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The competition between interactions and dissipative processes in a quantum many-body system can drive
phase transitions of different order. Exploiting a combination of cluster methods and quantum trajectories, we
show how the systematic inclusion of (classical and quantum) nonlocal correlations at increasing distances is
crucial to determine the structure of the phase diagram, as well as the nature of the transitions in strongly
interacting spin systems. In practice, we focus on the paradigmatic dissipative quantum Ising model: In contrast
to the nondissipative case, its phase diagram is still a matter of debate in the literature. When dissipation acts
along the interaction direction, we predict important quantitative modifications of the position of the first-order
transition boundary. In the case of incoherent relaxation in the field direction, our approach confirms the presence
of a second-order transition, while does not support the possible existence of multicritical points. Potentially,
these results can be tested in up-to-date quantum simulators of Rydberg atoms.

DOI: 10.1103/PhysRevB.98.241108

Introduction. Quantum phase transitions are a cornerstone
of modern statistical mechanics, originating when the ground
state of a many-body system changes either continuously or
abruptly, by virtue of a nonthermal control parameter [1].
This paradigm substantially changes in out-of-equilibrium
conditions, where thermodynamic equilibrium is absent and
all energy levels become relevant. A way to witness such
nonequilibrium phenomena is, e.g., by considering an isolated
quantum system and studying how it reacts to an abrupt
change in one of its parameters [2]. Depending on its spectral
properties, the system can locally thermalize to some equi-
librium ensemble or get stuck in a more exotic many-body
localized phase [3]. Alternatively, a system can be driven away
from equilibrium by putting it in contact with an external
environment which is at odds with the Hamiltonian dynamics
(and thus does not induce thermalization). In such case the
dynamics is nonunitary and, after an initial transient time,
may end up in a (possibly mixed) steady state, losing track
of the initial conditions. Here, we prove how the buildup of
classical and quantum correlations dramatically modifies the
nature of phase transitions in open systems. By employing
a combination of state-of-the-art numerical approaches, we
explore how these nonequilibrium systems behave near crit-
icality. In particular, we concentrate on a prototypical quan-
tum Ising spin-1/2 system coupled to different Markovian
(memoryless) environments, whose essential properties can
be captured by a Liouvillian master equation in the Lindblad
form [4,5].

The amazing possibilities offered by several experimental
platforms, as atomic and molecular optical systems [6], arrays
of coupled QED cavities [7,8], or coupled optomechanical

resonators [9], recently spurred considerable theoretical in-
terest in the investigation of quantum matter under such a
framework, including the emergence of critical phenomena
and collective behaviors. In view of the complexity of the
problem and the rarity of exactly solvable models [10], several
analytical and numerical methods have been developed in or-
der to deal with systems in two (or more) spatial dimensions,
where critical phenomena are most likely to occur (see, for
example, Refs. [11–23]). However, their general classification
is still at its infancy [24].

In this Rapid Communication, we shed light on the im-
pact of correlations in dissipative quantum phase transitions,
motivated by the recent realization of a programmable quan-
tum spin model with tunable interactions [25,26]. While on
typical experimental timescales the dynamics can be safely
approximated as unitary, it is possible to enhance the dis-
sipation channel, such as to compete with the Hamiltonian
dynamics, by coupling the Rydberg state to short-lived auxil-
iary energy levels. Through extensive numerical calculations,
we highlight how the systematic inclusion of classical and
quantum correlations at increasing distances is crucial to
determine the structure of the phase diagram, as well as
the nature of the critical boundaries in strongly interacting
spin systems. In particular, we exploit cluster approaches,
which have been shown to provide quantitatively accurate
results in the description of the phase diagram and of critical
phenomena in dissipative quantum lattice systems [14,21].
For the sake of concreteness, we frame our analysis in the
paradigmatic transverse-field Ising model, with dissipation in
the form of incoherent spin flips. This has been the object of
intense theoretical investigation [27–31], in view of its direct
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experimental simulation with interacting Rydberg atoms
[32–35]. The resulting steady-state phase diagram in two
dimensions raised a number of debated issues on the nature
of the various transitions [12,15,36–38], and constitutes the
main focus of the present Rapid Communication.

We provide evidence that, depending on the choice of
the privileged axis for incoherent flips, the system exhibits
either first-order or continuous transitions. When dissipation
acts along the (internal) direction of spin-spin interaction, we
show how the known mean-field (MF) bistability phenomena
translate into first-order transitions or smooth crossovers ac-
cording to the interaction strength. Our predictions quantita-
tively modify the phase diagram structure with respect to the
one reported in the literature [12]. In the case of incoherent
relaxation in the field direction, our approach does not support
the possible existence of a multicritical point [38], unveiling
how the emerging transition is always of second order. The
effect of interactions is highlighted by characterizing the
correlation length across first- and second-order transitions.

