory

we know that the local shear stresswon the wall decreases along the plate as 751 ~ Re_l/ 2
(Equation 2). For ref erﬁeﬂ%e':cherefore plot this result as the black dashed line in Figure
St

20(a). For a ribbed plage, theywall shear stress is now a function of lateral position z, ys
on the surface as ce down the plate. We therefore define the dimensionless
local averag? stybss distribution at any distance z along the plate as

1 1
\Z = Tw (Ts,Ys; Z) My \Ts,Ys; )€z dl 17
D )= Tz lc/c (Fortii2) 1 s, 053] "

C 1? thewiblet contour at each stream-wise cross section, ¢ is the total length of the
tour [lc = [, o dl) and dl is the line element along the rib transverse to the flow
: igure 20(a) we show the evolution in the local average shear stress along the
the plate for wrinkled cases with 0 < AR < 2 and plates with Rey; = 4 x 10* and
compared with the shear stress on the flat plate. It is clear that the presence of
les changes the evolution in the shear stress distribution along the flow direction.
en in this figure, close to the leading edge of the plate, the presence of wrinkles does
educe the large initial shear stress that results from the sudden generation of vorticity
at the leading edge. However as the local Reynolds number Re, increases along the plate,
e wrinkles retard the flow in the grooves and thus reduce the local average shear stress
at the wall. The case of AR = 1.91 shows a region with almost constant average shear
stress between 5000 < Re, < 12000 which also corresponds with the re-circulation region
presented earlier in Figure 6(b). Smaller aspect ratios do not show any re-circulation and
thus there is no region with constant shear stress distribution.
At lower local Reynolds numbers Re, < 103 (close to the leading edge), the local average
shear stress for all the riblet cases is nearly the same as the shear stress distribution on
the flat plate. However, as we established above, increasing the aspect ratio of the riblets
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- -Blasius Solution
* AR=0

*-AR =048
AR =072

.| AR =095

107 AR = 1.43
+AR =191

AD/D, %)

10? 10° 10*

FIG. 20. (a) Evolution of the local transverse average of dimepsionless4yall shear stress distribution
(Equation 17) for the same inlet velocity and different aspect ratio ribletsy, (b) Increases (AD > 0)
and reductions (AD < 0) in the total drag force (D) for wrinkled plates of different total length

of the range 0 < L/X < 191 (increasing global Reynolds.nu
wrinkles 0 < AR < 2, keeping the wavelength A constant. ‘)

o

ereforésthis results in a substantial increase

r Rer) for various aspect ratio

results in an increase in the wetted area and
in the total drag for plates with AR > 0.48 _andsglobal Reynolds numbers of Rey < 8000
(and nearly no change in the total dragdor thésgase of AR = 0.48). However, further down
the plate, as the cushion of stagnant flu ms-tq form inside the grooves, the reduction
in the local shear stress can offset the increasg in the wetted area and this results in a net
reduction of the total drag. >
As we show in Figure 20(b) itf beco clear that riblets have the potential of reducing
drag provided the plate is longe n ayminimum critical length Rey, .(AR) (which can
be determined from where eéicl of the Gurves cross the value of zero on the ordinate axis).
Secondly, the sharpness of théwi lays an important role in controlling the extent of
total drag reduction achieved. Higher aspect ratio wrinkles provide greater local shear stress
reduction but this is 7 the large increase in wetted area for very high aspect ratios.
For the range of global Reynalds number Rej we have studied, the case with AR = 0.95
1ighest reduction in the total drag. We can illustrate this most
clearly by holding thefglobal Reynolds number Rey, and riblet spacing L/A constant and
calculating the' total _dragfeduction as a function of the aspect ratio of the riblets. We
illustrate th{ i (a) for three different values of Rer showing that for each of the
cases thereri a‘r&%n;um aspect ratio providing the largest possible drag reduction. Quite
generall w%d that*the total frictional drag reduction (corresponding to AD /Dy < 0) at
obal Reynolds number Rey, and L/ is first enhanced as the aspect ratio of the
t?acre es, then reaches an optimum and as the aspect ratio increases still further
t of drag reduction decreases and eventually shifts to a net drag increase. For
optimum aspect ratio is slightly less than unity, but after that the optimum

the exte

riblets of JAR = 1 and AR = 2 at constant free-stream velocity also show that riblets with
esult in a larger drag reduction compared to AR = 2.39
@similar trend as discussed above can be observed for the other data points presented
igure 19(b) as the plate length is increased. To illustrate that, at a constant aspect
ratio of AR = 1.9 (which did not show any drag reduction for the case of L/\ = 47.75)
e evolution in the total drag force for plates of various lengths (1 < L/A < 191) with
different inlet velocities are presented in Figure 21(b). As we discussed in section IIT A,
changing the inlet velocity results in a change in the pressure distribution (Figure 11(b))
and thus alters the location of the minimum pressure inside the grooves (Figure 12). For
short plates, the presence of the wrinkles leads to an overall increase in the frictional drag,
but in each case a net drag reduction is observed when the length of the plate exceeds a
critical value. However, due to the differences in the pressure distribution among the cases
with different inlet velocities, the cross over from drag increase to drag decrease occurs at
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(a) ﬁ)

FIG. 21. (a) Drag reduction curve for plates with global R uglds r;k:g;‘ of Rer = 15000 and
plate length L/X\ = 58.82, global Reynolds number Re;, = 30000 and plate length L/\ = 117.64,
and global Reynolds number Re; = 45000 and plate length, L/A =4176.46 (same inlet velocity
Win = 1 m/s and the same wavelength A = 27/3 x 1 =L mm)as a‘function of the aspect ratio
of the riblets. (b) Reduction in total drag for WrinkIE&);ates of different length Rer, AR = 1.9
and inlet velocities of Wi, = 1,2 and 5 m/s correspon to)%A = 278.55, 534.07 and 1256.64.
Points A, B and C correspond to the same points in Kigure &( .

a longer plate length as the free—streaw&%ignd thus Rey) is increased. Points A, B
and C indicated on the figure corregpond te the points A, B and C noted in figure 19(b)
(Rer, = 1 x 10*, 2.4 x 10*, and 5. * respectively) where for a fixed plate length of
L/X =47.75 only a net drag incpease wasfobserved.

Q

IV. CONCLUSIONS

ed in detail the effects of sinusoidal riblets on the structure
iscous boundary layer. The presence of the riblets results in a

In this paper
and evolution
local flow ret,

updn whieh the fluid flowing above the plate can slide. This creates a non-uniform
S d}fcribution laterally across the plate and a local average shear stress lower than
ding flat plate. For sufficiently long plates, this can result in a reduction of
e totalwiscous drag force acting on the surface compared with flat surfaces, provided the
ratio of the wrinkles is not so large that the increase in wetted area offsets the local
reddyction in wall shear stress 7, (zs,ys). By careful computation of the local skin friction
coefficient Cy(xs,ys) as well as the total integrated frictional drag force D we have shown
the reduction in drag is a function of the aspect ratio of the riblets. For each Rey and
““L/ X there is an optimum aspect ratio where the highest drag reduction can be achieved. For
fully developed viscous boundary layers at Rey, > 10 (so that leading edge effects are not
important), it appears that aspect ratios of order unity produce the maximum reduction in
drag, which can be as large as AD/Dg ~ —20% at Rey, ~ 4 x 10*.

These detailed computations help rationalize why previous experimental measurements
have reported conflicting conclusions regarding drag increases or decreases and will pro-
vide guidance for selecting optimal riblet sizes and spacings for specific design applications
requiring minimized frictional drag.
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