Model. The spin system Hamiltonian under investigation,
ruling the coherent part of the dynamics, is

Ĥ = V

4

∑
〈j,l〉

σ̂ z
j σ̂ z

l + g

2

∑
j

σ̂ x
j , (1)

where σ̂ j ≡ (σ̂ x
j , σ̂

y

j , σ̂ z
j ) denote the spin-1/2 Pauli matrices

on site j of a two-dimensional square lattice. The first term
represents the nearest-neighbor interaction along z of strength
V , while the second term accounts for a local and uniform
magnetic field along the transverse direction x. We consider
two different kinds of incoherent dissipative processes, acting
independently and locally on each spin: These tend to flip
it down either along the coupling (z), or along the field (x)
direction. The full master equation governing the evolution of
the system’s density matrix ρ(t ) is

∂tρ(t ) = −i[Ĥ , ρ] + γ
∑

j

(
L̂jρL̂

†
j − 1

2
{L̂†

j L̂j , ρ}
)

, (2)

where the Lindblad jump operators on each site are all given
by either L̂

(z)
j ≡ 1

2 (σ̂ x
j − iσ̂

y

j ) or L̂
(x)
j ≡ 1

2 (σ̂ z
j − iσ̂

y

j ), respec-
tively. In what follows, we will be interested in the long-time
limit properties of Eq. (2), which is guaranteed to reach a
unique steady state (SS), ρSS = limt→∞ ρ(t ) [39]. Hereafter
we adopt units of h̄ = 1.

Results. Let us start by taking z-oriented dissipative
spin flips (model I). A simple MF approach, based on
a product ansatz ρ(t ) = ⊗j ρj (t ), would decouple the
Hamiltonian term q−1 ∑

〈j,l〉 σ̂
z
j σ̂ z

l → mz
∑

j σ̂ z
j , where mz =

Tr[σ̂ z
j ρSS] ≡ 〈σ̂ z

j 〉 is the local magnetization and q is the
coordination number of the lattice, thus splitting the many-
body Liouvillian into a sum of single-spin operators which
can then be treated straightforwardly in a self-consistent way.
Under this approximation, according to the choice of the
system parameters, in some cases the solution is not unique
and a bistable behavior (in which ρSS depends on the initial
condition) emerges. This clearly appears in the observable
mz, as displayed by the light blue lines in the upper panels
of Fig. 1, where the two branches correspond to solutions

2.5 2.6 2.7 2.8 2.9 3
g /γ

-0.8

-0.6

-0.4

-0.2

0

m
z

MF
2 × 2
3 × 3
4 × 4

3.6 3.7 3.8 3.9 4 4.1
g /γ

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

mz
0

1

2

3

4

5

P
(m

z )

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

mz

V/γ = 2 V/γ = 3

FIG. 1. Model I. Upper panels: Average steady-state magnetiza-
tion mz as a function of the transverse field g/γ , for two different val-
ues of the coupling, V/γ = 2 < Vc/γ (left) and V/γ = 3 � Vc/γ

(right). Light blue lines indicate the two branches of the MF solution.
Symbols are results of CMF simulations for clusters of various size,
as indicated in the legend. The upper/lower branch is denoted by
open/solid symbols. Lower panels: Histogram of mz sampled in time
by a single quantum trajectory in a cluster with � = 4, for V/γ = 2,
g/γ = 2.7 (left), and for V/γ = 3, g/γ = 3.78 (right).

obtained when sweeping from larger to smaller values of g

(dashed), or conversely (continuous lines).
A more careful analysis, however, admits an exact treat-

ment of short-range correlations that may establish within a
cluster C of spins, while the MF is applied at the boundary of
such cluster [14,40]. We performed such a cluster mean-field
(CMF) study in a lattice of dimension � × �, for clusters up
to � = 4 [41]. The resulting magnetization is shown in the
same panels, with different symbols corresponding to various
cluster sizes. It appears quite neatly that the bistability region
progressively shrinks when increasing �, and eventually tends
to disappear. Specifically, for � = 4, we can identify a thresh-
old value of the coupling strength V (�=4)

c /γ ≈ 3, separating
a region where the magnetization asymptotically exhibits a
continuous behavior as g/γ is increased (top left panel, for
V/γ = 2), from another one where a discontinuity in mz

spotlights the presence of a first-order transition (top right
panel, for V/γ = 3, where the putative transition is located
at gc/γ ≈ 3.78 ± 0.05). However, in the latter case, for the
largest available cluster size, we are still observing resilience
of the system to bistability at long times, in a narrow region
3.78 � g/γ � 3.8 [42]. A rough finite-size scaling of data for
� � 4 suggests the onset of a critical point at a finite value
(Vc/γ ≈ 4.05, gc/γ ≈ 4.88), obtained by extrapolating to the
thermodynamic limit (see Ref. [43]). We shall emphasize
that the only other prediction available in the literature has
been obtained using a variational approach [12] that locates
the critical point at Vc/γ = 1.4, for which the transition
is observed at gc/γ = 2.28. Such an estimate qualitatively
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agrees with our bare MF data, which slightly underestimate
the location of Vc, while completely washing out correlations
between the various sites. The full CMF phase diagram drawn
in the V-g plane is presented in Ref. [43].

Evidence for the change of behavior when crossing Vc is
also witnessed by analyzing the quantum jumps that appear
when monitoring the time evolution of a single stochastic
trajectory [24,45]. Once the values of the couplings are fixed,
each quantum trajectory explores states with different magne-
tization during its dynamics. By sampling the outcomes, one
obtains an histogram representing the probability to measure
a given value of mz in typical quantum optical experiments.
If V > Vc, the system jumps abruptly from the low- to the
high-density phase as g is increased [43]. By performing such
a measure at the critical point gc, the probability distribution
turns out to be bimodal, since the trajectory mainly jumps
between the two phases (lower right panel of Fig. 1). In
particular, it is the symmetric sum on the probability distri-
butions one would obtain in the two phases for g < gc and
g > gc, respectively. This reflects the fact that, at criticality,
the density matrix must be the equiprobable mixture of the
two phases [24]. For V < Vc the system exhibits a smooth
crossover between the two phases. By applying the same pro-
tocol for g/γ = 2.7 [the value for which ∂gm

z(g) is larger],
the bimodal character of the distribution is smeared out, thus
signaling the disappearance of the critical behavior (lower left
panel of Fig. 1).

To get further insight about the impact of correlations
on this physics, we employed a numerical linked cluster
expansion (NLCE) [21,46]. A remarkable advantage of NLCE
over other strategies is that it enables a direct access to the
thermodynamic limit of an infinite number of spins, up to
order R in the cluster size, by only counting cluster con-
tributions of sizes equal to or smaller than R. Importantly,
contrary to other perturbative expansions, the NLCE is not
based on a perturbative parameter and the convergence of the
series is controlled by the typical length scale of correlations
[21,46]. In the top panel of Fig. 2, we perform a NLCE for
the observable mz(g) for V/γ = 2 (crossover region). As is
clear by looking at the expansion truncated at different orders
(see the legend), the series does not converge in the crossover
region, even when resummation techniques to speed up the
convergence are employed [47]. This is due to a dramatic
buildup of correlations in the crossover region, even in the
noncritical case.

We further analyzed this mechanism by studying the be-
havior, in the transition region, of the correlation length [48]

(ξz)2 = 1

N

∑
r,r′

|r − r′|2g(r, r′), (3)

where g(r, r′) = 〈σ̂ z
r σ̂ z

r′ 〉 − 〈σ̂ z
r 〉〈σ̂ z

r′ 〉 is the connected part of
the two-point correlation function (specified by the coordi-
nates r, r′) along the coupling direction, and N is the number
of sites. While the above quantity refers to a correlation length
calculated within a given (small) cluster, and thus cannot be
directly related to the convergence of NLCE in the thermody-
namic limit, it provides an intuition of the key role played by
correlations close to the critical points (or their precursors).
The results of calculations on a cluster of size � = 4 are

0 0.5 1 1.5 2 2.5 3 3.5 4
g /γ

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

m
z

CMF 4 × 4

4
th

  order

6
th

  order

8
th

  order

10
th

 order
Eu

2

ε
2
(8)

0 0.5 1 1.5 2 2.5 3 3.5 4
g /γ

0

0.1

0.2

0.3

ξz

2 3 4 5g /γ
10

-2

10
-1

ξz

V /γ = 2

V /γ = 3 V /γ = 2

FIG. 2. Model I. Upper panel: Magnetization as a function of
g/γ for V/γ = 2, evaluated with a NLCE up to tenth order and
after using resummation techniques [47]. Lower panel: Correlation
length ξ z in a 4 × 4 cluster for V/γ = 2 (main frame, linear scale)
and V/γ = 3 (inset, logarithmic scale).

displayed in the lower panel, for V/γ = 2 (main frame) and
V/γ = 3 (inset), where it is shown that ξz undergoes a sudden
increase in proximity to the transition point. This behavior
also occurs in the noncritical case V < Vc, highlighting the
importance of the exact treatment of short-range interactions
even in a system that does not display a critical behavior.
However, we shall stress that, in the critical case, ξz does not
necessarily diverge in the thermodynamic limit N → ∞ (as is
the case for a second-order transition) and, for the clusters we
were able to reach, it takes relatively small values (≈10−1).
This fact may hinder its experimental detection, even if such
a quantity can become arbitrarily large, thus indicating the
strongly correlated nature of the steady state.

We now switch to x-oriented dissipative spin flips (model
II). When incoherent processes take place along the field di-
rection (i.e., orthogonal to the spin-spin coupling), the physics
of the model changes qualitatively. This scheme has been first
devised and studied in one dimension, where the onset of
interesting steady-state correlations and edge effects has been
witnessed [49,50]. In higher dimensions and at the MF level,
the system undergoes a continuous transition from a disor-
dered paramagnetic phase (〈σ̂ z〉 = 0) to a ferromagnetic state
(〈σ̂ z〉 
= 0) in which the Z2 symmetry (σ̂ y, σ̂ z) → −(σ̂ y, σ̂ z)
is spontaneously broken. A more refined treatment based on
the Keldysh formalism predicts the transition to be of first
order (with symmetry breaking) at sufficiently strong dissipa-
tion [36]. According to a subsequent study with a variational
ansatz [38], the transition can be either continuous or first
order, depending of the dissipation rate γ ; the continuous and
first-order transition lines meet at a tricritical point. Here, we
show that systematically including the effect of correlations
at an increasing distance leads to some modifications of the
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FIG. 3. Model II. Left panel: Steady-state phase diagram in the γ /|V |-g/|V | plane, obtained with a � = 2 CMF approach, witnessed by
the average magnetization |mz| = |〈σ z〉|. The horizontal white line marks the cut at γ /|V | = 0.2, which has been scrutinized in the central
and right panels, where we considered CMF with clusters of different sizes (see the legend). Namely, they display the behavior of the order
parameter |mz| (central panel) and of the correlation length ξ z [right panel; see Eq. (3)].

phase diagram, where only continuous transitions are present,
thus excluding the possibility of a multicritical behavior. We
point out that an exact treatment of short-range correlations
seems to be crucial to the description of dissipative spin
systems, since they have been proven to be able to substan-
tially change the phase diagram structure [14], in accordance
with alternative nonperturbative approaches based on tensor-
network simulations [15].

To this aim, we study the two-dimensional phase diagram
in the γ /|V |-g/|V | plane, for V < 0. In the left panel of
Fig. 3, we show the absolute value of the average magne-
tization |mz| as obtained with a CMF approach for � = 2.
The results agree with those in Ref. [38]: For γ /|V | � 0.5
the transition is first order, otherwise it is continuous. In the
central panel, we study the effect on |mz| of the exact inclusion
of correlations at increasing distance, by considering clusters
of size � � 4. A larger-cluster ansatz progressively smoothens
the first-order jump, thus leading to a continuous transition.
The lobe appearing at small g and small γ is quickly sup-
pressed as � is increased, and represents an artifact of the
CMF ansatz, as also witnessed by a linear stability analysis
[43,51]. The figure displays numerical results obtained for
the cut at γ /|V | = 0.2, but the same conclusions apply for
the whole range γ /|V | � 0.5 (not shown). In the right panel
of Fig. 3, we show the behavior of the correlation length in
Eq. (3) along the same cut (γ /|V | = 0.2), for different cluster
sizes (namely, � = 2, 3, 4). The emergence of critical points
is again witnessed by an abrupt increasing of ξz. In contrast
to the case of the first-order transition studied in model I
(Fig. 2), here the correlation length at criticality is about two
orders of magnitude larger and the peak is more likely to
be experimentally detected. Indeed, in the case of continuous
transitions with symmetry breaking, a divergence of ξz in the
thermodynamic limit is expected to occur.

Conclusions. We proved how the emergence of classical
and quantum correlations dramatically modifies the nature

of dissipative phase transitions in strongly interacting spin
systems. Applying a combination of cluster methods and
quantum trajectories on a testbed spin-1/2 quantum Ising
model with incoherent spin flips, we demonstrated two key re-
sults. First, quantum phase bistability evolves into a crossover
or a purely first-order phase transition, if short-range in-
teractions are properly accounted for. This allowed us to
precisely locate the position of the critical boundary, which
has been a matter of debate in the literature. Second, certain
previously thought first-order transitions are indeed second
order when employing an exact treatment of interactions.
This points toward excluding the presence of a multicriti-
cal behavior originated by the dissipative dynamics in the
quantum Ising model. Our results also contribute to a full
and comprehensive characterization of the role of correlation
functions close to dissipative critical points, which represent
one of the main challenges in the field of open many-body
systems.

Unveiling the effect of disorder as well as disentangling
the contribution of classical and quantum correlations at
phase-transition points are intriguing future directions, that
can be tackled within this framework. Experimentally, the
fast development of quantum simulators using Rydberg atoms
[25,26,32,33] stands as an exciting opportunity to test these
predictions in the laboratory.
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